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A Heuristic Discussion of Probabilistic Decoding* 
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This is another in a series of invited tutorial, status and survey papers that are being 
regularly solicited by the PTGIT Committee on Special Papers. We invited Profess01 
Fano to commit to paprr his elegant but, unelaborate explanation of the principles of 
sequential decoding, a scheme which is currently contending for a position as the most 
practical implementation to dale of Shannon’s theory of noisy communication channels. 
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HE PURPOSE of this paper is to present a heuristic 
discussion of the probabilistic decoding of digital 
messages after transmission through a randomly 

disturbed channel. The adjective “probabilistic” is used 
to distinguish the decoding procedures discussed here from 
algebraic procedures’ based on special st’ructural properties 
of the set of code words employed for transmission. 

In order to discuss probabilistic decoding in its proper 
frame of reference, we must first outline the more general 
problem of transmitting digital information through 
randomly disturbed channels, and review briefly some ;f 
the key concepts and results pertaining t’o it.’ These key 
concepts and results were first presented by C. E. Shannon, 
in 1948,3 and later sharpened and extended by Shannon 
and others. The first probabilistic decoding procedure of 

practical interest was presented by J. M. Wozencraft,4 
in 1957, and extended soon thereafter by B. Reiffen.” 
Equipment implement’ing t,his procedure has been built, 
at Lincoln Laborat,ory6 and is at present being test’ed in 
conjunction with t,elephone lines. 

I. THE ENCODING OPERATION 

We shall assume, for t’he sake of simplicity, that the 
informat.ion to be transmitted consists of a sequence of 
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equiprobable and statistically independent binary digits. 
We shall refer to these digits as information digits, and to 
their rate, R, measured in digits per second, as the in- 
formation transmission rate. 

The complex of available communication facilities will 

be referred to as the transmission channel. We shall 
assume that the channel can accept as input any time 
function whose spectrum lies within some specified fre- 

quency band, and whose rms value and/or peak value are 
within some specified limits. 

The information digits are to be transformed into an 
appropriate channel input, and must be recovered from 
the channel output with as small a probability of error 
as possible. We shall refer to the device that transforms 
the information digits into the channel input as the en- 
coder, and to the device that recovers them from the 
channel output as the decoder. 

The encoder may be regarded, without any loss of 
generality, as a finite-state device whose state depends, 
at any given time, on the last v information digits input 
to it. This does not imply that the state of the device is 
uniquely specified by the last Y digi&. It may depend on 
time as well, provided that such a time dependence is 
established beforehand and built into the decoder, as well 
as into the encoder. The encoder output is uniquely speci- 
fied by the current state, and therefore is a function of 
the last v information digits. We shall see that the integer 
v, representing the number of digits on which the encoder 
output depends at any given time, is a critical parameter 
of the transmission process. 

The encoder may operate in a variety of ways that 
depend on how often new digits are fed to it. The digits 
may be fed one at a time every l/R seconds, or two at a 
time every 2/R seconds, and so forth. The limiting case 
in which the information digits are fed to the encoder in 
blocks of v every v/R seconds is of special interest and cor- 
responds to the mode of operation known as block en- 
coding. In fact’, if each successive block of v digits is fed 
to the encoder in a time that is short compared with l/R, 
the decoder output depends only on the digits of t#he last) 
block, and is t,otally independent> of t’he digits of the 
preceding blocks. Thus, t,he encoder output during each 
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time ihterval of length v/R, corresponding to the trans- 
mission of one particular block of digits, is completely 
independent of the output during the time intervals cor- 
responding to preceding blocks of digits. In other words, 
each block of v digits is transmitted independently of all 
preceding blocks. 

The situation is quite different when the informat’ion 
digits are fed to the encoder in blocks of size vO < v. 
Then the encoder output depends not only on the digits 
of the last block fed to the encoder, but also on v - vO 
digits of preceding blocks. Therefore, it is not independent 
of the output during t’he time interval corresponding to 

preceding blocks. As a matter of fact a little t,hought will 
indicate that the dependence of the decoder output on 
his own past extends to infinity in spite of the fact that 
its dependence on the input digits is limited t,o the last v. 
For this reason, the mode of operation corresponding to 
vO < Y is known as sequential encoding. The distinction 
between block encoding and sequential encoding is basic 
to our discussion of probabilistic decoding. 

The encoding operation, whether of the block or scquen- 
tial type, is best performed in two st#eps, as illustrated in 
Fig. 1. The first step is performed by a binary encoder 
that generates n, binary digits per input informat’ion digit’, 
where the integer n, is a design parameter to be selected 
in view of the rest of the encoding operation, and of the 
channel characteristics. The binary encoder is a finite- 
state device whose state depends on the last v information 
digits fed to it., and possibly on time as discussed above. 
The dependence of the state on the informat,ion digits 
is illustrated in Fig. 1, by showing the v information digits 
as stored in a shift regist,er with serial input and parallel 
output. It can be shown that the operation of the finitc- 

state encoder need not bc more complex t,han a modulo-2 
convolution of the input digits wit,h a periodic sequence 
of binary digit’s of period equal to n,v. A suitable periodic 
sequence can be construct,ed simply by selecting t,he n,,v 

digits equiprobably and independently at random. Thus, 
the complexity of the binary encoder grows linearly with v, 
and its design depends on the transmission channel only 
through the selection of the integers n, and v. 

