
Optim Eng (2007) 8: 397–430

DOI 10.1007/s11081-007-9011-5

A heuristic for optimizing stochastic activity networks

with applications to statistical digital circuit sizing

Seung-Jean Kim · Stephen P. Boyd · Sunghee Yun ·

Dinesh D. Patil · Mark A. Horowitz

Received: 4 March 2005 / Revised: 19 January 2006 /

Published online: 15 May 2007

© Springer Science+Business Media, LLC 2007

Abstract A deterministic activity network (DAN) is a collection of activities, each

with some duration, along with a set of precedence constraints, which specify that ac-

tivities begin only when certain others have finished. One critical performance mea-

sure for an activity network is its makespan, which is the minimum time required

to complete all activities. In a stochastic activity network (SAN), the durations of

the activities and the makespan are random variables. The analysis of SANs is quite

involved, but can be carried out numerically by Monte Carlo analysis.

This paper concerns the optimization of a SAN, i.e., the choice of some design

variables that affect the probability distributions of the activity durations. We con-

centrate on the problem of minimizing a quantile (e.g., 95%) of the makespan, sub-

ject to constraints on the variables. This problem has many applications, ranging

from project management to digital integrated circuit (IC) sizing (the latter being our

motivation). While there are effective methods for optimizing DANs, the SAN op-

S.-J. Kim (�) · S.P. Boyd · S. Yun

Information Systems Laboratory, Department of Electrical Engineering, Stanford University,

Stanford, CA 94305, USA

e-mail: sjkim@stanford.edu

S.P. Boyd

e-mail: boyd@stanford.edu

S. Yun

e-mail: sayunint@stanford.edu

D.D. Patil · M.A. Horowitz

Computer Systems Laboratory, Department of Electrical Engineering, Stanford University,

Stanford, CA 94305, USA

D.D. Patil

e-mail: ddpatil@stanford.edu

M.A. Horowitz

e-mail: horowitz@stanford.edu

398 S.-J. Kim et al.

timization problem is much more difficult; the few existing methods cannot handle

large-scale problems.

In this paper we introduce a heuristic method for approximately optimizing a SAN,

by forming a related DAN optimization problem which includes extra margins in

each of the activity durations to account for the variation. Since the method is based

on optimizing a DAN, it readily handles large-scale problems. To assess the quality

of the resulting suboptimal designs, we describe two widely applicable lower bounds

on achievable performance in optimal SAN design.

We demonstrate the method on a simplified statistical digital circuit sizing prob-

lem, in which the device widths affect both the mean and variance of the gate delays.

Numerical experiments show that the resulting design is often substantially better

than one in which the variation in delay is ignored, and is often quite close to the

global optimum (as verified by the lower bounds).

Keywords Activity network · Circuit optimization · Design centering · Design for

manufacture · Design for yield · Makespan · Project network · Robust optimization ·
Statistical circuit design

1 Introduction

A deterministic activity network (DAN) is a collection of activities (jobs or tasks),

each with some duration or processing time, along with a set of precedence con-

straints which specify that activities can begin only when others have finished. The

minimum time required for all activities to finish is called the makespan of the net-

work. In a stochastic activity network (SAN), the durations of the activities are ran-

dom variables, as is the makespan. Activity network models have been used in many

fields, e.g., project management (Davis 1966; Elmaghraby 1997), parallel processing

systems (Robinson 1979), and statistical timing analysis of digital circuits (Agarwal

et al. 2003). In digital circuit analysis, the durations are usually called delays, and the

makespan is called the cycle time or total delay of the circuit.

This paper concerns the optimization of a SAN, i.e., the choice of some design

variables (or allocation of some resources) which affect the durations of the activities

in a DAN, or their probability distributions in a SAN. While there are many possible

choices of objectives in a SAN, we concentrate on a typical one, an upper quantile

(e.g., 95%) of the makespan. This corresponds to risk-averse allocation of resources,

or to a robust design in a design context. Designing a circuit that meets a timing

specification with high probability, despite statistical variation, is called statistical

circuit design. It is closely related to design for yield (DFY), design for manufacture

(DFM), and design centering.

Deterministic and stochastic activity network optimization problems arise in many

applications, ranging from project management (Plambeck 1996; Slowinski 1980;

Van Slyke and Wets 1969) to digital circuit sizing (Bozorgzadeh et al. 2004). There

are many exact or direct methods for solving DAN optimization problems, even for

large-scale problems. There are far fewer methods for solving SAN optimization

problems, and these are computationally far more demanding (or intractable), even

A heuristic for optimizing stochastic activity networks 399

for small problems. Moreover, the designs obtained depend on details of the duration

distributions, which are often not well known in practical applications.

In this paper we introduce a heuristic method for approximately solving a SAN

optimization problem, by reducing it to a related DAN optimization problem which

includes extra margins in each of the durations to account for the variation. Since

the method is based on optimizing a DAN, it readily handles large-scale problems.

To assess the quality of the resulting suboptimal designs, we describe two widely

applicable lower bounds on achievable performance in optimal SAN design.

We demonstrate the method on a simplified statistical digital integrated circuit

(IC) sizing problem, in which the device widths affect both the mean and variance

of the gate delays. Numerical experiments show that the resulting designs are often

substantially better than one in which the variation in delay is ignored, and often

quite close to the global optimum. Our example problem uses simplified models for

delay and parameter variation, since our goal in this paper is to describe the basic

method, algorithms, and analysis. We have also applied our method to circuit design

problems with more complex models, and have found similar improvements in the

designs (verified also by high fidelity circuit simulation). These results are reported

in Patil et al. (2004).

While our focus in this paper is not on the details of statistical digital circuit sizing,

we make a few comments about its growing importance. For current IC technologies,

statistical uncertainty and process variation can be indirectly handled by incorporat-

ing simple margins in the timing and other critical constraints, or by a post-design

step that does centering or yield improvement; see, e.g., Abdel-Malek and Ban-

dler (1980a, 1980b), Styblinski and Opalski (1986). As device dimensions shrink,

however, growing (relative) statistical uncertainty and process variation will require

an approach where design and yield optimization are combined (Jess et al. 2003;

Visweswariah 2003; White et al. 1997). We believe that the method described here is

a good candidate for such a method.

This paper is organized as follows. We describe the deterministic activity network

model in Sect. 2, and the stochastic activity network model in Sect. 3. The corre-

sponding optimization problems are covered in Sect. 4. In Sect. 5, we introduce our

heuristic method for approximately solving the SAN optimization problem and give

two lower bounds on achievable performance in SAN optimization. In Sect. 6, we il-

lustrate the heuristic method on a simplified statistical digital circuit sizing problem.

We give the details of our statistical circuit design example in Sect. 7, and further

numerical results, in Sect. 8, showing that our method is quite insensitive to model

assumptions. We give our conclusions in Sect. 9.

2 Activity networks

We consider a set of n activities, labeled 1, . . . , n, which are carried out under some

given precedence constraints among them, i.e., each activity starts only when certain

others have finished. We represent the precedence constraints by a directed acyclic

graph (DAG) G = (N,A), called the precedence graph, with nodes N = {1, . . . , n}
and arcs A ⊆ {(i, j) : i, j = 1, . . . , n}. Each arc in the precedence graph represents

a precedence constraint: (i, j) ∈ A means that activity j cannot start until activity i

400 S.-J. Kim et al.

ends. For each activity k ∈ N , we denote the set of its predecessor nodes (called fan-

in in IC design) as Pred(k), and the set of its successor nodes (called fan-out in IC

design) as Succ(k):

Pred(k) = {i ∈ N : (i, k) ∈ A}, Succ(k) = {j ∈ N : (k, j) ∈ A}.

Input (also called source or starting) nodes are those with no predecessors, and output

(sink or ending) nodes are those with no successors. We let di > 0 denote the duration

(or processing time or delay) of activity i. The pair (G,d), i.e., a DAG along with a

duration for each node, is referred to as an activity network.

2.1 Path delay, completion time, and makespan

A path on the DAG G represents a sequence of activities that must occur in order.

Suppose p is a path of length k, i.e., p = (i1, i2, . . . , ik), where (ij , ij+1) ∈ A for

j = 1, . . . , k − 1. We will denote the length of the path as l(p) = k. The duration or

delay of p is the sum of the durations of the activities on the path, and is denoted

d(p):

d(p) = di1 + · · · + dik .

For activity i we define its completion time ci as the maximum of the durations of

all paths finishing at i:

ci = max{d(p) | p is a path finishing at i}.

The completion time can be interpreted as follows. Suppose the input activities begin

at time t = 0, and all other activities begin as soon as all of their predecessor activities

have finished. Then the completion time ci defined above is exactly the time at which

activity i finishes.

The maximum of the durations of all paths, which is also the maximum of the

completion times for all activities, is called the makespan of the activity network, and

is denoted by cmax:

cmax = max{d(p) | p ∈P} = max
i∈N

ci,

where P denotes the set of all paths in the DAG. The makespan is also called the

total delay, total processing time, or total duration. The makespan is exactly the total

time for all activities to complete, when the starting activities start at t = 0, and each

activity starts when its predecessors have finished. To indicate that the completion

times and makespan are functions of the durations, we sometimes write ci(d) and

cmax(d).

Simple examples show that an activity network with n nodes can have a total

number of paths that grows exponentially with n. This suggests that computing the

completion times ci or makespan cmax might be difficult. Using a simple recursion,

however, we can evaluate the completion times and the makespan efficiently, without

enumerating all the paths. We start with the source nodes and assign ci = di for them.

A heuristic for optimizing stochastic activity networks 401

We then choose an ordering of the nodes that respects the ordering on the DAG (i.e.,

one that takes a node after all its predecessors), and successively set

ci = di + max{cj | j ∈ Pred(i)}.

