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Abstract. The design of anisotropic laminated composite structures is very susceptible to 

changes in loading, angle of fiber orientation and ply thickness. Thus, optimization of such 

structures, using a reliability index as a constraint, is an important problem to be dealt. The 

problem of structural optimization of laminated composite materials with reliability constraint 

using a genetic algorithm and two types of neural networks is addressed in this paper. The 

reliability evaluation is performed using, alternatively, the following methods: First Order 

Reliability Method (FORM), FORM with Multiple Check Points (MCP), Standard Monte Carlo 

(MC) and Monte Carlo with Importance Sampling (MC-IS). The optimization process is 

performed using a genetic algorithm. To overcome high computational cost, Multilayer 

Perceptron or Radial Basis Artificial Neural Networks are used. This methodology can be used 

without loss of accuracy and large computational time savings, even when dealing with 

structures with non-linear behavior, as it is shown by some numerical examples. 
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1 INTRODUCTION 

In the optimization of laminated composite structures, the design variables related 

to the optimal configurations may be the ply number, fiber orientation angles, 

thickness of each layer, number of materials and the sequence of lamination. The 

result of the optimization procedure consists of systems with anisotropic mechanical 

behavior that are also highly sensitive to the direction of applied loads. Any change in 

the applied load direction, fiber orientation or thickness of the layers may affect the 

stress state, leading to a reduction in the structural performance or in the reliability 

index. Thus, design of structures with anisotropic laminated composite materials 

should take into account such uncertainties in loads and material properties. 

Consequently, reliability of such optimized designs becomes especially important in 

the field of laminated composite structures (Mitsunori et al., 1987). 

The main objective of this paper is to present a new methodology to determine 

the optimal configuration of laminated composite structures with reliability 

constraints. 

The optimization process is performed using a genetic algorithm (GA). Genetic 

algorithms are optimization tools based on the concepts of natural selection and 

survival of the fittest individual with respect to some criterion. The design of the 

optimal sequence of layers in laminated composite materials (with their respective 

thickness and fiber orientation angles) is a minimization problem and due to its  

characteristics, genetic algorithms are more convenient than a gradient based 

optimization method, which often converge to solutions that represent local minima 

(Goldberg, 1989). Moreover, in commercial projects of this type of structure, fiber 

orientation angles, number and thickness of layers are discrete variables, a fact that 

encourages the use of genetic algorithms, because this tool is suitable for 

computational problems involving discrete variables and combinatorial optimization. 

In this paper the reliability analysis is carried out using one of the following 

methods: First Order Reliability Method (FORM), modified FORM with multiple check 

points (FORM-MCP), Standard or Direct Monte Carlo (MC) and Monte Carlo with 

Importance Sampling (MCIS). These methods and concepts related to structural 

reliability are widely covered in texts such as Ang and Tang (1984), Haldar & 

Mahadevan (1999), Melchers (1999), among others, as well as a large number of 

articles published in several international journals. The Tsai-Wu criterion is adopted as 

the limit state function used to evaluate the reliability index (Daniel & Ishai, 1994; 

Jones, 1999; Gurdal et al., 1999).  

The finite element analysis (FEA) was performed using the discrete Kirchhoff 

triangular element (DKT) for thin plate bending (Bathe & Batoz, 1980), coupled with 

the constant strain triangular element (CST) to take into account membrane effects. 

The element was adapted to analyze laminated composite structures, following the 

classical theory of laminates (Jones, 1999, Daniel & Ishai, 1994). 

In order to reduce the computational cost in the reliability based optimization of 

laminated composite structures, two artificial neural networks were used: Multilayer 
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Perceptron Neural Network (MPNN) and Radial Basis Neural Network (RBNN) 

(Haykin, 1994 and Gomes, 2004). 

 

2 COMPOSITE MATERIALS FAILURE CRITERION AND RELIABILITY ANALYSIS 

There are several failure criteria for composite laminates reinforced by fibers, such 

as maximum strain, Tsai-Hill, Hoffman and Tsai-Wu (Kaw, 2006). Among these 

methods, Tsai-Wu criterion is the most widely used by several authors. This criterion 

takes into account the interactions between different stress components. The two 

coordinate systems used here are shown in Figure 1, where 1 and 2 represent the 

axes of reference, x-y the material principal axes and  is the angle between the axes x 

and 1 and between axes y and 2. Since the stress components in the direction of the 

reference axes (1-2) are rotated to the material principal axes (x-y), the Tsai-Wu 

criterion for plane stress state can be evaluated using the following expression: 

