
Arabian Journal for Science and Engineering (2022) 47:9713–9725

https://doi.org/10.1007/s13369-021-06342-8

RESEARCH ART ICLE -COMPUTER ENGINEER ING AND COMPUTER SC IENCE

A Heuristic Local-sensitive Program-Wide Diffing Method for IoT
Binary Files

Lu Yu1 · Yuliang Lu1 · Yi Shen1 · Zulie Pan1 · Hui Huang1

Received: 21 April 2021 / Accepted: 24 October 2021 / Published online: 27 November 2021

© The Author(s) 2021

Abstract

Code reuse brings vulnerabilities in third-party library to many Internet of Things (IoT) devices, opening them to attacks such

as distributed denial of service. Program-wide binary diffing technology can help detect these vulnerabilities in IoT devices

whose source codes are not public. Considering the architectures of IoT devices may vary, we propose a data-aware program-

wide diffing method across architectures and optimization levels. We rely on the defined anchor functions and call relationship

to expand the comparison scope within the target file, reducing the impact of different architectures on the diffing result. To

make the diffing result more accurate, we extract the semantic features that can represent the code by data flow dependence

analysis. Earth mover distance is used to calculate the similarity of functions in two files based on semantic features. We

implemented a proof-of-concept DAPDiff and compared it with baseline BinDiff, TurboDiff and Asm2vec. Experiments

showed the availability and effectiveness of our method across optimization levels and architectures. DAPDiff outperformed

BinDiff in recall and precision by 41.4% and 9.2% on average when making diffing between standard third-party library and

the real-world firmware files. This proves that DAPDiff can be applicable for the vulnerability detection in IoT devices.

Keywords IoT vulnerability · Program-wide diffing · Feature extraction · Binary vulnerability · Data flow analysis

1 Introduction

With the rapid development of Internet of Things (IoT)

technology, the security of IoT devices has attracted more

attention than ever. The loose protection of IoT devices and

the long-term existence of vulnerabilities make the security

problem of Internet of Things more serious. Cui et al. [1] ana-

lyze about 4 million IoT devices and find that 540,435 of them

had vulnerabilities. Many vulnerabilities in IoT devices are

critical ones. Attacks on vulnerabilities in backbone services

such as Domain Name Service(DNS) have vast implications.

Mirai attack can use a large number of online IoT devices

to implement distributed denial of service (DDoS) attacks

against online services [2].

Vendors of IoT devices do not make the source code of

their firmware images publicly available, making the analysis

of IoT firmware files more difficult than that of open source

files. In addition, vendors rely heavily on general-purpose

B Yuliang Lu

lulu071227@163.com

1 College of Electronic Engineering, National University of

Defense Technology, Hefei 230007, China

packages and integrate such third-party software packages

(such as OpenSSL and Busybox) in firmware images. Any

vulnerability found in the third-party software packages may

open the related devices to an attack. Furthermore, the secu-

rity analysis of firmware files faces challenges from diverse

underlying architectures. The file of IoT device can be

compiled in MIPS or ARM architecture. The traditional vul-

nerability analysis methods of X86/X64 architecture cannot

usually be directly applied to the vulnerability analysis of

files in MIPS/ARM architecture. A feasible and effective way

to detect the vulnerabilities of IoT devices is binary diffing

technology across architectures.

Given two binary files without source code, the program-

wide diffing method aims to discover and analyze similarities

between the functions of the two files. There are a number of

mature binary diffing tools, such as state-of-the-art Diaphora

[3], BinDiff [4] and TurboDiff [5]. Diaphora compares two

binary files according to features including function address,

function hash, etc. TurboDiff takes the checksum of basic

blocks (a straight-line sequence of code with only one

entry point and only one exit) and the number of instruc-

tions as features for comparison. These features extracted

by Diaphora and TurboDiff may vary due to slightly code

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-021-06342-8&domain=pdf
http://orcid.org/0000-0002-7235-9640

9714 Arabian Journal for Science and Engineering (2022) 47:9713–9725

changes (such as instruction reordering), which affects the

accuracy of diffing results. BinDiff performs graph isomor-

phism detection on function pairs between binary files, and

uses the small-primes-products (SPP) [6] to make the graph

isomorphism fast in practice. However, the method based

on small-primes-products is mainly designed to solve the

slightly code changes, such as the instruction reordering, dif-

ferent register allocation and branch inversion. For binary

files compiled in different architectures, their binary codes

change greatly. Therefore, one challenge in binary diffing

across architectures is how to make the diffing process less

affected by architecture differences. Since the extracted fea-

tures are the basis of comparison, the diffing result will be

more accurate if the extracted features can better reflect the

behavior of the code. The second challenge is to extract which

features to represent code. Semantic features [7,8] in form

of abstract syntax tree (AST) and control flow graph (CFG),

etc., can better represent code behavior, making them good

candidates for program diffing. With the wide application of

machine learning technology in various fields, researchers

begin to investigate the semantic feature extraction methods

based on neural network. Ding et al. [9] apply a vector repre-

sentation method by learning the latent semantic information

without preliminary knowledge of X86 assembly code. How-

ever, this method can only support single-architecture diffing.

In this paper, we implement a program-wide binary diffing

method across architectures and optimization levels to solve

the above two challenges. The comparison is implemented

based on the anchor functions and the call relationship

between functions. We define similar functions in the two

comparison files as anchor functions. In the initial anchor

function selection process, unique features are used, such

as string and integer constants, which remain unchanged for

files compiled at different architectures and optimization lev-

els. Based on the anchor functions and the call relationship,

more and more functions are added to the comparison set

from which new anchor functions are selected. This step-by-

step comparison strategy is less affected by architecture and

optimization level. In addition, it can divide the complete

set of functions to be compared into multiple subsets, reduc-

ing the time complexity of diffing. To obtain more semantic

features for comparison, we propose a local-data-sensitive

feature extraction method inspired by the live variable anal-

ysis in data flow analysis technology. This method can record

the variable transfer information between functions with call

relationship. Then, comparison between functions is imple-

mented by earth mover distance (EMD) [10] based mainly

on the semantic features extracted by data flow analysis.

According to the comparison results, more anchor functions

are obtained. This process is iterated for several times to find

more anchor functions to obtain the diffing result.

We implemented a DAPDiff (data-aware program-wide

diffing) prototype and evaluated it with several experi-

ments to measure its availability and effectiveness. DAPDiff

was compared with the state-of-the-art tools Asm2vec [9],

BinDiff [4] and TurboDiff [5] across architectures and opti-

mization levels. The experimental results show that DAPDiff

performs well not only across optimization levels but also

across architectures. Among the three comparison tools,

BinDiff performed better than Asm2vec and TurboDiff.