In other words, we compute the completion time of activity i as the maximum of the

completion times of its predecessors, plus its own duration. Once we have found all

the completion times, we can compute the makespan as

cmax = max
i∈N

ci = cmax = max{ci | i a sink node}. (1)

The number of operations required for this recursion grows linearly in the total num-

ber of nodes and arcs.

2.2 Critical paths and activities

Any path with duration cmax is said to be critical, i.e., it is a longest path. The dif-

ference between the makespan and its duration, cmax − d(p), gives a measure of how

close to critical the path is: if the difference is zero the path is critical; if it is small

we say it is nearly critical; if it is large, the path is noncritical.

An activity is said to be critical if it is on a critical path. A common measure of

criticality of an activity i is its float time, which is the amount we can increase di

without affecting the makespan (Pollalis 1993). An activity is critical if and only if

its float time is zero.

The recursion for computing ci and cmax described above is readily modified to

yield a critical path, by keeping track of a predecessor node which determines the

completion time for each node. We then choose an output node whose completion

time is equal to the makespan, and follow it backward through the predecessors to an

input node. This path is critical. Thus, we can efficiently find a critical path, even for

a large network with an enormous number of paths.

More generally, we can mark for each node all the predecessors which determine

the completion time for the node. The marked edges and nodes determine a sub-

graph of the original DAG. We then delete edges and nodes in the subgraph that are

not connected to an input or output node. The resulting DAG gives all critical paths

in the network. (Since there can be an enormous number of critical paths, we may

wish to leave the set of critical paths described as a subgraph, and not enumerate its

paths.) A more sophisticated method can be used to identify the k most critical paths

(Eppstein 1998).

2.3 Activity network representation of digital circuits

In the remainder of this section we show how activity networks can be used to (ap-

proximately) model delay in a digital combinational logic circuit. We consider a cir-

cuit consisting of n gates labeled 1, . . . , n. We associate each gate with a node of an

activity network; the dependency DAG G = (N,A) with N = {1, . . . , n} is simply

the signal flow graph of the combinational logic circuit. In an accurate static tim-

ing analysis of a real digital circuit, we would distinguish between rising and falling

402 S.-J. Kim et al.

delays at the output of each gate, use different delays for each gate input/output tran-

sition, and take into account effects of signal slopes, distributed loads, false paths,

and so on. (Extensions of activity network models can easily handle these effects.)

But to keep things simple, we consider here a single delay for each gate. The delay di

represents the delay of gate i, from any of its inputs to any of its outputs, including

the effects of capacitive loading from wires and fanout gates. With these simplifying

assumptions, the circuit can be represented by the DAN (G,d). The makespan of the

DAN is called the cycle time, since it is the maximum delay of the combinational

logic block, from the time its primary inputs become valid until all outputs are valid.

The cycle time tells us the maximum speed at which the clock can operate, assuming

the inputs to the combinational logic circuit are driven from latches and the outputs

drive latches.

As a very simple example, consider a chain of four inverters, shown in Fig. 1. We

represent this by the series network, with four activities, as shown in Fig. 1. For this

simple example, there is only one path, all activities are critical, and the cycle time is

the sum of the four gate delays: cmax = d1 + · · · + d4.

A slightly more complicated example, with two inverters, two NAND, and two

NOR gates, is shown in Fig. 3. This combinational logic block can be represented by

the activity network shown in Fig. 4. This circuit (or activity network) has 6 paths;

its cycle time cmax can be expressed as

cmax = max{y1, . . . , y6},
where the path delays are

y1 = d1 + d4 + d6,

y2 = d1 + d4 + d7,

y3 = d2 + d4 + d6,

y4 = d2 + d4 + d7,

y5 = d2 + d5 + d7,

y6 = d3 + d5 + d7.

Fig. 1 A chain of 4 inverters

Fig. 2 Activity network

representation of the inverter

chain in Fig. 1

Fig. 3 Schematic of a digital

circuit

A heuristic for optimizing stochastic activity networks 403

Fig. 4 Activity network

representation of the digital

circuit in Fig. 3

3 Stochastic activity networks

A stochastic activity network (SAN) is an activity network with random activity du-

rations. A SAN is described by the pair (G,D), where the DAG G = (N,A) is the

precedence graph, and D = (D1, . . . ,Dn) is the vector of random activity durations.

In a SAN, all quantities that depend on the activity durations are random variables.

In particular, the delay of any path, completion time at any node, and the makespan

are all random variables. We will denote the makespan (random variable) as Cmax.

Stochastic activity networks were originally developed in the late 1950s for ana-

lyzing project management and scheduling (Pich et al. 2002). Most work on project

management has focused on project scheduling techniques such as project evaluation

and review techniques (PERT) and the critical path method (CPM) (see, e.g., Davis

1966, Elmaghraby 1997).

We define the criticality index of a path as the probability that it is critical, i.e., that

its delay is greater than or equal to that of every other path (see, e.g., Bowman 1995,

Dodin and Elmaghraby 1985). In a similar way, the criticality index of an activity is

defined as the probability that a critical path passes through the activity; it is the sum

of the criticality indices of the paths containing the activity. Identifying activities and

paths with large criticality indices is a well studied problem (see, e.g., Bowman 1995,

Charnes et al. 1964, Dodin 1984, Mejilson and Nadas 1979).

Several scalar performance measures can be used to characterize the makespan

Cmax of a SAN. Examples include:

• Expected makespan: E(Cmax).

• Probability of missing a deadline T0: prob(Cmax ≥ T0).

• Expected tardiness: E(max{Cmax − T0,0}).
• α-quantile of makespan: qα(Cmax) = inf{t : prob(Cmax ≤ t) ≥ α}.

In project management, the expected makespan and expected tardiness have been

widely used; quantiles are commonly used in finance and risk management (Prekopa

1983; Rockafellar and Uryasev 2000). In digital circuit design problems, the proba-

bility of missing a deadline (and therefore also the quantiles of Cmax) can be related

to yield. In this context, the statistical variation in the durations is due to manufactur-

ing variation, and the deadline T0 represents a timing constraint. The probability of

missing the deadline is then the fraction of manufactured devices that will fail to meet

the timing constraint. In circuit design, a quantile can be interpreted as the worst-case

delay of the circuit, with a given reliability.

404 S.-J. Kim et al.

3.1 Performance bounds

Exact analysis of SANs is very difficult, except in a few special cases. The recursive

representation of the makespan given in (1) (or its formula as a maximum over a set of

sums) shows that both addition and maximum of random variables is involved. While

there are common families of distributions that are closed under addition, and others

that are closed under maximum (or minimum), no obvious family of distributions is

closed under both. (And in any case, the typical distributions for D are not.)

We can, however, say many things about the distribution of Cmax. For example, if

D is Gaussian, then Cmax is the maximum of a number of correlated Gaussian ran-

dom variables (the path delays), and there are many bounds and asymptotics known

for such distributions (Serfling 1980). A general and common approach is based on

approximating or bounding the distributions of the completion times, by recursively

bounding (or approximating) the distribution of completion time of activity i, given

bounds (or approximations) of the distributions of the completion times of its prede-

cessors. Examples can be found in, e.g., Devroye (1979), Dodin (1985), Hagstrom

and Jane (1990), Ludwig et al. (2001), Mejilson and Nadas (1979), Robillard and

Trahan (1976), Shogan (1977), Weiss (1986). Lower or upper bounds on the ex-

pected makespan or expected tardiness in a SAN is considered in, e.g., Bertsimas

et al. (2004), Birge and Maddox (1995), Orshansky and Keutzer (2002), Wallace

(1989).

3.1.1 The nominal DAN and Jensen’s inequality

The DAN (G,ED), with (deterministic) activity durations equal to the means of the

durations in the SAN (G,D), is called the nominal DAN associated with the SAN

(G,D). Roughly speaking, the nominal DAN is the SAN, when we ignore or re-

move the statistical variation in the activity durations. When the distribution of D

is very tight, i.e., D is very close to its mean ED with high probability, we ex-

pect the makespan of the nominal DAN to give a good approximation of the SAN

makespan Cmax.

In fact, the makespan of the nominal DAN is always an underestimator of the

makespan of the SAN, in the following sense:

cmax(ED) ≤ E(Cmax) = E(cmax(D)). (2)

This holds for any distribution on D. One interpretation of this inequality is that

by adding zero-mean statistical variation to the durations of any DAN, we can only

increase the expected value of the makespan. This inequality is a direct application

of Jensen’s inequality, along with the observation that cmax is a convex function of

the activity durations (Boyd and Vandenberghe 2004). Convexity follows since cmax

is the maximum of a set of sums of components of d , which are linear functions of d

(Boyd and Vandenberghe 2004).

Equality holds in (2) if and only if there is a unique path with criticality index

one (Heller 1981). If there are relatively few paths with high criticality indices, the

difference between the left and right-hand sides of in (2) can be relatively small. In

other cases, e.g., when all activities have low criticality index, the difference can be

relatively large.

A heuristic for optimizing stochastic activity networks 405

3.1.2 Performance bounds via stochastic dominance

A scalar random variable X is said to be stochastically less than or equal to an-

other scalar random variable Y (denoted by X ≤st Y) if FX(t) ≥ FY(t) holds for

all t . (Here FU = prob(U ≤ t) denotes the cumulative distribution function of the

scalar random variable U.) Stochastic inequality can also be expressed in terms

of quantiles: X ≤st Y if and only if qα(X) ≤ qα(Y), for all α ∈ (0,1). (Here

qα(U) = inf{t : prob(U ≤ t) ≥ α} denotes the α-quantile of U.) All of the perfor-

mance measures described in Sect. 3 are monotone with respect to stochastic dom-

inance. For example, if X ≤st Y, the expected tardiness of X is no more than the

expected tardiness of Y.

A basic result is that for any random variables X1, . . . ,Xp , no matter what their

joint distribution is, their maximum is always stochastically greater than or equal to

each of them:

Xi ≤st max{X1, . . . ,Xp}, i = 1, . . . , p.

