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Abstract

In this paper we consider the estimation of an origin–destination (OD)

matrix, given a target OD-matrix and traffic counts on a subset of the links

in the network. We use a general nonlinear bilevel minimization formulation of

the problem, where the lower level problem is to assign a given OD-matrix onto

the network according to the user equilibrium principle. After reformulating

the problem to a single level problem, the objective function includes implicitly

given link flow variables, corresponding to the given OD-matrix. We propose

a descent heuristic to solve the problem, which is an adaptation of the well-

known projected gradient method. In order to compute a search direction we

have to approximate the Jacobian matrix representing the derivatives of the

link flows with respect to a change in the OD-flows, and we propose to do

this by solving a set of quadratic programs with linear constraints only. If

the objective function is differentiable at the current point, the Jacobian is

exact and we obtain a gradient. Numerical experiments are presented which

indicate that the solution approach can be applied in practice to medium to

large size networks.
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1 Introduction

The origin–destination (OD) matrix estimation problem is to find an estimate of

some travel demand between pairs of zones in a region. OD-matrices are essential

inputs in many transportation analysis models and are useful for example when

making decisions about how to modify the traffic network, evaluating the

accessibility to different commercial areas or when making forecasts of traffic

emissions. Many time dependent systems also require a static OD-matrix as a base

or default value. It is therefore of great importance to develop accurate models

and methods for estimating OD-matrices.

The estimation is made by using available information about the unknown

matrix. Usually this information includes traffic count data, i.e., observed traffic

flows on a subset of the links in the network, and an initial approximate

OD-matrix. This matrix can be an out-dated matrix, for example obtained from

surveys or census data and possibly updated by some growth factors to account for

changes in the total flow in the network. When making short time OD-matrix

estimations, this matrix typically represents the average traffic situation. In this

paper the initial matrix can be used as a target matrix, and the estimation

problem can be interpreted as a matrix adjustment problem where the initial

matrix is updated based on traffic count information.

The general approach adopted in the literature to estimate an OD-matrix is

to appropriately select one matrix among all the matrices satisfying the

assignment requirements, i.e., all the matrices that reproduce the observed traffic
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counts when assigned to the network. Depending on how this matrix is chosen

(i.e., optimizing criterion) and how the assignment of the matrix on the paths in

the network is made, a variety of models can be formulated. In practice, there are

always inconsistencies in the observed count information, and there may be no

matrix satisfying the observed counts. Therefore most models allow matrices,

which do not exactly reproduce the observed counts. For an introduction to the

OD-matrix estimation problem, see for example Cascetta and Nguyen (1988), Bell

and Iida (1997) and Ortúzar and Willumsen (2002).

In this paper we use a nonlinear bilevel programming formulation of the

estimation problem; a formulation that generalizes most models previously

presented for this problem. The upper level objective is defined as a weighted

measure of deviation from the target matrix and from the observed counts, and

the lower level problem is an equilibrium assignment problem ensuring consistency

between the OD-matrix and the link flows.

The problem can be reformulated to a single level problem with an

implicitly defined objective function, and we suggest to solve this problem using a

general descent algorithm which is an adoption of the well-known projected

gradient method. The idea is to evaluate the directional derivatives of the

objective function at the current equilibrium point. However, since the objective

function is not differentiable at all points, we cannot assure that the directional

derivatives constitute a gradient. If a strict complementarity condition holds at

equilibrium, i.e., if all shortest path routes in each OD-pair have strictly positive

flows, we know that we will obtain a gradient. In practice, this condition will
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probably not hold and we can therefore only expect to compute approximations of

the gradient. This turns our approach into a heuristic.

There are many ways to compute an approximation of the gradient and to

design a heuristic. The difficulty is to find a good approximation of the Jacobian

matrix stating the sensitivity of the link flows with respect to changes in the OD

demand. In order to compute an approximate Jacobian matrix we propose to solve

a set of quadratic programming problems. We show under which assumptions this

solution approach generates the true gradient. We compare our method to

previously presented approaches to compute approximate gradients. The initial

ideas for our approach was presented in Drissi-Käıtouni and Lundgren (1992).

The aim of the paper is to present a solution approach that can be a bridge

between relatively simple heuristics (e.g. Spiess, 1990) applied to very large

problem instances and theoretically convergent algorithms that so far have been

applied to very small problem instances only.

In the next section we formulate the general OD-matrix estimation problem

using a bilevel structure, and in Section 3 we present our solution strategy. In

Section 4 we formulate the quadratic programming problem for finding an

approximation of the Jacobian matrix and we also present a method for solving

the problem. Finally, in Section 5, we discuss implementation issues and present

computational results.
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2 Problem formulation

We consider a transportation network where A is the set of links, I the set of

OD-pairs and G the set of feasible OD demands. We are interested in finding a

feasible vector (OD-matrix) g ∈ G, where g = {gi}, i ∈ I, consists of the demands

for all OD-pairs. The assignment of the OD-matrix onto the links in the network is

made according to the assignment proportion matrix P = {pia}, i ∈ I, a ∈ A,

where each element in the matrix is defined as the proportion of the OD demand

gi that uses link a. We will use the notation P = P (g) to remark that, in general,

these proportions depend of the demand. When assigned to the network, the

OD-matrix induces a flow v = {va}, a ∈ A, on the links in the network. We assume

that observed flows, ṽa, are available for a subset of the links, a ∈ Ã ⊆ A, and that

a target matrix ĝ ∈ G also is available.

The generic OD-matrix estimation problem can now be formulated as

[P1]

min
g,v

F (g, v) = γ1F1(g, ĝ) + γ2F2(v, ṽ),

s.t.
∑

i∈I

pia(g)gi = va, ∀ a ∈ Ã, (1)

g ∈ G.

