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A HEURISTIC METHOD FOR DETERMINING ADMISSIBILITY OF
ESTIMATORS—WITH APPLICATIONS'

By LAWRENCE D. BROWN
Rutgers University

Questions of admissibility of statistical estimators are reduced to considera-
tions involving differential inequalities. The coefficients of these inequalities
involve moments of the underlying distributions; and so are, in principle, not
difficult to derive.

The methods are “heuristic” because it is necessary to verify on an ad-hoc
basis that error terms are small. Some conditions on the structure of the
problem are given which we believe will guarantee that these error terms are
small. :

Several different statistical estimation problems are discussed. Each problem
is trahsformed (if necessary) so as to meet the above mentioned structure
conditions. Then the heuristic method is applied in order to generate conjec-
tures concerning the admissibility of certain generalized Bayes procedures in
these problems.

Introduction. Section 1 of this study describes a very general heuristic method
of discovering admissible (and reasonable) estimators in a variety of statistical
problems. It is our belief that this method—or minor modifications of it—can also
be used to check the admissibility of various commonly proposed procedures.

The method is applied in Section 2 to generate conjectures concerning the
admissibility of certain generalized Bayes procedures in some common problems.
The applications discussed include: estimation of several location parameters,
estimation of several Poisson means, estimation of the largest of several ordered
translation parameters, and estimation of a normal variance when the mean is
unknown. Few of the results described in the applications are rigorously proven.
Nonetheless we feel that they are all plausible for the reasons given in this study.

The question of admissibility of estimators of location parameters has already
received considerable attention in the literature, and many results have been
obtained. Various references are mentioned in the course of this paper—see
especially Section 2.2. Some progress has also been made in a few other situations.
Most of these are also discussed in Section 2.

Two interesting general features stand out in results so far obtained. One is that
the admissibility of a generalized Bayes estimator seems to depend on the general
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structure of the problem (the general type of problem-location, scale, etc.—and the
dimension of the parameter space) and on the generalized Bayes prior, but not on
other more specific features of the problem such as the loss function used or the
exact shape of the densities (normal, exponential, etc.). A similar comment holds
for best invariant estimators in problems where they exist. A more striking feature
is that certain estimators which have in the past seemed intuitively reasonable have
turned out to be inadmissible.

This study gives an explanation of both these features of admissibility problems.
A few preliminary comments may be useful.

The admissibility problem is related to a differential inequality. The coefficients
of this differential inequality are very much dependent on the general type of
problem involved, and on the generalized prior used. On the other hand, in many
problems the important qualitative relations among the coefficients are not affected
by the other more specific features of the problem. For this reason only the general
features rather than the specific features usually determine the admissibility of
generalized Bayes procedures for given generalized priors. Certain inadmissibility
results, which appear very surprising when the statistical problem is viewed
intuitively, appear natural when one instead looks at the form of the related
differential inequality. A striking example of this occurs in the problem of several
Poisson means, which is treated in Section 2.3.

1. Setting and methods.

1.1. Setting. Observe random variables having a probability density p; ,(x, )
with respect to Lebesgue measure (dx, dy) on R* X R’ The parameters, &, 7, are
unknown with £, 7 € @ € R*¥ X R, k > 1,1 > 0. The case / = 0 is to be interpre-
ted that only X is observed and no variable Y or parameter 7 is present in the
problem. The assumption of the existence of a density for the variables X, Y is for
convenience and notational uniformity only.

It is desired to estimate ¢ only, with 5 to be considered as a nuisance parameter.
Hence we consider (nonrandomized) estimation rules of the form & : R* X R/ —
R*. That is to say, 8(x,y) = d € R*.

A loss function, L = L((£, 1), d) > 0, is specified. The possible dependence of L
on n will be considerably restricted by the regularity conditions to be described
below.

As usual, a rule § is inadmissible if there is a rule §’ such that A; 5(§ ) =
E; (L((¢ ), 6(x, »))) — E¢ (L(( ), 8'(x, ))) > 0 but not =0, and otherwise &
is admissible.

For simplicity the following derivations are given only for the case where
k=1=1and L({(¢ ), d) = W(d — £). Results for other situations can be simi-
larly derived. Some special cases are presented in the examples in Section 2. For
convenience, we will always assume that W has at least three continuous deriva-

tives.



962 LAWRENCE D. BROWN

Special case. An important specialization is provided by the case of squared
error, where w(d — §) = (d — §’. (When k > 1 squared error is defined by
L m), d) = W(d - § = ||d - &)

Regularity assumptions. The above setting is extremely general. In fact the
methods to follow do not apply in such generality. We are not able to construct a
precise, broad formulation of regularity conditions. The following is a brief, and
rough, description of the principal conditions which we believe are sufficient to
justify the analyses in this paper.

It appears to be necessary to assume

() LEm D <VUE—dl)  and | L&), )| < V(I - al)

where V is a function satisfying a certain moment condition, as set forth in (2). We
will also assume that (3%/9d*)L((¢, n), d) exists for certain moderate values of %,
and that these partial derivatives are also bounded in absolute value by V(|| — d|))
for all (£, ), d. Note that condition (1) considerably restricts the dependence of L
on 7.

The essential condition on V is that for some moderately large integer K there is
a B < oo such that for all £, n

() E; ((1(x,») = & mIF + 11 + VE(|x — €))) < B < .

The constant K can (hopefully) be determined from an examination of the
structure of the error terms which appear in the following analysis.

While the above conditions may be relaxed, they cannot be eliminated entirely.
Many problems which do not satisfy (1)—(2) in their usual formulations may—via
changes of variables, etc.,—be reformulated to satisfy (1)-(2). A description of
some of the possible reformulations is one of the goals of Section 2.

1.2. Proving inadmissibility: The approach. Begin by investigating the dif-
ference in risks, A, between two given estimators § and 8" when |§ — 4’| is small.
Under this nearness assumption and some other similar ones we produce an
approximate differential expression for A; 5(&, ). It is intended that from this
differential expression one can discover how, given &, to find an estimator §’ which
is better than the given 6.

Notation. Define

y(x,y) = S(X’y) - X
and
A(x, ) = 8'(x,y) — 8(x, ).
Thus 6(x, y) = x + v(x,y) and §'(x, y) = x + y(x, y) + A(x, y). For the following

computations assume that y is bounded, and that A is small and is a “smooth”
function. The definition of “smooth™ will be more apparent later.
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As noted, the following derivations are given for the one-dimensional case where
L = W(d — ¢ and W has three continuous derivatives. The results for the general
case can be derived by analogy, as described at the end of this section.

First Taylor expansion. Write

A6,8'(£, TI) = E{-‘,n(W(x +v - é) - W(x + Y +A- é))'
(For simplicity of display many of the variables are suppressed in the above
expressions and in similar ones below.) Then expand in a Taylor series about
x + y — £ Keeping terms to the second order in A and indicating the remainder by
+ - - - yields

A2
R e I R R R |
Expanding about x — ¢ (with an exact Taylor expansion) then yields

@ A= Ee,,,(—xwxx — ) — MW ((x — 8)y)

2
_.)_\2_W"(x_£)+...)

where (x — §), is between x — Eand x — &+ v.

For convenience rewrite (2) as
2) A= —-DQA) - E(yA) — E(\A2/2) + - -
where D, E, and E, are the linear operators defined by

D(}\)(ga "7) = EE, n(A(x’ y) W,(x - g))
E, A& 1) = Eg ,A(x )W (x = §)y))
E(}\)(ga "I) = E&,n(x(x’ y) W”(x - ‘E))

The case y = 0. Here E (yA) = 0. For this reason the expression (2') is gener-
ally easier to compute and analyze in this case.

Now, suppose that for each y, 8(x, y) is a one-on¢ function of x. This situation is
typical in the examples of interest. Then the transformation (x, y) — (8(x, y), y) is
one-one. The statistical problem with coordinates (x’,y) = (8(x,»),y) is thus
isomorphic to the original problem. If the original problem satisfies the moment
conditions of Section 1.1, so will the transformed problem. In this transformed
problem one has that y = 0 for the estimator corresponding to the original one.
Therefore, the condition y = 0 can usually be obtained without essential loss of
generality, but at the cost of considerable algebraic and analytic manipulations.
(See Section 2.5 for an example.)

Special case—squared error loss. In this case W'(x — §) = 2(x — Hand W” =
2. Furthermore W’ = 0 so that there are no error terms in (1) and E = E,. Hence
in this case (2) is an exact expression with E(k) = E (h) = 2E(h) and D(h) =
Eq o(h(x, y)(x — ).
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Second Taylor expansion. Expanding A in a Taylor series and denoting error
terms as before yields

3) DQ) = EQA(x, y)W'(x — §))
= mA + myh; + myA, + - -+ (3)mpAy, +

where

d
A= >‘i(§a n) = 3;}‘("1’ x2)

x=§, x=1

=\, ) = 7\(x1, ;)

xy=§ x,=1
and
m; = mEm) = B ((x = 97 — n)W'(x - §).
The subscripts on m are chosen as above because for squared error loss m;; =

2E, ((x — 9'(y — ).
Similarly,

E(/2) = E, (M (x, )/ W"(x = §) = m\?/2+ - - -,

and

4) E Ay) = E; ,(ACx, »)v(x, y) W ((x — £),))
=Ay+ -

where

n=nn) = E,  (W'(x—§) and
(&) = & m) = Eg ,(v(x )W ((x — §)y))
The fundamental expression. Substituting (3) and (4) into (2) yields
5) A =[(—m10 YA — myA; — myA, (;)mu;\zz] -2+
=QA—nA\/2+ -
Note that Q is a linear differential operator—in fact in many examples it is a
parabolic partial differential operator. In special cases it may even be the negative
of the heat operator (in which x is thought of as the time variable and y as the

space variable). :
Method I. To show that § is inadmissible try to find a solution to the inequality

(6) A, = QA — nA%/2 > 0.