The second part of the encoding operatJion is a straight- 
forward transformation of the sequence of binary digits 

generated by the binary encoder into a time function that 
is acceptable by the channel. Because of the finite-state 
character of the encoding operation, the resulting time 
function must necessarily be a sequence of elementary 
time functions selected from a finite set. The elementary 
t,ime functions are indicated in Fig. 1 as S,(t), S,(t), 
. . . , s,(t), where M is the number of distinct elementary 

time functions, and T is their common duration. The 
generation of these elementary t’ime functions may be 
thought of as being controlled by a switch, whose position 
is in turn set by the digits stored in a p-stage binary 
register. The digits generated by the binary encoder are 
fed to this register p at a time, so that each successive 
group of p digits is &msformed into one of the elementary 

BINARY DIGITS- 

INFORMATION 

BINARY DIGITS 

RATE = R 

SIGNAL GENERATOR 
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“0 R 

R = TRANSMISSION RATE IN BITS/SEC 
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S(t)=TlME FUNCTION OF DURATION T 

M=NUMBER OF DISTINCT S(t) 5 2+ 

Fig. l-The encoding operation. 

signals. The number of distinct elementary signals M 
cannot exceed 2”, but it may be smaller. A value of M 
substant’ially smaller than 2” is used when some of the 
elementary signals are to be employed more often than 
others. For instance, with iI4 = 2 and p = 2 we could 
make one of the 2 elementary signals occur 3 times as 
often as the other, by connecting 3 of the switch positions 
to one signal and the remaining one to the ot’her. 

While the character of the transformation of binary 
digits into signals envisioned in Fig. 1 is quite general, 
t,he range of the parameters involved is limited by practical 
considerations. The number of distinct elementary signals 
AC must be relatively small, and so must be the int,eger n,. 
The values of ill and no, as well as the forms of the cle- 
mentary signals, must be selectled with great care in view 
of the characteristics of the transmission channel. In fact, 
their selection results in the definit,ion of the class of time 
functions that may be fed t’o the channel, and therefore, 
in effect, to a redefinition of the channel.7 Thus, one faces 
a compromise between equipment complexity and de- 

gradat’ion of channel characteristics. 
Fig. 2 illustrates two choices of parameters and of cle- 

mentary signals, which would be generally appropriate 
when no bandwidth rest.riction is placed on the signal 
and thermal agitation noise is the only disturbance present 
in the channel. In case a) each digit generated by the 
binary encoder is t’ransformed into a binary pulse, while 
in case b) each successive block of 4 digits is transformed 

into a sinusoidal pulse 4 times as long, and of frequency 
proportional to the binary number spelled by the group 
of 4 digits. The example illustrated in Fig. 3 pertains 
instead to the case in which the signal bandwidth is so 
limited that the shortest pulse duration permitted is equal 
to the time interval corresponding to the transmission of 2 
information digits. In this case the elementary signals are 
pulses of the shortest permissible duration, with 16 dif- 
ferent amplitudes. 

7 J. Xiv, “Coding and decoding for time-discrete amplitude 
continuous rnemorpless channels,” IRE TRANS. ON INFORMATION 
THEORY, vol. IT-S, pp. 199-205; September, l!K?. 
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Fig. 2-Examples of encoding for a channel with unlimited band. 
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Fig. 3-Example of encoding for a band-limited channel. 

These examples should make it clear that the encoding 
process illustrated in Fig. 1 includes, as special cases, the 
traditional forms of modulation employed in digital com- 
munication. What distinguishes the forms of encoding 
envisioned here from the traditional forms of modulation 
is the order of magnitude of the integer v. In the traditional 
forms of modulation the value of v is very small, often 
equal to 1 and very seldom greater than 5. Here instead 
we envision values of v of the order of 50 or more. The 
reason for using large values of v will become evident 
later on. 

II. CHANXEL QUAXTIZATION 

Let us suppose that the encoding operation has been 
fixed to the extent of having selected the duration and 
identities of the elementary signals. We must consider 
next how to represent the effect of t,he channel disturbances 
on these signals. Since most of our present detailed theo- 
retical knowledge is limited to channels without memory, 
we shall limit our discussion to such channels. A channel 
without memory can be defined for our purpose as one 
whose output during each time interval of length T, cor- 
responding to the transmission of an elementary signal, 
is independent of the channel input and output during 
preceding time intervals. This implies that the operation 
of the channel can be described within any such time inter- 
val without reference to the past or the transmission. We 
shall also assume that the channel is stationary in the 
sense that its properties do not change with time. 

Let us suppose that the elementary signals are trans- 
mitted with probabilities P(&), P(S,), . ’ . , P(S,), and 
indicate by S’(t) the channel output during the time inter- 

val corresponding to the transmission of a particular 

signal. The observation of the output S’(t) changes the 
probability distribution over the ensemble of elementary 
signals, from the a priori distribution P(S) to the a 
posteriori conditional distribution P(S j S’). The latter 
distribution can be computed, at least in principle, from 
the a priori distribution and the st’atistical charact’eristics 
of the channel disturbances. More precisely, we may re- 
gard the output S’(t) as a point S’ in a continuous space 
of suitable dimensionality. Then, if we indicate by 

p(S’ 1 S,) the conditional probability density (assumed to 
exist) of the output S’ for a particular input X,, and have 

PW> = 5 mup(s’ I 82 
k=l 

the probabilit’y density of S’ over all input signals, we 

obtain 

p(s / 8,) = p4l@;i. 

PM 1 

Knowing the a posteriori probability distribution 
P(S 1 S’) is equivalent, for our purposes, to knowing the 
output signal S’. In turn, this probability distribution 
depends on S’ only through the ratios of the M probability 
densities p(S’ j S). Furt’hermorc, these probability densi- 
ties cannot be determined, in practice, with infinite pre- 
cision. Thus, we must decide, either implicitly or ex- 
plicitly, the tolerance within which the ratios of these 
probability densities are to be determined. 

The effect of introducing such a tolerance is to lump 
together the output signals X’ for which the ratios of the 
probability densities remain within the prescribed toler- 
ance. Thus, we might as well divide the S’ space into 
regions in which the ratios of the densities remain within 
the prescribed tolerance, and record only the identity of 
the particular region to which the output signal S’ belongs. 