 

 2 2 2 2 1x x y y xx x yy y ss xy xy x yF S F S F S F S F S F S S         (1) 

where 1/xx x xF R R , 1/ 1/x x xF R R  , 1/yy y yF R R , 1/ 1/y y yF R R  , 21/ss sF R  
and  

*
xy xy xx yyF F F F . The factor *

xyF is taken as being equal to -1/2. The subscripts x and y 

indicates, fiber orientations, while s means shear. The symbols with apostrophe 

indicate compression strengths, whereas symbols without apostrophe indicate tensile 

strengths. xR  is the ultimate longitudinal tensile strength, xR  is the longitudinal 

ultimate compressive strength, yR  is the ultimate transverse tensile strength, yR  is the 

ultimate transverse compressive strength and sR  is the in-plane shear strength. 

    Assuming an elastic material behavior, a Tsai-Wu factor , which multiplies all 

stress tensor components, can be evaluated concerning the safety margin of the 

stress state. This is indicated by Daniel and Ishai (1994) by solving the following 

equation for : 

  
2 2 2 2( 2 ) ( ) 1 0xx x yy y ss xy xy x y x x y yF S F S F S F S S F S F S       

  
 (2) 

 

 

Figure 1: Coordinate systems for unidirectional composite materials. 

Mecánica Computacional Vol XXIX, págs. 8959-8980 (2010) 8961

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



A mathematical expression for unidirectional composite failure may be written as 

follows: 

 

1 2( ) ( , , ..., ) 0ng g x x x X                                                  (3) 

 

where ( )g X represents the safety margin and X  is the n-dimensional vector of 

random variables ( , 1, 2, ...,ix i n ) that affects the material strength or structural 

behavior and ( ) 0g X  means failure while ( ) 0g X  means that the material is in the 

safety domain. Sometimes, function ( )g X is referred as the limit state function. 

Generally speaking, the failure probability can be evaluated using the joint probability 

density function 1 2( , , ..., )X nf x x x  given by the following expression: 

 

1 2 1 2( , , ..., ) ...f X n nD
P f x x x dx dx dx                                          (4) 

 

where D means the failure domain ( ( ) 0g X ). Let consider a thin plate of composite 

material subjected to a plane stress state, as indicated by Figure 1, where the random 

variables X  are the stress components 1S , 2S  and 6S , the experimental material 

strengths along fiber and transversal directions xR , xR , yR , yR , sR  and fiber orientation 

angles  . Rotating these stress components to the fiber direction and distributing to 

the other layers of the composite accordingly to ply ratios, one may obtain the stress 

state acting on a lamina ( , ,x y xyS S S ). So, in this case, for instance, one may assume 

 1 2 6, , , , , , , ,
T

x x y x sS S S R R R R R  X  as the vector of random variables. It must be 

noticed that the random stress components 1 2 6, ,S S S  generate random stress 

components , ,x y xyS S S on the fiber and transversal directions, which requires a 

structural analysis to be evaluated.  

Substituting equation (1) into (3), the limit state function ( )g X , at a particular point 

in the composite material, becomes:  

 
2 2 2( ) 1 ( 2 )x x y y xx x yy y ss xy xy x yg F S F S F S F S F S F S S      X                    (5) 

 

It must be emphasized that this equation should be verified at the top, middle and 

bottom of each layer belonging to the composite material. The integration of 

equation (4) becomes hard if equation (5) is used as limit state function, since the 

problem deals with several random variables and the stress state is a function of 

geometrical dimensions and external loads. Besides, function ( )Xf X  is not known a 

priori because usually there are not enough available statistical data. In this paper, 

using a finite element analysis, a limit state function is built based on the Tsai-Wu 

factors  1 2, , ...
T λ evaluated at each element integration point and at the top, 
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middle and bottom of each layer, as expressed by the following equation: 

 

( ) ( ) 1ìg min  X                                                          (6) 

 

This equation holds provided a first ply failure for the composite is assumed. 

Therefore, if the minimal Tsai-Wu factor at any point is less than a unit value, this will 

mean failure ( ( ) 0g X ), otherwise all the stress states in the composite do not 

provoke failures. 

In order to determine the failure probability, reliability analyses are preformed 

using standard methods such as the Direct Monte Carlo (MC) , Monte Carlo with 

importance Sampling (MCIS), First Order Reliability Method (FORM) and FORM with 

Multiple Check Points (FORM-MCP). Details about MC, MCIS and FORM can be found 

in Melchers (1999) and Ang et al (1984). FORM-MCP was presented by Miki (1986). In 

this case, sample points are searched close to the boundary of the failure and safety 

regions. FORM method is used instead of Monte Carlo Simulations with Importance 

Sampling in order to evaluate multiple design points. 