If a solution to the inequality can be found then it may be that another solution
can be found such that the error terms (indicated by + - - - ) in (5) are negligible
for all £ 7. Past experience and some of the general arguments in the following
paragraphs concerning error terms indicate why this may often be the case. If such
a solution can be found then of course & is inadmissible, since 8’ = § + A is better.
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(Usually A will be very small. Hence 8’ will not be much of an improvement over
8. It is virtually certain that 8’ will itself be inadmissible. Therefore, even if the
above approach proves that § is not admissible, it does not seem likely to provide
an admissible alternative which is better than 8. Nevertheless, information about an
admissible alternative can be provided by combining (5) above and the results of
Section 1.4.)

There is another approach which can be used when a solution to (6) can be
found. This method is described in the following paragraphs.

Method II. The following result holds under regularity conditions weaker than
those assumed previously.

THEOREM. Let S C 2 be compact. Let H : S — (0,.0) and assume that
™ infg e sH(E MAE 1) > 0.

Then either &, is inadmissible or 8, is generalized Bayes for some ( generalized) prior
G satisfying

®) JoH ~'(& m)G(d( 1)) < co.

A precise statement and proof of this result may be found in Brown (1980).

In many applications £ is closed and it is possible to find a solution, A, to (6) for
which the error terms are asymptotically negligible in the sense that
lim inf, -l M/Aém) > . Then H may be chosen as any convenient
positive continuous function such that lim inf, . HA, > 0. In order to prove
that § is inadmissible it then suffices to show that it cannot be generalized Bayes
for any prior satisfying (8). Sometimes, as in the Poisson example in Section 2.3,
this can be shown directly. Otherwise a further study of properties of generalized
Bayes estimators is required. This study is initiated in Section 1.3. The inadmissibil-
ity results in Sections 2.2 and 2.3 illustrate some possible applications of this
method. (The above procedure is nonconstructive in the sense that it does not by
itself produce a formula for an estimator better than the given §.)

The unimportance of n. Usually 1/& > n > € for some ¢ > 0. If this is the case
then it is not necessary to know the exact value of n to investigate the existence of a
solution to (6).

Suppose 1/e >n >e. If X' is a solution to (6) then A = £\’/2 is a solution to

)] QA — A% > 0. ‘
Conversely, if A is a solution to (9) then X’ = 2¢] is a solution to (6). Hence under
the above condition the existence of a solution to (9) is equivalent to the existence
of a solution to (6).

The error terms when y = 0. In most of the common applications m,, > ¢ > 0.
Also assume that the coefficients which appear in (6) and in the error terms are
smooth, bounded functions of £, 7. (The boundedness actually follows from |m; jl
<B,0<Ki+j<K-1)
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Suppose a solution, A, to (6) can be found with the following properties:

() Ay=0QA—nA2/2>0

(10) (11) |}\Ul < CAest’ Pykll < CAest
(i)  Ae(xp 1)/ Aest(X2 7)) < 2+ (X 31) = (2 ¥)II%

Here, ¢ will be some appropriate small constant; for example ¢ = 1/100B. The
coefficient “8” which appears in (iii) can certainly be reduced to a smaller value,
but this, again, is a refinement we will not pursue here. (The coefficient K in the
assumption (2) of Section 1.1 is related in a monotone way to the coefficient “8”
which appears here, so a reduction of this coefficient will lead to a reduction of the
value K needed in (2) of Section 1.1.)

When the coefficients which appear in the definition'of Q are constants (or very
nearly so) the technique of randomization of the origin can often be used to derive
A satisfying (6) and (ii), (iii) from any given solution of (6). See Brown (1975) and
Berger (1975) for some examples.

With this background consider, for example, the following error term which
appears in (3): ‘

a= (%)Eé,n((x — 9y = DA E )W (x - £))
where (%, y) is on the line joining (£, 1) to (x, ). By (ii), (iii) and (2) of Section 1.1.
la] < (¢/2)Eg, ,((x = &’y — nlAE )| W'(x — §))
< cAE MEg ((x = £y — al(1 + [I(x,») = & DI (x — §)])

< A ME o((1+ 11(x,») = & MIMIW(x — §)])

< ¢BA(& ) = A(§, 1) /100 (for ¢ = 1/100B).
There are twelve such error terms in (1)—(4). Each of them can be treated in a
similar fashion. It follows that the magnitude of the total error is certainly bounded
by A/2 and that 8'(x,y) = x + y(x,y) + A(x, y) will, therefore, satisfy A, sA¢, 1)
> 0 for all £ n. Hence & is inadmissible.

If A satisfies conditions (10) asymptotically as ||¢, n|| — co rather than for all £, 5
then the above considerations indicate that the error terms should be negligible as
I¢, 1)|] = o0, and Method II may then be applicable to prove inadmissibility of 3.

An approximation to . Consider the approximation

(1) Y=ny+ - .

If this is substituted for ¢ in (5) the basic inequality (6) becomes
(12) QN —m?/250

where

(13) Q}\ = (—myy = ny)A = myh; — my A, — (%)mlz;\zr

Computation of (12) is usually somewhat simpler than computation of (6).
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In many examples the error in the approximation (11) is asymptotically negligi-
ble as ||(x,y)|| = o. If this is so (and @ is closed) then (6) and (12) will be
asymptotically equivalent; equation (12) can be used in place of equation (6) when
using Method II. It is also true that general considerations indicate that when the
error is asymptotically negligible then (12) is solvable if and only if (6) is solvable.
Therefore it is often more convenient to study the solubility of (6) by first
examining the somewhat simpler inequality (12). The nature of the approximation
(11) and the uses of (12) are clarified by some of the applications in Section 2.

Summary. The methods we have indicated above for proving inadmissibility of
a given estimator, § = x + y (with y bounded), are as follows:

(a) write down the fundamental inequality, (6) (or (9)) or (12). The coefficients
of this inequality involve only y and various (mixed) moments of (x — £), (y — ),
and W’'(x — £). Then either:

(b) find a solution to this inequality,

(c) use the solution from (b) to find a “smooth” solution, A, to (6)—one
satisfying (10). This can be done by guesswork, by randomizing the origin, or by
any other appropriate method.

(d) Write down the exact error terms from the expansions (1)-(4), substitute the
A from (c) and thus check directly that A can be used to define an estimator better
than 8. Or

(b') find an “asymptotic” solution to (6) or (12)—that is, a solution which is
valid on the complement of a compact subset, S, of .

(¢') Check that the asymptotic solution mentioned in (b") is asymptotically
smooth (which it usually will be)—that is, that it satisfies conditions (10) on the
complement of S. If the asymptotic solution in (b’) is not asymptotically smooth,
try to modify it as in (c) to find one which is.

(d) Write down the error terms from the expansion (1)—(4) to check directly that
inf g sA/8ey > 0.

(¢)) Let H > 0 be any continuous function satisfying inf; ¢ sHA, > 0 and
then show that § cannot be generalized Bayes for any generalized prior satisfying
(8) (see Section 1.3).

In most problems € is closed in R¥. If so then there is no need to explicitly
identify S; instead one only needs to show that

lim lnf”(e’ .,’)"_,wA/Aest > 0

and choose H so that
lim inf”(é, 'r])II—)OOHAest > O.

In the applications of Method II which follow we mainly proceed in this latter
fashion.

The program (a), (b), (c), (d) has been carried out explicitly by several authors
for particular classes of examples (see Section 2.1 for references). It is our hope that
reasonable regularity conditions can be found so that the steps (d) or (d') can be
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carried out without the explicit computations mentioned above. This hope is
supported by some general work which has been done on differential inequalities
like (6). See, for example, Fujita (1966) and Portnoy (1975b).

Generalizations. (A) When L((, 1), d) is not of the form W(d — £), the above
method can still be applied. The derivation of (6) is analogous and leads to the
same fundamental equations except that (9/9d)L((£, ), d) replaces W'(d — §)
throughout. The error terms are analogous to those discussed above for the case
L = W(d — £). Applications involving this situation can be found in Sections 2.6
and 2.3.

(B) When & > 1 or / > 1 the same general method of deriving a fundamental
differential inequality is valid. Because one is now dealing with multidimensional
Taylor series in place of ordinary ones (as in (1), (2)) or bivariate ones (as in (3))
the resulting expressions are notationally more complex. The basic principles are
the same. In particular, in the analog of (3) all terms higher than the second order
and all terms involving more than one partial derivative with respect to the “£”
coordinates should be considered to be error terms. The coefficient “8” in the
condition (10)(iii) may have to be increased but otherwise a discussion of the error
terms in this multivariate case can proceed like the discussion above after making
the obvious changes of notation. For examples of the basic equations which result
in such cases see 2.2(1), 2.3(1), and 2.5(1).

1.3. Generalized Bayes estimators. This section contains an approximate for-
mula for the functional value of a generalized (or, formal) Bayes estimator. The
techniques used derive from those in the preceding section; the resulting formula is
intimately related to the basic expressions derived there.