Such a quantization of the output space S’ is governed 
by considerations similar to those governing the choice 
of the input elementary signals, namely, equipment com- 
plexity and channel degradation. We shall not discuss 
this matter further, except for stressing again that such 
quantizations are unavoidable in practice; their net result 
is to substitute for the original transmission channel a 

new channel with discrete sets of possible inputs and 

outputs, and a correspondingly reduced transmission 
capability.7 

III. CHANNEL CAPACITY 

It is convenient at this point to change our terminology 

to that commonly employed in connection with discrete 
channels. We shall refer to the set of elementary input’ 
signals as the input alphabet, and to the individual 
signals as input symbols. Similarly, we shall refer to the 
set of regions in which the channel output space has been 
divided as the output alphabet, and to the individual 
regions as output symbols. The input and output alpha- 
bets will be indicated by X and Y, respectively, and 
particular sg,nbols belonging to them will be indicate? 
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by z and y. Thus, the transmission channel is completely 

described by the alphabets X and Y, and by the set of 
conditional probability distributions P(y 1 x). 

We have seen that the net effect of the reception of a 
symbol y is to change the a priori probability distribution 
P(x) into the a posteriori probability distribution 

pcx / y) _ pmpcy I 4 ph Y> =- 
P(Y) P(Y) ’ 

(3) 

where P(x, y) is the joint probability distribution of input 
and output symbols. Thus, the information provided by a 
particular output symbol y about a particular input 
symbol R: is defined as 

1(x; y) = log p*;F = log p* = log li;$$ . (4) 

We shall see that this measure of information and its 
average value over the input and/or output alphabets 
play a central role in the problem under discussion. 

It is interesting to note that 1(x; y) is a symmetrical 
function of x and y, so that the information provided by 
a particular y about a particular x is the same as the in- 
formation provided by x about y. In order to stress this 
symmetry property, 1(x; y) = I(y; x) is often referred 
to as the mutual information between z and y. In contrast, 

is referred to as the self-information of x. This name follows 
from the fact that, for a particular symbol pair x = xk, 

y = yi, 1(x,; yi) becomes equal to l(xk) when P(xk 1 yi) = 1, 
that is, when the output symbol yi uniquely identifies 
xh as the input symbol. Thus, I(Q) is the amount of 
information that must be provided about xk in order to 
uniquely identify it, and as such is an upper bound to the 
value of 1(x,; y). 

In the particular case of an alphabet with L equi- 
probable symbols, the self-information of each symbol is 
equal to log L. The information is measured in bits when 
base-2 logarithms are used in the expressions above. Thus 
the self-information of the symbols of a binary equi- 
probable alphabet is equal to 1 bit. 

Let us suppose that the input symbol is select’ed from 
the alphabet X with probability P(s). The average, or 
expected value, of the mutual informat,ion between in- 
put and output symbols is, then, 

w; Y) = ; P(x, Ym; Y). (6) 

This quantity depends on the input probability distri- 
bution P(x) and on the characteristics of the channel 
represented by the conditional probability distributions 

P(y 1 2). Thus, its value for a given channel depends on 
the probability distribution P(x) alone. 

The channel capacity is defined as the maximum value 
of 1(X; Y) with respect to P(x), that is, 

C = Max 1(X; Y). 
P(z) 

(7) 
,_I. 

It can be shown’ that if a source that generates sequences 
of x symbols is connected to the channel input, the average 
amount of information per symbol provided by the channel 
output about the channel input cannot exceed C, regard- 
less of the statistical characteristics of the source. 

IV. ERROR PROBABILITY FOR BLOCKENCODING 

Let us consider now the special case of block encoding, 
and suppose that a block of v information digits is trans- 
formed by the encoder into a sequence of N elementary 
signals, that is, into a sequence of N input symbols. Since 
the information digits are, by assumption, cquiprobable 
and independent of one another, it takes an amount of 
information equal to log 2 (1 bit) to identify each of 
them. Thus, the information transmission rate per channel 
symbol is given by 

R = $1,2. (8) 

(Note that the same symbol is used to indicate the in- 
formation transmission rate, whether per channel symbol 

or per unit time.) 
The maximum amount of information per symbol which 

the chamlel output can provide about the channel input 
is equal to C, the channel capacity. It follows that we 
cannot expect to be able to transmit the information 
digits with any reasonable degree of accuracy at any rate 
R > C. Shannon’s fundamental theorem asserts, further- 
more, that for any R < C the probability of erroneous 
decoding of a block of v digits can be made as small as 
desired by employing a sufficiently large value of v and a 
correspondingly large value of N. More precisely, it is 
possible9 to achieve a probability of error per block 
bounded by 

p, < CJ-v(a/R)+l, 
(9) 

where a is independent of v and varies with R as illu- 
strated schematically in Fig. 4. Thus, for any R < C, 
the probability of error decreases exponentially with in- 
creasing v. 

It is clear from (9) that the probability of error is 
controlled primarily by the product of v and or/R, the 
latter quantity being a function of R alone for a given 
channel. Thus, the same probability of error can be ob- 
tained with a small value of v and relatively small value 
of R, or with a value of R close to C and a correspondingly 
larger value of v. In the first situation, which corresponds 
to the traditional forms of modulation, the encoding and 
decoding equipment is relatively simple because of the 
small value of v, but the channel is not utilized efficiently. 
In the second situation, on the contrary, the channel is 
efficiently utilized, but the relatively large value of v 
implies that the terminal equipment must be substantially 
more complex. Thus, we are faced with a compromise 
between efficiency of channel utilization and complexity 
of terminal equipment. 

8 Fano, op. cit., see Sec. 5.2. 
9 Fano, op. cit., see ch. 9. 
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Fig. 4- 1Lelation between the rxponcntial coefficient cy and the 
information transmission rate I2 in (9). 

It was pointed out in Section I that the operat.ion to be 

performed by the binary encoder is relatively simple, 
namely, the convolut,ion of the input information digits 
with a periodic sequence of binary digits of period equal 
to QV. Thus, roughly speaking, the complexity of the 
encoding equipment grows linearly with v. On the other 
hand, the decoding operation is substantially more com- 
plex, both conceptually and in terms of the equipment, 
required to perform it. The rest of this paper is devoted 
t#o it. 