The parameter used to distinguish among different design points is the same 

indicated by Miki (1986) and Shao et al. (1992): the angle between the vector of 

design variables for each new design point should be larger than a previously 

specified value   (in this paper,   must be larger than 10
-3

). The search is performed 

in random directions; the number of searches is a multiple of the number of random 

variables. Figure 2 shows the multiple check point criterion in the standard non-

correlated space for three random directions and three limit state functions.  Hi(U) are 

the limit state functions in the non correlated standard space obtained from g(X), 

which is the limit state function in the real space. Then, the resulting values for failure 

probability and the reliability index are given by i
f f

i

P P  and 1( )fP  , 

respectively, where 1(.) is inverse of the cumulative standard probability function. 

Index i indicates the number of random directions. For the case of Figure 2, i=1, 2, 3. 

More details can be found in Miki (1986). It is important to point out that in this work 

the failure of one layer represents the failure of the whole system, criterion which is 

known as first ply failure. 
 

 

 

 

 

 

 

Figure 2: FORM with multiple check points in the standard non-correlated space. 
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3 GENETIC ALGORITHM (GA) 

Genetic Algorithm (GA) is a computational search tool based on concepts of 

natural selection and survival of the fittest individual. One aspect of fundamental 

importance in the GA is the way the solutions are tracked. Instead of using derivatives 

or gradients, as in deterministic optimization algorithms, GA works with the objective 

function based on simple values of individuals. This feature makes the method 

suitable for problems involving discontinuous functions, and/or non-defined 

derivatives like in integer programming. Moreover, unlike deterministic optimization 

methods, which perform the search focusing on a single solution at a time, the GA 

works with a population of individuals in each generation. Thus, as several search 

points are considered, the convergence or stagnation to local minima, if the starting 

point is poorly chosen, is prevented. All these aspects result in increased chances of 

finding the optimal solution, even on problems that have hard search spaces with 

multiple local minimum (Goldberg, 1989).  

 The design of the optimal sequence of layers in laminated composite materials is a 

problem of global minimum. Due to the stochastic characteristics of Genetic 

Algorithms, they are more suitable than gradient based optimization methods, which 

often converge to solutions representing a local minimum. Moreover, in commercial 

designs fiber orientation angles and the amount and thickness of layers are discrete 

variables, a fact which confirms the suitability of Genetic Algorithms for these kinds of 

problems. 

The design variables used in the optimization process will be the fiber orientation 

angles and thickness of the layers of laminated composite material.  

 

4 ARTIFICIAL NEURAL NETWORKS(ANN) 

Artificial Neural Networks (ANN) may be characterized as computational models 

based on parallel distributed processing with particular properties such as the ability 

to learn, to generalize, to classify and to organize data. There are several models that 

have been developed for different specific computational tasks. Multilayer Perceptron 

 Neural Networks (MPNN) and Radial Basis Neural Networks (RBNN) are used. Both 

types of Networks have a supervised training, feed-forward architecture and they 

have been widely used as universal approximations for unknown functions of several 

variables with several outputs. More details can be found in Gomes et al (2004). 

 

4.1 Generation of sample data for Artificial Neural Network training 

To generate the sample data for artificial neural network training it is first carried 

out a search on random directions (in the non-correlated standard space) for points 

in the vicinity of the limit state function ( ) 0H U  in the standard non-correlated 

space. Once such points are found, the mean values of the distribution functions of 

the design variables are shifted in order to obtain samples (using Monte Carlo 
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Method) near the neighborhood of the safety/failure domain. Another set of random 

samples centered on mean values of the random variables are added to the original 

sample set in order to give a better behavior to the fitted limit state function that are 

located far from the failure domain. This is especially important if a gradient based 

method like FORM is used, but not so important when Monte Carlo method is used. 

Figure 3 shows schematically how this sample data are generated in the non-

correlated standard Gaussian space for a limit state function of two random variables. 

In this paper, the number of random directions is three times the number of random 

variables. 

 

Figure 3: Generation of sample data set for neural network training. 