The result here serves three purposes. First, in order to prove inadmissibility of a
generalized Bayes estimator by the method of the preceding section one needs to
know the value of y(x,y) = 8(x,y) — x for this estimator. The formula here
provides an approximation to y which is sufficiently accurate to prove inadmissibil-
ity in many applications. Since this formula only involves the same moments as
formula 1.2(6) it is generally much easier to compute the approximate y from it
than it is to compute y exactly from the definition. Second, formula (2) can
sometimes be used in Method II to verify that the prior does not satisfy 1.2(8).
Third, the formulae of this section form a central part of the method to be
described in the next section for proving admissibility of certain generalized Bayes
estimators.

Expansion for v,. Let G be a given nonnegative measure on £ (generalized
prior). If it is absolutely continuous let g > 0 denote its density relative to
Lebesgue measure. Assuming that W is differentiable and strictly convex (and
often without this assumption) the generalized Bayes estimator for g—to be
denoted by §,(x, y) = x + v,(x, y)—is the unique root of

(1) 0= [W'(x + v, — £)pe (%, »)8(§ m) d§ .
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An exact Taylor expansion yields

JW'(x — pg (%, y)g(§, m) d€ dn
JW((x = )y)pg ,(x, ¥)8(§ ) dé dn

_D*(g)

E3(g)’
The above expression defines D* and E7.

The notation is chosen to indicate the essential fact that D* and E¥ are the
Hilbert space duals of D and E,—that is

(3) <5, D*g) = [s(x,y)D*(g)(x,y) dx dy = [D(s)(§ n)g(§ n) d§ dn = (Ds, g
for continuous functions, s, with compact support, and.similarly for E, and E}.

Equation 1.2(3) states that D is approximately equal to a certain linear partial
differential operator. It is therefore plausible that D* should be approximately
equal to the dual of that operator. Thus

(2) Ye(%, ) = —

d d 92 \*
) D* ~ (mlo t Mgt gatirm + (%)mlz‘a‘n—z)

10 ag 20 a,n 11 2 8112 12
Similarly
@y E} =~ (n)* = (n),
where n, = E; (W’ (x — §),). Note that if y is small n, ~ E(W"(x — §)) = n.
Collecting the above yields

Mg — aig(mzog) - (m,8) + ( ) ('"128)

%) Yy~ —

= ¥, (def.).

The expressions (4)—(5) are not exact equalities. Without further discussion it is
possible only to interpret the symbol “~ > as, “is approximately equal to”. With
this crude interpretation (5) has little practical value. However, if g is well behaved
near oo then (5) should also be an asymptotic ratio-equality. (The symbol, “~ ”
can then be interpreted as, “~ ».) A suitable requirement seems to be || V g|| / g—
0 as ||(§, n)|| — oo. The approximation in (5) then appears to be sufficiently
accurate for many applications of the methods described in the preceding section.
Some of these applications are described in Sections 2.2 and 2.3 and also in Berger
(1976¢).

The heuristic asymptotic value for y derived above is more accurate than those
proved in Meeden and Isaacson (1977) and Umbach (1976), but involves more
restrictive regularity conditions.

ng
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Proving inadmissibility by method 1I. Suppose v is a given smooth function. In
order to prove that § = x + y is inadmissible by Method II it must be shown that
if & is generalized Bayes for prior G then [H ~Y (& n)G(d(¢ 1)) = . If G has
density g it must, therefore, be shown that

(6) SH™Y(& m)g m)d(E m) = .
Suppose g is sufficiently smooth. Then it must very nearly satisfy the differential
equation

0 0
) Q*g = —mpg + a_g(mzog) + 51‘(”'118)

, 02
—iw(mug) -yg=0

for large values of ||§ n||. The operator Q* defined by (7) is the dual of the
operator Q introduced in 1.2(5). If y — 0 as ||§, 5|| — co then ¢ may be replaced by
ny in the preceding assertion. (The operator which results should be denoted by
Q*, but we will simplify the notation by using the symbol Q* for both cases.)
Suppose any solution to (7) for large values of ||(§, 0)|| satisfies (6) (in applications
it is often easy to ascertain whether this is the case.) Then this is strong evidence
that § is inadmissible. Of course it is not a proof of this.

The following line of argument provides further evidence. Possibly some regular-
ity conditions may be supplied so that this line can be converted to a proof. Let s
be any probability density for which the derivatives of In s are small. Then if § is
generalized Bayes for G, having density g,

(®) 0={s, -D*g — yE¥g)
= <(_D - E‘y)s’ 8>
< {Qs +ps, 8>

=<5, (Q* + 0)g»

where p denotes an error bound which is small as ||(§, )| — o0, as described in
Section 1.2. Formula (8) also has a valid interpretation if g is the generalized
function g = dG. Depending on the specific context of the problem it may be
possible to verify that p is of a sufficiently small order as ||(§, n)]| = oo so that any
solution to
)] Q*g+pg >0
satisfies [ H ~'(& n)g(& n)d(€, 1) = . (Again, this last assertion involves only a
standard partial differential equation, and so should be relatively easy to check.)
The inequality (8) may be interpreted as saying that (9) holds in the mean, and
ought to also imply that [ H ~'(&, n)g(& n)d(, n) = . (We think!)

The location parameter estimation problem is treated in Section 2.2. That section
contains an outline for a proof of inadmissibility by Method II. That outline
involves statements resembling (8). The precise reasoning discussed following (9) is
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not used there; instead a judicious choice of the density s in (8) makes possible a
different approach.

Expansion for v,, — v,- For proving admissibility as discussed in the next
section a closely related approximation is needed. Let g be a generalized prior
density, as before; let hg be another one, where A is uniformly a smoothly
differentiable function. Let A/, A, etc., denote the partial derivatives of 4. Then,
from (5),

(10) Yhg — Ve = Vag — Yo = (mzoh'l + myhy — ((m28),/8)h; — (%)mlzhﬁ'z)/”h-
(Here the symbol, “~ ”, may again often be interpreted as “~”.)

Actually, all that is required for most applications of the method in the next

section is the weaker inequality
(11) thg - Yg = 0((myh) + my by — ((mug)z/g)hﬁ - mlzhé'z/z)/"h)-
The regularity conditions for (11) to hold appear to be significantly weaker than
those required for (5) or (10). In particular (11) appears to us to be valid if the
moments m;; and the function A are appropriately smooth functions as ||(§, n)|| —
oo; with only very minimal conditions required on g.

Generalizations. As in the previous section the above results generalize to cases
where L((§, 1), d) is not of the form W(d — £) or where the dimensions ., / do not
satisfy k =/ = 1.

1.4. Proving admissibility. Make use of Stein’s necessary and sufficient condi-
tion for admissibility, see Stein (1955), and also Farrell (1968, Section 3). In the
current context a necessary and sufficient condition for admissibility of an estima-
tor, 8, is the existence of a sequence { g;} of generalized prior densities each having
finite mass (fgi(§, ) d§ dn < o) and satisfying [ ...18(6 m) d§dn > e > 0 for
all i and

(1) A= [ W(x + v(x,9) = & — W(x + 7,06, 9) — )] pe , (%, 7)
xg(¢ ) dx dy d§¢ dn — 0.
Expanding the first part of the integrand about x + y, — §, interchanging orders
of integration, and using 1.3(1) yields:
(2) Ai = %f(Y(xs y) - Y&(x’ y))z(fW”((x - g)*)pf, n(xs y)gl(g’ "1) dg d)") dx dy

where (x — £) lies between x + v, (x,») — § and x + y(x, ) —

Now, suppose v is a generalized Bayes procedure, say vy = v,. Let g; = h;g and
suppose #; is a uniformly smoothly differentiable function so that the bound 1.3(11)
applies. Similar to the situation in Section 1.3 one typically has

SW((x = )a)pe o(x VIW(E 1)g(E, 1) dE dn =~ nh(x, y)g(x, y)
foralli=1,2,--- . We actually need only the weaker and easier to verify the
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fact that
(3) fW”((x - g)*)P.f, n(x’ y)ht(g’ "7)8(5, "7) dg d”l < Blhi(x’ y)g(xs y)
for some B, < co. The above yields

() A; < BI(#,(x,9) = %506 2)) hi(x, »)g(x, ) dx dy
= BA, (definition).

Equation (4), together with 1.3(10) which defines ¥g — Vg is the basic equation
of this development. If, for a given g, it is possible to find a suitable sequence of
function 4, such that A; — 0 then ¥, should be admissible.

As with the method outlined in Section 1.2 the above development can actually
be used to prove that vy, is admissible if one writes down suitable error terms in the
above development and shows that they are indeed negligible. If so, then A, (as
defined in (1)) tends to zero, and this proves admissibility of §, = x + v,.

Generalizations. Again, the above method is adaptable to the case of general
loss functions, L, and to arbitrary dimensiqns k, 1.

The method is suitable for certain types of situations where g is not smooth—
even for situations where the generalized prior is described by a measure G which
does not have a density with respect to Lebesgue measure. In those cases 4; still
must be sufficiently smooth. The factor A(x, y)g(x, y) in (4) should be replaced by

TB(& m)pg, o(%, ¥) G(dE dn).

(Similarly g in 1.3(5) should be replaced by [p.(x, y)G(d§ dn).) The admissibility
proof in Brown (1971) provides a detailed argument of this type for the estimation
of several normal means with squared error loss, in which certain error terms
disappear by virtue of the special nature of the problem.