V. PROB-~BILISTIC BLOCK DECODING 

We have seen that in the process of block encoding 
each particular sequence of v information digits is trans- 
formed by t’he encoder into a particular sequence of N 
channel-input symbols. We shall refer to any such se- 
quence of input symbols as a code word, and we shall 

indicate by uk the code word corresponding to t’he sequence 
of information digits which spells k in the binary number 
system. The sequence of N output symbols resulting from 
an input code word will be indicated by v. 

The probability that a particular code word u will 
result in a particular output sequence v is given by 

where the subscript j indicates that the value of the 
conditional probability is evaluated for the input and out- 
put symbols that occupy the jth positions in u and v. 
On the other hand, since all sequences of information 
digits are transmitted with the same probability, t,he 
a posteriori probability of any particular code word u 
after the reception of a particular output sequence v is 
given by 

I% I 4p(4 
zYu ’ v) = T P(v 1 u)P(u) 

= 2-’ P(v I 4 -. 
P(v) 

(11) 
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Thus, the code word that a posteriori is most probable for 
a particular output v is the one that maximizes the con- 
ditional probability P(v / u) given by (10). We can con- 
clude that in order to minimize the probability of error 
the decoder should select the code word with the largest 
probability P(v I U) of generating the sequences v output 
from the channel. 

While the specification of the optimum decoding 
procedure is st’raightforward, its implementation presents 
very serious difficulties for any sizable value of v. In fact, 
there is no general procedure for determining the code 
word corresponding to the largest value of P(v ( U) without 
having to evaluate this probability for most of the 2” 
possible code words. Clearly, the necessary amount of 
computation grows exponentially with v and very quickly 
becomes prohibitively large. However, if we do not insist 
on minimizing the probability of error, we may take 
advantage of the fact that, if the probability of error is 
to be very small, the a posteriori most probable code word 
must be almost always substantially more probable than 
all other code words. Thus, it may be sufficient to search 
for a code word with a value of P(v / U) larger than some 
appropriate t)hreshold, and take a chance on the possibility 
that there be other code words with even larger values? 
or that the value for the correct code word be smaller 
than the threshold. 

Let us consider, then, what might be an appropriate 
threshold. Let us suppose that for a given received se- 
quence v there exists a code word uI, for which 

P(UA Iv) 2 CP(Ui Iv), (12) 
<Sk 

where the summation extends over all the other 2” - 1 
code words. Then uk must be the a posteriori most prob- 
able code word. The condition expressed by (12) can be 
rewritten, with the help of (1 l), as 

P(v j Uk) 2 2 P(v I 4. (13) 

The value of P(v 1 u,) can be readily computed with the 
help of (10). However, we are still faced with the problem 
of evaluating the same conditional probability for all of 
the other code words. This difficulty can be circumvented 
by using an approximation related to the random-coding 
procedure employed in deriving (9). 

In the process of random coding each code word is 
constructed by selecting its symbols independently at 
random according to some appropriate probability distri- 
bution P,(x). The right-hand side of (9) is actually the 
average value of the probability of error over the ensemble 

of code-word sets so constructed. This implies, inciden- 
t,ally, that satisfactory code words can be obtained in 
practice by following such a random construction pro- 

cedure. 
Let us assume that the code words under consideration 

have been constructed by selecting the symbols inde- 
pendently at random according to some appropriate proba- 
bility distribution P,(s). It would seem reasonable t,hen 
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to substitute for the right-hand side of (13) its average 
value over the ensemble of code-word sets constructed in 
the same random manner. In such an ensemble of code- 
word sets, the probability P,(u) that any particular input 
sequence u be chosen as a code word is 

(14) 

where the subscript j indicates that P,(z) is evaluated 
for t.he jth symbol of the sequence u. Thus, the average 
value of the right-hand side of (la), with the help of (lo), is 

(2’ - 1) G Po(4p(v I 4 = (2’ - 1) 6 Po(Y)li, (15) 

where U is the set of all possible input sequences, and 

(16) 

is the probability distribution of the output symbols 
when the input symbols are transmitted independently 
with probability P,(z). Then substituting the right-hand 
side of (15) for the right-hand side of (13) and expressing 
P(v / u,) as in (10) yields 

N 
II[ 

P(Y I xl -- 1 > 2” _ 1 
j=l PO(Y) i - . 

(17) 

Finally, approximating 2” - 1 by 2” and taking the 

logarithm of both sides yields 

N 

ClI 
log P(Y I 4 __- 

i=l P&j) 1 i > NRJ (18) 

where R is the transmission rate per channel symbol 

defined by (8). 
The threshold condition expressed by (18) can be given 

a very interesting interpretation. The jth term of the 
summation is the mutual information between the jth 
output symbol and the jth input symbol, with the input 
symbols assumed to occur with probability P,(z). If the 
input symbols were statistically independent of one 
another, the sum of these mutual informations would be 
equal to the mutual information between the output 
sequence and the input sequence. Thus, (18) states that 
the channel output can be safely decoded into a particular 
code word if the mutual information that it provides about 
the code word, evaluated as if the N input symbols were 
selected independently with probability P,,(z), exceeds 
the amount of information transmitted per code word. 

It, turns out that the threshold value on the right-hand 
side of (18) is not only a reasonable one, as indicated by 
our heuristic arguments, but the one that minimizes the 
average probability of error for threshold decoding over 
the ensemble of randomly constructed code-word set’s. 
This has been shown by C. E. Shannon in an unpublished 
memorandum. The bound on the probability of error 
obtained by Shannon is of the form of (9); however, the 
value of 01 is somewhat smaller than that obtained for 

optimum decoding. Shannon assumes in his derivation 
that an error occurs whenever (17) either is satisfied for 
any code word other than the correct one or it is not 
satisfied for the correct code word. 