Since the makespan Cmax is the maximum of all path delays, it is always stochas-

tically greater than or equal to the delay of any path, no matter what the duration

distributions are, and whether or not they are independent. We conclude that for each

of the performance measures described in Sect. 3, the maximum of the performance

measure over all paths is a lower bound on the performance measure of Cmax. For

example, the α-quantile of the makespan satisfies

max
p∈P

qα(Dp) ≤ qα(Cmax), (3)

where P is the set of all paths, and Dp is the delay of path p. This gives us a

method for obtaining a lower bound on a performance measure when the durations

are Gaussian. In this case, each path delay is Gaussian, and its performance measure

can be calculated exactly as a function of its mean and variance. By taking the maxi-

mum of these measures over all of the paths (or a subset) we obtain a lower bound on

the performance measure for Cmax. (Unfortunately, there is no simple recursion, like

the one for calculating cmax in a DAN, for calculating the maximum of the α-quantile

over all paths.)

For future use, we give a very simple lower bound on quantiles of the makespan.

By Jensen’s inequality, the makespan of the nominal DAN is a lower bound on the

expected value of the makespan of the SAN. Now we make the following assumption:

for every path, its expected delay is less than or equal to its α-quantile:

E(Di1 + · · · + Dik) ≤ qα(Di1 + · · · + Dik), ∀p = (i1, . . . , ik) ∈P . (4)

If the duration distributions are Gaussian, then the path delay distributions are

Gaussian, and this assumption holds for any α ≥ 0.5. (Strictly speaking, the joint

distribution of D cannot be assumed to be Gaussian, since activity durations must be

nonnegative. This argument tells us that if the duration distributions were close to

Gaussian, this assumption would hold.) We would argue that in all cases of interest,

the assumption will hold for values of α of interest, such as α = 0.95. Of course there

are distributions for which the mean exceeds the 0.95-quantile, but we feel that these

distributions are exceedingly unlikely to arise as path delays in any practical SAN.

406 S.-J. Kim et al.

When this assumption holds, the makespan of the nominal DAN (G,ED) is a

lower bound on the α-quantile of the makespan of the SAN:

cmax(ED) = max
p=(i1,...,ik)∈P

{EDi1 + · · · + EDik } ≤ qα(Cmax). (5)

3.1.3 Performance bounds via surrogate DANs

The DAN (G, d̃) with d̃i = EDi + κiσ(Di), where σ(U) denotes the standard devi-

ation of a scalar random variable U, is called a surrogate DAN of the SAN (G,D).

We call κi ≥ 0 the margin coefficients. Note that the nominal DAN is the surrogate

DAN with all margin coefficients zero. Surrogate DANs will play a central role in

this paper.

We can derive some bounds on the quantiles (or other measures) of the makespan

of a SAN from the makespan of its surrogate DAN (for proper choice of margin

coefficients). We consider the case in which the duration distributions are independent

and Gaussian. The delay of path p = (i1, . . . , ik) is also Gaussian, and its α-quantile

can be expressed as

qα(Dp) = EDi1 + · · · + EDik + �−1(α)(σ (Di1)
2 + · · · + σ(Dik)

2)0.5

where

�(α) = 1√
2π

∫ α

−∞
e−t2/2 dt

is the cumulative distribution function of a unit Gaussian variable.

We will now relate qα(Dp) to the delay of a path in a surrogate DAN, using the

Cauchy-Schwartz inequality

(u2
1 + · · · + u2

k)
0.5 ≥ a1u1 + · · · + akuk, (6)

provided a2
1 + · · · + a2

k ≤ 1. This gives

qα(Dp) ≥ EDi1 + · · · + EDik + �−1(α)(a1σ(Di1) + · · · + akσ(Dik)),

provided a2
1 + · · ·+ a2

k ≤ 1. Note that the right-hand side here is the delay of the path

p, in the surrogate DAN with κi = �−1(α)ai .

We can make several simple choices of the ai so that the requirement a2
1 + · · · +

a2
k ≤ 1 holds for every path. One simple choice is

ai = l
−1/2
max ,

where lmax is the maximum length of any path in the DAG. Another choice is

ai = l
−1/2
i ,

where

li = max{l(p) | path p contains activity i}
is the length of the longest path that contains activity i.

A heuristic for optimizing stochastic activity networks 407

The quantity lmax is readily computed using the recursion given in Sect. 2.1, by

evaluating the makespan of the DAN with DAG G and all activity durations equal to

one. A variation on this recursion can be used to efficiently calculate the quantities li .

We use a recursion to compute the length of the longest path from a source to node

i, and another recursion, starting at the sink nodes and working backward, to find the

length of the longest path from each node i to a sink. We add these two quantities at

each node to obtain li .

The bounds above, along with (3), imply that the makespan of the surrogate DAN

(G, d̃), with the choice of margin coefficients

κi = �−1(α)lmax
−1/2, (7)

or the more sophisticated choice

κi = �−1(α)l
−1/2
i , (8)

is a lower bound on α-quantile of the makespan of the SAN. Note that the makespan

of a surrogate DAN can be computed efficiently using the recursive method given

in (1).

The same lower bound on the α-quantile of the makespan of the SAN holds with

correlated Gaussian duration distributions, provided that the covariance of any two

durations is nonnegative. When this is the case, the standard deviation of the delay of

any path is less than or equal to the standard deviation when the durations have the

same standard deviations, but are uncorrelated.

We also note that it is also possible to obtain upper bounds on a performance

measure, such as the α-quantile, of Cmax, that have a similar form. As an example,

we consider the SAN in which the durations are Gaussian and can be correlated. Let

|P| be the total number of paths from sources to sinks and Y1, . . . ,Y|P | denote the

delays of all such paths, i.e.,

Cmax = max{Y1, . . . ,Y|P |}.

Let Z1, . . . ,Z|P | denote independent random variables whose distributions are iden-

tical to those of Y1, . . . ,Y|P |, respectively, that is,

C̃max = max{Z1, . . . ,Z|P |}.

A basic result on stochastic comparison between random variables shows that

Cmax ≤st C̃max.

It follows that the α-quantile of Cmax is less than or equal to that of C̃max:

qα(Cmax) ≤ qα(C̃max).

Since Zi are independent of each other, the right-hand side can be expressed as

q(C̃max) = inf

{

t |
|P |
∏

i=1

FZi
(t) ≥ α

}

. (9)

408 S.-J. Kim et al.

Let t be given by

t = max
i=1,...,|P |

EZi + �−1(α1/|P |)σi(Zi).

Since Zi are Gaussian, we have FZi
(t) ≥ α1/|P |, and hence

∏|P |
i=1 FZi

(t) ≥ α. This

along with (9) leads to the inequality

q(C̃max) ≤ max
i=1,...,|P |

EZi + �−1(α1/|P |)σi(Zi).

We now show how to relate the right-hand side of the inequality above to the

delay of a path in a surrogate DAN. Let Zi be the delay of a path consisting of nodes

i1, . . . , ik :

Zi = Dii + · · · + Dik .

Since (x2
1 + · · ·x2

k)0.5 ≤ x1 + · · · + xk for xi ≥ 0, we have

EZi + �−1(α1/|P |)σi(Zi) =
k

∑

j=1

EDij + �−1(α1/|P |)

(

k
∑

j=1

σij (Dij)
2

)0.5

≤
k

∑

j=1

(EDij + �−1(α1/|P |)σij (Dij)).

The right-hand side is the delay of the path p = (i1, . . . , ik) in the DAN with activity

durations EDi + �−1(α1/|P |)σi(Di). Now, we have the bound

qα(Cmax) ≤ γ,

where γ is the makespan of the surrogate DAN with activity durations EDi +
κσi(Di), where

κ = �−1(α1/|P |).

For a SAN where the number of all paths is 3000, the choice of κ = 4.14 gives

an upper bound for its 0.95-quantile. As in the lower bound analysis above, we can

obtain a tighter upper bound on the α-quantile, by using a surrogate DAN (G,κ) with

activity durations EDi + κiσi(Di) where κi are chosen depending on li .

To summarize the results of this section, we have described some computationally

efficient and relatively simple performance bounds. These bounds require only the

means and variances of the activity durations, and may not be as accurate as others

that have been proposed, e.g., the one given in Bertsimas et al. (2004), which rely

on the same information. But the main purpose of the bounds given in this section is

not analysis of a SAN (which can be done efficiently and accurately by Monte Carlo

analysis). The bounds given in this section will be used to provide bounds on subop-

timality of SAN design. This will be demonstrated in Sect. 6 with a statistical circuit

design example, which will demonstrate the computational merits of our bounds, and

that the bounds can be tight in practice.

A heuristic for optimizing stochastic activity networks 409

3.2 Monte Carlo analysis

While exact analysis of the distribution of Cmax is very difficult, Monte Carlo (MC)

methods can be used to approximately compute the distribution, along with the per-

formance measures or other quantities of interest in the SAN. In this section we de-

scribe basic Monte Carlo analysis of a SAN; more sophisticated methods can be used

to get higher accuracy with fewer samples, or combine Monte Carlo simulation with

bounding methods (see, e.g., Burt and Garman 1971, Van Slyke 1963, Sullivan and

Hayya 1980).

In basic Monte Carlo analysis, we draw M independent samples d(1), . . . , d(M)

from the distribution of the random duration vector D, and create the M DANs

(G,d(1)), . . . , (G,d(M)). For each realization of the SAN (G,D), we can effi-

ciently evaluate its makespan, using the recursion described in Sect. 2.1, to obtain

c
(1)
max, . . . , c

(M)
max . (We might also keep track of a critical path for each of the DANs.)

The sampled makespans c
(1)
max, . . . , c

(M)
max , are, of course, independent samples from

the distribution of Cmax.