5 NUMERICAL RESULTS 

 

5.1 Example 1 – Optimization of a laminated composite plate with reliability 

constraint 

This example deals with the minimization of the total thickness of a laminated 

composite plate with linear behavior. The total number of layers is N and the 

thickness of layer i is hi (i=1,2,...,N). In all cases studied here, the cost function was the 

total thickness of the plate ( th ) and the constraint was the minimum reliability index 

required by the system ( req ), which is a value defined by the user. The optimization 

problem takes the following form: 

 

 

1u  

2u  

Random search 

directions 

Random samples 

 centered on 

mean 

Random 

samples 

centered on 

Failure Safety 

1( ) 0H U  

2( ) 0H U  3( ) 0H U  

4( ) 0H U  

5( ) 0H U  

Mecánica Computacional Vol XXIX, págs. 8959-8980 (2010) 8965

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1

Find ( 1, 2, ..., )

such that     is a minimum

subjected to 

i

N

t i
i

req

h i N

h h

 








               (7) 

 

 The fiber orientation angle of each ply of the laminated composite plate with four 

layers remains constant and according to the following distribution [0
0
,45

0
,45

0
,0

0
], as 

shown in Figure 4. 

 
 

Figure 4: Laminated composite plate with four layers. 

 

The material used here was Graphite / Epoxy (T300/5208). In Table 1 the 

deterministic mechanical properties are presented. In this example nine random 

variables were considered, where four variables are the applied loads 1221 ,, NNN  and 

1M , arranged as shown in Figure 5, and five variables are strengths C
y

T
y

C
x

T
x RRRR ,,,  e 

xyR , where indexes T  and C mean, respectively, tension and compression whereas Rxy 

is the shear strength. In Figure 5, (x, y) is the fiber orientation system and (1, 2) is the 

global system. The statistical properties of the random variables are listed in Table 2, 

where COV means the coefficient of variation. 

 

 
 

N1 
M1 

N12 

N12 
N2 

1 

2 

x 
y 

Fiber orientation 

 

 

Figure 5: Loads acting on the laminated composite plate. 
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Material E1 E2 E12 12  

T300/5208 Grafite/Epóxi 181 GPa 10.30 GPa 40 GPa 0.28 

 

Table 1: Deterministic mechanical properties. 

 

No. Symbol Unit 
Mean  
Value 

Coeff. of 
 Variation 

 
Distribution  

type 
1 N1 K N/m 100.0 0.20 Lognormal 
2 N2 K N/m 200.0 0.20 Lognormal 
3 N12 K N/m 40.0 0.20 Lognormal 
4 M1 N.m/m 0.1 0.20 Lognormal 

5 T
xR  MPa 1500.0 0.20 Lognormal 

6 C
xR  MPa 1500.0 0.20 Lognormal 

7 
T
yR  MPa 40.0 0.20 Lognormal 

8 
C
yR  MPa 246.0 0.20 Lognormal 

9 xyR  MPa 68.0 0.20 Lognormal 
 

Table 2: Statistical properties of random variables. 

 

In all simulations, it was adopted a target reliability index constraint of 3.0req  . 

The optimization was performed using a GA, which input data are listed in Table 3. 

The reliability index was calculated using Monte Carlo, Monte Carlo with Importance 

Sampling, FORM and FORM with Multiple Check Points (FORM-MCP). The limit state 

function considered here was the Tsai-Wu failure criterion and the stress state at the 

local axes of the laminated composite plate was determined employing the classical 

theory of composite plates using a closed form solution (Jones, 1999, Daniel & Ishai, 

1994) and after a finite element program, which uses the discrete Kirchhoff triangular 

element (DKT) (Bathe & Batoz, 1980), coupled with a constant stress triangular 

element (CST), following the classical theory of laminates (CTL) (Daniel & Ishai, 1994).  
 

 

Table 3: Data Input for the genetic algorithm program. 
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Since the GA is based on a binary codification, each design variable will present 

discrete values that depend on the number of bits used for the codification. The 

resolution for each design variable can be calculated using the following expression 

(Goldberg, 1989): 

 

2 1n

U L
R




      
 (8) 

 

where n is the number of bits given to each design variable, while U and L are, 

respectively, upper and lower limits of the design variables. In this example the 

resolution for the minimization of the thickness is R=3.815x10
-5 

mm. The search 

space, which corresponds to the number of thickness combinations, is 

(2
16

)
4
=1.84x10

19
 which is unworthy for exhaustive search.  Equation (9) shows how 

the cost function, which depends on the sum of the thickness of each ply, a penalty 

factor ( which was adopted as being 10
5
) and the reliability index of each individual, is 

evaluated. 