The functions F1(g, ĝ) and F2(v, ṽ) represent generalized distance measures

between the estimated OD-matrix g and the given target matrix ĝ, and between

the estimated link flows v and the observed link flows ṽ, respectively. The

functions are assumed to be convex; typically quadratic, entropy or maximum
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likelihood functions are used, and they can be designed to account for variation in

quality of the given data.

The parameters γ1 and γ2 reflect the relative belief (or uncertainty) in the

information contained in ĝ and ṽ; problem [P1] can therefore be interpreted as a

two-objective problem. The two objectives are expressed in F1 and F2, and γ1 and

γ2 are the corresponding weighting factors. In one extreme case, using γ1 = 0, the

target matrix will have no influence, and in the other case, using γ2 = 0, the target

matrix will be reproduced and the observed link flows will have no influence.

Feasibility for the OD-matrix is normally defined by non-negativity only,

but it is also possible to add some linear constraints, which for example could

bound the deviation from the target matrix in some or all OD-pairs.

Previously proposed models for the OD-matrix estimation problem can be

classified into two categories, depending on whether we assume the proportion

matrix P (g) to be dependent on g or not. If the assignment of the OD-matrix onto

the network is independent of the link flows, that is, if we have an uncongested

network, P (g) is a constant matrix. The set of equations (1) can then be

formulated as

∑

i∈I

piagi = va, ∀ a ∈ Ã. (2)

The models presented by van Zuylen (1978), van Zuylen and Willumsen

(1980), Carey et al (1981), Willumsen (1981), van Zuylen and Branston (1982),

Bell (1983), Willumsen (1984), McNeil and Hendrickson (1985), Spiess (1987),

Brenninger-Göthe et al (1989), Bierlaire and Toint (1995) and Bianco et al (2001)

7



all belong to this first category. They differ basically in how the functions F1 and

F2 are defined and motivated. A constant proportion matrix, often referred to as a

splitting rate matrix, is also a base in many models for dynamic OD estimation,

where g is assumed to be time dependent, see e.g. Ashok (1996), Ashok and

Ben-Akiva (2000) and Sherali and Park (2001).

In the models in the second category it is assumed that the network is a

congested network and that the OD demand is assigned to the links with respect

to the congestion on the links. The proportion matrix is then dependent on g, but

the relationship can only be implicitly defined. The feasible set in [P1] is defined

as all the points (g, v) where v is the link flow solution satisfying an assignment of

the corresponding demand g ∈ G. The first model in this class was presented by

Nguyen (1977), and extended models were proposed by Jörnsten and Nguyen

(1979), Gur et al (1980) suggesting how to obtain unique OD-matrices. Erlander

et al (1979) and Fisk and Boyce (1983) have proposed methods based on a

combined distribution and assignment model. In all these papers it is assumed

that the assignment is made according to the deterministic user equilibrium

assumption, and this will be the case also in the present paper.

Fisk (1988) recognized the OD-matrix estimation problem as a bilevel

programming problem and used a variational inequality formulation to express the

equilibrium conditions, in this way allowing for general link cost functions.

Let ca(v), a ∈ A be the link cost functions in the network, let

hk, k ∈ Ki, i ∈ I be the flow on path k where Ki refer to the set of all paths in

OD-pair i; and define δak as one if link a is included in path k, zero otherwise.
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Also, assume that all non-negative OD demands are feasible, i.e. let

G = {g|gi ≥ 0, i ∈ I}.

Problem [P1] can now be formulated as a bilevel programming problem as

[P2]

min
g

F (g, v) = γ1F1(g, ĝ) + γ2F2(v, ṽ)

s.t. g ≥ 0

where v is the optimal solution to the deterministic equilibrium assignment

problem (see e.g. Patriksson, 1994):

min
v

f(v) =
∑

a∈A

∫ va

0
ca(s)ds, (3)

s.t.
∑

k∈Ki

hk = gi, ∀ i ∈ I, (4)

∑

i∈I

∑

k∈Ki

δakhk = va, ∀ a ∈ A, (5)

hk ≥ 0, ∀ k ∈ Ki, ∀ i ∈ I. (6)

In the upper level problem of [P2] the vector g, i.e., the OD-matrix, defines

the decision variables and we want to minimize F (g, v) subject to g ≥ 0 and a

requirement that the link flow v satisfies the equilibrium assignment conditions for

the corresponding g. These conditions are obtained by solving the nonlinear lower

level problem in which the link (path) flows are the decision variables.

Problem [P2] can be interpreted as an instance of a general nonlinear

bilevel programming problem. It is well-known that bilevel programming problems
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are non-convex problems, and by using methods known today we can at the best

obtain solutions which are local optima. Since we use a local search strategy, not

leaving the initial sub-convex domain, the choice of initial solution of course is

essential for which local optima we will obtain. Therefore the OD-matrix

estimation problem is often referred to as an adjustment or calibration problem.

Spiess (1990) suggested a heuristic approach to solve problem [P2],

assuming γ1 = 0 and using ĝ as the initial solution in the iterative procedure. In

this approach an approximate gradient of the objective function with respect to

the OD demands is computed, assuming that the proportion matrix P (g) is locally

constant. Florian and Chen (1992, 1995) reformulated the bilevel problem into a

single level problem using the concept of marginal function. They proposed to use

a Gauss-Seidel type heuristic to solve the problem. Independently, both Chen

(1994) and Doblas and Benitez (2005) have proposed to solve the problem by an

augmented Lagrangean technique. Chen’s approach requires that all used paths in

each OD-pair are known beforehand, and thus the approach is only applicable to

very small problem instances. The technique proposed by Doblas and Benitez is

more efficient and minimizes the amount of stored information.