3.2.1 PDF estimation

A nonparametric kernel estimate f̂Cmax of the probability density function (PDF) of

the makespan takes the form

f̂Cmax(t) = 1

M

M
∑

k=1

1

h
K

(

t − c
(k)
max

h

)

,

where K : R → R is a probability density function with mean 0 and variance 1, e.g.,

the standard normal distribution, and h is a positive constant, called the bandwidth of

the estimator (van der Vaart 1998). Our extensive computational experience with this

kernel estimator suggests that a sample of several thousand realizations very often

suffices to obtain an accurate estimate of the PDF of Cmax, even for large SANs with

thousands of activities, provided the activity durations are well shaped, e.g., Gaussian

or uniform.

3.2.2 Quantile estimation

To estimate qα(Cmax) from the samples c
(1)
max, . . . , c

(M)
max , we first re-order them so that

c(1)
max ≤ · · · ≤ c(M)

max.

(Once re-ordered, c
(k)
max is called the kth order statistic of Cmax.) A simple estimate

q̂α(Cmax) of the quantile is given by

q̂α(Cmax) = c(⌈Mα+1⌉)
max

where ⌈x⌉ denotes the integral part of x ∈ R. This estimate is asymptotically con-

sistent and its variance is inversely proportional to M under the mild assumption of

fCmax(qα(Cmax)) > 0, where fCmax is the PDF of Cmax (van der Vaart 1998).

410 S.-J. Kim et al.

3.2.3 Criticality index estimation

Under mild assumptions, a realization of the SAN (G,D) has a unique critical path,

with probability one. (For instance, if the distribution of D is continuous, then the

joint distribution of path delays is continuous, and so the probability that the delays

of any two paths are the same is zero (van der Vaart 1998, Chap. 13). The criticality

index of an activity or a path from an input node to an ending node can be estimated

by counting the fraction of the realizations in which it is critical. These estimates

are consistent, and the variance of the estimation error is inversely proportional to M

(Glasserman 2003).

3.3 Statistical timing analysis of digital circuits

In statistical timing analysis of a digital circuit, the gate delays are not fixed constants

but random variables, possibly dependent. The increasing importance of process vari-

ation explains the growing interest in process variation modeling and statistical tim-

ing analysis of digital circuits; see, e.g., Bhardwaj et al. (2003), Hongliang and Sap-

atnekar (2003), Orshansky et al. (2003), Orshansky and Keutzer (2002). While there

have been several theoretical and empirical studies of statistical variation in circuit

parameters, the statistical modeling of circuit parameter variation is still an active

research area; so far, no consensus has emerged as to what the best models are.

3.3.1 Example: 32-bit Ladner-Fisher adder

As an example, we carry out MC timing analysis of the 32-bit Ladner-Fisher adder

(Knowles 1999), which is used throughout the paper to illustrate our main points. This

circuit consists of 459 gates (n = 459), 64 input gates, 32 output gates, and 1714 arcs.

The associated DAG G = (N,A) has a total of 3214 paths from input nodes to output

nodes. Its depth (i.e., the maximum number of gates on a path) is 12. The delay and

statistical models are simplified; more details are given in Sect. 7. In the sequel we

will consider several instances of the adder, with different choices of device widths,

but here we focus on one instance, designed to minimize the nominal cycle time (i.e.,

the cycle time of the circuit when the statistical uncertainty and variation is ignored)

under constraints on area and device sizes. For this choice of device sizes, there are

around 1000 critical paths.

The time unit τ we use throughput the paper denotes the delay of a minimum

sized inverter driving no load. Here (and throughput the paper) we estimate the PDF

of cycle times using the nonparametric kernel estimation method with a Gaussian

kernel, with bandwidth h = 0.2τ , and sample size M = 5000 realizations. We have

carried out much larger MC simulations, which show that the PDFs estimated from

5000 samples are good enough. The MC simulation time is under one second on a

1.2 GHz Pentium IV PC.

The MC simulation of the cycle time PDF is shown in Fig. 5, along with the

nominal cycle time and the expected cycle time (the latter found by MC simulation).

As required by Jensen’s inequality, the expected cycle time is larger than the nominal

cycle time. We can also observe that the cycle time distribution is skewed to the right.

A heuristic for optimizing stochastic activity networks 411

Fig. 5 Estimate of cycle time

PDF for the Ladner-Fisher adder

circuit, obtained by Monte Carlo

simulation

This is to be expected: Cmax is the maximum of 3214 path delays, and the maximum

of a large number of random variables is typically right skewed.

Monte Carlo simulation gives the (accurate) estimate for the 95% confidence cycle

time q0.95(Cmax) = 51.1. The makespan of the nominal DAN is 45.9. In this example

the delay distributions are Gaussian and uncorrelated, so the lower bounds via sur-

rogate DANs described in Sect. 3.1.3 can be used. The lower bound obtained using

the Cauchy-Schwartz inequality with κi given by (7) is q0.95(Cmax) ≥ 48.7; with the

choice given by (8) we have q0.95(Cmax) ≥ 48.9. The lower bound obtained by (3),

i.e., the maximum 0.95-quantile over all 3214 paths, is q0.95(Cmax) ≥ 49.0. For this

example, these lower bounds are much tighter than the makespan of the nominal

DAN.

4 Optimal activity network design

We now consider the problem of optimizing an activity network. We have a set of

decision or design variables x ∈ R
m, which affect the activity durations (for a DAN)

or the distributions of the activity durations (for a SAN).

4.1 Optimal DAN design

We first consider a DAN. Taking the makespan as the objective, we have the opti-

mization problem

minimize cmax

subject to x ∈ 	.
(10)

Here 	 represents the constraint set. In this problem the design variable x affects the

activity durations, which in turn determine the makespan cmax. There are many other

formulations; we could, for example, impose an upper bound on the makespan, and

minimize some other objective function that depends on x.

412 S.-J. Kim et al.

There are several approaches to solving (or approximately solving) the DAN opti-

mization problem (10). Several heuristic approaches are based on shifting resources

from noncritical paths to critical paths, i.e., modifying x so as to maintain feasibility,

while decreasing delay along critical paths.

A standard dynamic programming method can be used to avoid enumerating ex-

pressions for the path delays. Using the recursion (1), we write the problem (10) as

minimize cmax = max{ci | i a sink node}
subject to ci = max

j∈Pred(i)
cj + di, i not a source node

ci = di, i a source node

x ∈ 	.

Here x directly affects the activity durations di , which in turn affect the completion

times ci and the makespan cmax. In this formulation, the completion times are also op-

timization variables, constrained by the recursion equations. This formulation avoids

enumerating the paths, but introduces new variables (the completion times) and new

equality constraints.

For most numerical methods, these equality constraints are difficult to handle,

since the maximum destroys differentiability. A standard trick can be used to con-

vert the problem to one involving inequality constraints, which typically is easier to

solve. We replace the equality constraints above with inequalities and introduce new

variables t1, . . . , tn and s, which serve as upper bounds on the completion times and

makespan, respectively:

minimize s

tj ≤ s, j a sink node

tj + di ≤ ti, j ∈ Pred(i), i not a source node

di ≤ ti, i a source node

x ∈ 	.

(11)

In this formulation, the variables ti represent upper bounds on the completion times;

at the optimal solution, these bounds are tight for any activity along any critical path.

It follows that any optimal solution of this problem yields an optimal solution of the

original problem (10), and vice versa.

One advantage of the formulation (11) is that the constraint functions are differ-

entiable if the durations di are. Although we have introduced n + 1 new variables,

the constraints are relatively sparse (at least in the variables ti and s), and this can be

exploited by a solver for efficiency; see, e.g., Bertsekas (1999), Conn et al. (1992),

Nocedal and Wright (1999), Vanderbei (1992).

In many cases we have to settle for a locally optimal solution of the DAN op-

timization problem (10). But in some cases we can solve the problem exactly, i.e.,

globally. If the durations are convex functions of x, then the problem (11) is a convex

optimization problem, and so can be (globally) solved very efficiently; see Ben-Tal

and Nemirovski (2001), Bertsekas et al. (2003), Boyd and Vandenberghe (2004), Nes-

terov and Nemirovsky (1994), Nesterov (2003). Another case in which we can solve

the problem globally is when the durations are posynomials, or generalized posyn-

omials. In this case the problem (11) is a geometric program (GP), and can be effi-

ciently solved (globally) even for large networks; see the tutorial (Boyd et al. 2007)

A heuristic for optimizing stochastic activity networks 413

for more on geometric programming. (An implementation of a primal-dual interior-

point method for GP is available in GGPLAB, a Matlab-based toolbox for GP (Mu-

tapcic et al. 2005) and in the MOSEK software package (MOSEK ApS. 2002).) When

the durations are convex, or generalized posynomial, a DAN optimization problem

with a thousand variables is easily solved; if the problem is sparse, far larger prob-

lems, involving say 105 variables, can be solved.

4.2 Example: cycle time minimization of digital circuits

A wide variety of optimization methods have been developed for device and wire

sizing in digital circuits; see, e.g., Conn et al. (1998), Fishburn and Dunlop (1985),

Sapatnekar (1996, 2000), Sapatnekar et al. (1993). The cycle time minimization prob-

lem can be cast as a DAN optimization problem of the form (10), or an extension that

handles rising and falling delays, signal slopes, and so on. See Boyd et al. (2005) for

more on GP-based sizing of digital circuits.

As an example, we consider the 32-bit Ladner-Fisher adder circuit. Each of the 459

gates can be scaled by a multiplier or scale factor xi ≥ 1, which are the optimization

variables. These scale factors can be thought of as scaling the widths of all devices

in each gate. Each scale factor therefore affects the drive strength of its gate as well

as the gate input capacitance. Thus, the scale factor affects the gate delay, as well as

the delays of the gates that drive it (through capacitive loading). We impose lower

bounds on the scale factors, x1 ≥ 1, as well a maximum on the total area for the

circuit, A ≤ 12000. (The details of the models are given in Sect. 7.)