2. Applications and conjectures.

2.1. Summary of published examples. The methods outlined in Section 1 have
been successfully used in the past to prove admissibility or inadmissibility in a
number of special cases. The interested reader may refer to these examples to
reinforce the plausibility of our contentions concerning insignificance of error
terms, and to discover various techniques of computation, approximation, and
smoothing which ¢an be used to prove admissibility or inadmissibility in specific
situations via the methods we have described (except for our Method II, which is
new).

C. Stein’s (1956) original proof of the inadmissibility of the best invariant
estimator of three normal means follows the pattern outlined in Section 1.2 for the
case k » 3,/ = 0. The pattern can perhaps be more clearly seen from reading the
account in Brown (1975). Stein’s inadmissibility proof was generalized in Brown
( 1966, Part 2) using the same method. Berger (1976a) uses an interesting adaptation
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of our method to find reasonable alternatives to the best invariant estimator in this
situation. See also Berger and Srinivasan (1977).

The admissibility proof for the best invariant estimator of a single location
parameter given in Stein (1959) uses essentially the method outlined in Section 1.4.
Of course the special features of the problem he treats simplify some of the
expressions, especially the approximate formula 1.3(5) for y,. R. Farrell (1964)
generalized some of Stein’s results. In particular he was able to prove some results
using this method for certain generalized Bayes estimators. The admissibility results
of Brown (1971) also follow essentially the method outlined above, with certain
modifications and simplifications made possible by the special nature of the
problem treated there (normal means, squared error loss).

Berger (1976b, ¢, d) uses our methods to prove both admissibility and inadmissi-
bility results for the problem of estimating one or two out of several unknown
location parameters.

Stein (1965) gave a heuristic discussion of the admissibility problem for dimen-
sion k = 1, / = 0 which he hoped would lead to a proof of admissibility for certain
generalized Bayes estimators under suitable regularity conditions. This hope was
realized in Zidek (1970). Stein’s method and Zidek’s proof are closely related to the
method we have outlined. For the problem he considers, which involves a squared
error loss function and no nuisance parameters, Zidek’s equation (3.6) is analogous
to our 1.3(10), and involves less restrictive regularity conditions. Under our
smoothness and boundedness assumptions and the condition m,, > ¢ > 0 the two
equations become effectively equivalent. Their derivations differ—Zidek’s deriva-
tion exploits the special properties of squared error loss and uses the Cauchy-
Schwarz inequality. No Taylor expansions or error terms are involved at this stage
of his argument. Zidek’s result was slightly generalized and was applied to certain
ANOVA problems by Portnoy (1971). See also Zidek (1973, Section 3).

In the following we apply our heuristic methods to several statistical problems.
While we have not proved the assertions concerning admissibility which we make
below, we have examined the error terms in these examples enough to convince
ourselves of the plausibility that these assertions are valid.

2.2. Estimating location parameters (without nuisance parameters): Setup.
Suppose one observes x € R* with density p(x — &), £ € R*. It is desired to
estimate £ by d € R*. The loss function is W(d — £). Assume E(||x — £|¥) < o
for some sufficiently large value of K in order to satisfy 1.1(1). Suppose § = x + y
is a given estimator and 8’ = x + y + A (A € R%).

In the following we make the conjecture that for generalized priors of the form
g(®) ~ (ED§? as ||£|| - oo the generalized Bayes estimator is inadmissible if
b + k — 2 > 0 and admissible if & + k£ — 2 < 0. This generalized Bayes estimator
is conjectured to have the asymptotic form (4).

A change of location of the original problem yields Eo((3/3x)W(x)) =0, 1 <i
< k. Make this assumption without loss of generality. Let w;; = (3 2/0x, ax)W.
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The appropriate version of 1.2(6) is
0 A= —¢"A =V - (MAN) — (H)ANA = QA — (2)ANA

where A is a column vector, 7 denotes transpose, “V - ” denotes divergence;

ox;

J

M = (m;;), m;; = Eo(xi_a— W(x));

N = (nij)’ n;; = Eo(wil}(x));
Y= () %(®) = Ef(S5_w/((x = §)y,)7,(x)

where (x — §), ; is on the line joining x — £ to x — § + y(x), and depends also on
the coordinate, i. (The terms involving M form the dnalog to that involving m,, in
1.2(6). There are no terms analogous to those in 1.2(6) which involve m;,, because
of the assumption E,((9/9x;) W(x)) = 0. No second derivative terms appear in
(1) because there are no nuisance parameters or observations. The appropriate
versions of the operators defined in 1.2(2’) are

DA = S5 A(x) e Wlx — E)p(x — §) d

E,(\ ) = A ()w"(x, §v(x)p(x — §) dx

where (w”(x, §),; = W/(x — §), ;; and E(A, A) is similarly defined.)
Assume N is positive definite and M is nonsingular. Note that if W is squared
error loss M = 2}3 and N = 217, but in general M need not be symmetric. (The
assumption that M be nonsingular first appears in Brown (1966).)
Generalized Bayes procedures. The analog of 1.3(5) is
—lagr
) Y ~ _]X_.L;_Vﬁ = }';g_

Assume a prior generalized density of the form g(¢) ~ (§"D£)*/? as ||€|| — o, and
whose first two derivatives are asymplotic to the corresponding derivatives of
(£"D&’/% Then

. bN ~'M"Dx
(3) Te(¥) = ——Fp—
The location family structure of the problem makes it relatively straightforward to
directly write down error terms for the approximation indicated by (2) and (3).
Having done this for some special cases we feel confident in asserting that
19, = 7.l = O(llx]| =% for the above situation and that I(3/3x)(¥, — vl =
0(|| x| 3). Note that this assertion is consistent with the discussion following 1.3(5).)
Inadmissibility results. Suppose

bN ~'M'Dx .
4) () =—Fp— + O(lx]7%)  as [x||—>o0
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where D is positive definite. Suppose also that (3/9x,)y; = 0(]|x|| ~2), This form of y
is motivated by (3).

Suppose b+ k —2>0. Let v = max(x™M"™ 'NM ~'x/x'Dx) < o0, and 0 < ¢
< 2(b + k — 2)/v. The assumptions on W and y yield ¢ = Ny + 0(||£|| ). Let

)= — M X
(5) A= }\(x) = T r
Then
(6 Ay = —yA+c k + (k —2)¢D§ — (c/2)$2’(Mf)—1NM—1£

(1 +¢°Dé)
[P /0%
2 c
(1+¢Dg)

+0(EDE) ) ~ (b + k —2 — w/2)(EDY ™"

Choose H(§) = 1 + ¢'DE&. A careful investigation of error terms should show that
) lim,., , HEAE) =c(b+k—2—cv/2) >0,
as can be seen from similar computations in Brown (1966).

The appropriate version of 1.3(7) is

Q*g=+MVg—gy=0.

For large values of ||£|| this equation becomes approximately
bM™D§

£EDE
which has the solution g(¢) = (¢"D§)?/? in accordance with the derivation of (3).
Now

©) JH'(®)g(8) di = [EDY* ™V db = oo
since b+ kK —2 >0 by assumption. This motivates the conjecture that & is
inadmissible according to the discussion following 1.3(7).

(We note parenthetically that it is possible to find functions A so that A.(§) > 0
for all £ € R*. For example the function A = — (a(x)M ~'x)/(1 + x7Dx) with
a(x) = c exp(—a cot™'(||x||/d)) yields such a result whenever a and d are
sufficiently large. (How large these constants must be depends in part on
sup||y(x)||.) However such choices of A probably do not have A, sufficiently near
A because for small and moderate ||x|| some second derivatives of A are not small
compared to A,.)

For some special given estimators it is possible to find a A satisfying A > 0 by a
direct approach. The simplest example is the case of the best invariant estimator
where y =0 and k > 3. Then one may choose A = — (cM ~'x)(a + x7x). It

®) +MVg—g 0
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follows from (6) that A, > O for all £ € R*. It can be proven that the error terms
are insignificant when q is sufficiently large so that also A > 0 for all £ € R*. A
complete treatment of all the error terms is contained in Brown (1966).

A proof of inadmissibility. The following argument involves steps similar to
1.3(8). Even though the argument is only for the one dimensional case we feel that
it demonstrates the general plausibility and feasibility of Method II for proving
inadmissibility as described in Section 1.2 and 1.3. The final part of the following
argument differs from that indicated in 1.3(9), and so illustrates an alternative to
that part of Section 1.3.

Make the following special assumption in addition to the general assumptions of
this section: (i) k = 1. (ii) The convex hull of the support of p is a bounded set. Call
it [K, K. (iii) Let m = m,, > 0. Define '

(10) o(t) = m = [Fw'(x)p(x) dx.

Assume o(f) > 0 for ¢ € (K, K). (This assumption will be satisfied if W is strictly
bowl shaped, and often otherwise so long as W'(K) < 0 < w'(K).) (iv) —K <
inf y(x) or sup y(x) < — K. (This assumption is needed in order to guarantee that
8 is not a Bayes procedure for some prior having compact support.)

Assume, without loss of generality, that N = 1 and D = 1 in the definition, (4),
of y. In this case y ~ mb/¢ and the basic linear operator is QA = — mA’ — YA
where  ~ ny ~ mb /& with b > 1. The asymptotic form of the dual is Q*g ~ mg’
— mbg/¢. This has the solution g(§) = §® which satisfies [H ~'(§)g(¢) d¢
= [(1 +£9)71¢% d¢ = .

