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Abstract. This paper develops an efficient heuristic to solve the non-homogeneous 
redundancy allocation problem for multi-state series-parallel systems. Non identical 
components can be used in parallel to improve the system availability by providing 
redundancy in subsystems. Multiple component choices are available for each subsystem. 
The components are binary and chosen from a list of products available on the market, 
and are characterized in terms of their cost, performance and availability. The objective is 
to determine the minimal-cost series-parallel system structure subject to a multi-state 
availability constraint. System availability is represented by a multi-state availability 
function, which extends the binary-state availability. This function is defined as the ability 
to satisfy consumer demand that is represented as a piecewise cumulative load curve. A 
fast procedure is used, based on universal generating function, to evaluate the multi-state 
system availability. The proposed heuristic approach is based on a combination of space 
partitioning, genetic algorithms (GA) and tabu search (TS). After dividing the search space 
into a set of disjoint subsets, this approach uses GA to select the subspaces, and applies 
TS to each selected subspace. The design problem, solved in this study, has been 
previously analyzed using GA. Numerical results for the test problems from previous 
research are reported, and larger test problems are randomly generated. These results 
show that the proposed approach is efficient both in terms of both of solution quality and 
computational time, as compared to existing approaches. 
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1 Introduction

The redundancy allocation problem (RAP) involves selection of components and levels of redun-
dancy to maximize system performance. The RAP is NP-hard (Chern, 1992). It has attracted
considerable attention from the research community. The great majority of the existing papers
on the RAP use traditional binary-state reliability. It is assumed in binary-state reliability mod-
eling that a system and its components may experience only two possible states: good and failed.
The RAP for binary-state series-parallel systems has been studied in many different forms, and
by considering numerous approaches and techniques. It has been solved by using optimization
approaches and techniques such as dynamic programming, integer programming, mixed-integer
non-linear programming, heuristics and meta-heuristics: see for example (Tillman et al., 1997;
Kuo and Prasad, 2000; Kuo et al., 2001) for an extensive overview of these techniques.

However, in many real-life situations, this binary-state representation may not be adequate,
since the system and its components may rather have more than two levels of performance
varying from perfect functioning to complete failure. A multi-state system (MSS) may perform
at different intermediate states between working perfectly and total failure. A series-parallel
system consisting of different binary-state components that have a cumulative effect on the
entire system performance may be considered as a MSS (Lisnianski and Levitin, 2003).

The basic concepts of MSS reliability were first introduced in (Murchland, 1975; Barlow
and Wu, 1978; El-Neweihi et al., 1978; Ross, 1979). These works defined the system structure
function and its properties. They also introduced the notions of minimal cut set and minimal
path set in MSS context, and studied the notions of coherence and component relevancy. A
literature review on MSS reliability can be found for example in (Lisnianski and Levitin, 2003).
The methods currently used for MSS reliability estimation are generally based on four different
approaches: (i) the structure function approach which extends Boolean models to the multi-
valued case (e.g., (Barlow and Wu, 1978; El-Neweihi et al., 1978; Ross, 1979)); (ii) the Monte-
Carlo simulation technique (e.g., (Zio and Podofillini, 2004)); (iii) the Markov process approach
(e.g., (Xue and Yang, 1995; Pham et al., 1997)); and (iv) the universal moment generating
function (UMGF) method (e.g., (Ushakov, 1986; Levitin, 2005)). These approaches are often
used by practitioners, for example in the field of power systems reliability analysis (Billinton
and Allan, 1990; Lisnianski and Levitin, 2003). In practice, different reliability measures can be
considered for MSS evaluation and design (Aven, 1993; Liu and Kapur, 2006). The availability
of a repairable MSS is defined by the system ability to meet a customer’s demand (required
performance level). In power systems for example, it is the ability to provide an adequate supply
of electrical energy (Billinton and Allan, 1990).

The RAP for series-parallel MSS is more recent than that of binary-state systems, and it has
been much less studied in the literature. It was first introduced in (Ushakov, 1987), where
the universal generating function method was used for the reliability calculation (Ushakov,
1986). Following these works, genetic algorithms (GA) were used for the homogeneous RAP
of series-parallel MSS in (Lisnianski et al., 1996; Levitin et al., 1998), and extended to the
non-homogeneous version of this problem in (Levitin et al., 1997). The other existing solution
methods are limited to the homogeneous case, and they include an ant colony optimization in
(Nourelfath et al., 2003), heuristic algorithms in (Ramirez and Coit, 2004; Agarwal and Gupta,
2007), and a tabu search (TS) approach is (Ouzineb et al., 2008).