The probability of error for threshold decoding, al- 
though larger than for optimum decoding, is still bounded 
as in (9). This fact encourages us to look for a search 
procedure that will quickly reject any code word for 
which (17) is not satisfied, and thus converge relatively 
quickly on the code word actually transmitted. We ob- 
serve, on the other hand, that, even if we could reject an 
incorrect code word after evaluating (17) over some small 
but finite fraction of the N symbols, we would still be 
faced with an amount of computat’ion that would grow 
exponentially with v. In order to avoid this exponential 
growth, we must arrange matters in such a way as to be 
able to eliminate large subsets of code words, by evaluat#ing 
the left-hand side of (17) over some fract.ion of a single 
code word. This implies that the code words must possess 
the kind of tree structure which results from sequent’ial 
encoding, as discussed in the next section. 

It is just the realization of this fact’ that led J. M. 
Wozencraft to the development of his sequential decoding 
procedure in 1957. Other decoding procedures, both 
algebraic’ and probabilistic,” have been developed since, 
which are of practical value in certain special cases. How- 
ever, sequential decoding remains the only known pro- 
cedure that is applicable to all channels without memory. 
As a matter of fact, there is reason” to believe that’ some 
modified form of sequential decoding may yield satis- 
factory results in conjunction with a much broader class 

of channels. 

VI. SEQUENTIAL DECODING 

The rest of this paper is devoted to a heuristic discussion 

of a sequential decoding procedure recently developed by 
the aut.hor. This procedure is similar in many respects 

to that of Wozencraft,4-6 but it is conceptually simpler 
and therefore it, can be more readily explained and evalu- 
ated. An experimental comparison of the two procedures 
is in progress at Lincoln Laboratory, M. I. T., Lexington, 
Mass. A detailed analysis of the newer procedure will be 

presented in a forthcoming paper. 
Let us reconsider in greater detail the structure of the 

encoder output in the case of sequential encoding, that is, 
when the information digits are fed to the encoder in 
blocks of size y. (in practice y. is seldom larger than 3 or 4). 
The encoder output, during the time interval correspond- 
ing to a particular block, is selected by the digits of t’he 
block from a set of 2”” distinct sequences of channel input 
symbols. The part,icular set of sequences from which the 
output is select#ed is specified, in turn, by the v - v0 

10 R. G. Gallager, “Low density parity-check codes,” IRE TRANS. 
ON INFORMATION THEORY, vol. IT-8, pp. 21-28; January, 1962. 

l1 R. G. Gallager, “Sequential Decoding for Binary Channels 
with Noise and Synchronization Errors,” Lincoln Lab., M.I.T., 
Lexington, Mass., Rept. No. 2SG-2; 19Fl. 
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information digits preceding the block in question. Thus, 
the set of possible outputs from t.he encoder can be 
represented by means of a tree with 2’” branches stemming 
from each node. Each successive block of v0 information 
digits causes the encoder to move from one node to the 
next, one, along the branch specified by the digits of the 
block. 

The two trees shown in Fig. 5 correspond to the two 
examples illustrated in Figs. 2(b) and 3. The first example 
yields a binary tree (v. = l), while the second example 
yields a quaternary tree (vO = 4). 

In summary, the encoding operat.ion can be represented 
in terms of a tree in which the information digits select 
at each node the branch to be followed. The pat#h in the 
tree resulting from the successive select’ions constitutes 
the encoder output. This is equivalent to saying that each 
block of v. digits fed to the encoder is represented for 
transmission by a sequence of symbols selected from a 
set of 2’” distinct sequences, but the particular set from 
which the sequence is selected depends on the preceding 
v - v. information digits. Thus, the channel output, 
during the time interval corresponding to a block of v. 
information digits, provides information not only about 
these digits but also about the preceding v - v. digits. 

The decoding operation may bc regarded as the process 
of det,ermining, from the channel output, the path in the 
t’ree followed by t,he encoder. Suppose, to start with, that 
the decoder selects at each node the branch which a 
posteriori is most probable, on the basis of the channel 
output during tJhe time interval corresponding to the 
transmission of the branch. If the channel disturbance is 
such that the branch actually transmitted does not turn 
out to be the most probable one, the decoder will make an 
error, thereby reaching a node that does not lie on the 
pat.h followed by the encoder. Thus, none of the branches 
stemming from it will appear as a likely chamlel input. 
If by accident one branch does appear as a likely input, 
the same situation will arise with respect to the branches 
stemming from the node in which it terminates, and so 
forth and so on. This rough notion can be made more 
precise. 

Let us suppose that the branches of the tree are con- 
structcd, as in the case of block encoding, by selecting 
symbols independently at random according to some ap- 
propriate probability distribution PO(z). This is accom- 
plished in practice by selecting equiprobably at random 
the n,v binary digits specifying the periodic sequence with 
which the sequence of information digits is convolved, 
and by properly arranging the connections of switch 
positions to the elementary signals in Fig. 1. Then, as 
in the case of threshold block decoding, the decoder, as 
it moves along a path in the tree, evaluates the quantity 

(19) 

where y in the jt#h term of the summation is the jth symbol 
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Fig. 5-Encoding trees corresponding to the examples of Figs. 
2(b) and 3. 

output from the channel, and x in the same term is the 
jth symbol along the path followed by the decoder. 

As long as the path followed by the decoder coincides 
with that followed by the encoder I, can be expected to 
remain greater than NR (R, the information transmission 
rate per channel symbol, is still equal to the number of 
chtinnel symbols divided by the number of corresponding 
information digits, but it is no longer given by (8)). 
However, once the decoder has made a mistake and has 
thereby arrived at a node that does not lie on the path 
followed by the encoder, the terms of I, corresponding 
to branches beyond that node are very likely to be smaller 
than R. Thus ITN must eventually become smaller than NR, 
thereby indicating that an error must have occurred at 
some preceding node. It is clear that in such a situation 
the decoder should try to find the place where the mistake 
has occurred in order to get back on the correct path. 
It would be desirable, therefore, to evaluate for each 
node the relative probability that a mistake has occurred 
there. 