However, DAPDiff outperformed BinDiff by 41.4% and

9.2% in recall and precision on average when making diffing

between the standard third-party library and the binary file

in real-world firmware. DAPDiff detected CVE vulnerability

in 73 files of 93 real-world firmware files, proving the effec-

tiveness of DAPDiff in the detection of vulnerability in IoT

devices.

In summary, this paper makes the following contributions:

– We propose DAPDiff, a data-aware program-wide diffing

method for binary files in IoT devices. Our comparison

expansion strategy relies on features that are independent

from architectures, and makes use of the call relationship

between functions.

– To make the diffing result more accurate, we explore a

local-data-sensitive feature extraction method to extract

semantic features for diffing. The features extracted by

this approach are combined with the earth mover distance

(EMD) for comparison between functions.

– Extensive evaluations were conducted to examine the

performance of DAPDiff. DAPDiff outperformed the

state-of-the-art tools Asm2vec, BinDiff and TurboD-

iff, especially when making diffing across architectures.

Experimental results prove that DAPDiff is applicable

for the vulnerability detection in IoT devices.

The rest of this paper is organized as follows. Section 2

presents an overview of the system workflow. Section 3

introduces our anchor function selection strategy and the

expansion strategy for the comparison function set. Section 4

presents how to extract data flow features and calculate EMD

for comparison. Experiments are implemented in Sect. 5 to

demonstrate the availability, efficiency and effectiveness of

our method. The related work is discussed in Sect. 6 and the

conclusion follows in Sect. 7.

2 SystemOverview

The program-wide binary diffing is to find the correspond-

ing similar functions in the two binary files to be compared.

We define similar functions in the two comparison files as

anchor functions. Our method aims to find more anchor func-

tions gradually according to the determined ones, and the

system workflow is shown in Fig. 1. Initial anchor function

selection is the first step of binary diffing. Unique features,

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9715

Fig. 1 System workflow

such as string constants and integer constants, are used to

determine the initial anchor functions. Candidate functions

refer to functions that have a call relationship with anchor

functions. We group candidate functions that have the call

relationship with the same anchor function into one compari-

son function subset. Then, new anchor functions are obtained

by comparing the functions in the comparison function sub-

set of two files. This comparison process relies on features

extracted based on variable-liveness analysis technology and

similarity result calculated by earth mover distance (EMD).

To extract the semantic features of candidate functions,

we explore a local-data-sensitive feature extraction method.

After the feature extraction of the candidate functions, the

earth mover distance (EMD) is applied to obtain the corre-

sponding relationship between the candidate functions in the

two comparison files, obtaining new anchor functions. The

selection of anchor function and candidate function iterates

continuously until the termination condition is reached.

3 Initial Anchor Function Selection and
Expansion of Comparison Function Set

3.1 Initial Anchor Function Selection

To obtain the corresponding relationship between the func-

tions in the two comparison files, we first need to find the

comparison basis. This paper presents an anchor function-

based comparison method. We define the anchor function in

Definition 1.

Definition 1 Given two comparison files F containing func-

tions { f1, f2, ..., fm} and F’ containing functions { f ′
1, f ′

2, ...,

f ′
n}, function f in file F and f ′ in file F’ are defined as

anchor functions if f and f ′ are proved to be similar where

f ∈ { f1, f2, ..., fm} and f ′ ∈ { f ′
1, f ′

2, ..., f ′
n}.

For the two binary files to be compared, the selection of

initial anchor function is critical for later comparison. The ini-

tial anchor function selection process depends on the features

that are unique and easy to compare. The string constants ref-

erenced by functions are relatively unique and will not change

according to different optimization levels and architectures.

We study the functions with string constants in binary files

and find that these functions account for more than 15% of the

total functions, making string constant a feasible candidate

feature for initial anchor function selection. However, some

functions share the same string constant, such as the func-

tion sendping_tail and echo_main in OpenSSL library.

Therefore, it is not enough to only take the string constant

feature as the unique feature when selecting the anchor func-

tion. It is found the largest frequency of integer constant of

sendping_tail and echo_main is 6 and 14, respectively. As

a result, the frequency of integer constants also helps to dis-

tinguish different functions. In this paper, we consider three

kinds of features when selecting the initial anchor functions,

which are string constant, largest frequency of integer con-

stant and the number of function parameters. Using these

three kinds of features, we obtain the anchor function set

containing the initial anchor functions.

The subsequent anchor function selection is different from

the initial anchor function selection procedure. New anchor

functions are added by calculating the EMD, which will be

discussed in detail in Sect. 4.

3.2 Expansion Procedure of Comparison Function
Set

The expansion procedure of the comparison function set

begins with anchor functions. We add the functions that have

123

9716 Arabian Journal for Science and Engineering (2022) 47:9713–9725

Fig. 2 The expansion procedure of comparison function set

call relationships with the anchor functions to the compar-

ison function set. Then, new anchor functions are selected

from the comparison function set. This process iterates until

most functions are covered and compared. The selection of

new anchor functions from comparison function set is dis-

cussed in detail in Sect. 4.3. In this section, we investigate

the availability of comparison function expansion procedure

based on the function call graph.

A function call graph [11,12] is a directed graph (and more

specifically a flow graph [13]) that represents call relation-

ships between functions in a computer program. Specifically,

each node of the function call graph represents a function,

and each edge (f,g) indicates the call relationship between

function f and function g.

Figure 2 shows an example of a comparison function set

expansion process based on a partial function call graph. In

the function call graph, function node C has been selected as

the anchor node. We use the function call graph to explore

new comparison functions having call relationship with node

C. After two iterations, node A can be added to the compar-

ison function set and become a new anchor function. Nodes

D to G are then added to the comparison function set in the

next iteration.

The function expansion procedure benefits from the scale-

free property [14] of the function call graph. Like traffic

network and Internet, function call graph is a scale-free net-

work [15]. That is, most nodes have fewer edges with others,

while a few nodes connect with many other ones (with large

degree). During the comparison expansion procedure, the

earlier the function nodes with large degree are grouped into

the comparison function set, the fewer iterations are required

to cover most functions. Anchor function accounts for a rela-

tively large proportion of the whole function set, which makes

the anchor function set more likely to contain function nodes

with large degrees. If the anchor function has higher degree,

there will be more functions added into the comparison set.

As the example shown in Fig. 2, anchor function B has more

opportunities to find a new candidate function with large

degrees, namely A. After selecting node A as the anchor

function, nodes D to G can be grouped into the comparison

function set. The expansion from node A can cover more

function nodes, reducing the number of subsequent itera-

tions. The scale-free property of function call graph can help

cover most functions by adding them into the comparison

function set in limited iterations.