We wish to show that
(11) —D*g — yEjg =0
implies (1 + £%)7'g(¢) d¢ = . (In order to maintain complete generality it is
necessary to allow the interpretation here that g = dG is a generalized function.)
To this end, assume (11) holds, and also suppose that

(12) J(1+ €))7 'g() dt < .
Let
S$00(0) = 0u(3) = T7e Rk X > B

=0 Ixf<B, 0<a<l1<o.
Then there is a B’ < oo such that for any B > B’
(13) —Dso () —E,v50,(8) <0 for ¢>B—Kand{< —B - K,

for all o. This assertion could be proven using arguments like those displayed in the
discussion of error terms in Section 1.2. Here is an even more efficient argument:
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note that v(?) = 0 for ¢ & [K, K] and that fo(¢) dt = 1. Then for £ as in (13)
(14) —Ds = —[s(x)W'(x — §p(x — §) dx
= —mfs'(x)o(x — §) dx
~ me~ (1 + |£|/0)? uniformly in o.
Similarly
(15) —E,ys = — [v(x)s(x)W"((x — £),)p(x — §) dx
~ —mbl¢|~'(1 + |¢|/0)”" uniformly in o,

since n = [W”(x — §p(x — £ dx = 1 by assumption. This verifies (13).
Calculations similar to (14), (15) verify that for fixed B, o

(16) sup,| — Ds, , — Evs, .| = 0((1 + £2) 7).
Thus,
(17) O = lima—>0f°—°oo( _Dsa,o - Eyysa, o) G(dg)

= fo—ooo(_DSO,o - EyYSO, o)G(dg)

by (12), (16) and the dominated convergence theorem.
It follows from (13) that

(18) {13k +1257F}(=Dsy , — E,¥5,,)G(d8) < 0. J
Now, note that
(19) [875 = Ds (())G(d8) = mf; Z[— (1 + B/o) 'v(B — §)

+ /5611 + x/0) Po(x — §) dx|G(d¥)
= = (1+ B/0)"'mjo(B - §)G(d¥)
+a'0(G([B -~ K. BK]))
by an integration by parts similar to that involved in (14). Also
(20) J875 — E,vs0,,(§)G(d§) = 0(B~'G([ B - K, B — K]))

< ne{(2 = K5 k)

for an appropriate C < co. | _

Fix ¢ > 0. Note that o(B—§ >¢, >0 for {€(B—K+¢ B — K—¢) by
assumption (iii). Hence
(21a) fo(B — §)G(dE) > ¢,G((B — K +¢, B — K —¢)).

Note that condition (iii) on v(-) also implies that W'(K) < 0 < W'(K). It can be
shown that, as a consequence, there are ¢, £, > 0 such that our assumption that
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lv(x)] — 0 as x — oo implies
max{G([B - K, B— K +¢,]), G([B — K —&, B — K])}

([B- K B-K)) <l

(21b)

for all B sufficiently large. (Reasonable assumptions on the form of W other than
(iii) will also yield this statement.)

Let ¢ = ¢,/2 and choose B > C/c%?} with 0 < ¢ < min(c, 3). Let B’ satisfy
e <B — B<K-—K-—2¢cand definea = G(B — K, B —K]),a,= G(B - K, B
—K+¢), ,=G(B—K+¢e,B—K—%), a3=G(B—-K—¢,B—K)=a
—~a, —~a, and @, - - -, a; similarly with B’ replacing B. Note that a] < a, and
a;, > a, by set inclusion. Suppose

@10) fo(B — §G(d) < 2.

Then a, < ce’a by (21a). Hence a; < a, < cela. On the other hand, a,/a < 1 — ¢,
= (a, + a, + a;)/a — ¢ by (21b) so that a}/a > a;/a > ¢, — c&;. Hence a}/aj
< cg /(1 — cgp). Applying (21b) at B’ yields a5 < (1 — ¢)(a] + a; + a3) so that
qds/dy < (1~ e) + (1 —e)ai/ay <1—e + (1 — e)ee/(1 — cey) = (1 -
&)/(1 — ce)). Thus aj/a’ > [ce,/(1 —ce) + 1+ (1 — eey(l — ce)l™ ' = (¢, —
ce?) > ce? > C/cB > C/cB’. Hence either (21c¢) is false or
co([8 - K, B - K])

B
for all B’ as above. It follows that for some (actually, most) large B, o
(22) o 7 E(=Dsg, o(8) — E 50 ,(£)) G(d€) < 0.
Similarly B, o can be chosen so that also
(23) f()—B—I?(_DSO,o(g) - Eyso,o(‘f)) G(d§) <O.

The combination of (18), (22), (23) contradicts (17). Hence the assumptions
made at the start of this argument (including (11)) imply that (12) is false. This
proves the inadmissibility of any & satisfying (4) under the additional assumptions
(D-(v).

(We conjecture that a proof of inadmissibility without the special assumptions
(i), (ii), (iv) can be constructed following the above general outline, although clearly
such a proof will require a number of additional error bounds to replace (ii) and
will be algebraically and analytically more complex if (i) (k = 1) is to be relaxed.
In particular if £ > 2 then the efficient argument at (14) which uses integration by
parts (and all similar arguments above) may have to be replaced by arguments like

those described in the treatment of error terms in Section 1.2. Also condition (iii)
may have to be replaced by something more complex such as: define

V(1) = [exse8T V W(x)p(x) dx
for ||{|| = 1 and assume v,(#) > 0 whenever 0 < f,. . ,p(x) dx < 1.)

(21d) Jo(B" — §)G(d§) >
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Admissibility. Suppose y is a generalized Bayes procedure of the form described
above () and b+ kK — 2 < 0. Let

(24) O =1  E<1
1
= (-2 < <o
=0 |&I>r
and
(25) h(&) = (i £5 (e "/ dr)’,

Equation 1.3(10) for the approximate difference of (generalized) Bayes estima-
tors is

(26) Fo(x) — () = —N7'M"V h(x)/h(x).

In particular when M =26’ and N = 2] the above becomes Yo = Vng =
— 62V h/h. Substitution in the multivariate analog of 1.4(4) and direct computa-
tion, including a change to polar coordinates, yields (with s V 2 = max(s, 2))

- L—1,2-r)/i 2
@1 A < Bmax-eig(MN‘zM’)f‘,”( 2 Selnr dr) (cs®)s*" ds
i~ 1le@—n/i
<B[Pfay——s"*drds
Inr
.1, 2-r)/i
= B [is*** P ds ar
In?
i~ le@-n/i
< B[y dr—0 as i-»o00.
Inr

Note how the condition b + k — 3 < — 1 was used in the last inequality. This
indicates the result that the estimator described by v, is admissible.

(We note that a formal computation of A, based on the functions 4, = {2 would
also yield the result A, = 0. However the functions {? are not sufficiently smooth at
llx|| = i, and so we use the smoothed version, h;, as defined in (25).)

The above choice of h,—while satisfactory for all values b+ k —2 < 0 — is
most appropriate when b + k — 2 = 0. Also, the spherically symmetric form of 4 is
most suited to the case M = 26°[, n, = 21. In situations other than these a different
choice of 4 than that above will generally yield faster convergence of ]i,. to zero. (It
is possible to construct the best functions { as solutions of an appropriate
variational equation. For the location problem at hand, one may construct this
variational equation by proceeding by analogy with the construction in Brown
(1971) where the equation is given for a normal problem. In this way one obtains
the connection between admissibility and global solubility of the variational
differential equation. Admissibility is, therefore, also related to recurrence of the
diffusion whose generator is the above mentioned variational equation.)
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2.3. Estimating several Poisson means (without nuisance parameters). (This
section was added to the paper only after we read the manuscript by Clevenson
and Zidek (1974) which gives minimax and inadmissibility results for this problem.)
Suppose z,, - * -+, z, are observations of independent Poisson variables with param-
eters a,, * * + , &y It is desired to estimate a;, - - -, o by a;,- - -, g, with loss
function £(a, @) = %_ (¢; — a,)*/ o

In the following we make the conjecture that for generalized priors of the form
g(a) ~ Ca;)® as Za; — oo the generalized Bayes estimator for g is inadmissible if
b+ k — 1> 0and admissible if » + k — 1 < 0. The conjecture also describes the
asymptotic form of the generalized Bayes estimator (see (2) and (7).) The difference
between this conjecture and that for the location problem, where admissibility
depended on sgn(b + k — 2), may be explained by an examination of the relevant
differential equations.

It is not appropriate to identify z as the x of the general theory. This is because
Var,(z) = &; — o as a; > oo which means that the basic assumptions of Section 1
are violated. In order to apply our general results one must first transform the
problem, as described below.

Let xX’)=z, ¥ =a,d*=a,i=1,"--,k, and L d) = =%_,(§* — d»? /&%
This transformation was chosen because it is asymptotically variance stabilizing.
This transformed problem is isomorphic to the original one, and so a procedure is
admissible here if and only if the corresponding procedure is admissible in the
original problem. We are particularly interested in the usual minimax estimator,
4 = z. This estimator is generalized Bayes in the original problem with respect to
the uniform prior on the parameter space {a : a; > 0,i =1, - - -, k}. This estima-
tor, of course, corresponds to 8(x) = x in the transformed problem, which is
generalized Bayes with respect to the prior, having density g(§) = II*_,£ over the
new parameter space, {§ : § > 0}.