VII. PROBABILITY OF ERRORALOXGA~ATH 

Let us indicate by N the order number of the symbol 
preceding some particular node, and by No the order 
number of the last output symbol. Since all paths in the 
tree are a priori equiprobable, their a posteriori probabili- 
ties are proportional to the conditional probabilit’ies 
P(v 1 u), where u is the sequence of symbols corresponding 
to a particular path, and v is the resulting sequence of 
output symbols. This conditional probability can be 
written in the form 

P(v I4 = 8 PTY I dli i=g+I FYY I X)li* (20) 

The first factor on the right-hand side of (20) has the 
same value for all the paths that coincide over the first 
N symbols. The number of such paths, which differ in 
some of the remaining N, - N symbols, is 

m = 2’No-N’R/‘og2. 
(20 

As in the case of block decoding, it is impractical to com- 
pute the second factor on the right-hand side of (20) for 
each of these paths. We shall again circumvent this diffi- 
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culty by averaging over the ensemble of randomly con- 
structed trees. By analogy with the case of threshold 
block decoding, we obtain 

Po(v i u) = fj [P(Y I x>li jQ+I tpdY)li, G4 

where PO(y) is given by (16). 
Let P, be the probability that the path followed by the 

encoder is one of the m - 1 paths that coincide with the 
one followed by the decoder over the first N symbols, 
but differ from it thereafter. By approximating m - 1 

with m, we have 

where K, and K, are proportionality constants. Finally, 
taking the logarit,hm of both sides of (23) yields 

log P.,, = log K, + 2 [log w - Rli. (24) 
i=1 0 

The significance of (24) is best discussed after rewriting 
it in terms of the order number of the nodes along the 
path followed by the decoder. Let us indicate by N, the 

number of channel symbols per branch (assumed for the 
sake of simplicity to be the same for all branches) and 
by n the order number of the node following the Nth 
symbol. Then (24) can be rewritten in the form 

1% Pn = log K, + 2 A,, (25) 
k=l 

where 

is the contribution to the summation in (24) of the kth 
branch examined by the decoder. Finally, we can drop the 
constant from (25) and focus our attention on the sum 

-L= Ahk, (27) 
k=I 

which increases monotonically with the probability P,. 
A typical behavior of L, as a function of n is illustrated 

in Fig. 6. The value of Xk is normally positive, in which 
case the probability that an error has been committed at 
some particular node is greater than the probability that 
an error has been committed at the preceding node. Let 
us suppose that the decoder has reached the nth node, 

and the value of X,,, corresponding to the a posteriori 

most probable branch stemming from it is positive. Then, 
the decoder should proceed to examine the branches 

------------_-__ 

Fig. 6-Behavior of the likelihood function L, along various tree 
paths. The continuous curve corresponds to the correct path. 

stemming from the following node, on the assumption 
that the path is correct up to that point. On the other 
hand, if the value of X n+l is negative, the decoder should 
assume that an error has occurred and examine other 
branches stemming from preceding nodes in order of 
relative probability. 

VIII. A SPECIFIC DECODING PROCEDURE 

It turns out that the process of searching other branches 
can be considerably simplified if we do not insist on 
searching them in exact order of probability. A procedure 
is described below in which the decoder moves forward or 
backward from node to node depending on whether the 
value of L at the node in question is larger or smaller than a 
threshold T. The value of T is increased or decreased in 
steps of some appropriate magnitude TO as follows. Let us 
suppose that the decoder is at some node of order n, 
and that it attempts to move forward by selecting the 
most probable branch among those still untried. If 
the resulting value of L,,, exceeds the threshold T; 
the branch is accepted and T is reset to the largest pos- 
sible value not exceeding L,+l. If, instead, L,,, is smaller 
than T, the decoder rejects the branch and moves back 
to the node of order n - 1. If Lnel 2 T, the decoder 
attempts again to move forward by selecting the most 
probable branch among those not yet tried, or, if all 
branches stemming from that node have already been 
tried, it moves back to the node of order n - 2. The 
decoder moves forward and backwards in this manner 
until it is forced back to a node for which the value L 
is smaller than the current threshold T. 

When the decoder is forced back to a node for which L 
is smaller than the current threshold, all of the paths 
stemming from that node must contain at least a node 
for which L falls below the threshold. This situation may 
arise because of a mistake at that node or at some pre- 
ceding node, as illustrated in Fig. 6 by the first curve 
branching off above the correct curve. It may also result 
from the fact that, because of unusually severe channel 
disturbances, the values of L along the correct path reach 
a maximum and then decrease to a minimum before 
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rising again, as illustrated by the main curve in Fig. 6. 

In either case, the threshold must be reduced by To in 
order to allow the decoder to proceed. 

After the threshold has been reduced, the decoder 
attempts again to move forward by selecting the most 
probable branch, just as if it had never gone beyond the 
node at which the threshold had to be reduced. This 
leads the decoder to retrace all of the paths previously 
examined to see whether L remains above the new thresh- 
old along any one of them. Of course, T cannot be allowed 
to increase while the decoder is retracing any one of these 
paths, until it reaches a previously unexplored branch. 
Otherwise, tbe decoder would keep retracing the same 
path over and over again. 

If L remains above the new threshold along the correct 
path, the decoder will be able to continue beyond the 
point at which it was previously forced back, and the 
threshold will be permitted to rise again, as discussed 
above. If, instead, L still falls below the reduced threshold 
at some node of the correct path, or an error has occurred 
at some preceding node for which L is smaller than the 
reduced threshold, the threshold will have to be further 
reduced by To. This process is continued until the thresh- 
old becomes smaller than the smallest value of L along 
the correct path, or smaller than the value of L at the 
node at which the mistake has taken place. 