We solved the associated DAN optimization problem, and compare it to the sim-

ple choice in which all scale factors are equal (with the same total area). Figure 6

compares the path delays for the optimal and the simple choice of scale factors. The

optimal choice of scale factors reduces the cycle time by around 50%. The figure

shows that optimizing cycle time results in a large number of critical paths (around

1000). This is a general phenomenon: optimizing a DAN generally results in many

critical paths. The steep edge of the path delay distribution plot near the cycle time is

sometimes referred to as a cliff, or wall.

Fig. 6 Path delays for optimal

(solid) and uniform (dashed)

gate scale factors in the 32-bit

Ladner-Fisher adder, with no

statistical variation

414 S.-J. Kim et al.

4.3 Optimal SAN design

We now consider a SAN in which the distributions of the activity durations (and

therefore the distribution of the makespan Cmax) are affected by the choice of the

design variable x ∈ R
m. As the objective we can take a scalar performance measure

of the makespan, such as expected tardiness or a quantile of the makespan:

minimize qα(Cmax)

subject to x ∈ 	.
(12)

This stochastic programming problem arises in a variety of applications areas, from

project management to digital circuit design; see, e.g., Esary et al. (1967), Mingozzi

et al. (1998), Plambeck (1996), Slowinski (1980). Unfortunately, in all but a few

trivial cases, it is very difficult to solve exactly.

Numerous methods have been developed for stochastic programming, including

random search methods (Fox 1994), methods based on a stochastic model of the ob-

jective (Prekopa 1983), and sample-path optimization methods (Glasserman 2003).

Although they enjoy some theoretical convergence properties under certain condi-

tions, these methods do not scale well to problems involving thousands or more opti-

mization variables and activities.

5 Heuristic SAN design

Since it is extremely difficult to find the exact solution of a general SAN optimization

problem (12), we resort to a heuristic method. We propose optimizing a surrogate

DAN, with activity durations

di(x) = μi(x) + κiσi(x), i ∈ N,

with margin coefficients κi ≥ 0, where μi(x) and σi(x) denote the mean and standard

deviation, respectively, of the ith activity duration. In other words, we consider the

DAN optimization problem

minimize cmax(d(x))

subject to x ∈ 	
(13)

as a heuristic for solving the SAN optimization problem (12). The surrogate DAN op-

timization problem (13) is readily solved, in cases when μi(x) and σi(x) are convex

(or generalized posynomial) functions; in those cases the problem (13) is convex (or

a generalized GP), and so can be efficiently and globally solved, even for large-scale

problems (Boyd and Vandenberghe 2004, Chap. 4).

This proposed heuristic method is very natural. In order to take into account sta-

tistical variation in the activity durations, we simply add a multiple of the standard

deviation to the mean, and optimize the resulting surrogate DAN. We have already

encountered this idea in Sect. 3.1.3, where surrogate DANs are used to find bounds

on the performance of the SAN. Here, however, we propose using surrogate DAN

A heuristic for optimizing stochastic activity networks 415

optimization as a method for obtaining a suboptimal design for the SAN optimiza-

tion problem; in Sect. 3.1.3, the surrogate DAN is used to find a lower bound on a

performance measure such as a quantile.

This simple heuristic method is similar in spirit to the general method of regular-

ization (Neumaier 1998), in which an extra penalty term is added to a problem to ap-

proximately account for some variation in the problem data. A more sophisticated and

recent approach to handling uncertainty and variation in optimization problem data

is robust optimization (Ben-Tal and Nemirovski 1998; Bertsimas and Thiele 2006;

El Ghaoui and Lebret 1997; Hsiung et al. 2005). In robust optimization, an explicit

model of data uncertainty is used, and the objective is taken to be the average or worst-

case value of the objective, over the parameter variation set. Some robust optimization

problems are tractable; for others there are good heuristics (Boyd and Vandenberghe

2004).

The margin coefficients κi (whose choice is discussed below) can be related to the

probability that Di exceeds μi + κiσi . In the general case, Chebyshev’s inequality

(Abramowitz and Stegun 1972) tells us that

prob(Di(x) ≤ μi(x) + κiσi(x)) ≥
κ2
i

1 + κ2
i

,

no matter what the distribution of Di(x) is. For κ = 3, for example, we have

prob(Di(x) ≤ μi(x) + 3σi(x)) ≥ 0.95,

so the surrogate duration μi + 3σi is an upper bound on the 0.9-quantile of Di , valid

for any distribution. If Di(x) is Gaussian, then we have

prob(Di(x) ≤ μi(x) + κiσi(x)) = �(κi).

For Di(x) Gaussian, the 0.9-quantile of Di is given by the surrogate duration μi +
�−1(0.9)σi = μi + 1.282σi .

Evidently κi controls the weight given to the statistical variation in the duration

of activity i, compared to its mean, in the surrogate DAN. In particular when all κi

are set to zero (i.e., the statistical variation is ignored), the resulting design reduces

to the nominal optimal design, which ignores the statistical variation. As we increase

the margin parameters, we obtain a more and more risk-averse design, i.e., one that

trades off nominal performance for a reduction in variance. For a SAN with Gaussian

activity durations, whenever κi ≥ �−1(α1/|P |), the optimal objective for the surro-

gate DAN design optimization problem is an upper bound on the optimal objective

for the original SAN optimization problem.

We have experimented with many schemes for choosing the margin weights. The

simplest is to set them all equal to some constant κ , which would typically be chosen

between 1 and 3. Another simple scheme comes from the lower bounding method

(see (8)): we set κi = ηl
−1/2
i , where li is the length of the longest path that contains

activity i, and η is a constant. In both of these schemes, we have to choose a single

constant. One good method for choosing the constant is to carry out the optimiza-

tion on the surrogate DAN, for some set of values of the constant, and then subject

the resulting designs to Monte Carlo analysis, to estimate the objective values (e.g.,

416 S.-J. Kim et al.

qα(Cmax)). We then choose the constant corresponding to the best objective value.

Our computational experience suggests that the choice of the constant has an effect

on the objective, but is not critical. We have found that this method, though simple,

seems to give very good results.

We have also experimented with more sophisticated methods, which alternate be-

tween a design step, in which a surrogate DAN is optimized, and a Monte Carlo

analysis step, in which the objective, as well as other relevant quantities (such as crit-

icality indices) are estimated. Based on Monte Carlo analysis, we then update the

margin coefficients, and repeat the process. An effective margin coefficient update

rule should decrease the margin coefficients for the less critical activities (i.e., those

with smaller criticality indices), and increase the coefficients for the highly critical

activities. Another approach is suggested by the Cauchy-Schwartz inequality (6): we

update the margin coefficients so as to make the Cauchy-Schwartz inequality tight

for highly critical paths, for example by setting κi proportional to σi .

While these iterative methods can improve the performance over the simple

schemes based on varying one parameter, we have found that the improvement is

often small. In addition, we have not found an update scheme that is effective on a

wide variety of problems.

5.1 Lower bounds on achievable performance

To assess the performance of the heuristic SAN design method, we derive two bounds

on achievable performance in the optimal SAN design. The lower bounds are based

on the lower bounds given in Sect. 3, and the solution of another surrogate DAN

optimization problem (13).

We first mention a simple lower bound that is widely applicable. The inequal-

ity (2) shows that no matter what the distributions are, and whether or not they are

independent, we have

min
x∈	

cmax(ED(x)) ≤ min
x∈	

ECmax(x).

The left-hand side is the optimal value of the nominal DAN optimization problem,

and is easily computed (at least, when μi are convex or posynomial). Assuming the

distributions of the path delays have their α quantiles larger than their means, we

have

cmax(ED(x)) ≤ qα(cmax(D(x))), ∀x ∈ 	. (14)

It follows that the optimal value of the SAN optimization problem (12) is at least the

optimal value of the nominal DAN problem.

For independent Gaussian activity durations, we can find sharper lower bounds by

solving the surrogate DAN problem with margin coefficients given by (7) or (8). The

optimal value of the surrogate DAN optimization problem gives a lower bound on the

optimal value of the SAN optimization problem (13). (This lower bound holds with

correlated Gaussian duration distributions, provided that the covariance of any two

durations is nonnegative.)

In summary, by solving a surrogate DAN problem with appropriately chosen mar-

gin coefficients, we obtain a lower bound on the optimal value of the (very difficult)

SAN optimization problem (12).

A heuristic for optimizing stochastic activity networks 417

6 Application to statistical digital circuit sizing

In this section we illustrate the heuristic method on a simplified statistical digital

circuit sizing problem, in which the device widths affect both the mean and variance

of the gate delays. The gate delays are independent and Gaussian, and depend on the

gate scale factors xi . (The details of the models are given in Sect. 7.) We impose the

same limits on the scale factors and total area as those in the deterministic digital

circuit sizing example on page 413.

The corresponding optimization results are shown in Table 1 and Fig. 7, for the

heuristic method with κi = 1.5. The heuristic robust design is far superior to the

nominal optimal design: At the cost of a slight increase in the nominal cycle time,

over the nominal optimal design, it gives a much tighter distribution for Cmax, and a

much smaller 0.95-quantile. The robust design has a nominal cycle time (i.e., a cycle

time ignoring statistical variation) of 46.5, only 1.3% more than the optimal nominal

design. When we take statistical variation into account, however, the two designs are

quite different. The 95% cycle time for the nominal optimal design is 51.1, which

is 11.3% more than the nominal cycle time. For the robust design, the 95% cycle

time is 48.1, which is only 3.4% more than the nominal optimal cycle time. Thus, the

robust design has reduced the effect of the statistical variation by a factor of around

4, compared to the nominal optimal design.

Since the nominal optimal cycle time is a lower bound on the optimal value of the

95% cycle time, this implies in particular that our heuristic robust design is at most

4.8% suboptimal. A tighter lower bound can be found by minimizing the cycle time

of the surrogate DAN with the choice of margin coefficients in (7), which yields 46.7.