4 Feature Extraction and EMD Calculation

As described in the previous section, the comparison func-

tion set contains functions that have call relationships with the

anchor functions. The functions in the comparison function

set can be selected as new anchor functions, so we call these

functions candidate functions. We select new anchor func-

tions from the candidate functions through feature extraction

and EMD-based comparison.

4.1 Local-Data-Sensitive Feature Extraction

The features that can represent the function are the basis for

finding new anchor functions by comparison. Inspired by data

flow analysis, we implement a local-data-sensitive feature

extraction method to obtain finer data dependencies between

functions with call relationships. We focus on the variable

liveness information in instructions from the caller function

A to the function B called by A. Different from previous data

flow dependency analysis method in basic block granular-

ity, this extraction method works in instruction granularity,

which is finer. The local-data-sensitive feature extraction

algorithm is shown in Algorithm 1.

Algorithm 1 Local-data-sensitive feature extraction algo-

rithm.
Require: function B, function A that calls B

1: path=shortest_path(addr(A.entry),addr(call B)).reverse

2: for instruction i in path do

3: I N [i] = Fi (OU T [i])

4: Fi (x) = U SE(i) ∪ (x − DE F S(i))

5: end for

6: for instruction j ∈ Prev(call B) do

7: for variable r in U SE[j] do

8: if r in I N [B] ∩ OU T (N E X T (A.entr y)): then

9: vector [r] = 1

10: else

11: vector [r] = 0

12: end if

13: end for

14: end for

The algorithm takes function B and its caller function A

as input. To reduce the analysis overhead, we only analyze

instructions from the function A entry address to the address

of call B in A. However, there may be multiple paths from

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9717

the entry of A to call B instruction. We choose the shortest

path of the multiple paths (line 1). For instructions in this

path, backward variable liveness analysis is applied to get the

definition_use chain [16] (lines 2–5). Here, DEFS(i) denotes

to the set of variables that are defined in instruction i and

not used before instruction i . USE(i) records variables used

in instruction i . We analyze the instructions in the entry of

function A, denoted as NEXT(A.entry), and the instructions

before the instruction of call B(X86 architecture) which is

Prev(call B). Variables used in instruction set of Prev(call B)

are judged whether they are defined in the NEXT(A.entry).

If they are defined in NEXT(A.entry), the relevant value is 1,

otherwise it is 0 (lines 6–14). Considering the binary analysis

process is implemented without source code, the local-aware

variable liveness analysis algorithm is implemented on the

intermediate language (IL). Therefore, the variables in the

algorithm are the related register values in the IL. We select

IL registers and form the vector representing the liveness of

variable in related instructions.

4.2 Extraction of Other Features

In addition to data flow features extracted through variable

liveness analysis, we choose some lightweight semantic fea-

tures. The out-degree and in-degree of each function node in

the function call graph reflect the call relationship between

functions, so they are added to the feature vector. Other fea-

tures added include parameter number, return type and the

number of API functions. These features are normalized to

numbers and added to the feature vector.

4.3 Selection of New Anchor Functions

To select new anchor functions from comparison function

set, we apply the earth mover distance (EMD) to make

comparison based on the features extracted instead of the

common-used graph edit distance method [17]. Earth mover

distance is proposed by Rubner et al. [10] to measure the

distance between two probability distributions in a specific

area. It has been applied in the field of natural language

processing (NLP) and Kusner et al. [18] proposed the word

movement distance (WMD) to calculate the distance among

documents. The structure of paragraph in natural languages

is somewhat like that of binary code. Therefore, in this sec-

tion, we apply the EMD to obtain the relaxed one-to-one

mapping relationship between the function nodes in the com-

parison function set. To adapt to the generated feature vector,

we make some modifications to EMD by replacing the dis-

tributed ground distance with cosine distance. Then, the flow

matrix is obtained according to the distance between function

nodes, which reflects the relaxed one-to-one mapping rela-

tionship between functions in candidate function set. The

relaxed one-to-one mapping relationship means that there

is probability that not all the nodes have strictly one-to-one

relationships. This is because for the functions in the can-

didate function subset, there may be some functions which

have close feature vector values, making the some one-to-

one mapping relationship not precise sometimes. However,

in most cases, the features of functions in candidate subset are

not close, guaranteeing that the overall performance is rela-

tively good. Functions with one-to-one mapping relationship

are taken as new anchor functions.

After new anchor functions are selected, the calling func-

tions of new anchor functions will be obtained, which is used

to start a new iteration. The coverage rate of comparison func-

tion is high within limited iterations due to the scale-free

property of function call graph (Sect. 3.2).

5 Evaluation

We implemented a proof-of-concept DAPDiff (data-aware

program-wide diffing). To evaluate whether DAPDiff can

make the program-wide diffing effectively across multiple

optimization levels and different architectures, we would like

to answer the following three research questions:

– RQ1 : Availabili t y. Is the expansion method based on

comparison function set feasible?

– RQ2 : Efficiency and Effectiveness. Can DAPDiff per-

form well across optimization levels and architectures

with acceptable time overhead?

– RQ3 : Proportion of Anchor Functions.Anchor func-

tions play an important part in the expansion of compar-

ison function set and influence the diffing result. Can we

achieve a relatively high proportion of anchor functions

in limited iterations?

In the experiment, we compiled Busybox, OpenSSL and

Coreutils in different architectures (ARM/MIPS/ X86/X64)

and optimization levels (O0-O3) like [19–21], taking the

compiled binary files as our analysis target. In addition, real-

world firmware files from Genius dataset [22] were also used,

which contain third-party library. To verify the effectiveness

of DAPDiff, we compared DAPDiff with the state-of-the-art

tools Asm2Vec [9], BinDiff and TurboDiff.

5.1 Availability of the ExpansionMethod Based on
Function Call Graph(RQ1)

To testify the availability of the anchor-function-based

expansion method, we selected the file in real-world firmware

R4500 [22] for analysis. Function call graph is the expansion

basis, so it is needed to firstly discuss the scale-free property

of function call graph. Then, the coverage of comparison

123

9718 Arabian Journal for Science and Engineering (2022) 47:9713–9725

functions is addressed to testify the result of call-graph-based

expansion method.