In the methods proposed by Sherali et al (2003) and Nie et al (2005) no

assignment matrix P is needed. Instead a set of shortest paths is computed and

the corresponding path flows are estimated, as to reproduce the link flow

observations as well as possible. The set of shortest paths is iteratively updated

with respect to the travel times induced by the flow estimates. Thus, the

dependence between route choice and travel demand is assumed to be locally
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constant. The differences between these two methods lie in the mathematical

modelling of the problem and how the shortest paths are computed and updated.

Yang et al (1992), Yang (1995) and Yang and Yagar (1995) all use the

bilevel formulation and propose heuristics, which iteratively solves the upper and

lower level problem. Information from the lower level problem is transferred by so

called influence factors, which can be defined by path proportions or explicit

derivatives. The derivatives are computed based on the sensitivity analysis by

Tobin and Friesz (1988). Assuming complementary conditions to hold and

disregarding any topological dependencies, they get approximate values of the

derivatives, which are acceptable for small to medium sized networks. However, for

larger networks the topological dependencies are significantly greater.

Maher and Zhang (1999) also have proposed an iterative solution procedure

for the bilevel formulation of the problem. In each iteration a new OD-matrix is

computed in two steps. In a first step, the assignment proportions P are kept

locally constant, leading to a new tentative OD-matrix. This matrix is used to

define a search direction, and by assigning it onto the network, the authors get a

linear approximation for how the assignment proportions P are affected along the

search direction. As a second step, a line search procedure concludes the iteration.

The models proposed by Cascetta and Postorino (2001), Maher et al (2001)

and Yang et al (2001) differ from the other models in the sense that they assume a

stochastic user equilibrium. An alternative approach is presented by Codina and

Barceló (2004) using a subgradient method for nondifferentiable optimization

which does not need any sensitivity information.
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To summarize, until today the only method applicable for real size networks

seems to be the relatively simple heuristic proposed by Spiess, and, possibly,

extended with an extra line search, as was suggested by Maher and Zhang. We will

present a method which can also take the influence factor into account, and which

can solve the OD-matrix estimation problem with reasonable computational effort

also for large networks. As we will see, the method of Spiess can be interpreted as

a special case of our approach.

3 General solution strategy

Since the link flows are functions of the OD demands, we can formulate problem

[P2] equivalently in terms of OD demand variables only as a single level problem

according to

[P3]

min
g≥0

F (g) = γ1F1(g, ĝ) + γ2F2(v(g), ṽ),

where v(g) is an implicit function of g, whose value is given by the optimal

solution of an equilibrium assignment problem for each g. Problem [P3] is an

unconstrained problem except for the non-negativity constraints on g.

We propose to use a gradient-based descent algorithm to solve the problem.

The idea is to evaluate the directional derivatives of the objective function at the

current point, and to obtain a descent direction by making a projection on the

non-negativity constraints. After a line search, the procedure is repeated until

some stopping criterion is satisfied.
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Our solution strategy can be outlined as follows:

0. Initialization:

Set g0 to some nonnegative value and solve an equilibrium assignment

problem for the given g0. Let v0 be the corresponding equilibrium link flows.

Set l = 0.

1. Computation of a descent direction:

Find a direction rl such that F (g) < F (gl)+ rl(g− gl) in a neighborhood of gl

(g 6= gl). If existing, the gradient rl = −∇gF (gl) is a valid descent direction.

2. Computation of a search direction:

If required, adjust the descent direction rl with respect to the feasibility

(non-negativity) conditions for the demands.

Let r̄l
i =





rl
i, if gl

i > 0, or if gl
i = 0 and rl

i > 0,

0, otherwise,

be the component of the search direction related to OD-pair i, ∀i ∈ I.

3. Stopping criterion:

Interrupt the procedure if some stopping criterion holds, else continue.

4. Line search:

i/ Find a search limit αl
max such that the new OD demand always will be

feasible, i.e. αl
max = min{+∞,−gl

i/r̄
l
i : r̄l

i < 0, i ∈ I}.
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ii/ Find the best step length, i.e. the step length αl minimizing

F (gl + αr̄l), α ∈ [0, αl
max].

5. Update:

Set gl+1 = gl + αlr̄l and let vl+1 be the corresponding equilibrium link flows.

Set l = l + 1 and return to step 1.

Under the assumption that the objective function is differentiable, the

directional derivatives ∇gF always define a gradient vector of the objective

function. Then, using the gradient to get a search direction, the method is nothing

but an adoption of the well-known projected gradient method; see e.g. Luenberger

(1984). However, the objective function in problem [P3] is non-differentiable at

certain points and the gradient may not exist. The partial (or directional)

derivatives can then be used to represent an approximation of the gradient ∇gF .

In practice we cannot compute the partial derivatives nor perform the line search

exactly. We are satisfied as long as the used approximation of the partial

derivatives represents a descent direction in which some sufficient decrease of the

objective can be obtained by choosing a proper step length. If this is not the case,

the partial derivatives are computed more accurately to avoid the algorithm to

switch from one sub convex domain to another. If then a descent direction still

cannot be found, then, at latest, the algorithm terminates.

Since we use a local search method, the solution found will depend on the

starting point in the iterative procedure, and it is often natural to choose the

target demand matrix ĝ as the initial solution in step 0 of the algorithm.
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In step 2 of the algorithm, a search direction is computed from the descent

direction through a projection onto the feasible region. Search directions

decreasing OD demands already equal to zero are in this way omitted. This simple

projection is only one among many alternative ways of performing a projection.

There are many ways to choose a stopping criterion for the algorithm.

Possible choices are the norm of the search direction, the (relative) improvement of

the objective in the last iteration(s), a maximum number of iterations, a maximum

running time or any combination of these criteria.