The appropriate version of 1.2(6) is

() Age= =S5y (mf? + ) — ShoShgmP N, = (2)EAF > 0
J
where

0 = mP§) = £y L6 D] ) >4/0+2)

d=

ms(E) = mb () = Ee((x,. - g,.)?% L(¢, d)

) —24001/(1+8)

m(g) = Eg((x,- - gj)é%L(g, d) ) = 0((1 +&)7'(1 + gj)“),i #j

d=x

) -
d=x

82
=E|— L d
& ¢ od? (&)
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Also, m§) is decreasing in §. (As an example of the above calculatlons observe
E (zZ) z_lz;a e */zl= 7 oa(z + 1)2a e “/z’— E(a(z + 1)2 ) Hence
m{X(t) = 4Ez(22(z — 13)/t}) = 4Ex(z + 1)2 - 22) > 42 + 1)2 —-171>4/Q1 +
21),by Jensen’s inequality.)

Inadmissibility results. Suppose that y(x) satisfies

@) 1(* 8|| ” (x)=0ifx; =0,
an d == = 0(llx[I7?).
This form of y is motlvated following (7). X
Suppose B/2+ k—1>0.Let 0<c<k—-1+p8/2,0=(,1,---,1) and
define A = A, - - -, A)" by
o+ 1)
(3) (A(x)); = P :
=0 i x; =0.
Then
_ c 4(§,~ + 1)
(4) Aest = ||£ + 0”2 (2( 1+ 2& + ‘Pz(g)(gx + 1))
. 28 + 1)2)
+3 i) ] — —
e ( €+ )2
+0(JIs + 8117 - 4c)
4c
>——(k+B/2-1—-¢)+0 -3
E+ 0”2( B/ c) + 0(/1¢1~)

since 4§ + 1)/(1 +2£) > 2, () = 8@ + O(&] > and m \ 2 with
(1 — Q& + D?/)|¢ + 0]»)) also decreasing as £ 7 oo. Hence A, > 0 for ||£]|
sufficiently large.

We think that a detailed treatment of error terms will show that A > A, +
0(||&||~3) so that A > 0 for ||£|| sufficiently large, and in fact
) lim inf ., HEAE) =k +B/2-1-¢c>0
for H(£) = 1 + ||£||*. (Over most of its domain A = A, + 0(]|£||*). However, when
min & is not large, then A is less well approximated by A,,. This is due to the fact
that (A(x)), is defined to be zero if x; = 0 (so that x; + v,(x) =0 = x; + y(x) +
A(x)) instead of —c/||x + 8]|]>. However, it is easy to see that truncating A as we
have done can only increase A, and so leads to possible strict inequality in the
statement A > A,,, + 0(|£]|~>). (On the other hand the truncation of A is necessary
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in order to guarantee the accuracy of the approximation as &, — 0, say, for fixed
§2> M gk (large).))

Generalized Bayes estimators. Let g(§) be a generalized prior density in the
transformed problem. Suppose |(3/9%)g|/g = 0(£~') and higher derivatives of g
are similarly well behaved. The multidimensional version of 1.3(5) is

; 3 (s
(Yg)i ~ —mf )/n + (&'mg )g e__x)/ng - (Yg)i'

Computations involving the Poisson distribution show that (dm; M/3g)=0(1/(1 +
£2). Hence

6)  (%(0), = (7(x), = —1/ @ +4x) + ( % |,

Note that the uniform generalized prior in the original problem leads to the
minimax estimator (a(x)); = x; (direct computation). This prior corresponds to the
prior gy(§) = [I*_,& in the transformed problem. Hence the generalized Bayes
estimator for this pn'or is §, (x) = x, or v, (x) = 0. The formula (6) yields (,(x));

= (4x(1 + 2x))~"' + O(x;"%). Hence there is an error in the approximation vy, ~
¥, and the error is 0(1/x3) = 0(1/ x,).

For a prior which behaves like g, the approximation (6) is therefore satisfactory
(0(||x|| ")) only on the region where min x; is large.

A more satisfactory approximation to y, may be obtained by using 1.3(10)
instead of 1.3(5). Suppose g = hg, where h is smooth and ||V A||/h = o[ x| ™.
Then from the appropriate multivariate version of 1.3(10) and the fact that y, =0,

)/4g(x) + 0(x;72).

0 (e, =m0 5, )/ + 01172,

§=x

(In both (6) and (7) we have neglected to include certain terms which involve mS"?
for i # j. These terms do not affect the qualitative conclusions made above, and in
fact can be absorbed in the 0(||x||~2) terms of (7) if A(§) ~ ||£€]|%.)

Suppose that A(£) ~ ||£]|# and that the derivatives of 4 behave asymptotically to
those of ||£]|%. Then by (7) (v, (¥)); = (m$>(x)/8)Bx;/||x|I* + 0|l x|| ). It can be
checked that mP(x)x;, — 2x; = 0(1). Hence this is an estimator of the form (2). (A
more direct calculation shows that for A(&) ~ [|£]|® (v, (*)); ~ 4Bx,/||x|* uni-
formly as ||x|[> — co. Hence (2) is actually a closer approximation than (7).)

How to prove inadmissibility. The expansion (7) indicates that if y is generalized
Bayes and satisfies (2) then the prior (density) is of the form g = hg, with
h(§) ~ ||&||®. If so, then

JH ™ (©)z(®) d = (1 + 7)™ 181 °TIE; 4§, = oo
since 8/2 > 1 — k. This indicates that § = x + y is inadmissible, and that the
inadmissibility can be proved by Method II.
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The usual minimax estimator 8(x) = x is therefore inadmissible for dimensions
k > 2. This situation differs from the case of location parameters where inadmissi-
bility first appears in dimension 3. However, this apparent difference may be
explained by the fact that the differential inequality for the Poisson problem in k
dimensions is qualitatively similar to the differential inequality 2.2(1) for the
location problem in 2k dimensions. This similarity can best be seen by comparing
2.2(5) to (4), above. It can thus be said that the Poisson inadmissibility in
dimension 2 follows for the same cause as the location inadmissibility in dimension
4. The similarity of the differential equations indicates that the minimax estimator
here should be admissible when k = 1, a result which we discuss later.

We also note that the generalized prior densities g = hg, ~ ||¢||%g, in this
problem correspond to generalized prior densities of the asymptotic form (Za,)?/2
in the original Poisson problem. The densities mg(A) and mg(A) of Clevenson and
Zidek (1974) with 8’ = — (8/2 + k — 1) are densities of this form. Hence the
generalized priors mg. and mg, of Clevenson and Zidek (1974) apparently lead to
inadmissible procedures if 8 < 0.

Actually, a proof of the indicated inadmissibility would involve a complication
not mentioned above. Since & = {£ : §& > 0} is not closed the expression (5) does
not suffice to establish the truth of the basic hypothesis 1.2(7) of the theorem for
Method II. It is also necessary to examine H({)A(§) as one (or more) of the
coordinates, &, tends to zero. This can be done as follows:

Make the additional assumption that §(x) = x; + y,(x) > ¢ > 0 whenever x; >
0, 1 <i < k. Modify the definition of A by replacing the expression ||x + || in
the definition (3) by o + ||x + @|?, ¢ > 0. This modification does not effect the
truth of (5). Also a direct computation shows that if £ = 0, then

«n+mnf—$f_«n+mm+xuW—¥f]

lim inf,_,.E
§¢ Tk giz giz

1
> 4¢e’E,| —— 888 .
f(o+||x+0||2)

On the other hand our heuristic analysis shows that if £ > ¢/2 then
2 7, 2 2 ’
«@+nu»—§ﬂ_(»+m@+»u»—§6]

34 ”2 . 2
§ §

) 0( (o + ||z'c + 0||2)’)

uniformly for § >e/2. As above, if § < e/2 then the left side of the preceding
expression is positive for o large enough. Hence if o is chosen large enough then

(8) lim inf, , H(Z)A() > 0
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whenever & = 0 for some i = 1, - - -, k. The basic hypothesis 1.2(7) is implied by
(5) and (8) combined.

It is now necessary to check that if y is generalized Bayes and satisfies (2) with
B/2>1— k then fH ' (§)G(d§) = . For this purpose it is easiest to return to
the original form of the problem. Then (2) becomes a(z) = z + ¢(z) where

©) 9(2) = 225 + 0((22) ")

with 8/2 > 1 — k. Let J be any prior measure on the space of original parameters,
{a : a; > 0}. Suppose a(-) is generalized Bayes for J. It is necessary to show that

(10) S(1 + Za)”'J(da) = oo.

Direct computation shows that

(e ) (da)
(1 ) = (a0} (da)

for z; > 1, where §;; is the Kronecker 8 function. It can be seen that the function
a(-) uniquely determines the moments of the finite measure K(da) = (Ile ™ %)J(da).
The growth of the moments of X is restricted by the combination of (9) and (11).
We think this restriction should suffice to show that there is a 1-1 relationship
between prior measures J and their generalized Bayes procedures satisfying (9).
From this it follows that if a(-) (satisfying (9)) is generalized Bayes for some J which
satisfies (10), then a(-) is not admissible (assuming the heuristic analysis leading to
(5) and (8) is correct).

It seems as if one should be able to exploit (11) in order to show that for any
generalized Bayes a(-) satisfying (9) the corresponding prior, J, satisfies (10). We
have been able to do this in dimension £ = 1. Here is the argument: there is some
Z, such that a(z) >z for z > Z, Let ¢, = a(Z,)/Z,!. Then, (11) implies that
fa’K(da) > c,j! for j > Z, where K(da) = e~ *J(da). Now,

ef(1 + a)”'J(da) = fe'**(1 + a)” ' K(da)

1+ a)’™!
]

=JZiZ0 K(do)

a/7!