Scale-free property of function call graph. We constructed

the function call graph of R4500 and recorded both the in-

degree and out-degree of each function node in the function

call graph. The cumulative distribution of degree is shown in

Fig. 3, demonstrating that both the in-degree and out-degree

distributions are in accordance with the power law distri-

bution [14,23]. Meanwhile, we recorded the distribution of

in-degree and out-degree in Fig. 4. The number of function

nodes in R4500 with in-degree more than 4 is 111, account-

ing for 19.9% of the 559 functions. The proportion of nodes

with out-degree greater than 4 is 22.4%. The maximum in-

degree and out-degree are 106 and 88, while more than 77%

of nodes have in-degree or out-degree less than 4. This means

the connection between function nodes in function call graph

has uneven distribution. In the function call graph, nodes with

higher in-degree or out-degree values account for a small

proportion of the total nodes. However, these nodes connect

more other function nodes, making them key hubs. So the

earlier such kinds of nodes are selected as anchor functions,

the fewer iterations are required.

Coverage of functions based on function call graph. The

diffing process starts with the initial anchor function. Using

call relationship, more and more functions are added to the

comparison function set from where new anchor functions

are selected. Here, we are not concerned with the generation

of new anchor functions according to our expansion strategy

which will be discussed in Sect. 5.4, but with the coverage

of comparison function set during iterations. For binary file

in R4500, Fig. 5 is actually a reconstruction of the function

call graph based on initial anchor functions. In the graph of

100 101 102 103

k,Degree

10-3

10-2

10-1

100

P
(x

>
k
)

Cumulative Node Degree Distribution of R4500

Incoming

Outgoing

Fig. 3 Cumulative node degree distribution of R4500

(a)

(b)

Fig. 4 Degree distribution of R4500

Fig. 5, only function nodes that have a direct or indirect call

relationship with anchor functions have edges. Initial anchor

function nodes are colored red. Other function nodes are col-

ored differently according to the path length between them

and the initial function nodes. The number of initial anchor

function nodes in R4500 is 154, accounting for 27.55 percent-

age of all 559 functions. During the first round of function

call relationship analysis, the number of newly covered nodes

(having direct call relationship with initial anchor functions)

is 184, increasing the coverage ratio to 60.5%.

In addition, there are some red nodes without edges in

Fig. 5, meaning that these functions are initial anchor func-

tions, but they do not have call relationships with other

functions, such as function SSL_get_version. Furthermore,

the nodes colored blue do not have edges, which means that

they have no direct or indirect call relationship with the ini-

tial anchor functions. As a matter of fact, we later analyzed

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9719

Fig. 5 Function nodes covered by function call graph in R4500

these functions and found that they usually have no call rela-

tionship with any other functions in the function call graph.

We call them orphan functions. For example, the function

ssl3_alert_code is one of the orphan functions. The per-

centage of orphan nodes in R4500 is 17.2%. However, these

orphan functions can be grouped into a separate comparison

subset, and we can still extract features and compare them to

based on EMD find new anchor functions (Sect. 5.4).

5.2 Analysis Efficiency (RQ2)

To testify the feasibility of the DAPDiff method, the time

overhead should be discussed. The time cost of diffing is

mainly related to three procedures, that is data flow-based

feature extraction, statistical feature generation and the EMD

calculation.

Data flow-based feature extraction time overhead. For func-

tion pair containing function A and function B called by A,

data flow-based feature extraction time overhead refers to

the time required to generate liveness-variable-related fea-

ture vector between A and B. We analyzed and recorded the

variable liveness analysis (including vectorization) time of

all function pairs with call relationship. The time cost of all

function pairs in real-world firmware DAP-2360 is shown in

Fig. 6. The maximum time cost of function pair analysis is

62.5 s. However, for most function pairs, the time overhead is

less than 5 s and the average time cost is 9.63 s. In the actual

analysis procedure, we only make data dependence analysis

between anchor functions and functions that have call rela-

tionship with them, rather than all function pairs with call

Fig. 6 Liveness variable analysis time of DAP-2360

relationship in binary file. In this way, we can significantly

reduce the analysis overhead. This analysis strategy based

on partial function pairs makes our data flow-based method

relatively lightweight. The data flow analysis time cost of

all the function pairs is 99.5 minutes. However, when mak-

ing diffing between DAP-2360 and binary files compiled by

OpenSSL, the actual time cost can be reduced to 16 minutes,

which is relatively acceptable.

Statistical feature generation time. In addition to the data

flow feature, we also select other features that we call statis-

tical features, such as in-degree, out-degree and number of

called API functions. We extracted these statistical feature

by writing IDA plugin and recorded the time cost. Figure 7

shows the statistical feature extraction time cost of functions

in OpenSSL binaries compiled in different architectures. The

median line time of ARM/MIPS/X64/X86 architectures is

3.046e-6, 2.99e-6, 3.02e-6 and 3.0e-6 s, respectively. The

maximum time cost is 2.5e-4 s. The time cost of statistical

features generation is much less than that of data flow anal-

ysis.

EMD calculation time. We recorded the EMD calculation

time cost when comparing the standard third-party library

with the real-world firmware containing the library. We

selected the OpenSSL library v1.0.1f and the firmware files of

DIR-655 and R4500 containing the OpenSSL library, mak-

ing diffing to record the EMD calculation time cost. The

EMD calculation time cost when making diffing between

DIR-655 and OpenSSL is shown in Fig. 8a, with 0.058 s

as the maximum value and 0.007 s as the median line value.

Figure 8b shows the corresponding time cost between R4500

and OpenSSL. The calculation time is less than 0.045 s and

median line time is 0.008 s. EMD calculation time is also

much less than data flow analysis time.

123

9720 Arabian Journal for Science and Engineering (2022) 47:9713–9725

Fig. 7 Statistical feature extraction time of OpenSSL compiled in dif-

ferent architectures

(a) EMD calculation time in diffing DIR655 and

OpenSSL.

(b) EMD calculation time in diffing R4500 and

OpenSSL.

Fig. 8 EMD calculation time

The time cost of statistical feature extraction and EMD

calculation is much less than that of data flow analysis. This

is mainly because the variable liveness analysis procedure is

implemented in instruction granularity which is much finer

than other methods. Considering the time overhead caused

by finer granularity, we make optimizations such as focusing

on the variable within a limited number of instructions. In

addition, we only apply data flow analysis to calling function

pairs that contain anchor functions to improve efficiency.

5.3 Effectiveness (RQ2)

We evaluated the effectiveness of DAPDiff when making

diffing between files compiled in different optimization lev-

els and architectures. DAPDiff is compared with BinDiff,

TurboDiff and Asm2vec by using precision and recall met-

rics [19–21]. To define the metrics of precision and recall,

we use G to represent the ground truth information, which is

the set of actually matched function pairs in the two binary

files. The matched function pairs found by our method form

a set represented by D, while unmatched function pairs form

a set U . The three kinds of sets can be represented by Equa-

tion 1-3.