The difficulty in step 4 lies in the fact that F is not an explicit function of

g. In fact, for each tentative step length we have to solve one equilibrium

assignment problem. In practice the equilibrium assignment problems can be very

large. It is therefore advantageous to utilize the previous equilibrium solution as

starting solution in the next iteration and to reoptimize this solution for each new

g (each new α). This can be easily done if the equilibrium solution is explicitly

expressed in terms of path flows. Of course any method can be used to solve the

equilibrium assignment problem, as long as path flows can be computed. The path

flows (or path proportions) are in any case required to initialize the approximate

solution scheme in the computation of the directional derivatives, as will be shown

in Section 4.

Implementation aspects of the algorithm are discussed in more detail in

Section 5.
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4 Computing the search direction

In this section we show how to compute directional derivatives of F (g) in order to

determine an approximate gradient and a good search direction in the descent

algorithm.

A gradient of F (g) can be expressed as

∇F (g) = γ1∇F1(g) + γ2∇F2(v(g))

= γ1∇gF1(g) + γ2∇gv(g) ∇vF2(v(g)),

where

∇gF1(g) =

{
∂F1

∂gi
(g)

}
, i ∈ I,

∇gv(g) =

{
∂va

∂gi

(g)

}
, a ∈ A, i ∈ I,

∇vF2(v(g)) =

{
∂F2

∂va
(v(g))

}
, a ∈ Ã.

The partial derivatives {∂F1

∂gi
} and {∂F2

∂va
} are easily computed for suitable

choices of distance measures (e.g. quadratic functions or entropy functions) and

link cost functions. The difficulty is the computation of an approximate Jacobian

J = {∂va

∂gi
}.

Next, in Section 4.1, we present two approximations which correspond to

previously presented methods in the literature. Then, in Section 4.2, we present

our approach where we suggest to formulate one quadratic programming problem
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for each OD-pair to obtain the directional derivatives. In Section 4.3 we show how

to solve the quadratic programs.

4.1 Alternative approximations of the Jacobian

The first approximation of the Jacobian is obtained by assuming the route

proportions to be constant in a neighborhood of the present OD-matrix, i.e. by

assuming the set of equations (2) to hold in a neighborhood of gl. Thus, the term

∂va

∂gi
simply reads pia. We will further refer to this approximation as locally constant

or LC for short. The solution method using the approximation LC differs from

the method proposed by Spiess (1990) only in the way the step length is

determined. Spiess uses the proportional assumption to yield an analytical

expression for the optimal step length, if feasible with respect to the

non-negativity restrictions on the demands. Our implementation uses an

Armijo-type line search, which will be further specified in Section 5.1. We can note

that in the LC approximation we are dependent on which route flow solution (of

the possibly many route flow solutions consistent with the equilibrium link flows)

we use in the computation of the Jacobian. The dependence on the route flow

solution distinguishes the LC approximation from the other two approximations of

the Jacobian, which are discussed below.

An alternative approximation can be made using the sensitivity analysis

suggested by Tobin and Friesz (1988), which gives the following analytical

expression for the Jacobian:
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JT = ∆B−1ΛTD−1, (7)

where

B−1 =
[
∆T S∆

]−1

D−1 =
[
ΛB−1ΛT

]−1
.

The matrix ∆ = {δak} is the link-path incidence matrix, and Λ = {λik} is

the OD-pair-path incidence matrix (only the used paths are included in this

matrix). The matrix S = ∇vc(v(g)), with elements sab = ∂ca

∂vb
(v(g)), is the Jacobian

of the link cost functions ca(v), a ∈ A, with respect to the link flows vb, b ∈ A, in

the current solution v(g).

The use of the sensitivity analysis by Tobin and Friesz for computing a

Jacobian of the link flows with respect to the OD-matrix has been criticized (see

Bell and Iida (1997), Section 5.4; Patriksson (2004), Section 2.2; and Yang and

Huang (2005), Section 4.3). The criticism can be summarized in the two basic

assumptions underlying their approach. First, it relies on the strict

complementarity condition in order to guarantee a correct computation of the

Jacobian. The strict complementarity condition is however a sufficient but not

necessary condition for differentiability. It may therefore happen that the approach

is unable to compute a gradient even if the objective function F (g) is

differentiable. It may also happen that a point is differentiable, even though strict

complementarity does not hold.

The second assumption concerns the absence of topological dependencies in
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the network. If the number of routes in the network is greater than the number of

links, the matrix B is singular and thus not invertible. This will certainly be the

case for medium to large size networks. Therefore, in general, no analytical

solution exists to equations (7).

If the strict complementarity conditions and the topological dependencies

are ignored, it is nevertheless possible to utilize the equations (7) to numerically

find an approximation of the Jacobian. We will further refer to this approximation

as explicitly derivation or ED for short. Our strategy for evaluating equality (7)

will be further specified in Section 4.2 and the implementation issues are discussed

in Section 5.1. Our approach corresponds to Yang (1995), differing only in the way

the matrix inversions and line searches are made.

Another way to compute an explicit derivation of the Jacobian is proposed

by Yang and Huang (2005). Their approach is built on the use of a subset of the

equilibrium paths, fulfilling strict complementarity and linear independence.

Implemented and verified for a larger network, where ties are to be broken when

the subset is defined, this new sensitivity analysis could be an interesting

alternative way to compute an explicitly derived Jacobian.

4.2 Second order approximation of the Jacobian

We suggest to use a second order approximation of the Jacobian, and to compute

the directional derivatives solving a set of quadratic programming problems, one

for each OD-pair i ∈ I. Our approach can be seen as an extension of the linear

approximation approach of Spiess (1990). The approach also holds for
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non-differentiable cases, and we can solve OD-matrix estimation problems with

reasonable accuracy and computational effort also for large size networks. It can

be shown (Patriksson, 2004) that if the objective function is differentiable at the

current point, our approach gives an exact gradient. The initial ideas for our

approach was presented in Drissi-Käıtouni and Lundgren (1992). We will refer to

our approach as implicitly derivation or ID for short.