 
4

2 5

1

Minimize ( )[1 ( ) 10 ]i req
i

h  


      (9) 

 

where  , 1, 4ih i   represents the thickness of each layer.  Figures 6 to 9 show results 

for the optimal solution (where evolution of the thickness of the different layers and 

the total thickness of the plate along different generations are presented) for some 

methods to evaluate the reliability index. The local stress state was obtained using a 

closed solution for laminated composite rectangular plates, given by Kaw (2006). 
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Figure 6: Layer thickness for the optimal solution of the laminated composite plate using Direct Monte 

Carlo Method for reliability index evaluation (the limit state function is determined analytically). 
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Figure 7: Total thickness of the best individual and mean values of the  population’s total thickness of 
the laminated composite plate using Monte Carlo Method for reliability index evaluation (the limit state 

function is determined analytically). 
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Figure 8: Layer thickness for the optimal solution of the laminated composite plate using FORM to 

calculate the reliability index (the limit state function is determined analytically). 
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Figure 9: Total thickness of the best individual and mean values of the population’s total thickness of 
the laminated composite plate using FORM to calculate the reliability index (the limit state function is 

determined analytically). 
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It can be noticed in the previous figures that the optimization process with GA 

converged, in most cases, due to the criterion based on the maximum number of 

generations instead of diversity criterion, even when optimum value was early found. 

The diversity parameter (which is the coefficient of variation of the cost function, i.e., 

the standard deviation divided by the mean value) used as convergence criterion 

does not seem to be a suitable parameter to indicate convergence. This shows that a 

more suitable convergence criterion reducing the number of generations and 

excessive number of simulations must be used. Perhaps the reduction of the heuristic 

parameter indicating probability of mutation may reduce the diversity parameter. This 

is an issue to be investigated in future papers. 

 As observed in results presented in Figures 7, 9 and 12, it should be clear that the 

total thickness for initial generations is weighted by the constraint violation (in this 

case the reliability constraint), which is the way as Penalization Techniques account 

for constraints (see Eq. 9) justifying values of the total thickness that are higher than 

the maximum physical total thickness. 

Fig. 8 and Fig. 10 suggest that there are symmetrical layer configurations having 

similar values for the reliability index. This may hinder the algorithm in order to reach 

the minimum cost function. 

The other tests (Monte Carlo with Importance Sampling, FORM and FORM-MCP 

using finite element analysis) show similar results and behavior regarding evolution of 

design variables and cost function. In the examples where the stress state was 

obtained by a finite element analysis, the simulations were performed using only 

FORM and modified FORM (FORM-MCP) to obtain the reliability index, since Monte 

Carlo methods would give a very expensive processing time.  
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Figure 10: Total and layers thickness for the optimal solution of the laminated composite plate using 

modified FORM (FORM-MCP) to calculate the reliability index (the limit state function is determined 

analytically). 
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Figure 11: Total thickness of the best individual and mean values of the population’s  total thickness of 
the laminated composite plate using modified FORM  (FORM-MCP) to calculate the reliability index 

(the limit state function is determined analytically). 

In this example, RBNN and MPNN were also used in order to reduce the 

processing time spent in the optimization process. The training procedure used here 

was to train the networks, so that they could provide directly the reliability index, 

from a particular configuration of the laminate (one specific individual of the GA 

population). The reliability index used for training the neural networks was calculated 

using FORM (while the value of the limit state function was obtained using a finite 

element program). A total number of 300 samples, collected according to section 4.1 

were used. The network architectures were (4:300:1) for RBNN and (4:10:10:10:1) for 

MPNN.  

Table 4 summarizes all the tests performed in this work and a comparison of the 

computational cost using Artificial Neural Networks and finite elements is presented. 

The processing time for FORM with Multiple Check Points (FORM-MCP) using finite 

element to evaluate the limit state function was considered as the reference for 

processing time comparisons.  

Table 5 presents the relative errors using neural networks with reference to the 

solution with FORM and finite elements for the design variables. 

The results show a drastic reduction in processing time when the optimization is 

performed using neural networks to simulate the calculation of reliability index. The 

relative errors are small and does not exceed 3.51% (thickness h4 using RBNN). 