Table 1 Comparison of

nominal and robust designs Nominal delay ED σD Q0.95(D)

Nominal design 45.9 49.4 0.91 51.1

Robust design 46.5 47.6 0.29 48.1

Fig. 7 Distribution of path

delays for robust and nominal

optimal designs

418 S.-J. Kim et al.

Fig. 8 Plot of q0.95(Cmax)

versus κ . The nominal optimal

design corresponds to κ = 0; the

best value of κ is near 1.5

This means that our heuristic robust design is at most 3% suboptimal, compared to

the globally optimal design (which is very difficult to compute).

Figure 8 shows a plot of q0.95(Cmax) versus κ . The left-hand side, κ = 0, corre-

sponds to the nominal optimal design; as κ is increased above 0, the 0.95-quantile

decreases. The minimum occurs around κ = 1.5, but a good design is obtained for κ

between around 1 and 2.5. Thus, the choice of κ is not particularly critical.

6.1 Comparison of nominal optimal and robust designs

In this section we examine more carefully the differences between the nominal opti-

mal and robust design (with κ = 1.5). The two plots in Fig. 9 show the distribution

of scale factors in the nominal optimal design and the robust design. (Recall that in

both designs the total area is fixed to be 12000.) The only significant difference seems

to be that the nominal optimal design has more scale factors that are minimum (i.e.,

have value one) than the robust design. Figure 10 shows a scatter plot of the scale

factor for the nominal optimal design versus the one for the robust design. This plot

shows that the difference between the two designs seems to be subtle; most of the

scale factors in the robust design are within 20% of the corresponding scale factors

in the nominal optimal design. One noticeable difference is that many small gates in

the nominal optimal design are up-sized in the robust design.

Figure 11 shows the distribution of expected path delays in the nominal optimal

and robust design (with κ = 1.5). Compared with the nominal optimal design, the

robust design significantly reduces the number of paths with expected delays very

near the nominal cycle time, at the cost of a small increase in the nominal cycle time

(the maximum expected path delay over all paths). In other words, the so-called wall

in the plot is softened.

But ‘softening the wall’ only partly explains why the robust design handles gate

delay variation more gracefully than the nominal optimal design. Figure 12 shows

scatter plots of the mean versus standard deviation for all paths, for the nominal

optimal and robust design (with κ = 1.5), respectively. The plots show that in the

nominal optimal design, some paths with large expected delays have large variances

A heuristic for optimizing stochastic activity networks 419

Fig. 9 Distribution of scale

factors in nominal optimal

design (top) and robust design

(bottom)

(which directly gives Cmax a large right skew). In the robust design, however, the

variances of the paths with large expected delays are smaller; paths with relatively

small expected delays, however, have relatively larger variances.

More insight into the performance of the robust design can be found in Fig. 13,

which shows the distribution of criticality indices for the nominal optimal and robust

designs. In the nominal optimal design there is no node with criticality index larger

than 0.3. This is expected, since there is a large number of critical paths. With statis-

tical variation in the activity durations, the large number of nearly critical paths leads

to a large right skew in Cmax.

In the robust design, in contrast, a relatively small set of nodes have high criticality

indices. This means that in the robust design, a relatively smaller set of paths is highly

critical. This is the condition for Jensen’s inequality (2) to be relatively tight, so we

conclude that the nominal value cmax and the expected makespan ECmax are close.

This suggests the distribution of Cmax is tight, which, in turn, suggests the design is

good, i.e., q0.95(Cmax) is not too much larger than the nominal cycle time.

420 S.-J. Kim et al.

Fig. 10 Scatter plot of nominal

optimal design scale factor

versus robust design scale factor

Fig. 11 Expected path delays

for nominal optimal design

(dashed line) and robust design

(solid line)

Fig. 12 Scatter plots of path

delay mean versus path delay

standard deviation, for the

nominal design (top) and

statistical design (bottom)

A heuristic for optimizing stochastic activity networks 421

Fig. 13 Distribution of

criticality indices of gates for

nominal optimal design (top)

and robust design (bottom)

6.2 Trade-off analysis

In this section we vary the constraint that limits the total of the scale factors (which

corresponds to the total circuit area) to carry out an area-delay trade-off analysis. In

the design described above, the total area is limited to 12000; here we vary the limit

Amax between 4000 and 15000. For each value of the limit on total area, we carry out

a nominal optimal design and a robust design. For the robust designs, we take κ = 1.5

for each of the designs.

Figure 14 summarizes the trade-off analysis results. The bottom curve shows the

nominal cycle time versus the area limit Amax. The nominal optimal value is, of

course, a bit smaller than the robust design in all cases. The top plot shows how the

designs compare when the effects of duration statistics are included. We see that the

robust design performs consistently well, compared with the nominal design. Note

also that adding more area does not particularly improve the nominal optimal design,

compared to the robust design. This shows that simply ‘throwing more area’ at the

nominal design method does not lead to dramatic improvements in q0.95(Cmax). We

422 S.-J. Kim et al.

Fig. 14 Tradeoff analysis

between area and cycle time

can also compare the nominal optimal and robust designs in terms of area required to

reach a yield of 95% for a cycle time of 48.1 (which is what our robust design with

A = 12000 achieves). By following a vertical line at this 95% cycle time, we find that

the nominal optimal design still does not reach this yield, even with 3 times as much

area.

7 Details of the statistical circuit sizing example

In this section we give the details of the statistical circuit sizing example used to illus-

trate our main points throughout the paper. As mentioned above, we use a simplified

static timing model, with a single delay for each gate (ignoring differing rise and fall

times, different delays for different gate transitions, and the effects of signal slopes).

With each gate we associate a scale factor or normalized size xi ≥ 1 which scales the

widths of the devices used to form the gate and therefore affects its drive strength,

input capacitance, and area. (The same method can be applied to a full custom design,

A heuristic for optimizing stochastic activity networks 423

in which each device is sized individually; see Patil et al. (2004).) The scale factor

xi = 1 corresponds to a minimum sized gate, and a scale factor xi = 16 (say) corre-

sponds to a version of the gate in which all devices have width 16 times the widths of

the devices in the minimum sized gate.

Gate i has three parameters: an input capacitance Cin
i , an intrinsic or internal ca-

pacitance Cint
i , and driving resistance Ri . The input and intrinsic capacitances are

modeled as linear functions of the scale factor,

Cin
i = C̄in

i xi, Cint
i = C̄int

i xi,

where C̄in
i and C̄int

i are the input capacitance and intrinsic capacitance of gate i with

unit scaling. The driving resistance Ri is inversely proportional to the scale factor:

Ri = R̄i/xi,

where R̄i is the driving resistance of gate i with unit scale factor. Let CL
i be the load

capacitance that gate i drives. Then, for a non-sink node,

CL
i =

∑

j∈Succ(i)

Cin
j .

Using the simple RC model of a gate and its load, we approximate the gate delay as

μi(x) = 0.69Ri(C
int
i + CL

i), (15)

which is the time required for the output voltage of an RC circuit to reach the midpoint

between the logic voltage levels. Since Ri , CL
i , and Cint

i are posynomials of the scale

factors, the delay of each gate is also a posynomial function of the gate scale factors.

The reader is referred to Sutherland et al. (1999) for more on the RC delay model.

Another parameter of gate i is the area. We approximates the (physical) area of

gate i as proportional to the scale factor xi , so the total area of the (combinational

logic block) circuit has the form

A =
n

∑

i=1

xiĀi,

where Āi is the area of gate i with unit scaling. The gate area is the total width of the

devices in the gate (since the gate lengths are always chosen to be the smallest value

allowed in the technology).

The circuit is a 32-bit Ladner-Fisher adder, consisting of 459 gates, including 64

input gates and 32 output gates, and 1714 arcs. The associated DAG has 3214 paths

from input nodes to output nodes. The maximum path length is 12. The Ladner-Fisher

adder contains 5 types of gates, with associated functions and model parameters listed

in Table 2. The capacitance unit is the capacitance of the NMOS device in a unit

scaled inverter, and the area unit is the width of the NMOS device in a unit scaled

inverter. The drive strength value R̄ = 0.48 is chosen so that the delay of a unit size

inverter with no load is 0.69 · 0.48 · 3 = 1. In other words, the time unit is normalized

424 S.-J. Kim et al.

Table 2 The 5 gate types used

in the Ladner-Fisher adder. The

first column gives the gate

name; the second column gives

the logic function the gate

implements, and the remaining 4

columns give the model

parameters

Gate type Function C̄in C̄int R̄ Ā

INV A 3 3 0.48 3

NAND2 AB 4 6 0.48 8

NOR2 A + B 5 6 0.48 10

AOI21 AB + C 6 7 0.48 17

OAI21 (A + B)C 6 7 0.48 16

to the delay of a unit scale inverter, with no load, denoted by τ . In fact the model

parameters come from the logical effort model, described in Sutherland et al. (1999).

The expression (15) gives the mean delay of a gate. We take the standard deviation

of the gate delay to be

σi(x) = γ x−α
i μi(x), (16)

where α > 0 and γ > 0 are parameters. This simple model scales the relative statisti-

cal variation in delay, relative to the mean delay, using a power law. It is inspired by

process parameter variation models such as the empirical threshold voltage variation

model (Ma et al. 2004) and Pelgrom model (Pelgrom 1989), which predict a decrease

in device parameter variation with increasing device area, due to spatial averaging.

The parameter γ gives the relative variation for a minimum sized gate (i.e., xi = 1),

and the parameter α accounts for the space averaging effects of process and device

parameter variations. We used the model parameters

α = 1.0, γ = 0.15.

This means that for a minimum sized gate, the delay standard deviation is 15% of its

mean, and that this ratio decreases with increasing gate size. In our example, the delay

distributions are Gaussian. (Since σ/μ ≤ 0.15, the probability of a negative delay is

vanishingly small.) Like our mean delay model, this statistical model is chosen for

simplicity, not accuracy. In any case, modeling the statistics of gate delay is an area

of active research, with many open issues; see, e.g., Liou et al. (2003), Okada et al.

(2003), Orshansky et al. (2002, 2004).