1
> 002j>207 = o,

which is the desired result.

Admissibility. Formula (7) and the algebraic computations in Section 2.2 make
it easy to decide which of the above procedures should be admissible. Suppose
g = hgy ~ ||€]|%go, as above, with 8 < 2 — 2k. Let (%) be defined as in 2.2(25).
Then A; >0 as i — oo as in Section 2.2. This indicates that the estimator described
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by v, is admissible. (Since the distribution of X is discrete, the expression for A; is
actually a sum over the possible values of X. Nevertheless this sum should be
adequately bounded by a multiple of A;, where

P03 ) )2

A= ffix:x>0)2 T()_ Ry(x)|1 x| PT1x; dx;

with #,(-) as in 2.2(25). It is particularly important to check the relation between
the expressions for A; and A on the region when min x; is small; and according to
our calculations the relatlon is as desired so that A; does seem to be uniformly
bounded by a multiple of A J)

As noted, the priors mg: and m of Clevenson and Zldek (1974) correspond to
priors g = hg, ~ ||¢||%g, with B8 < 2 — 2k if (and only if) B’ > 0. Hence, the
corresponding (generalized) Bayes procedures are apparently admissible in the
original Poisson problem. For m/‘} these generalized Bayes procedures are

"+ k-1
82z, v =(1- B z, "> 0.
pl ) ( Sk_z+ B+ k- 1) p

Clevenson and Zidek show that these procedures are minimax for 0 < 8’ < k — 1;
so the above formula apparently yields a class of admissible minimax procedures
when k > 2, each of which dominates the usual minimax procedure. (Clevenson
and Zidek demonstrate the unconditional admissibility of 8,?, only for 8’ > 1, when
mg, is a proper prior density.)

Other loss functions. The above methods can be applied to Poisson problems
involving a variety of other loss functions. For example, it is relatively straightfor-
ward to generalize the above to apply to loss functions of the form £(a, a) =
Ew(a;/ oz,.IE - a,.%) where w is any appropriate function.

On the other hand, the loss function =(a; — a;)* behaves differently. Consider,
instead, the loss function =(a; — ,)*/(Za,), which is equivalent for admissibility
consideration (and has bounded risk). In the transformed problem,

(12) Ay = Z(m” + )&/ |I8]* — ZZ(mf> ’)ﬁz/llillz)—?\ = I/ 161

where m{?, m{*), and n® are defined in (1). Again, a direct calculation yields that
Y¢(x) = 0 when g(§) = ||£||*. The analog of (7) is

19 (), = ()2 3D S| )+ 00179

for “smooth” functions, h. Several interesting results for this problem appear in
Peng (1976) and Hudson (1977).

Inadmissibility results. We consider here only the minimax procedure 8(x) = x;
so that y = 0 = ¢ in the following. It can be seen that (12) is fundamentally
different from (1) because of the additional factors, &2/||¢||, which appear in (12).

§{=x
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For, if A is defined by (3) and &, — co for fixed (but large) §,, - - - , § the formula
(12) yields

. N
Aoy ~ mgt))\i - mﬁ')g—x—iki - ni>‘i2

~—@2+2A-1)-0c)<0.
1€
This indicates that an estimator of the form 8 + A can never beat § for all £ no
matter what is the dimension k.
In order to demonstrate inadmissibility choose

A(x)i = —

clnx; )
_— min x; > 0
%2 In’x; :
=0 otherwise,
for ¢ > 0. This corresponds to an estimator in the original problem of the form
z + Q(z) with

4c In z
(0(2)); ~ — S %, as z; — o0.
Then
Mn & m$PIn &
A = 4 > m; i i ‘2
=P Ing, {( & & )g’
) 2 In%¢, ne In%¢,
i) _ 4 _ 4 —1
+m (1 ) 1n25,.) 23 In%¢, + 0 )}

c

" P In%,

Hence A, > 0 when min £ is large whenever 0 < ¢ < (k — 2)/2. The indicated
result is that 8(x) = x is inadmissible in dimension k > 3. Of course a proof of this
fact—or even a careful heuristic demonstration—requires considerably more of an
argument. However, as Peng (1976) and Hudson (1977) have both proved this fact
(by direct computations) using competitors z + Q(z) with Q of the above form we
will not proceed further here.

Admissibility. When k = 1 the two loss functions are identical, so that the
estimator 8(x) = x is admissible here as before. The following argument indicates
that now the estimator 8(x) = x is also admissible when k = 2. This estimator is
generalized Bayes with respect to the prior density g(§) = ||§ I1?/¢,& on {£: & > 0).

Define

[2(k = 2) — 4 + O((min £) ") ].

In 2(ln+§i)2
-
1 S(n*£)P* < 1
0 S(n*g)? >

2
G =(1 ) 1< 3" <
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Then
~ ~ ~ 2
Ay = [12(F4g(x) — Fo(x))mh(x)g(x) dx, dx,

d 2
XU

<Bffn:mo 1<zt )| — 5 L g,
‘ W) | xR %

In’x, } dx, dx,

=B,ff x x>, 1<ZIn; <j 2
¢ /) n%(Z In%x,))* | *1%2

= B”(J
B p’In’

As in Section 2.2 the bound of A; by a multiple of 1~Xj may be easier to establish if a
smoother-randomized-version of 4, is used in place of the above. See the
parenthetic discussion following 2.2(27). Also, as noted before, A; is actually a
summation rather than an integral as in A;. It is particularly important to check the
adequacy of the bounds implied above when min x; is small. This must be done (by
someone) before the above assertion can be considered anything more than a

conjecture.

pdp—0 as j-— o0.

2.4. Estimating a location parameter with nuisance parameters: setup. Let
X X Z € R' X R' with density p(x — &z — ), £ ¢ € R! X R'. Let L be loca-
tion invariant — L((§, {), d) = W(d — £) as in Section 1.1. This problem has been
treated in detail in Berger (1976b, ¢) following the methods outlined in our
manuscript. His results cover a wide variety of possible situations, but do leave a
few unsettled questions. We will not repeat his results here. The next two sections
describe some other problems which involve nuisance parameters. See Portnoy
(1975, 1976) for a different, but related, treatment of a special case of this problem.

2.5. Estimating the largest mean: setting. Suppose Z,, - - - , Z, are indepen-
dent normal random variables with E(Z) = 6, Var(Z) =6 i=1,- - -, N. It is
desired to estimate { = ' = max{#§, : 1 <i < N}. For simplicity of presentation,
take 02 = 1and £(, a) = (¢ — a)*. There are several problems depending on what (if
any) a priori knowledge there is concerning the ordering of the 8,’s. Treat first the
most definite situation in which the entire ordering is assumed known. Take—
without loss of generality—8M =6, >8, > - - - > 6,.

A reasonable procedure to propose using in this situation is the generalized
Bayes procedure for the uniform prior on the parameter space. For simplicity, we
will concentrate on the question of admissibility of this estimator, but note that the
following considerations apply almost without change to a variety of other gener-
alized Bayes estimators. Various aspects of this problem and related problems are
considered in Cohen and Sackrowitz (1970) and in Blumenthal and Cohen
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(1968a, b). In particular, Cohen and Sackrowitz (1970) prove minimaxity of the
procedure defined above. The following considerations indicate that this procedure
is admissible for any value of N.

Basic equations. To begin to reformulate this problem in the desired format let
xX=2Z,¢=0,y,=2Z,,,—Z,andn,=86,,,—0,i=1---,N—1l(yandnq
are (N — 1) dimensional vectors.) Then L((, 1), d) = (¢ — d)*

The uniform prior on the original parameter space, {#}, corresponds to the
uniform prior on the parameter space € = {£,1:0> 17, > - - - > ny_,}. For this
development, let ' denote the density of this prior.

In the above formulation the moment coefficients in the basic equation are
My = 2E((x' — &* =2, n=2, and all other coefficients are zero. Thus the
appropriate version of formula 1.3(5) yields the approximation ¥, = 0. Actually
v, = [(y) where T is a continuous function and I'(0,y,, - -+, yy_1) >& > 0 for
all y,, - - -, yy_;. Hence the approximation is not a very good one for values x’, y
with y, near 0. In particular, the approximation is not uniformly good as ||(x’, y)||
— 00, and it is not true that v,  — 0 as ||(x’, y)|| = oo. Hence the approximations to
the risk in Section 1.2 and to those used to prove admissibility in Section 1.4 will
not be accurate uniformly as ||(x’, y)|| = 00. The methods of Sections 1.2 and 1.4
cannot be used with the form of the basic equation indicated above to prove
admissibility or inadmissibility. (The poor accuracy of 1.3(5) here may be traced to
the fact that #’ is not continuous on R! X R¥~! = R¥ at the boundaries of Q.)

In order to use the methods of Sections 1.2 and 1.4 the above inaccuracy must be
avoided. Let x = x’ + v, (x’, ¥y, * * * , ¥y—1)- The transformation x’, y,, * -+ , yy_
— X, ¥, ,Yy_) is one-one (see Brown (1971, Lemma 3.1.2)), so the problem
with observations (x, y) is equivalent to that with observations (x’, y). In this new
problem the generalized Bayes procedure for u, the transform of ', is of course
given by y, = 0.