 

 

Mecánica Computacional Vol XXIX, págs. 8959-8980 (2010) 8971

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
Method 

Relative 
processing 
Time (s) 

h1 

(m) 
h2 

(m) 
h3 

(m) 
h4 

(m) 
ht 

(m) 
β 

Monte Carlo +closed form 
solution 

2.677 2.39x10-3 1.58x10-3 2.74x10-3 9.37x10-4 7.66x10-3 3.000 

Monte Carlo with Importance 
Sampling +closed form 
solution 

8.026x10-1 2.12x10-3 2.87x10-3 1.50x10-3 9.50x10-4 7.30x10-3 2.981 

Modified FORM+closed form 
solution 

1.466x10-1 2.12x10-3 2.87x10-3 1.49x10-3 9.50x10-4 7.42x10-3 2.978 

FORM+closed form solution 1.796x10-3 2.12x10-3 2.87x10-3 1.49x10-3 9.50x10-4 7.42x10-3 2.978 

Modified FORM+FEM 1.000 2.390x10-3 1.580x10-3 2.740x10-3 9.40x10-4 7.650x10-3 2.999 

FORM+FEM 9.475x10-2 2.390x10-3 1.580x10-3 2.740x10-3 9.40x10-4 7.65x10-3 2.995 

RBNN-training 2.500x10-2       

RBNN-simulation 3.381x10-5 2.377x10-3 1.576x10-3 2.724x10-3 9.075x10-4 7.585x10-3 3.000 

MPNN-training 2.260x10-2       

MPNN-simulation 2.305x10-5 2.390x10-3 1.541x10-3 2.745x10-3 9.319x10-4 7.608x10-3 3.000 

 

 Table 4: Comparison of processing time using neural networks and finite element for the optimization 

of the laminated composite plate thickness. 

 

 

 
Method 

Error  
 h1 (%) 

Error in 
 h2(%) 

Error in 
 h3(%) 

Error in 
 h4(%) 

Error in 
 ht(%) 

 RBNN 0.544 0.253 0.584 3.510 0.850 

 MPNN  0.000 2.468 0.182 0.862 0.549 
 

Table 5: Relative errors of design variables (%) using neural networks and finite elements for the 

thickness optimization of a laminated composite plate. 

5.2 Example 2 –reliability based optimization of the ply angles of the layers on a 

laminated composite shell with non-linear behavior subjected to an external 

pressure load. 

 

 Problem description 

In this example, the reliability index is calculated using a finite element model of a 

semi-cylindrical shell with geometric nonlinear behavior. An external pressure load P 

= 250000 Pa acting along the outer surface of the structure is considered. The 

dimensions and boundary conditions, taken from Almeida and Awruch(2009) are 

shown in Figure 12. 
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Figure 12: Composite shell under pressure load (Almeida and Awruch, 2009). 

The total thickness of the laminated composite shell is 12.6 mm , with  28 plies and 

fiber orientation given by  0 0 0 0 0
4 4 2 s

90 , 45 ,90 , 45 ,90   measured with respect to the 

longitudinal direction of the shell. The material considered is glass-epoxy, which 

mechanical properties and strengths are E1 = 39GPa, E2 = 8.6 GPa, E12 = 3.8 GPa and 

12 = 0.28 t
xR = 1080 MPa, c

xR = 620 MPa, t
yR = 39 MPa c

yR = 128 MPa, xyR = 89MPa. 

The limit state function is the Tsai-Wu criterion. The load-displacement curve for 

point A, using deterministic values, is shown in Figure 13. 
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Figure 13: Mid-span non-linear load-deflection curve for the hinged semi-cylindrical shell 

Five design variables are considered for this example, as indicated in Table 6. 

 

Random  

Variable 

Unit Mean  

Value 

Coeff. of  

Variation 

Distribution  

Function 

Rx
t 

Pa 1.08x10
9 

0.2 Log-Normal 

Rx
c
 Pa 6.2x10

8 
0.2 Log-Normal 

Ry
t
 Pa 3.9x10

7 
0.2 Log-Normal 

Ry
c
 Pa 1.28x10

8 
0.2 Log-Normal 

Rxy Pa 8.9x10
7 

0.2 Log-Normal 

 Table 6: Statistical parameters for random variables. 
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In the optimization of the fiber orientation angles, deterministic parameters, such 

as symmetry of the laminate arrangement and the possibility of a maximum of four 

contiguous layers with the same fiber orientation angle, were also used.  The same 

random variables mentioned above, namely, the five parameters of the Tsai-Wu 

failure surface were assumed. This case is an optimization problem with seven 

parameters (because of the five random parameters, the symmetry of the laminate 

arrangement and the maximum number of contiguous layers with the same fiber 

orientation angle). These design variables could assume, for constructive practical 

reasons, discrete values, and the following values were adopted: 45
o
, 0

0
, 45

o
 e 90

o
. 

Thus, using a genetic algorithm, a number of bits per design variable equal to 2 was 

defined, so that for the fiber orientation angles there are a binary encoding 00, 01, 10, 

11, giving 4
7
 = 16384 fiber orientation angles combinations.  