G = (g1, g′
1), (g2, g′

2), ...(gs, g′
s) (1)

D = (d1, d ′
1), (d2, d ′

2), ...(dn, d ′
n) (2)

U = (u1, u′
1), (u2, u′

2), ...(ut , u′
t) (3)

Then, D ∩ G is the set of correctly matched function pairs,

and elements in U − U ∩ G refer to the unmatched function

pairs detected by our method. Precision indicates the ratio of

the correctly matched function pair number to the number of

detected matched pairs. It is represented in Equation 4. Recall

is the ratio of the correctly matched function pair number to

the number of all correctly classified pairs shown in Equation

5.

Precision =
||D ∩ G||

||D||
(4)

Recall =
||D ∩ G||

||D ∩ G + U − U ∩ G||
(5)

To verity the effectiveness of DAPDiff compared with the

other tools, we designed two scenarios: one is to make diffing

between files compiled at different optimization levels and

the other is to make diffing between files compiled in different

architectures.

Binary diffing across optimization levels. During the pro-

cedure of diffing across optimization levels, we compared

the performance between DAPDiff and state-of-the-art tools

including Asm2vec, BinDiff and TurboDiff. We compiled

Coreutils(v5.93), Busybox(v1.27.2) and OpenSSL(1.0.1h) in

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9721

Table 1 Recall and precision in

different optimization levels
Recall/Precision

Asm2vec BinDiff TurboDiff DAPDiff

Coreutils V5.93O0-O3 0.418/0.98 0.828/0.967 0.317/0.917 0.918/0.986

V5.93 O1-O3 0.582/0.985 0.858/0.988 0.32/0.887 0.840/0.987

V5.93 O2-O3 0.629/0.992 0.884/0.99 0.316/0.961 0.814/0.9836

Average 0.543/0.986 0.856/0.982 0.318/0.922 0.857/0.985

Busybox 1.27.2 O0-O3 0.571/0.986 0.76/0.989 0.309/0.97 0.754/0.995

1.27.2 O1-O3 0.638/0.99 0.96/0.983 0381/0.967 0.942/0.991

1.27.2 O2-O3 0.677/0.987 0.983/0.992 0.427/0.974 0.972/0.989

Average 0.629/0.988 0.901/0.988 0.372/0.97 0.889/0.992

OpenSSL 1.0.1h O0-O3 0.571/0.992 0.848/0.995 0.246/0.935 0.794/0.989

1.0.1h O1-O3 0.644/0.991 0.917/0.991 0.232/0.942 0.781/0.989

1.0.1h O2-O3 0.665/0.992 0.90/0.991 0.290/0.856 0.784/0.985

Average 0.627/0.992 0.89/0.992 0.256/0.911 0.786/0.988

O0-O3 optimization levels and recorded the recall/precision

results in Table 1.

Among the three tools Asm2vec, BinDiff and TurboD-

iff, BinDiff performed better than the other two tools in both

recall and precision. However, the precision of the three tools

is close. For example, the average diffing precision of Core-

utils is 0.986, 0.982 and 0.922 for Asm2vec, BinDiff and

TurboDiff, respectively, while the average recall value of the

three tools was different. The average recall rate of Asm2vec

is 0.543 and TurboDiff is 0.318. BinDiff, on the other hand,

has an average recall of 0.856, which is higher than the

other two tools. Higher precision and relatively lower recall

relate to a higher false negative rate, meaning that a num-

ber of similar functions were not detected. When it comes

to the comparison of BinDiff and DAPDiff, the precision

and recall of Coreutils and Busybox are close. However, the

recall of DAPDiff is lower than BinDiff when make diffing

on OpenSSL binaries. This is mainly because that the orphan

function ratio of OpenSSL is higher than that of Busybox

and Coreutils, which affects the results of the anchor-based

diffing method applied by DAPDiff. However, the orphan

function ratio of real-world firmware files is not as high as

that of standard third-party libraries, and the diffing results

on firmware files discussed in the next paragraph are better

than those on standard library files.

Binary diffing across architectures. To verify the effective-

ness of DAPDiff across different architectures, we chose

real-world firmware and the standard library as our diffing

target. This diffing process actually deals with the compar-

ison across versions, optimization levels and architectures

because we usually do not know the version or optimiza-

tion levels of the library file used in real-world firmware.

Considering that Asm2vec can only make diffing in single

architecture, we compared the performance of BinDiff, Tur-

boDiff and DAPDiff. Real-world firmware files are obtained

from DCS-1100, DIR 855L, DAP-2590 and DIR-636. DCS-

1100 and DIR 855L contain OpenSSL library while DAP-

2590 and DIR-636 contain Busybox. The diffing was made

between the firmware files and the standard OpenSSL and

Busybox libraries compiled in X86/MIPS/ARM architec-

tures. Recall and precision values are listed in Table 2.

TurboDiff had high precision and low recall value, meaning

it makes wrong judgements on a number of similar func-

tions. Although the performance of BinDiff was comparable

to that of DAPDiff, and sometimes even better in the scenario

of making diffing across optimization levels, DAPDiff out-

performed BinDiff when making diffing across architectures.

The average recall and precision of DAPDiff are 0.943 and

0.96, which are 41.4% and 9.2% higher than that of BinDiff.

BinDiff uses small-primes-products method, relying on the

basic blocks and edges of CFG. However, these features vary

in the files compiled in different architectures. On the other

hand, the features and call relationship used by DAPDiff

are less affected by different architectures. Furthermore, the

performance of DAPDiff in the real-world firmware diffing

is better than that across optimization levels due to fewer

orphan functions. The diffing across optimization levels is

made on the standard third-party library, which contains all

the functional modules. However, when vendors apply the

third-party library to their firmware, due to the limitation of

memory, they usually delete all the unnecessary codes includ-

ing many orphan functions, resulting in a better performance.

5.4 Relationship Between Anchor Function Ratio
and Iterations (RQ3)

The anchor function selection process will iterate for several

times to find more functions to compare, from which new

123

9722 Arabian Journal for Science and Engineering (2022) 47:9713–9725

Table 2 Recall and precision of

diffing across architectures
Recall/precision

BinDiff TurboDiff DAPDiff

OpenSSL_X86 vs DCS-1100 0.715/0.917 0.077/0.709 0.908/0.952

OpenSSL_ARM vs DCS-1100 0.737/0.685 0.151/0.776 0.867/0.979

OpenSSL_MIPS vs DCS-1100 0.726/0.942 0.137/0.922 0.92/0.963

OpenSSL_X86 vs DIR-855L 1.01 0.738/0.721 0.084/0.845 0.964/0.985

OpenSSL_ARM vs DIR-855L 1.01 0.444/0.604 0.11/0.847 0.944/0.943

OpenSSL_MIPS vs DIR-855L 1.01 0.854/0.949 0.094/0.889 0.973/0.973

Busybox_X86 vs DAP-2590 0.482/0.898 0.144/0.857 0.98/0.955

Busybox_ARM vs DAP-2590 0.48/0.962 0.192/0.819 0.969/0.948

Busybox_MIPS vs DAP-2590 0.498/0.936 0.191/0.902 0.952/0.936

Busybox_X86 vs DIR-636 0.787/0.979 0.39/0.982 0.928/0.97

Busybox_ARM vs DIR-636 0.767/0.970 0.354/0.952 0.947/0.972

Busybox_MIPS vs DIR-636 0.777/0.981 0.381/0.949 0.967/0.944

Average 0.667/0.879 0.192/0.87 0.943/0.96

anchor functions can be found. Due to the scale-free prop-

erty of function call graph, most functions can be added to

the comparison function set in limited iterations. However,

the diffing result relies on the number of anchor functions

found. In this section, we hope to explore how many itera-

tions should be made to cover a high ratio of anchor functions

and answer the question RQ3.