The flow chart of Fig. 7 describes the procedure more 
precisely than can be done in words. Let us suppose that 
the decoder is at some node of order n. The box at the 
extreme left of the chart examines the branches stemming 
from that node and selects the one that ranks ith in order 
of decreasing a posteriori probability. (The value of X 
for this branch is indicated in Fig. 7 by the subscript i(n), 
and the integer i(n) is assumed to be stored for future 
use for each value of n. The number of branches is b = 2’“. 
Thus 1 5 i(n) 5 b.) Next, the value L,,, is computed 
by adding L,b and Xi CnJ. The value of L, may be needed 
later, if the decoder is forced back to the nth node, and 
therefore it must be stored or recomputed when needed. 
For the sake of simplicity, the chart assumes that L, 
is stored for each value of n. 

The chart is self-explanatory beyond this point except 
for the function of the binary variable F. This variable is 
used to control a gate that allows or prevents the threshold 
from increasing, the choice depending on whether F = 0 
or F = 1, respectively. Thus, F must be set equal to 0 
when the decoder selects a branch for the first time, and 
equal to 1 when the branch is being retraced after a 
reduction of threshold. The value of F is set equal to 1 

each time a branch is rejected; it is reset equal to 0 before 
a new branch is selected only if T 5 L, < T + T, for 
the node to which the decoder is forced back. The value 
F is reset equal to 0 after a branch is accepted if T < 
L n+l < T + To for the node at which the branch termi- 
nates. It can be checked that, after a reduction of thresh- 
old, F remains equal to 1 while a path is being retraced, 

-___--__ 

Fig. 7-Flow charge of the sequential-decoding procedure. 

1 + F stands for: set F equal to 1 
L,& + hi(,) + IL,+* stands for: set L,,, equal to L, + Xica) 
TL + 1 + TZ stands for: substitute 7~ + 1 for n(increase 12 by one ) 
i(n) + 1 --f i(n) stands for: substitute i(n) + 1 for i(n) (increase 

i(n) by one) 
T + 1’” + T stands for: substitute T + TO for T (increase T by To) 
L neIiT stands for: compare I in+l and 2’; follow path marked 2, 

n+1 2 1. 

and it is reset equal to 0 at the node at which t)he value of 
L falls below the previous threshold. 

IX. EVALUATION OFTHEPROCEDURE 

The performance of t,he sequential decoding procedure 
outlined in the preceding section has been evaluated 
analyt,ically for all discrete memoryless channels. The 
details of the evaluation and the results will be presented 
in a forthcoming paper. The general character of these 
results and their implications are discussed below. The 
most important characteristics of a decoding procedure 
are its complexity, the resulting probability of error per 
digit, and the probability of decoding failure. We shall 
define and describe these characteristics in order. 

The notion of complexity actually consists of two re- 
lated but separate notions: the amount of equipment 
required to carry out the decoding operation, and the 
speed at which the equipment must operate. Inspection 
of the flow chart shown in Fig. 7 indicates that the neces- 
sary equipment consists primarily of that required to 
generate the possible channel inputs, namely, a replica 
of the encoder, and that required to store the channel 
output and the information digits decoded. All other 
quantities required in the decoding operation can be 
either computed from the channel output and the in- 
formation digits decoded, or stored in addition to them, 
if this turns out to be more practical. In Section I we 
found that the complexity of the encoding equipment 

increases linearly with the encoder memory Y, since the 
binary encoder must convolve two binary sequences of 
lengths proportional to v. The storage requirements will 
be discussed in conjunction with the decoding failures. 

The speed at which the decoding equipment must 
operate is not the same for all of its parts. However, it 
seems reasonable to measure the required speed in terms 
of the average number, fi, of branches which the decoder 
must examine per branch transmitted. A very conserva- 
tive upper bound to fi has been obtained which has the 
following properties. For any given discrete channel with- 
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out memory, there exists a maximum information trans- 
mission rate for which the bound to fi remains finite for 
messages of unlimited length. This maximum rate is 

given by 

73 

set of branches stemming from a particular node is speci- 
fied by the last v - vO information digits. Then, let us 

suppose that the decoder is moving forward along an 
incorrect path and that it generates, after a few incorrect 
digits, a sequence of v - vO information digits that happen 
to coincide with those transmitted. This is a very improb- 
able event because the decoder is usually forced back 
long before it can generate that many digits. However, 
it can indeed happen if the channel disturbance is suffi- 
ciently severe during the time interval involved. After 
such an event, the replica of the encoder (which generates 
the branches to be examined) becomes completely free 
of incorrect digits, and therefore the decoding operation 
proceeds just as if the correct path had been followed all 
the time. Thus, the intervening errors will not be cor- 
rected. As a matter of fact, if the decoder were forced 
back to the node where the first error was committ.ed, it 
would eventually take again the same incorrect path. 

-__ 

R comll = Max { -log T IT P,(X) 4% I ~)I21 . (28) 
P.(z) 

Then, for any transmission rate R < R,,,,, the bound 
on fi is not only finite but also independent of v. This 
implies that the average speed at which the decoding 
equipment has to operate is independent of v. 

The maximum rate given by (28) bears an interesting 

relation to the exponential factor Q in the bound, given 
by (9), to the error probability for optimum block de- 

coding. As shown in Fig. 4, the curve of o( vs R, for small 
values of R, coincides wit’h a straight line of slope -1. 
This straight line intersects the R axis at the point 

R = R,,,,. Clearly, R,,,, < C. The author does not know 
of any chamlel for which R,,,,,, is smaller than 3 C, but 
no definite lower bound to R,,,, has yet been found. 

Xext, let us turn our attention to the two ways in which 

the decoder may fail to reproduce the information digits 
transmitted. In the decoding procedure outlined above 
no limit is set on how far back the decoder may go in 
order to correct an error. In practice, however, a limit is 
set by the available storage capacity. Thus, decoding 
failures will occur whenever the decoder proceeds so far 
along an incorrect path that, by the time it gets back 
to the node where the error was committed, the necessary 
information has already been dropped from storage. Any 
such failure is immediately recognized by the decoder 
because it is unable to perform the next operation specified 
by the procedure. 