For the optimization problems, we imposed a constraint on the area, as well as

lower bounds on the scale factors:

A ≤ 12000, 1 ≤ xi, i = 1, . . . , n. (17)

The minimum area, i.e., the area of the adder with all gates minimum sized is 3842,

so a uniform allocation gives xi = 12000/3842 = 3.12. The load capacitance of each

primary output is taken as CL
i = 6.

Our delay mean and variance are both posynomial functions of x, as are our con-

straint functions. It follows that the surrogate DAN optimization problem can be for-

mulated as a (generalized) geometric program, and therefore solved globally and ef-

ficiently (see Boyd et al. (2007)). To give some idea of the efficiency, the resulting

GPs have around 1000 variables and 3000 constraints, and are solved using MOSEK

(2002) in two seconds on a 1.2 GHz Pentium IV PC.

A heuristic for optimizing stochastic activity networks 425

8 More numerical experiments

In this section we carry out some more numerical experiments with our circuit de-

sign example to test how sensitive the robust design is to errors in the model and

assumptions.

8.1 Gate delay distribution shape

The numerical results above were obtained with independent Gaussian variation in

the gate delays. To see how sensitive our robust design is to the shape of the gate

delay distribution, we use MC simulation to find the cycle time PDFs of the nominal

optimal and the robust design with uniform gate delay distributions. (All other model

assumptions and parameters are the same.) The results are shown in Fig. 15.

Compared to the results with Gaussian gate delays, shown in Fig. 7 (on p. 417),

we see that the nominal optimal design is not quite as bad. Still, the robust design is

far superior to the nominal optimal design.

It is not difficult to see that uniform distributions meet the assumption for estab-

lishing the lower bound (5) with α = 0.95. The small gap of 3.7% percent between

the nominal optimal cycle time (45.9) and the 95% cycle time (47.9) of the robust

design therefore shows that the robust design is within 4.36% percent of the global

optimum.

8.2 Correlations among gate delays

In the results reported above, we assume that the gate delay distributions are uncor-

related. In fact, several mechanisms (spatial correlation, process parameter variation)

can result in correlation among gate delays (see, e.g., Liou et al. 2003). We have

carried out many analyses of the nominal optimal and robust designs with different

models of correlation, and found that correlations typically make the nominal design

not as bad as in the uncorrelated case, but in all cases the robust design is substantially

better.

Fig. 15 Cycle time PDF for

nominal optimal design and

robust design (κ = 1.5), with

uniform gate delay distributions

426 S.-J. Kim et al.

Fig. 16 Cycle time PDF for

nominal optimal design and

robust design, with correlation

among adjacent gates

We report here only the (typical) results for one such test. We use the following

simple model: two gates, say, i and j , are correlated by 30% if they are adjacent

(i.e., one drives the other); otherwise they are uncorrelated. The results are shown in

Fig. 16. As can be seen from Fig. 16, the difference between the nominal optimal

delay and the 95% cycle time of the robust design is small, meaning that the robust

design is quite close to the global optimum. (Since the correlation coefficients are

positive, the nominal optimal delay is still a lower bound on the optimal 95% cycle

time.)

9 Conclusions

We have proposed a heuristic method for approximately solving a SAN optimization

problem, based on solving one or more surrogate DAN optimization problems, using

Monte Carlo analysis to verify the performance of the designs, and choosing the best

one. Our computational experience with the method so far suggests that the heuristic

method

• Is often far superior to the nominal optimal design (i.e., the design obtained by

ignoring statistical variation),

• Is not very sensitive to the details of the activity duration distributions or correla-

tions among them, and

• Often yields a design that is provably close to the global optimum.

We certainly do not claim that the method works well in all cases; we are only claim-

ing that it seems to work very well on the (circuit design) examples we have ex-

amined. One important future research topic is to identify general classes of SAN

problems for which the method works well.

One natural question is why a method this simple should work as well as it does

on the problem instances we have examined. We believe that the phenomenon is

similar to Tikhonov regularization, which is another case in which a simple modi-

fication of an optimization problem yields a surprisingly robust result. In the most

A heuristic for optimizing stochastic activity networks 427

basic form of regularization, the goal is to estimate x, given a measurement y ≈ Ax.

The standard least-squares estimate, obtained by minimizing ‖Ax − y‖2, can be very

sensitive to statistical errors in A. In Tikhonov regularization, we choose the esti-

mate by minimizing ‖Ax − y‖2 +μ‖x‖2, where μ > 0 is a parameter. This modified

problem can be interpreted several ways; for example, it corresponds to minimizing

E‖Ax−y‖2 when the entries of A are zero mean and uncorrelated, with variance μ/n

(see, e.g., Boyd and Vandenberghe (2004)). Tikhonov regularization has some of the

same features we have observed in our heuristic method (Boyd and Vandenberghe

2004, Chap. 6.4).

• It often works very well, compared to the simple least-squares estimator.

• The choice of the parameter μ is not particularly critical.

• The method often works well even when the underlying statistical assumptions are

not correct (for example, there is some correlation among the entries of A).

We should also comment on a special case: when the standard deviation of each

durations is proportional to the mean. In this case, the robust heuristic design, with

constant κ , is the same as the nominal optimal design. In particular, the robust heuris-

tic method cannot improve the performance over the nominal optimal design. Our

computational experience so far suggests that in this case, the nominal optimal design

(which is also the robust heuristic design) is quite robust to the variation in the dura-

tion distributions; we have observed in many cases that the lower bounds described

above verify that the design is close to the global optimum. But a more extensive

comparison between the nominal optimal design and the true solution of the SAN

optimization problem remains to be carried out.

For circuit design, we have already extended the method described here to prob-

lems with more accurate delay models, with different delay models for rising and

falling signals, different input/output pairs for each gate, and effects of signal slope

(Patil et al. 2004). In the design problem we size individual devices (as opposed to

whole gates as in the example considered here), and take into account power as well

as area.

We mention one application in digital circuit design, suggested by Abbas El

Gamal, that we will be exploring. In the simple model, the statistical variation can

be thought of as coming from device parameter variations (which therefore decrease

with increasing device sizes). El Gamal has suggested that we develop a statistical

model of the effects of crosstalk and coupling (which comes from the interconnect,

not the devices). We model the delay of a gate (and its output net) statistically; the

variation in delay is due to crosstalk and coupling from other nets. In this case the

variance of the delay depends on layout, and not just device sizes. The heuristic ro-

bust method then corresponds to a crosstalk-aware design method, which allocates a

bit more margin to gates and paths that are near critical and have long nets, and so

are likely to be victims of crosstalk.

Acknowledgements This material is supported in part by the National Science Foundation under grants

#0423905 and (through October 2005) #0140700, by the Air Force Office of Scientific Research under

grant #F49620-01-1-0365, by MARCO Focus center for Circuit & System Solutions contract #2003-CT-

888, and by MIT DARPA contract #N00014-05-1-0700. The authors thank the reviewers for helpful com-

ments and suggestions.

428 S.-J. Kim et al.

References

Abdel-Malek H, Bandler J (1980a) Yield optimization for arbitrary statistical distributions: part I—theory.

IEEE Trans Circuits Syst 27(4):245–253

Abdel-Malek H, Bandler J (1980b) Yield optimization for arbitrary statistical distributions: part II—

implementation. IEEE Trans Circuits Syst 27(4):253–262

Abramowitz M, Stegun I (eds) (1972) Handbook of mathematical functions with formulas, graphs, and

mathematical tables. Wiley, New York

Agarwal A, Zolotov V, Blaauw D (2003) Statistical timing analysis using bounds and selective enumera-

tion. IEEE Trans Comput Aided Des Integr Circuits Syst 22(9):1243–1260

Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805

Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization. Analysis, algorithms, and

engineering applications. SIAM, Philadelphia

Bertsekas D (1999) Nonlinear programming, 2nd edn. Athena Scientific

Bertsekas D, Nedic A, Ozdaglar A (2003) Convex analysis and optimization. Athena Scientific

Bertsimas D, Thiele A (2006) A robust optimization approach to supply chain management. Math Program

Ser B 54(1):150–168

Bertsimas D, Natarajan K, Teo C-P (2004) Probabilistic combinatorial optimization: Moments, semidefi-

nite programming and asymptotic bounds. SIAM J Optim 15(1):185–209

Bhardwaj S, Vrudhula S, Blaauw D (2003) TAU: timing analysis under uncertainty. In: International con-

ference on computer-aided design, San Jose, pp 615–620, November 2003

Birge J, Maddox M (1995) Bounds on expected project tardiness. Oper Res 43:838–850

Bowman R (1995) Efficient estimation of arc criticalities in stochastic activity networks. Manag Sci

41(1):58–67

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

Boyd S, Kim S-J, Patil D, Horowitz M (2005) Digital circuit optimization via geometric programming.

Oper Res 53(6):899–932

Boyd S, Kim S-J, Vandenberghe L, Hassibi A (2007) A tutorial on geometric programming. Optim Eng

(to appear). Available from www.stanford.edu/boyd/~gp_tutorial.html

Bozorgzadeh E, Ghiasi S, Takahashi A, Sarrafzadeh M (2004) Optimal integer delay budget assignment

on directed acyclic graphs. IEEE Trans Comput Aided Des Integr Circuits Syst 23(8):1184–1199

Burt J, Garman M (1971) Conditional Monte Carlo: A simulation technique for stochastic network analy-

sis. Manag Sci 18(1):207–217

Charnes A, Cooper W, Thompson G (1964) Critical path analyses via chance constrained and stochastic

programming. Oper Res 12:460–470

Conn A, Gould N, Toint PhL (1992) LANCELOT: a Fortran package for large-scale nonlinear optimization

(release A). Springer series in computational mathematics, vol 17. Springer, Berlin

Conn A, Coulman P, Haring R, Morrill G, Visweswariah C, Wu C (1998) JiffyTune: Circuit optimization

using time-domain sensitivities. IEEE Trans Comput Aided Des Integr Circuits Syst 17(12):1292–

1309

Davis E (1966) Resource allocation in project network models—a survey. J Ind Eng 17(4):177–187

Devroye L (1979) Inequalities for the completion times of stochastic PERT networks. Math Oper Res

4(4):441–447

Dodin B (1984) Determining the k most critical paths in PERT networks. Oper Res 32:859–877

Dodin B (1985) Bounding the project completion time distribution in PERT networks. Oper Res 33:862–

881

Dodin B, Elmaghraby S (1985) Approximating the criticality indices of the activities in PERT networks.