The anchor function ratio is the ratio of the anchor func-

tion number to the total function number in the binary

files. The diffing was made between functions in standard

third-party library and the real-world firmware files. We

took DCS-1100 firmware containing OpenSSL and DAP-

2590 firmware containing Busybox library as the diffing

target. The file in DCS-1100 firmware was made diffing with

OpenSSL v1.0.1f binary compiled in ARM/MIPS/X86/X64

architectures. DAP-2590 was compared with Busybox 1.27.2

binaries compiled in the above four architectures. The new

anchor functions selection process was iterated four times.

However, there are a number of orphan functions which have

no call relationship with other functions, like the blue node

shown in Fig. 5. After four iterations, we grouped all orphan

nodes into one comparison subset, making feature extraction

and EMD calculation like the new anchor function selection

process. In this way, the anchor functions were selected from

the orphan functions.

Figure 9a and b shows the anchor function ratio of

firmware DCS-1100 and DAP-2590 when making diffing

between them and the corresponding third-party library dur-

ing different iterations. The first thing we need to mention

is that although the anchor function ratio of each iteration

is different for the four architectures, the difference is very

small. This proves that both the anchor selection and the

feature extraction strategies are not affected too much by

the architecture. It can also be observed that the growth rate

of anchor function becomes slower as the number of itera-

tions increases. This is mainly because the anchor function

is selected from comparison function set. However, as the

number of iterations increases, many functions have been

compared, resulting in fewer and fewer functions added to

the comparison function set. After four iterations, we com-

pared orphan functions using the same feature extraction and

EMD calculation method to select anchor functions from

orphan functions. This method is proved to be effective,

increasing the average anchor function ratio to more than

90%.

Furthermore, we applied the diffing method to the vulner-

ability detection in the third-party library used by real-world

firmware. It was found that of the chosen 93 real-world

firmware files, 73 files were affected by CVE-2015-0204,

indicating that this method can be applied to help detect vul-

nerabilities in IoT devices.

6 RelatedWork

Compared with the relatively mature open-sourced code diff-

ing technology [24–30], binary diffing analysis method faces

code optimization problems such as function inlining, redun-

dancy elimination, instruction reordering and conversion in

the compilation process. These problems make binary diff-

ing more difficult than open-sourced files. However, many

commercial software and files used in some fields (such

as Internet of things devices) are not open-sourced, mak-

ing binary diffing necessary and appropriate for vulnerability

detection.

Researchers investigate the semantic equivalence of code

by graph comparison [31], symbolic execution and theorem

proving [32,33]. However, graph isomorphism is a NP-

123

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9723

(a)

(b)

Fig. 9 Anchor function ratio of real-world firmware

complete problem, leading to low efficiency, and the method

based on theorem proving is not scalable. Later researches

use the execution trace [34–37] or code signature [38] to

measure the similarity of functions in binary files. However,

they either have low coverage or are not robust to changes

brought about by compiler optimization.

With the development of machine learning, especially

deep learning, researchers begin to apply machine learn-

ing methods to binary diffing. Graph embedding [39–42]

and graph neural network [43–45] models are applied to

extract features to represent binary code. Genius [22] is one

of the most outstanding solutions that transform the ACFG

(attribute control flow graph) into feature vector to represent

the functions and measure the similarity by bipartite graph

matching algorithm. Gemini [46] relies on deep neural net-

work to embed the ACFG graph of Genius into a matrix. The

features extracted by Gemini and Genius are statistical, con-

taining limited semantics. Vulseeker [47] generates labeled

semantic flow graph(LSFG) to represent code feature. Red-

mond et al. [48] convert the binary code to intermediate

language and record the input/output as signature for com-

parison across architectures. Zhang et al. [49] and Wang et al.

[50] focus on the changes between patched and unpatched

code and make similarity comparison of code snippet. Yu

et al. [51] adopt the convolutional neural network to extract

the order information as well as semantic information. They

make diffing between source-code and binary code combin-

ing deep pyramid convolutional neural network (DPCNN)

with graph neural network (GNN) [52]. There are also local

preference methods to make binary function diffing. Kam1n0

[53] combines the subgraph matching and adaptive LSH to

detect the code clone. Li et al. [54] propose a topology-aware

hashing method by extracting graph signature of CFG as the

comparison basis. Duan et al. [55] implement DEEPBIN-

DIFF which combines the NLP(natural language processing)

and TADW algorithm (Text-associated DeepWalk algorithm)

[56] to obtain the semantic cross-function dependency fea-

ture. However, DEEPBINDIFF applies random walk in

ICFGs (inter-procedural CFGs), which is relatively time-

consuming. Besides, it only supports diffing in a single

architecture.

7 Conclusion

In this paper, a data-aware program-wide diffing method is

proposed to compare the binary files across architectures and

optimization levels. Using the anchor functions and call rela-

tionship, this method expands the diffing scope step by step.

To obtain more accurate diffing results, we extract semantic

features by variable liveness analysis, and make comparisons

using the extracted features and the modified EMD calcula-

tion method. Experiments show that our DAPDiff prototype

performs well when making diffing across architecture and

optimization levels, which proves that it is available for the

vulnerability detection on IoT devices. This method can also

be combined with other feature extraction and similarity cal-

culation methods, such as those based on machine learning

technology. However, there are improvements for the meth-

ods proposed in this paper. The accuracy of diffing results

rely on the features extracted before the calculation of EMD.

Currently, the features extracted mainly include the data-flow

related variable liveness and the simple statistical ones such

as in-degree and out-degree. These features guarantee a rela-

tively stable and promising diffing precision and recall value.