The manner in which such failures are handled in 

practice depends on whether or not a return channel is 
available. If a return chamiel is available, the decoder 
can automatically ask for a repeat.” If no return channel 
is available, the stream of information digit,s must be 
broken into segments of appropriate length and a fixed 
sequence of v - vO digits must be inserted between seg- 
ments. In this manner, if a decoding failure occurs during 
one segment, the rest of the segment will be lost but the 
decoder will start operating again at the beginning of 
the next segment. 

The other type of decoding failure consists of digits 
erroneously decoded which cannot be corrected, regardless 
of the amount of storage available to the decoder. These 
errors are inherently undetectable by the decoder, and 
therefore do not stop the decoding operation. They 
arise in the following way. 

The decoder, in order to generate the branches that must 
be examined, feeds the information digits decoded to a 
replica of the encoder. As discussed in Section VI, the 

12 J. M. Wozencraft and M. Horstein, “Coding for two-way 
channels,” in “Information Theory, Fourth London Symposium,” 
C. Cherry, Ed., Butterworths Scientific Publications, London, 
England, p. 11; 1961 

The resulting probability of error per digit decoded is 
bounded by an expression similar to (9). However, the 
exponential factor O( is larger than for block encoding, 
although, of course, it vanishes for R = C. This fact 
may be explained heuristically by noting that the de- 
pendence of the encoder output on its own past extends 
beyond the symbols corresponding to the last v information 
digits. Thus, we might say that, for the same value of v, 
the effective constraint length is larger for sequential 
encoding than for block encoding. 

Finally, let us consider further the decoding failures 
mentioned above. Since these decoding failures result 
from insufficient storage capacity, we must specify more 
precisely the character of the storage device to be em- 
ployed. Suppose that the storage device is capable of 
storing the channel output corresponding to the last n 

branches transmitted. Then a decoding failure occurs 
whenever the decoder is forced back n nodes behind the 
branch being currently transmitted. This is equivalent to 
saying that the decoder is forced to make a final decision 
on each information digit within a fixed time after its 
transmission. Any error in this final decision, other than 
errors of the type discussed above, will stop the entire 
decoding operation. No useful bound could be obtained 
to the probability of occurrence of the decoding failures 
resulting from this particular storage arrangement. 

Next, let us suppose that the channel output is stored 
on a magnetic tape, or similar buffer device, from which 
the segments corresponding to successive branches can be 
individually transferred to the decoder upon request. 
Suppose also that the internal memory of the decoder is 
limited to n branches. Then, a decoding failure occurs 
whenever the decoder is forced back n branches from the 
farthest one ever examined, regardless of how far back 
this branch is from the one being currently transmitted. 

Let us indicate by k the order number of the last branch 
dropped from the decoder’s internal memory. There are 
two distinct situations in which the decoder may be 



74 IEEE TRANSACTIONS ON INFORMATION THEORY April 

forced back to this branch after having examined a branch 
of order k + n. The value of L along the correct path 
falls below L, at some node of order equal to, or larger 
than, k: + n; or it falls below some threshold T 5 L, at 
some earlier node, and there exists an incorrect path, 
stemming from the node of order lc, over which t’he value 
L remains above T up to the node of order Ic + n. 

An upper bound to the probability of occurrence of 
these events can be readily found. It is similar to (9), 
with v = nv,, and with a value of a! approximately equal 
to that obtained for threshold block decoding. 

x. CONCLUSION 

The main characteristic of sequential decoding that 
makes it particularly attractive in practice is that the 
complexity of the necessary equipment grows only linearly 

with v, while the required speed of operation is inde- 
pendent of v. Thus, it is economically feasible to use 
values of v sufficiently large to yield a negligibly small 
probability of error for transmission rates relatively close 

to channel capacity.6 

Another important feature of sequential decoding is 
that its mode of operation depends very little on the 
channel characteristics, and therefore most of the equip- 
ment can be used in conjunction with a large variety of 

channels. 

Finally, it should be stressed that sequential decoding 
is in essence a search procedure of the hill-climbing type. 
It can be used, in principle, to search any set of alter- 
natives represented by a tree in which the branches 
stemming from different nodes of the same order are 
substantially different from one another. 

General Results in the Mathematical Theory of Random 
Signals and Noise in Nonlinear D&ices* 

H. B. SHUTTERLYT, MEMBER, IEEE 

Summary-An analysis is made of the output resulting from 

passing signals and noise through general zero memory nonlinear 

devices. New expressions are derived for the output time function 

and autocorrelation function in terms of weighted averages of the 

nonlinear characteristic and its derivatives. These expressions are 

not restricted to Gaussian noise and apply to any nonlinearity having 

no more than a finite number of discontinuities. The method of 

analysis used is heuristic. 

I. INTRODUCTION 

R 

ICE,’ Bennett,’ Middleton,3’4 Campbellj and PriceG 
have determined the output autocorrelation func- 
tion and power spectrum for sinusoidal signals 
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and Gaussian noise through a number of specific nonlinear 
characteristics, principally the half-wave v-th law rectifier. 
Most of this work has been done using the transform 
method described by Rice. In this paper a real-plane 
method of analysis is used and expressions for the output 
time and autocorrelation functions are obtained which 
are applicable to general nonlinear devices with general 
inputs. 

The organization of the paper is as follows: Section II 
states the basic results and presents one illustrative 
example. 

In Section III the various results of the paper are 
derived. These consist of series expressions for the time 
and autocorrelation functions corresponding to general 
nonlinear transformations of random signal and noise 
processes. 

Section IV discusses the relation between the expressions 
obtained in this paper and the expressions previously 
obt,ained by the transform method. It is shown that one 
of the expressions obtained in this paper for an input of 
Gaussian noise and a single sinusoidal signal is easily 
obtainable from the general transform solution. Readers 
familiar with the transform method may wish to read 
this section before reading the derivation in Section III, 
since a general solution for a Gaussian noise input is ob- 
tained here very simply and quickly. 