At the current OD-matrix solution gl, and for a given OD-pair ı̄, the

quadratic programming problem can be formulated as

[P4]

min
x

1
2
dTSd

s.t. Λx = eı̄ (8)

d = ∆x. (9)

Vector x is composed of the partial derivatives of the path flows hk with

respect to a unit change in OD demand gı̄, i.e. xk = ∂hk

∂gı̄
(gl). Vector eı̄ expresses a

unit change, i.e. all elements are zeros, except for element ı̄, which is one. Vector d

is the partial derivatives of the link flows with respect to a unit change in OD flow

gı̄, i.e., da = ∂va

∂gı̄
(gl). The vector d∗ of optimal values then becomes row ı̄ in the

Jacobian matrix, and the elements represent the variation in link flows when one

additional unit of flow is sent in OD-pair gı̄. The elements in the constant matrix

S are sab = ∂ca

∂vb
(gl). If the link cost functions are separable, S is a diagonal matrix

with elements sa = ∂ca

∂va
(gl), and the objective function can be expressed as
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1
2

∑
a∈A sad

2
a.

Problem [P4] can be interpreted as the problem of assigning one additional

unit of flow in OD-pair ı̄, such that the change of costs on all paths in each

OD-pair, given the current equilibrium link flow solution, is equal.

If the objective function F (g) is differentiable at gl, the optimal solution to

problem [P4] will satisfy condition (7), given that strict complementarity holds at

equilibrium, i.e., given that the derivatives are computed from a non-degenerate

path flow solution of the traffic assignment problem. A proof is given by

Drissi-Käıtouni and Lundgren (1992).

Thus, under the assumption of differentiability, the solution to problem

[P4] must be unique. Therefore the optimality conditions for [P4] can be utilized

in an implementation of the ED method. Let constraint (9) be substituted in the

objective function and introduce the Lagrangean multipliers ω = {ωi}, i ∈ I, for

constraint (8). The Karush-Kuhn-Tucker conditions for optimality for problem

[P4] can then be stated as:




∆T S∆ −ΛT

Λ 0







x

ω


 =




0

eı̄


 (10)

The set of equations (10) is linear and can be solved by matrix inversion to

yield an explicit expression for the approximation of the Jacobian. Thus the

solution (xT , ωT ) to (10) is one way to find an explicit derived Jacobian. In our

implementation of ED, the system of equations (10) is solved using the well known

LR factorization method.
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4.3 Solution of the quadratic problems

Problem [P4] is a quadratic program with equality constraints and any classical

method designed for such problems can be used to solve it. In this section we show

how a projected gradient method can be efficiently adapted. Note that one

quadratic problem has to be solved for each OD-pair.

Theorem 1 The projected gradient w of the objective function in [P4]

evaluated at a solution x (or d = ∆x) is

wk = σk − σ̃i k ∈ Ki, i ∈ I, (11)

where σk is the cost of path k with respect to link costs µa =
∑

b∈A sabdb, and σ̃i is

the mean of the path costs σk for the used paths k ∈ Ki.

Proof: See Appendix.

Note that σk and µa are defined in terms of marginal costs. In the optimal

solution to this quadratic problem we have wk = 0, k ∈ Ki, which means that σk is

equal for all k ∈ Ki. The interpretation of this is that, for a given change in OD

demand i, the change of cost on all paths within each OD pair should be equal,

which means that the equilibrium conditions are still satisfied. Also, note that

when the link costs functions are separable, we have µa = sada.

The algorithm for solving problem [P4] can now be formulated as follows:

• Initialization:

Set xk = pk, ∀k ∈ Kı̄

xk = 0, ∀k ∈ Ki, i ∈ I, i 6= ı̄
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where pk, k ∈ Kı̄, is the proportion hk

gı̄
of the demand in OD-pair ı̄ assigned

on path k at the equilibrium solution. This solution is obviously feasible

since
∑

k∈Kı̄
pk = 1. Then, compute da =

∑
k∈Kı̄

xkδak.

• General iteration:

Calculate the projected gradient w and define the descent path direction

y = −w. Perform a line-search in this direction, or equivalently in the link

direction z = −∆w by solving

min
α

1

2
(d + αz)T S(d + αz).

It is easy to verify that the optimal solution can be expressed as α = −zT Sd

zT Sz
.

The vectors d and x are then updated to d + αz and x + αy, and we check if

the given stopping criterion is satisfied.

We have to solve one quadratic problem [P4] for each OD-pair to compute

the Jacobian, and in each quadratic problem we have to make one projection (11)

for each OD-pair to obtain the projected gradient w. For large networks this

procedure is computationally impractical. However, if we restrict the set of paths

in equation (11) and only consider the paths in the current OD-pair, k ∈ Kı̄, we

will still obtain a projected gradient. The projection problem will then only

concern one OD-pair (see Appendix).

The mutual dependencies between different path flows that are considered

can be restricted in different ways, depending on the network size and topology.

One idea is to restrict it to the subset of paths originating or terminating at the
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same node. The same type of restriction can of course also be applied in the ED

method.

There are several ways to define a stopping criterion in the above algorithm.

One possibility is to stop the algorithm when the norm of the projected gradient w

is smaller than some ε. This will produce a very accurate Jacobian if ε is a small

real number (say 10−4). An alternative is to stop after a given number of general

iterations.

For the special case when zero iterations are performed in the algorithm,

i.e., when the ı̄th row in the Jacobian matrix is approximated by the initial

solution d = ∆x (da =
∑

k∈Kı̄
δakpk), our approach becomes, in essence, equivalent

to Spiess (1990). Only if the path proportions pk are locally constant (with respect

to a change of the demand), the initial solutions for all |I| quadratic problems will

generate the exact Jacobian. Then

va =
∑

k∈ki

∑

i∈i

δakhk =
∑

k∈ki

∑

i∈i

δakpkgı̄

and

∂va

∂gı̄
=

∑

k∈ki

δakpk.