However, due to the inherent limitation of static method, fea-

tures extracted cannot fully represent the behavior of binary

code. In future work, we will explore ways to extract the

dynamic execution related features that can represent code

behavior more thoroughly, such as the relationship between

123

9724 Arabian Journal for Science and Engineering (2022) 47:9713–9725

input and output values [47], and combine the feature extrac-

tion method with neural network model which can extract

more semantic features that can represent the binary code

[46,47].

Acknowledgements We thank the anonymous reviewers for the help-

ful comments. We thank JianGao for sharing his code of Vulseeker in

github, which inspired us a lot when implementing our prototype.

Compliance with ethical standards

Funding This work is supported by the National Key Research and

Development Program of China (No. 2017YFB0802900)

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indi-

cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm

ons.org/licenses/by/4.0/.

References

1. Cui, A.; Stolfo, S.J.: A quantitative analysis of the insecurity

of embedded network devices: results of a wide-area scan. In:

Proceedings of the 26th Annual Computer Security Applications

Conference, pages 97–106 (2010).

2. Herzberg, B.; Bekerman, D.; Zeifman, I.: Breaking down mirai: An

iot ddos botnet analysis. Incapsula Blog, Bots and DDoS, Security

(2016)

3. Diaphora. https://github.com/joxeankoret/diaphora. Accessed

December 15, 2020.

4. Bindiff, Z.: https://www.zynamics.com/bindiff.html. Accessed

September 14, 2020.

5. Turbodiff. https://www.coresecurity.com/core-labs/open-source-

tools/turbodiff-cs. Accessed December 20, 2020.

6. Dullien, T.; Rolles, R.: Graph-based comparison of executable

objects (english version). SSTIC 5(1), 3 (2005)

7. Pewny, J.; Schuster, F.; Bernhard, L.; Holz, T.; Rossow, C.: Lever-

aging semantic signatures for bug search in binary programs. In:

Proceedings of the 30th Annual Computer Security Applications

Conference, pp. 406–415. ACM (2014)

8. Karim, M.E.; Walenstein, A.; Lakhotia, A.; Parida, L.: Malware

phylogeny generation using permutations of code. J. Comput.

Virol. 1(1), 13–23 (2005)

9. Ding, S.H.H.; Fung, B.C.M.; Charland, P.: Asm2vec: Boosting

static representation robustness for binary clone search against code

obfuscation and compiler optimization. In: 2019 IEEE Symposium

on Security and Privacy (SP), pp. 472–489. IEEE (2019)

10. Rubner, Y.; Tomasi, C.; Guibas, L.J.: The earth mover’s distance

as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121

(2000)

11. Callahan, D.; Carle, A.; Hall, M.W.; Kennedy, K.: Constructing

the procedure call multigraph. IEEE Trans. Software Eng. 16(4),

483–487 (1990)

12. Khedker, U.P.; Sanyal, A.; Karkare, B.: Data flow analysis: theory

and practice. CRC Press, Cambridge (2017)

13. Jalote, P.: An integrated approach to software engineering. Springer

Science & Business Media, Berlin (2012)

14. Barabási, A.; Bonabeau, E.: Scale-free networks. Sci. Am. 288(5),

60–69 (2003)

15. Yu, L.; Shen, Y.; Pan, Z.: Structure analysis of function call network

based on percolation. In: 2018 Eighth International Conference on

Instrumentation & Measurement, Computer, Communication and

Control (IMCCC), pp. 350–354 IEEE (2018)

16. Stanier, J.; Watson, D.: Intermediate representations in imperative

compilers: A survey. ACM Comput. Surv. (CSUR) 45(3), 1–27

(2013)

17. Nair, A.; Roy, A.; Meinke, K.: funcgnn: A graph neural net-

work approach to program similarity. In: Proceedings of the 14th

ACM/IEEE International Symposium on Empirical Software Engi-

neering and Measurement (ESEM), pp. 1–11 (2020)

18. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K.: From word

embeddings to document distances. In: International Conference

on Machine Learning, pp. 957–966. PMLR (2015)

19. Zabihimayvan, M.; Doran, D.: Fuzzy rough set feature selection

to enhance phishing attack detection. In: 2019 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6. IEEE (2019)

20. Zabihimayvan, M.; Sadeghi, R.; Kadariya, D.; Doran, D.: Interac-

tion of structure and information on tor. In: International Confer-

ence on Complex Networks and Their Applications, pp. 296–307.

Springer (2020)

21. Sadeghi, R.; Banerjee, T.; Hughes, J.: Predicting sleep quality in

osteoporosis patients using electronic health records and heart rate

variability. In: 2020 42nd Annual International Conference of the

IEEE Engineering in Medicine & Biology Society (EMBC), pp.

5571–5574. IEEE (2020)

22. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H.: Scalable

graph-based bug search for firmware images. In: Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communi-

cations Security, pp. 480–491, ACM (2016)

23. Zabihimayvan, M.; Sadeghi, R.; Doran, D.; Allahyari, M.: A broad

evaluation of the tor english content ecosystem. In: Proceedings of

the 10th ACM Conference on Web Science, pp. 333–342 (2019)

24. Ghaffarian, S.; Mohammad, S.; Hamid, R.: Software vulnerability

analysis and discovery using machine-learning and data-mining

techniques: a survey. ACM Comput. Surv. (CSUR) 50(4), 56 (2017)

25. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z.; Wang, S.; Wang,

J.: Sysevr: a framework for using deep learning to detect software

vulnerabilities. arXiv preprint arXiv:1807.06756 (2018)

26. Kronjee, J.; Hommersom, A.; Vranken, H.: Discovering software

vulnerabilities using data-flow analysis and machine learning. In:

Proceedings of the 13th international conference on availability,

reliability and security, p. 6. ACM (2018)

27. Chernis, B.; Verma, R.: Machine learning methods for software

vulnerability detection. In: Proceedings of the Fourth ACM Interna-

tional Workshop on Security and Privacy Analytics, pages 31–39.

ACM (2018).

28. Pradel, M.; Sen, K.: Deep learning to find bugs. TU Darmstadt,

Department of Computer Science (2017)

29. Harer, J.A.; Kim, L.Y.; Russell, R.L.; Ozdemir, O.; Kosta, L.R.;

Rangamani, A.; Hamilton, L.H.; Centeno, G.I.; Key, J.R.; Elling-

wood, P.M., et al.: Automated software vulnerability detection with

machine learning. arXiv preprint arXiv:1803.04497 (2018)

30. Zou, Q.; Lu, L.; Yang, Z.; Gu, X.; Qiu, S.: Joint feature rep-

resentation learning and progressive distribution matching for

cross-project defect prediction. Inf. Softw. Technol. pp. 106588

(2021)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/joxeankoret/diaphora
https://www.zynamics.com/bindiff.html
https://www.coresecurity.com/core-labs/open-source-tools/turbodiff-cs
https://www.coresecurity.com/core-labs/open-source-tools/turbodiff-cs
http://arxiv.org/abs/1807.06756
http://arxiv.org/abs/1803.04497

Arabian Journal for Science and Engineering (2022) 47:9713–9725 9725

31. Flake, H.: Structural comparison of executable objects. In: DIMVA,

vol. 46, pp. 161–173. Citeseer (2004)

32. Gao, D.; Reiter, M.K.; Song, D.: Binhunt: automatically finding

semantic differences in binary programs. In: International Confer-

ence on Information and Communications Security, pp. 238–255.