The cylindrical shell of twenty eight layers was previously analyzed and the failure 

probability using Tsai-Wu criterion as ultimate limit state was evaluated. In this case, 

the reliability index of the structure against ultimate failure is  = 2.063 using Monte 

Carlo method with Importance Sampling and the Finite Element Method. This index 

was confirmed by several other methods of reliability assessment. The configuration 

of the laminate in this case is 0 0 0 0 0 0 0
2 2 2 2 2 s

90 ,90 , 45 ,90 ,90 , 45 ,90    . 

 

Optimization of ply angles using the finite element method 

Due to processing time required for the analysis, only the optimization based in ply 

angles was performed, imposing as a constraint a constant value of the reliability 

index equal to  = 5.0 employing FORM for reliability assessment. The finite element 

mesh as well as the parameters for the nonlinear analysis is the same used previously. 

The parameters used by the genetic algorithm are shown in table 7.  

The obtained results using finite element analysis to evaluate the limit state 

function are given in Figure 14 and Figure 15. 

 
No. of design variables (n) 7 
Discrete values Fo design variables -45o, 00, 45o and 90o 
Design variable’s No. of bits (b) 2 
Probability of Mutation (pM) 1% 
Probability of Crossover (pc) 90% 
Population size (npop) 300 
Maximum number of grnerations (ngen) 100 
Cost Function to be minimized (f) | 5|f c    

Stopping criterion by diversity of individual’s cost function 
 (COV= /f f  ) 

 
5% 

Penalty coefficient c 100 
 

 

Table 7: Genetic Algorithm (GA) parameters. 
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Figure 14: Reliability index for the best individual and generation mean values along generations using 

finite elements for limit state function evaluation. 
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Figure 15: Reliability index of the best individual and generation mean values along generations using 

finite elements for limit state function evaluation. 

 

The best combination of fiber orientation angles that provides reliability index 

closer to the desired value is 0 0 0 0 0 0 0
2 2 2 2 2 2 2 s

90 ,0 ,90 ,45 ,45 ,45 ,90     
and the reliability index 

value was  = 4.792. Obviously, in this case where design variables are discrete and 

cannot take any arbitrary value, the corresponding reliability indices may not reach 

exactly the required value, being the result of the optimization process the 

combination of angles that most closely approximates the required value for the 

reliability index. It should be noticed, therefore, that it is possible, keeping the same 

number of layers of the laminated composite structure, and changing only their fiber 

orientation angles, to increase the design reliability index from =2.063 to =4.792, 

which is an highly desirable situation, since there are no additional production cost of 
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the new laminated composite material. 

 

Optimization of the ply angles using Artificial Neural Networks  

In this section neural networks are trained to substitute the application of a 

complete finite element analysis only in the part where the reliability analysis is 

performed.  Thus, for a given combination of fiber orientation angles, the neural 

network is trained to help in the evaluation of the corresponding reliability index. The 

architecture of the neural network used here has seven inputs (ply angles) and one 

output (reliability index). In the cases of Multilayer Perceptron Neural Network and 

Radial Basis Neural Network, architectures of (7:10:10:10:1) and (7:120:1), respectively, 

were enough for training. The parameters used in neural networks, such as learning 

rate, tolerance for convergence, types of activation function, momentum, etc. are the 

same used in the previous example, changing only the architecture of the network.  

The chosen training process consisted in the generation of 150 samples uniformly 

distributed over the search space (composed by 16384 combinations). For each of the 

150 samples (combinations of fiber orientation angles) the reliability index using 

FORM was evaluated. This stage is the most time consuming in the analysis by neural 

networks, since finite element analysis are necessary for training sample generation. 

Thus, the generated samples were used for training and then the genetic algorithm 

was used to optimize the fiber orientation angles   using the trained neural network. 

Optimization results by genetic algorithms using trained neural networks are 

presented in Figures 16 to 19. 
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Figure 16: Reliability index history for the best individual and mean values along generations (Radial 

Basis Neural Network). 
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Figure 17: Mid-span non-linear load-deflection curve for a 12.6 mm thick hinged semi-cylindrical shell 
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Figure 18: Reliability index of the best individual and mean values along generations (Multilayer 

Perceptron Neural Network). 
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Figure 19: Fiber orientation of the best individual along generations (Multilayer Perceptron Neural 

Network). 
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In both cases, the optimum value of the combination of the fiber orientation 

angles was exactly the same which was found with the optimization using the finite 

element method, i.e. 0 0 0 0 0 0 0
2 2 2 2 2 2 2 s

90 ,0 ,90 ,45 ,45 ,45 ,90    
where the evaluated value of 

reliability index was =4.791.  