Manag Sci 31(2):207–223

Elmaghraby S (1977) Project planning and control by network models. Wiley, New York

Eppstein D (1998) Finding the k shortest paths. SIAM J Comput 28(2):652–673

Esary J, Proschan F, Walkup D (1967) Association of random variables with applications. Ann Math Stat

38:71466–1474

Fishburn J, Dunlop A (1985) TILOS: A posynomial programming approach to transistor sizing. In: IEEE

international conference on computer-aided design: ICCAD-85. Digest of technical papers, IEEE

Computer Society Press, pp 326–328

Fox B (1994) Integrating and accelerating tabu search. Ann Oper Res 41:47–67

El Ghaoui L, Lebret H (1997) Robust solutions to least-squares problems with uncertain data. SIAM J

Matrix Anal Appl 18(4):1035–1064

Glasserman P (2003) Monte Carlo methods in financial engineering. Springer, Berlin

A heuristic for optimizing stochastic activity networks 429

Hagstrom J, Jane N (1990) Computing the probability distribution of project duration in a PERT network.

Networks 20:231–244

Heller U (1981) On the shortest overall duration in stochastic acyclic network. Methods Oper Res 42:85–

104

Hongliang C, Sapatnekar S (2003) Statistical timing analysis considering spatial correlations using a single

PERT-like traversal. In: International conference on computer-aided design, San Jose, pp 621–625,

November 2003

Hsiung K-L, Kim S-J, Boyd S (2005) Robust geometric programming via piecewise linear approximation.

Manuscript, September 2005

Jess J, Kalafala K, Naidu S, Otten R, Visweswariah C (2003) Statistical timing for parametric yield pre-

diction of digital integrated circuits. In: Proc. of 40th proc. IEEE/ACM design automation conference,

Anaheim, pp 343–347, June 2003

Knowles S (1999) A family of adders. In: Proceedings of 14th IEEE symposium on computer arithmetic,

IEEE Computer Society Press, pp 30–34

Liou J-J, Krstić A, Jiang Y-M, Cheng K-T (2003) Modeling, testing, and analysis for delay defects

and noise effects in deep submicron devices. IEEE Trans Comput Aided Des Integr Circuits Syst

22(6):756–769

Ludwig A, Möhring R, Stork F (2001) A computational study on bounding the makespan distribution in

stochastic project networks. Ann Oper Res 102:49–64

Ma S, Keshavarzi A, De V, Brews R (2004) A statistical model for extracting geometric sources of tran-

sistor performance variation. IEEE Trans Electron Dev 51(1):36–41

Mejilson I, Nadas A (1979) Convex majorization with an application to the length of critical path. J Appl

Probab 16:671–677

Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L (1998) An exact algorithm for the resource constrained

project scheduling problem based on a new mathematical formulation. Manag Sci 44:714–729

MOSEK ApS (2002). The MOSEK optimization tools version 2.5. User’s manual and reference. Available

from www.mosek.com

Mutapcic A, Koh K, Kim S-J, Vandenberghe L, Boyd S (2005) GGPLAB: a simple matlab toolbox for

geometric programming. Available from www.stanford.edu/~boyd/ggplab/

Nesterov Y (2003) Introductory lectures on convex optimization: a basic course. Kluwer Academic,

Boston

Nesterov Y, Nemirovsky A (1994) Interior-point polynomial methods in convex programming. Studies in

applied mathematics, vol 13. SIAM, Philadelphia

Neumaier A (1998) Solving ill-conditioned and singular linear systems: A tutorial on regularization. SIAM

Rev 40(3):636–666

Nocedal J, Wright S (1999) Numerical optimization. Springer series in operations research. Springer, New

York

Okada K, Yamaoka K, Onodera H (2003) A statistical gate delay model for intra-chip and inter-chip

variabilities. In: Proc. of 40th IEEE/ACM proc. design automation conference, Anaheim, pp 31–36,

June 2003

Orshansky M, Keutzer K (2002) A general probabilistic framework for worst case timing analysis. In:

Proc. of 39th IEEE/ACM design automation conference, New Orleans, pp 556–561, June 2002

Orshansky M, Chen J, Hu C (1999) Direct sampling methodology for statistical analysis of scaled CMOS

technologies. IEEE Trans Semicond Manuf 12(4):403–408

Orshansky M, Milor L, Chen P, Keutzer K, Hu C (2002) Impact of spatial intrachip gate length variability

on the performance of high-speed digital circuits. IEEE Trans Comput Aided Des Integr Circuits Syst

21(5):544–553

Orshansky M, Milor L, Hu C (2004) Characterization of spatial intrafield gate CD variability, its impact

on circuit performance and spatial mask-level correction. IEEE Trans Semicond Manuf 17(1):2–11

Patil D, Yun Y, Kim S-J, Boyd S, Horowitz M (2004) A new method for robust design of digital circuits. In:

Proceedings of the sixth international symposium on quality electronic design (ISQED) 2005, IEEE

Computer Society Press, pp 676–681

Pelgrom M (1989) Matching properties of MOS transistors. IEEE J Solid State Circuits 24(5):1433–1439

Pich M, Loch C, De Meyer A (2002) On uncertainty, ambiguity, and complexity in project management.

Manag Sci 48(8):1008–1023

Plambeck E, Fu B-R, Robinson S, Suri R (1996) Sample-path optimization of convex stochastic perfor-

mance functions. Math Program 75(2):137–176

Pollalis S (1993) Computer-aided project management: a visual scheduling and control system. Vieweg

Verlag, Wiesbaden

430 S.-J. Kim et al.

Prekopa A (1983) Stochastic programming. Kluwer Academic, Dordrecht

Robillard P, Trahan M (1976) The completion times of PERT networks. Oper Res 25:15–29

Robinson J (1979) Some analysis techniques for asynchronous multiprocessor algorithms. IEEE Trans

Softw Eng 5(1):24–31

Rockafellar R, Uryasev S (2000) Optimization of conditional value-at-risk criterion. J Risk 2(3):21–41

Sapatnekar S (1996) Wire sizing as a convex optimization problem: exploring the area-delay tradeoff.

IEEE Trans Comput Aided Des 15:1001–1011

Sapatnekar S (2000) Power-delay optimization in gate sizing. ACM Trans Des Autom Electron Syst

5(1):98–114

Sapatnekar S, Rao V, Vaidya P, Kang S (1993) An exact solution to the transistor sizing problem for

CMOS circuits using convex optimization. IEEE Trans Comput Aided Des Integr Circuits Syst 12

(11):1621–1634

Serfling R (1980) Approximation theorems of mathematical statistics. Wiley, New York

Shogan A (1977) Bounding distributions for a stochastic PERT network. Networks 7:359–381

Slowinski R (1980) Two approaches to problems of resource allocation among project activities: a com-

parative study. J Oper Res Soc 31:711–723

Van Slyke R (1963) Monte Carlo methods and the PERT problem. Oper Res 11:839–860

Van Slyke R, Wets R (1969) L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM J Appl Math 17:638–663

Styblinski M, Opalski L (1986) Algorithms and software tools for IC yield optimization based on funda-

mental fabrication parameters. IEEE Trans Comput Aided Des 5(1):79–89

Sullivan R, Hayya J (1980) A comparison of the method of bounding distributions (MBD) and Monte

Carlo simulation for analyzing stochastic acyclic networks. Oper Res 28(3):614–617

Sutherland I, Sproul B, Harris D (1999) Logical effort: designing fast CMOS circuits. Kaufmann, San

Francisco

van der Vaart A (1998) Asymptotics statistics. Cambridge University Press, Cambridge

Vanderbei R (1992) LOQO user’s manual. Technical Report SOL 92–05, Dept. of Civil Engineering and

Operations Research, Princeton University, Princeton, NJ 08544, USA

Visweswariah C (2003) Death, taxes and failing chips. In: Proc. of 40th IEEE/ACM design automation

conference, Anaheim, pp 343–347, June 2003

Wallace S (1989) Bounding the expected time-cost curve for a stochastic PERT network from below. Oper

Res 8:89–94

Weiss G (1986) Stochastic bounds on distributions of optimal value functions with applications to PERT,

network flows and reliability. Oper Res 34(4):595–605

White K, Trybula W, Athay R (1997) Design for semiconductor manufacturing-perspective. IEEE Trans

Compon Packag Manuf Technol Part C 20(1):58–72

	A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing
	Abstract
	Introduction
	Activity networks
	Path delay, completion time, and makespan
	Critical paths and activities
	Activity network representation of digital circuits

	Stochastic activity networks
	Performance bounds
	The nominal DAN and Jensen's inequality
	Performance bounds via stochastic dominance
	Performance bounds via surrogate DANs

	Monte Carlo analysis
	PDF estimation
	Quantile estimation
	Criticality index estimation

	Statistical timing analysis of digital circuits
	Example: 32-bit Ladner-Fisher adder

	Optimal activity network design
	Optimal DAN design
	Example: cycle time minimization of digital circuits
	Optimal SAN design

	Heuristic SAN design
	Lower bounds on achievable performance

	Application to statistical digital circuit sizing
	Comparison of nominal optimal and robust designs
	Trade-off analysis

	Details of the statistical circuit sizing example
	More numerical experiments
	Gate delay distribution shape
	Correlations among gate delays

	Conclusions
	Acknowledgements

	References