Springer (2008)

33. Ming, J.; Pan, M.; Gao, D.: ibinhunt: Binary hunting with inter-

procedural control flow. In: International Conference on Informa-

tion Security and Cryptology, pp. 92–109. Springer (2012)

34. Zuo, F.; Li, X.; Young, P.; Luo, L.; Zeng, Q.; Zhang, Z..: Neu-

ral machine translation inspired binary code similarity comparison

beyond function pairs. arXiv preprint arXiv:1808.04706 (2018)

35. Alrabaee, S., Shirani, P., Wang, L., Debbabi, M.: Sigma: a semantic

integrated graph matching approach for identifying reused.

36. Zhang, C.; Feng, C.; Li, R.H.: Locating vulnerability in binaries

using deep neural networks. Ieee Access 7, 134660–134676 (2019)

37. Hu, Y.; Wang, H.; Zhang, Y.; Li, B.; Gu, D..: A semantics-based

hybrid approach on binary code similarity comparison. IEEE Trans.

Softw. Eng. pp. 1–1 (2019)

38. Pewny, J.; Garmany, B.; Gawlik, R.; Rossow, C.; Holz, T.: Cross-

architecture bug search in binary executables. In: 2015 IEEE

Symposium on Security and Privacy, pp. 709–724. IEEE (2015)

39. Tixier, A.J.-P.; Nikolentzos, G.; Meladianos, P.; Vazirgiannis, M.:

Graph classification with 2d convolutional neural networks. In:

International Conference on Artificial Neural Networks, pp. 578–

593. Springer (2019)

40. Atamna, A.; Sokolovska, N.; Jean-Claude, C.: A simple

permutation-invariant graph convolutional network. Spi-gcn

(2019)

41. Wang, L.; Zong, B.; Ma, Q.; Cheng, W.; Ni, J.; Yu, W.; Liu, Y.; Song,

D.; Chen, H.; Fu, Y.: Inductive and unsupervised representation

learning on graph structured objects. In: ICLR (2020)

42. Liu, S.; Demirel, M.F.; Liang, Y.: N-gram graph: Simple unsu-

pervised representation for graphs, with applications to molecules.

arXiv preprint arXiv:1806.09206 (2018)

43. Li, Y.; Gu, C.; Dullien, T.; Vinyals, O.; Kohli, P.: Graph matching

networks for learning the similarity of graph structured objects. In:

International Conference on Machine Learning, pp. 3835–3845.

PMLR (2019)

44. Wang, R.; Yan, J.; Yang, X.: Learning combinatorial embed-

ding networks for deep graph matching. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp.

3056–3065 (2019)

45. Jiang, B.; Sun, P.; Tang, J.; Luo, B.: Glmnet: graph

learning-matching networks for feature matching. arXiv preprint

arXiv:1911.07681 (2019)

46. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D.: Neural

network-based graph embedding for cross-platform binary code

similarity detection. In: Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, pp. 363–

376. ACM (2017)

47. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J.: Vulseeker: a semantic

learning based vulnerability seeker for cross-platform binary. In:

Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, pp. 896–899. ACM (2018)

48. Redmond, K.; Luo, L.; Zeng, Q.: A cross-architecture instruction

embedding model for natural language processing-inspired binary

code analysis. arXiv preprint arXiv:1812.09652 (2018)

49. Zhang, H., Qian, Z..: Precise and accurate patch presence test

for binaries. In: 27th {USENIX} Security Symposium ({USENIX}

Security 18), pp. 887–902 (2018)

50. Wang, S.-C.; Liu, C.-L.; Li, Y.; Xu, W.-Y.: Semdiff: Finding semtic

differences in binary programs based on angr. In: ITM Web of

Conferences, vol. 12, pp. 03029. EDP Sciences (2017)

51. Zeping, Y.; Cao, R.; Tang, Q.; Nie, S.; Huang, J.; Shi, W.: Order

matters: semantic-aware neural networks for binary code similarity

detection. In: Proceedings of the AAAI Conference on Artificial

Intelligence vol. 34, 1145–1152 (2020)

52. Yu, Z.; Zheng, W.; Wang, J.; Tang, Q.; Nie, S.; Wu, S.: Codecmr:

cross-modal retrieval for function-level binary source code match-

ing. Adv. Neural Inf. Process. Syst. 33 (2020)

53. Ding, S.H.H.; Fung, B.C.M.; Charland, P.: Kam1n0: Mapreduce-

based assembly clone search for reverse engineering. In: Pro-

ceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 461–470 (2016).

54. Li, Y.; Jang, J.; Ou, X.: Topology-aware hashing for effective con-

trol flow graph similarity analysis. In: International Conference on

Security and Privacy in Communication Systems, pp. 278–298.

Springer (2019)

55. Duan, Y.; Li, X.; Wang, J.; Yin, H..: Deepbindiff: Learning

program-wide code representations for binary diffing (2020)

56. Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; Chang, E.: Network repre-

sentation learning with rich text information. In: Twenty-Fourth

International Joint Conference on Artificial Intelligence (2015)

123

http://arxiv.org/abs/1808.04706
http://arxiv.org/abs/1806.09206
http://arxiv.org/abs/1911.07681
http://arxiv.org/abs/1812.09652

	A Heuristic Local-sensitive Program-Wide Diffing Method for IoT Binary Files
	Abstract
	1 Introduction
	2 System Overview
	3 Initial Anchor Function Selection and Expansion of Comparison Function Set
	3.1 Initial Anchor Function Selection
	3.2 Expansion Procedure of Comparison Function Set

	4 Feature Extraction and EMD Calculation
	4.1 Local-Data-Sensitive Feature Extraction
	4.2 Extraction of Other Features
	4.3 Selection of New Anchor Functions

	5 Evaluation
	5.1 Availability of the Expansion Method Based on Function Call Graph(RQ1)
	5.2 Analysis Efficiency (RQ2)
	5.3 Effectiveness (RQ2)
	5.4 Relationship Between Anchor Function Ratio and Iterations (RQ3)

	6 Related Work
	7 Conclusion
	Acknowledgements
	References