The appropriate form of the basic equation is now

A PN L oan 82
(D) A= —mh = mygm — BT 11’"?1)5;}‘ - (3)22mt? R

i

—nA?/2
where
myp = O(e"h)’

my, =2 + 0(e™),

mi? = 0(e™) i=1,---,N—1,
mfﬁj)=0(e""+”f) ihj=1---,N—1,
n=2.

(The order terms above are conservative; smaller bounds are also valid. For
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example,

Ss€ exp(— (2 + (¢ — y, + 0,))/2) deTl iy,
[s exp(— (8% + 2(¢ — y, + n,))/2) d¢TL iy,
=0(e @/ =0(e¥) as y, -0

on S so that myg = Eo ,(x; + T(yy, * * -, yn_1) = 0(e>™) = 0(e™) as 0, — — 0.)
Admissibility. The appropriate form of 1.3(10) is

r(y19 t syN—l) =

a b
@ Y Vurm™ (m208$+2N Ly le)a h

9 s\ 0 92
2o o p ) — (YN G
2:, 1( W, mfs )( o, h) (2)211-1’” T h)/nh
where—in addition to the bounds in (1)—
%mgﬂ = 0(e™* ") ihj=1,---,N—1
The essential features of (2) may be summarized as
. . d 0%
3w <B(aa—§h + g b+ Bl o )/nh
where
a=2+ 0(em)
b; = 0(e™).

Define { on § by
aemy e = (1= EL) i - ooy
Then
(Tqu = )87 < B'(R™™V + (N = ek
+ (N - 1)26_2R)X{I£I<R",o>n,> -r}(&m)
so that

Jo(Frzu — fu)2§,§—+0 as R— oo.

The indicated result is that the uniform prior, u, yields an admissible generalized
Bayes procedure. As elsewhere, a proof of this conjecture would require a verifica-
tion that the relevant error terms are insignificant. For this purpose, it would
probably be more suitable to proceed as indicated in Sections 2.2 and 2.3 and to
use a smoother version of {2 such as

= (i [PSge " RD/1 gRY?,
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The form of {; was motivated by ignoring the second order terms in (3) and then
solving a variational problem as in Brown (1971). In closing we note that there
remain error terms here resulting from the truncated nature of € which have no
analogy in the admissibility considerations in Sections 2.2 and 2.3. We believe that
these error terms can be shown to be unimportant by methods similar to those used
in Brown (1971) to handle truncated parameter spaces.

Parameter ordering unknown. An equally interesting variant of the preceding
situation is the case where the parameter ordering is unknown. The variable Z,
with E(Z) = 0, is as before, but the parameter space, in terms of 4, is all of R".
£(8, a) = (8™ — a)’, as before. A generalized prior for which one might want to
check admissibility of the corresponding procedure is the uniform prior on all of
R", Let 8* denote this procedure. (This procedure is probably no longer minimax;
at least it is not in the case n = 2, which is fully treated in Blumenthal and Cohen

(1968a)).
Let Z® > Z® > . . . > Z® denote the ordered values of Z,, - - - , Z,. Define
x=08%zy, 0 ,2,), =00y, =20V - 2O andy, = E(y)i=1,---,n— 1.

(This definition of u,, rather than the more obvious 7, = §¢*V — g, seems to be
necessary in order to make sufficiently small the error in 1.3(10).) We believe that
the transformation @, - - - , 8™ 5 & 9, - - -, n _, is one-one, so that the trans-
formed problem is isomorphic to the original one. The uniform prior on the
original problem transforms to a prior which is bounded and smooth on the set of
possible parameter points.

To check admissibility of the procedure 8(x, y) = x, which corresponds to the
procedure 8*, begin by writing down equation 1.3(10). The resulting equation is
accurately summarized by (3) above. Hence, using the sequence of prior distribu-
tions defined in (4) yields the conjecture that 8(x,y) = x is admissible for this
problem, and that §* is admissible for the original problem.

Similar admissibility results should be valid for any prior density in the original
problem which is bounded and smooth on the parameter space, R". Of particular
interest are priors of this type whose density depends only on the differences
g — 9 j =2, ... nsince these priors result in procedures which are invariant
under the transformations Z,- - -, Z, > Z,,, + ¢,* + +, Z,, + ¢ for any per-
mutation, =. By the Hunt-Stein theorem (see e.g. Kiefer (1957)) at least one
invariant procedure must be minimax and admissible. It is reasonable to suppose
that there is a smooth, bounded, invariant generalized prior which yields this
minimax and admissible procedure.

2.6 Estimating a normal variance. Suppose one observes Z ~ N(u, 02/ N) and
5% ~ o’x? where p, o> are unknown. (In the usual applications p = N — 1.) It is
desired to estimate 0. For now, assume the loss function is £(0? a) = (In(a/¢?).
Other loss functions will be mentioned below. As background, we remind the
reader that the best fully invariant estimator (which is @ = as?) is not admissible
for this problem. See Stein (1964) and Brown (1968).
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In order to apply our methods it does not suffice to identify (s%, Z) as (x, »)
since, for example, Var,. s> = 202 as 6> — co; and thus the basic condition 1.1(2) is
violated.

Instead, let
x =1n s? + In a where a = exp{ — E,.(In 5%},

¢=Ino’d=1Ina, W(d- £ =(d - ¢
y = Ig(Z/a%s), and
1 = Ig(n/ o) where

Igt = (sgn ¢) In(1 + |¢)).

(1

It is easy to check that this new problem is isomorphic to the original one. In

particular, admissibility of an estimator 8(x, y) in the new problem is equivalent to

admissibility of the estimator exp 8(x(s?), y(s2, 2)) in the original problem.
Computations yield that

my =0, my, = const.> 0, n = 2,

my (& m) = M,(n) = — (sgn n)my/2 + 0(e ™)
) (M, is an odd function, M,(4) < 0 forn > 0),
myy(§ 1) = My(n) = 0(1) where M,(n) = M,(—n), M,(0) <0,
and also M/(n) = 0(e~ ) i=12
Inadmissibility results. The best invariant estimator ¢ = as? corresponds to the

estimator 8(x, y) = x in the transformed problem. One can check from the condi-
tions (2) that there are smooth solutions to the ordinary differential inequality

Acse = My(m)H' (1) — (3)My()R"(n) — h¥(n) > O.

(The crucial facts about the M, are that they are continuous, and M,(0) < 0, and
sgn M,(n) = — sgn 7.) It follows from the discussion in Section 1.2 that 8(x, y) =
x can be improved on by an estimator of the form 8'(x, y) = x + A(y) with £ as
above. This indicates that a = as? should be inadmissible. (This result was proved
in Brown (1968)). A more careful computation of M,, M, could enable an explicit
determination of an appropriate function, h. The above alternative estimator
corresponds to a scale invariant estimator in the original problem.

Admissibility results. Let g(§, 1) = G(n) be a generalized Bayes prior density.
Suppose G = 0(1), G’/ G = 0(1) and G”/G = 0(1). Suppose also that G’/ G and
G"/G—>0 as n— * co. (Note that the resulting generalized Bayes estimator
corresponds to a scale invariant, but not location-scale invariant estimator in the
original problem.)

From 1.3(10), and the discussion following it,

Vo — Tng < K(|y| + By + |hysl)/ P
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As in Section 2.2 let A, = (1 — (In(¢%2 + 9?)/Ini®)) for 1 < 2+ 92 <i% =1
for £2 + 52 < 1, = 0 for £2 + 5? > ;2. Computation yields that A, — 0. Hence the
indicated result is that the procedure §, is admissible for g as above. (Technical
note: again, as in Section 2.2 it is more convenient to check negligence of error
terms if an everywhere smooth and positive kernel such as (i 7'f - ,h,e ~© "2/ dp)?
is used in place of the A’s described above.)

Brewster and Zidek (1974) studied the above problem. They found that the
estimator 8(Z, s%) = @**(Z/5)s* where **(2) = exp{— E,_¢ 2-\(In 57 |Z/s| < 2)}
is minimax and is generalized Bayes in the original problem. The generalized prior
which leads to this procedure is given explicitly in their papers. When transformed
to (£, n) coordinates it is of the type discussed above. Hence the Brewster-Zidek
estimator should be an admissible minimax estimator.

The above conclusions concerning admissibility are based on only a few qualita-
tive characteristics of the coefficients m, u in the basic equations. It is thus easy to
see that they hold for a wide variety of loss functions. For example, if the original
loss function is £(0%,a) = (a ~ 0%)*/¢* then the corresponding loss function in the
transformed problem is W(d — &) = (e?"¢ — 1)%. Just as above it is true that the
generalized Bayes estimators for the above priors should be admissible. In particu-
lar, the Brewster-Zidek minimax estimator for this loss function is

8(s%, Z) = @**(Z/5)s” with ¢**(1)
= E,c0,2=1(5%12/5] <2)/Eyco, iai(s¥ 12/5] <1)

and this should be an admissible estimator.

Other related problems. The independence of Z, s? for the normal distribution
eases the computation of the moments in (2). But it does not appear to be essential.
The types of generalized prior described above should yield admissible generalized
Bayes estimators of the scale parameter for a variety of problems involving
unknown location and scale parameters. For example, Zidek (1973) considers the
estimation of the scale parameter of an exponential distribution with unknown
location. Computations like those described above indicate that the generalized
Bayes estimators (7, , ,) described by Zidek for this problem are admissible
procedures.
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