Our TS approach in (Ouzineb et al., 2008) was shown to be efficient when dealing with the
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RAP of homogenous series-parallel multi-state systems. This approach proceeds by dividing the
search space into a set of disjoint subsets, and then by applying TS to each subset. However,
when allowing different versions of the components to be allocated in the same subsystem, the
number of subsets is too high that the heuristic in (Ouzineb et al., 2008) is not able to give
good quality solution in a reasonable time. The present paper extends this heuristic to solve the
non-homogeneous case by adding a GA that selects a limited number of spaces. By applying
TS only to the subspaces selected by GA (instead of the high number of possible subspaces),
the proposed approach, when tested on problems from previous research and on larger problems
randomly generated, proved efficient not only at reducing computing time but also at improving
overall solution quality. This hybrid approach is called space partitioning/tabu-genetic (SP/TG),
SP and TG being acronyms of Space Partitioning and Tabu-Genetic, respectively. It has been
successfully applied in (Ouzineb et al., 2009) to solve the RAP for binary-state systems and the
expansion-scheduling problem of homogeneous series-parallel multi-state systems.

The non-homogeneous RAP is important for two reasons (Levitin et al., 1997): (i) by allowing
different versions of the components to be allocated in the same subsystem, one can obtain a
solution that provides the desired availability level with a lower cost than in the solution with
identical parallel components; (ii) in practice, the designer often has to include additional com-
ponents in the existing system. It may be necessary, for example, to modernize a power system
according to new demand levels or according to new reliability requirements. Some subsystems
can contain components of versions unavailable at present. In this case, some components with
the same functionality but with different parameters should compose the subsystems.

The remainder of the paper is organized as follows. In Section 2, we present a description
of the RAP for non-homogeneous series-parallel multi-state systems. In Section 3, the solution
approach is presented and applied to solve our problem. The test problems and the numerical
results are presented in Section 4. Finally, some concluding remarks are given in Section 5.

2 Problem formulation

2.1 General description

The non-homogenous version of the RAP as defined in (Levitin et al., 1997), considers a system
consisting of n subsystems connected in series, such that each subsystem i (i = 1, 2, ..., n) can
contain a number of different components connected in parallel. Each subsystem has mi versions
of the component types available on the market. For each version j (j = 1, 2, ...,mi) belonging to
subsystem i, there are xij components connected in parallel (xij is a decision variable). Different
versions and number of components may be chosen for any given subsystem. Failed components
are repaired and the components availabilities are known. Each component i is characterized,
according to its version j, by its availability (Aij), capacity (Gij) and cost (Cij). The capacity is
measured as a percentage of nominal total system capacity. The MSS availability is defined as its
ability to satisfy consumer demand, which is represented as a piecewise cumulative load curve.
Indeed, redundancy allows availability improvement, but it increases the total investment cost.
The objective is to design the system so that the total component procurement cost is minimized,
subject to a multi-state system availability constraint. The later is based on prescribed demand
levels for different operating time periods, and it is taken to be greater than or equal to the
required availability level A0.
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2.2 Assumptions

1. The characteristics of each component (i.e., its cost, availability and capacity) are known
and deterministic.

2. The states of the components are binary (i.e., either good or failed).

3. The component states are mutually s-independent, and the system has a finite number of
states that are s-independent.

4. Mixing of components is allowed in each subsystem (i.e., non-homogeneous redundancy
can be used).

5. There exists a steady-state distribution of MSS state probabilities.

2.3 Notation

n number of series MSS subsystems
i index for subsystem, i ∈ {1, 2, ..., n}
mi number of available components choices for subsystem i
j index (type) for component
xij number of components of type j used in subsystem i
xi (xi1, xi2, ..., ximi

)

X a string of dimension L =
n∑

i=1

mi which defines the entire system structure,

X = (x11, x12, ..., x1m1
, x21, x22, ..., x2m2

, ..., xn1, xn2, ..., xnmn
)

Mij maximum number of components of version j in parallel belonging to subsystem i
Aij binary-state availability of component of version j belonging to subsystem i
Cij cost of each component of version j in subsystem i
Gij nominal performance level of component of version j in subsystem i
C(X) total cost of series-parallel MSS
A(X) stationary availability index of the overall multi-state series-parallel system
A0 a specified minimum required level of system availability index
K number of partitioned intervals
k index for partitioned intervals
T MSS operation period

Tk a partitioned interval in T, T =
K∑

k=1

Tk

T vector (Tk)1≤k≤K

W 0
k required MSS performance level for Tk

W0 vector (W 0
k )1≤k≤K

Rms MSS reliability
Ams MSS stationary availability
WS total capacity of the system
y(t) MSS state at time t, y(t) ∈ {1, 2, ...,M}, 1 is the worst state and M is the best

state
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m number or index of MSS state, m ∈ {1, 2, ...,M}, 1 is the worst state and M is the
best state

Wm MSS steady-state performance level associated with m
W (t) output performance level of the MSS at time t, W (t) ∈ {W1, ...,WM}
pm limt→∞[Pr(W (t) = Wm)]
mnli maximum number of local iterations without improvement
q amplification parameter in the penalized objective function
Ns number of randomly-constructed solutions in the initial population of GA
Nc number of genetic cycles
Nrep number of reproduction-selection procedures per genetic cycle
CPU the running time, given in seconds (time of execution)