5 Implementation and numerical results

In an implementation of the solution strategy presented in Section 2, we have to

specify each of the steps more carefully and decide which accuracy to use. In this
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section we will first present the various types of specifications needed in order to

design an algorithm for practical use, and describe which specifications we have

used in our numerical tests. We will then present a set of numerical tests of the

methods on three different networks to show that the proposed algorithm can be

used in practice to solve medium to large origin–destination matrix estimation

problems. The first of these networks is a smaller test network, whereas the other

two are greater and model real cities (Chicago and Stockholm, respectively).

Depending on how the specifications and parameter settings on different

levels are made we will of course obtain different computational results. It is,

however, not the scope of this paper to investigate the “best” design of the

algorithm, only to indicate the significance of the improvements that can be

obtained by improving the approximation of the Jacobian matrix.

5.1 Implementation specifications

The most important specification in a practical implementation is how the search

direction should be computed. This specification includes the accuracy in the

computation of the directional derivatives of the objective function and how the

projection on the set of feasible OD demands is made. We will focus on the

implementation of the ID method, i.e. where problem [P4] is solved using the

quadratic programming approach described in Section 4.2. In the ED method

problem [P4] is instead solved explicitly from the Karush-Kuhn-Tucker conditions,

stated in (10). The matrix inversions are then evaluated with an implementation

of the well-known LR factorisation technique. The LC method simply is the ID
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method, but with zero iterations in the algorithm suggested in Section 4.2. The

rows in the Jacobian are hence directly given from the path flow proportions in the

current equilibrium solution.

We remind that, except for the step length calculation, the LC method is

the same method as is proposed by Spiess (1990). Further, the method ED

coincides with that proposed by Yang (1995), except for the step length and the

matrix inversion calculations. For a fair comparison we have preferred a common

step length calculation procedure for all methods, over an exact implementation of

the different algorithms.

In the implementation of the ID method, the number of iterations in the

algorithm proposed in Section 4.2 is essential. In our numerical experiences we

have observed that the search direction is deflected just very little after the first

iteration. It is therefore more efficient to make a line search, take a step, update

and evaluate a new search direction, than to make a very accurate calculation.

When solving [P4] by methods ED and ID, it is inefficient to consider the

mutual dependency between all paths in the network. We can restrict the

consideration of other paths to those belonging to the same OD-pair only (these

methods are denoted EDi and IDi, respectively) or to all used paths belonging to

OD-pairs originating at the same node (these methods are denoted EDo and IDo,

respectively). In fact, in our numerical tests, we have only managed to run the

version of the ED method with the sharpest restriction of the mutual

dependencies, i.e. the EDi method, in any of the test examples below. For the ID

method, we have chosen to use the most liberal restriction, which we can compute,
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which differs between the different test networks.

The specification of search direction also includes a decision on how the

projection of the approximate gradient onto the non-negativity constraints of the

OD demand should be made. In our numerical tests we have used an ε-tolerance

for the projection, i.e.,

r̄l
i =





rl
i if gl

i > ε1, or if gl
i ≤ ε1 and rl

i > 0,

0, otherwise,
∀i ∈ I,

where the value of ε1 depends on the input data for each specific problem.

A too small value will give a too restrictive (small) search-limit in step 4 of the

algorithm, and the algorithm will converge very slowly.

An accurate line search is computationally very demanding, since traffic

equilibrium has to be computed for every tentative step length α ∈ [0, αl
max].

Instead we have used an Armijo type line search procedure (Armijo, 1966),

initiated with the maximum step length α = αl
max, i.e. the largest possible step

length leading non-negative demands in all OD pairs. For a given α, the objective

function F (gl +αr̄l) is evaluated. If the objective function is significantly improved,

i.e. if F (gl) − F (gl + αr̄l) > ε2, the line search interrupts and the algorithm

continues. Otherwise, the step length obviously was too large, and we evaluate the

objective function for α = α/Θ, where Θ > 1 is a parameter, specified beforehand.

If the objective function after a maximum number of such decreases still is

larger than the objective function value in the previous iteration, we conclude that

the search direction is probably not a descent direction due to the inexact

computation of the equilibrium. We then accept a minor increase of the objective
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function and compute a new search direction from this new point. By this we

enable all methods to run equally many iterations. In a practical application,

however, we believe that the algorithm should be interrupted before (or, as soon

as) a non-decreasing iteration occurs for the first time. Solving the equilibrium

problem more accurate will enable more iterations.

For the implementation we must specify the parameter Θ, as well as the

maximum number of decreases. These parameter values must be balanced with

respect to the accuracy, with which the equilibrium assignment is computed. In

our experiments, as a rule of thumb, if r̄l is a significantly improving search

direction, the optimum step length is the maximum step length, αl
max. Thus, if

αl
max does not decrease the objective, this typically indicates that the search

direction is not a descent direction. Therefore, we choose a rapid decrease of the

objective and in the experiments we have set Θ = 10. For our experiments no

more than three consecutive decreases of the step length has shown to be useful.

If a search direction gives a significant decrease of the objective with the

initial step length αl
max, it might be interesting to explore the decrease of the

objective by allowing an even larger step length. The thereby negative (and thus,

infeasible) OD demands could be forced to zero. From a practical point of view,

dealing with large problems, this could speed up the improvement at each

iteration. However, from a theoretical point of view, such a step length makes the

algorithm to shift between different convex subdomains, and no convergence

guarantees can be given at all.