 

Comparisons regarding processing time 

Table 8 shows the processing times, design variable values and reliability indexes 

obtained in the optimization using finite element analysis and artificial neural 

networks. It can be noticed that both ANN give large time savings on computer 

processing time. For both ANN, most of the processing time is spent in the training 

process, since the processing time spent by the ANN to calculate results is very small 

when compared with a complete Finite Element Analysis.  

A small difference in the reliability index values using trained neural networks with 

respect to those obtained using complete finite element analysis may be explained by 

a lack of fit of the neural network with the training data or the number of samples 

used for the training process.  

 
 

Method 
Relative 

Processing 
Time 

1  

(o) 
2  

(o) 
3  

(o) 
4  

(o) 
5  

(o) 
6  

(o) 
7  

(o) 
 

 GA+FORM+FEM 1.00 90 0 90 45 45 45 90 4.792 
 RBNN –training              

(150 samples) 
1.05x10-1         

 GA+FORM+RNBR 3.25x10-4 90 0 90 45 45 45 90 4.790 
 MPNN –training  

 (150 samples) 
1.19X10-1         

 
GA+FORM+MPNN 2.33x10-4 90 0 90 45 45 45 90 4.791 

 

Table 8: Comparison of processing times for ply orientation optimization using the finite element 

method and artificial neural networks. 

6 FINAL REMARKS 

Some initial results were presented in this work dealing with reliability based 

optimization for structural problems involving laminated composite materials. A 

review of the issues addressed in this paper (genetic algorithm, artificial neural 

networks, reliability analysis and laminated composite material failure model) was 

briefly presented, and a methodology to reduce the processing time using trained 

ANN, when dealing with reliability based design optimizations, was proposed. 

For the structural optimization, a Genetic Algorithm (GA) was used. GA are very 

suitable tools to obtain global optimal solution in problems where laminated 

composite materials are employed, because these materials handle with discrete 

variables (such as fiber orientation angles and number of layers) and multiple local 

optima are probable when dealing with reliability constraints. In some examples it 
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was noticed that the convergence criterion used by the algorithm to stop the 

optimization process needs to be investigated since maximum number of iterations 

prevailed with respect to the diversity criterion (based on the coefficient of variation) 

leading to excessive number of iterations.  

To evaluate the reliability index four classical methods were used: Standard or 

Direct Monte Carlo Method (MC), Monte Carlo Method with Importance Sampling 

(MCIS), First Order Reliability Method (FORM) and FORM with Multiple Check Points 

(FORM-MCP). In order to assess accuracy in the analysis, the first example uses both 

the Finite Element Method (FEM) and closed solutions for laminated composite plates 

to evaluate the limit state function (the Tsai-Wu failure criterion was adopted) 

regarding the reliability index. In optimization problems, where the reliability index is 

used as a constraint, a complete finite element analysis (FEA) is very expensive in 

terms of computer processing time (especially if MC or even MCIS are employed). 

As an alternative to save computer processing time, trained Artificial Neural 

Networks (ANN) were used to evaluate the reliability index for the examples 

presented. Two types of ANN were used: Multilayer Perceptron Neural Network 

(MPNN) and Radial Basis Neural Network (RBNN). Their efficiency depends mainly of 

the chosen architecture and training process. In this work, both ANN reduced de 

computer processing time and the corresponding errors with respect to a complete 

FEA were very small. 

In the reliability based optimization of the ply angles of the layers on a laminated 

composite shell with non-linear behavior, it can be noticed that the reliability index 

5.0 was not attained since ply orientation has discrete values. The reliability based 

optimization resulted in a composite shell with reliability index about 4.792. 

Nevertheless it should be noticed that it was possible, keeping the same number of 

layers of the laminated composite structure and changing only ply orientation angles, 

to increase the reliability index of original design from =2.063 to =4.792. This is a 

highly desirable situation, since there are no additional production cost of the new 

laminated composite material. 

In the last example, a small difference in the obtained reliability index value using 

trained neural networks with respect to those obtained using complete finite element 

analysis may be explained by a lack of fit of the neural network with the training data, 

indicating that the training process was not completed. 

Future works would involve more complex problems with other limit state 

functions, such as delamination and hygrothermal effects. Improvements of the GA 

and the training process, as well as a parallel algorithm to solve large real problems, 

could also be implemented. 
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