For computing the equilibrium assignment of each certain OD-matrix, as a
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subroutine we use an algorithm based on disaggregated simplicial decomposition

(Larsson and Patriksson, 1992), which explicitly uses the path flow variables. This

method is also preferable since it has very good reoptimization capabilities. In our

numerical experiments we have solved the equilibrium assignment to a relative

accuracy of 0.001 – 0.01 in terms of the objective function in (3), which are the

default accuracy levels specified together with each of the networks. As mentioned,

the computation of the search direction, of course, is dependent of this level of

accuracy, and if we want very accurate gradient computation we have to compute

very exact equilibrium solutions.

The specification of functions F1 and F2, measuring the deviation from the

target matrix and traffic counts, respectively, and the values of the weighting

parameters γ1 and γ2, is of course very important for the final result. In our tests,

unless something else is stated, we have chosen to specify the parameters according

to γ1 = γ2 = 1, i.e. to give the same weight to every deviation. Both deviation

functions F1 and F2 are implemented as least square functions; the particular form

of F is given by

F (g) = γ1
1

2

∑

i∈I

(gi − ĝi)
2 + γ2

1

2

∑

a∈Ã

(va(g) − ṽa)
2,

where Ã ⊆ A is the subset of links on which counts have been recorded.

The target demand matrix ĝ was used to define the initial demand g0.
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5.2 Tests on a small network

In the first set of tests we used a very small, fictive network, which is known from

the literature. We used the network presented in Nguyen and Depuis (1984)

including 13 nodes, 19 links and 4 OD-pairs, and the set Ã was defined to include

six links. Each equilibrium assignment problem was solved to a very high accuracy

(relative gap of 10−5). The traffic counts were randomly generated from a

rectangular distribution around the equilibrium assignment of the reference

OD-matrix, i.e. ṽa ∈ [va(ĝ) ± 1
10

va(ĝ)], ∀a ∈ Ã.

This test example was solved by the three methods LC, ED and ID. The

ED method was run with a restriction to only consider paths in the same OD-pair,

i.e. this is the method denoted EDi. The ID method was run with no restriction.

In terms of CPU time this is a rather fair comparison. We also investigated the ID

method with a restriction to only consider paths originating in the same origin

node, i.e. method IDo, to see if this significantly affects the behavior. The results

are presented in Table 1. We have noted that the objective function value

increases in some iterations. We remind that this is due to the inaccuracy in the

computation of the equilibrium assignment.

After about 10 iterations the algorithm converged to a stable value for all

four test cases, and after 15 iterations the test runs were interrupted since no

further improvement of the objective was obtained. The tests indicate that the

more accurately the search direction was computed, the better results were

yielded. Thus, method ID outperforms the other methods. However, the
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differences are rather small and we need more tests to draw any conclusion.

5.3 Tests on the Chicago network

In the second set of tests we used a network modeling the city of Chicago

(Tatineni et al, 1998), which originally was developed by Chicago Area

Transportation Study. We have used a cut of the complete network including 304

links, 112 nodes and 1 089 OD-pairs having nonzero demand. The data are based

on estimates from 1990 and the traffic situation corresponding to the morning

peak period 6.00–9.00 a.m. is used. Fictive traffic counts are generated for 100

links from a randomly disturbed traffic assignment of the target OD-matrix, as in

the previous set of tests. Each equilibrium assignment problem was solved to the

accuracy corresponding to a relative gap of 3 · 10−3.

We used the same methods as in the previous tests, i.e. LC, EDi, ID and

IDo. The numerical results are summarized in Table 2, now recording the best

solution found so far at each iteration. We would like to emphasize the behavior in

the first iterations as most representative for illustrating the differences between

the methods. In the later iterations, we believe that the accuracies, which are used

for the step length procedure and for the solution of the equilibrium assignment,

are not precise enough with respect to the small changes of the OD-matrix, to

enable a fair comparison of the different models.

We have chosen to present the results up to 25 iterations, which we believe

are relatively safe, with resepect to the accuracy in the computation of the search

direction and the rough determination of the optimum step length. If we continue
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and perform more iterations, we get unstable results. A very best objective

function value of 2168 is achieved after 39, 40 and 26 iterations with the LC, EDi

and ID methods, respectively. The IDo method shows its best result at the

somewhat higher value of 2174 after 33 iterations.

Also in this case we can conclude that a more accurate computation of the

search direction leads to a better result. Of course, we obtain these improvements

at the expense of increased computational times. For a given number of iterations,

the total computational time for methods EDi and IDo increased 2-4 times. For

method ID the increase was up to 8 times compared to the most simple case LC

and in a larger network this might be a too accurate search direction, i.e. require

too much CPU time and memory capabilities.

5.4 Tests on the Stockholm network

The third and final set of tests were made on a network from the city of

Stockholm, consisting of 964 links, 417 nodes and 1642 OD-pair. For this network,

we only tested and compared the LC method and the IDi method. The latter

method being the ID method with a restriction of the influence between different

path flows to those belonging to the same OD-pair. An attempt to compare the

results with the IDo method (which has been used for the previous test networks)

failed, because of the demanding computations. All other methods also required

too much computational time to be used in practice.

We used γ1 = 0 in the objective function, which mean that we did not take

the distance from the target matrix into consideration. Each equilibrium
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assignment problem was solved to the accuracy corresponding to a relative gap of

10−3. The computational results are reported in Table 3. As for the Chicago test

network, we point out that the most important differences lie in the first iterations.

After approximately 25 iterations the changes of the objective are very small in

any of the two methods, and merely dependent on the precise appearance of the

computed search direction, and the accuracy used in the line search procedure.

Therefore, as for the Chicago network, we only report the first 25 iterations in

Table 3. The very lowest objective function values, 1205 and 1074, are achieved

after some 50 iterations, by the LC and the IDo methods, respectively.

Most of the computational time (more than 95 percent) is spent in solving

the equilibrium assignment subproblems. The overall computational efficiency of

the algorithm is consequently very dependent on the efficiency of the assignment

algorithm used. Any algorithm generating path-flows can be used in the solution

procedure. The path flow solution is used in the solution of the quadratic

subproblems generating the Jacobian, and is also used as a starting solution in the

reoptimization of the assignment problem given an updated OD-matrix. The

computational time for the initial assignment problem corresponds to the total

time for solving the next 20 assignment subproblems. After the initial assignment

problem the additional computational time is proportional to the number of

assignment problems solved. Since only one assignment problem is solved in most

of the iterations, independent of the search direction used, the additional

computational time is also proportional to the number of iterations performed.
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6 Conclusion

The aim of this paper is to show how a bilevel formulation of the

origin–destination matrix estimation problem can be solved using a descent

algorithm. The proposed solution approach is general in the sense that in a

practical application a number of specifications regarding the detailed design has

to be made. The emphasis in this paper has been on the computations of search

directions, and our tests indicate that more accurately computed search directions

(less approximate determined Jacobians) lead to lower objective function values.

We recommend the use of the implicitly derived Jacobian, where the consideration

of the mutual dependencies is restricted to one OD-pair (previously denoted IDi).

The major advantage of this method is that it also can be used for large-scale

networks. The method outperforms method denoted LC, which essentially is the

method of Speiss (1990) and used in practice for very large applications, with

respect to objective function value. The extra computational efforts required for

method Idi in comparison to LC is marginal.

Our proposed method can be summarized as follows:

0. Solve an equilibrium assignment problem for the initial OD-matrix, resulting

in path proportions for each OD-pair.

1. For each OD-pair:

– compute the change of path cost for all paths in the OD-pair, given a

unit change of the OD flow.
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– compute the mean of the change of path costs over all paths and make

one adjustment of the path proportions to equilibrate the change in

path costs.

– compute the path proportions for each of the links and let this vector of

updated path proportions be a row in the Jacobian matrix.

2. Compute the search direction using the Jacobian matrix.

3. Take a step in the direction to obtain a new OD-matrix, resolve the

equilibrium assignment problem and return to step 1.

The outcome of the OD-matrix estimation problem depends very much on

the available input data (initial matrix, set of links with traffic count information,

cost functions etc.), the quality of this data, the choice of functions F1 and F2, and

the choice of weighting factors γ1 and γ2. Nevertheless, the algorithm used for

solving the problem and finding a good OD-matrix given all these data is of great

importance. In this paper we have proposed a general solution approach and

discussed specifications of this heuristic for solving the bilevel OD-matrix problem.

We believe the heuristic can be applied to large-scale networks and contribute to

better OD-matrix estimation.
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APPENDIX: Proof of Theorem 1

By substituting d = ∆x in the objective function, problem [P4] can be

equivalently formulated

min
x

1

2
xT ∆T S∆x

s.t. Λx = eı̄.

The gradient σ of the objective with respect to x is

σ = ∆T S∆x = ∆T Sd,

where σk =
∑

a∈A µaδak can be interpreted as the cost on path k given the link

costs µa =
∑

b∈A sabdb, a ∈ A. The projection w on the null space of Λ is obtained

by solving the projection program

min
w

1

2
(σ − w)2

s.t. Λw = 0,

which can be rewritten algebraically as

min
w

1

2

∑

k∈Ki,i∈I

(σk − wk)
2

s.t.
∑

k∈Ki

wk = 0, i ∈ I.

This problem separates into one problem for each OD-pair i. Let ρ be the

dual variables corresponding to the constraints. The Kuhn-Tucker conditions
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corresponding to subproblem i are

σk − wk − ρi = 0, ∀ k ∈ Ki,

∑

k∈Ki

wk = 0.

Summing the first equations over all k ∈ Ki, and using the second equation,

we obtain
∑

k∈Ki

σk −
∑

k∈Ki

wk −
∑

k∈Ki

ρi =
∑

k∈Ki

σk − niρi = 0,

where ni is the number of (used) paths (|Ki|) in OD-pair i. Therefore,

ρi =
1

ni

∑

k∈Ki

σk = σ̃i,

where σ̃ is the mean of σk, k ∈ Ki, and

wk = σk − σ̃i, k ∈ Ki.
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Search direction

iter LC EDi ID IDo

0 4915 4915 4915 4915

1 4504 4259 4330 4297

2 4479 4096 4029 4035

3 4219 4074 4081 4077

4 4073 3989 4006 4049

5 4042 4067 4057 4080

6 4063 4003 3985 4038

7 4084 3939 4006 4054

8 4106 3948 3927 3963

9 4130 3951 3943 3966

10 4049 3955 3870 3965

11 3927 3959 3903 3963

12 3923 3932 3903 3962

13 3923 3940 3903 3963

14 3923 3940 3903 3963

15 3923 3940 3903 3963

Table 1: Objective function value vs number

of iterations and type of search direction

for the Nguyen-Depuis testproblem.
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Search direction

iter LC EDi ID IDo

0 2234 2234 2234 2234

1 2233 2233 2224 2231

2 2230 2233 2221 2231

3 2227 2230 2220 2229

4 2227 2230 2220 2229

5 2227 2230 2218 2227

...

10 2227 2228 2209 2220

15 2219 2219 2202 2211

20 2214 2207 2184 2197

25 2198 2197 2171 2191

Table 2: Objective function value vs number of iterations and

type of search direction for the Chicago test problem.
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Search direction

iter LC IDi

0 1956 1956

1 1802 1798

2 1690 1701

3 1617 1624

4 1546 1557

5 1478 1507

...

10 1297 1313

15 1237 1211

20 1217 1150

25 1215 1111

Table 3: Objective function value vs number of iterations and

type of search direction for the Stockholm test problem.
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