2.4 Mathematical model

We first formulate the cost of subsystem as a linear function and then give the mathematical

formulation of the problem. The cost of subsystem i is generally given by

mi∑

j=1

xijCij. As in

(Lisnianski et al., 1996; Ouzineb et al., 2008), if one has to take into account price discounting,
the component cost should be considered as a function of the number of components purchased
simultaneously. In this case, the cost of subsystem i is a function of xij:

C(xi) =

mi∑

j=1

xijCij(xij). (1)

The total cost can be calculated by the sum of the costs of the chosen components. The non-
homogeneous redundancy allocation problem studied in this paper can then be stated as follows:

minimize C(X) =
n∑

i=1

mi∑

j=1

xijCij(xij) (2)

subject to

A(X) ≥ A0, (3)

xij ∈ {0, 1, ...,Mij}, i = 1, 2, ..., n; j = 1, 2, ...,mi. (4)

Constraint (3) represents the availability constraint. Constraint (4) specifies that, for each
version j belonging to subsystem i, the number of components connected in parallel is an integer
which cannot be higher than a pre-selected maximum number Mij.

2.5 Availability of MSS

The series-parallel multi-state system is considered to have a range of performance levels from
perfect functioning to complete failure. In fact, the system failure can lead to decreased capability
to accomplish a given task, but not to complete failure. For example, in electric power systems,
reliability is considered as a measure of the ability of the system to meet the load demand (W 0).
The reliability index was defined in (Ross, 1993; Murchland, 1975). As in (Billinton and Allan,
1990), using an analogy with the Loss of Load Probability index (LOLP) we can write LOLP

5

A Heuristic Method for Non-Homogeneous Redundancy Optimization of Series-Parallel Multi-State Systems

CIRRELT-2009-06



= 1 − A(X). LOLP is understood as the probability that the system cannot supply a given
demand load. For repairable MSS, a multi-state stationary (steady-state) availability A is used
as Pr(W (t) ≥ W 0) after enough time has passed for this probability to become constant (the
reader is referred for example to (Lisnianski et al., 1996; Levitin et al., 1998)). In the steady-state
the distribution of states probabilities is given by equation (5), while the multi-state stationary
availability according to the demand W 0 is formulated by equation (6):

pm = lim
t→∞

[Pr(W (t) = Wm), (5)

A(X,W 0) =
∑

Wm≥W 0

pm. (6)

Since the demand is represented as a piecewise cumulative load curve, the operation period
T is divided into K intervals (number of piecewises). Each interval has a duration Tk and a
required demand level W 0

k (k = 1, ..., K). In this case, the MSS availability index is (Lisnianski
et al., 1996; Levitin et al., 1998):

A(X,W 0) =
1

K∑

k=1

Tk

K∑

k=1

A(X,W 0

k )Tk. (7)

The equation (7) can be written as follows:

A(X,W 0) =
1

K∑

k=1

Tk

K∑

k=1

Pr(WS ≥ W 0

k )Tk, (8)

where Pr(WS ≥ W 0
k ) is the probability that the total capacity of the system (WS) is not lower

than a specific demand level W 0
k .

For solving the combinatorial optimization problem formulated in Section 2.4, it is important
to have an effective and fast procedure to evaluate the availability of a series parallel MSS. For this
evaluation, we use the universal moment generating function (UMGF), which has been proven
to be very effective for high-dimensional combinatorial optimization problems. The reader is
referred for example to (Lisnianski and Levitin, 2003) or (Ouzineb et al., 2008) for details about
the availability evaluation method by the UMGF.

3 Solution methodology

The search space S is composed of all possible series-parallel structures. This space is first divided
into a set of disjoint subspaces. Then, an efficient TS is applied to each subspace selected by
using GA.
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3.1 Partition of the search space

Each subspace (also called region) is characterized by its own address. Given a system structure
as a string of integers X, (X = (x11, ..., x1m1

, ..., xn1, ..., xnmn
)), the address of X is defined by

the number of all available components. That is, address(X) =
n∑

i=1

mi∑

j=1

xij. A search subspace

of address r, denoted by Sr is defined as the set of series-parallel structures (solutions) which
have the same address, equal to r. While the lower bound of r is n, its upper bound is given by

N =
n∑

i=1

mi∑

j=1

Mij. Remark that (Sr)2s≤r≤N is a partition of the search space S.

3.2 Tabu search

Tabu search is a meta-heuristic method originally proposed in (Glover, 1977, 1986; Glover and
Laguna, 1997), that consists in an iterative, where at each iteration we move from a current solu-
tion to a new solution in a neighbourhood, until some stopping criterion has been satisfied. Our
neighbourhood structure is defined as follows: at each iteration of TS, the local transformations
(or moves), that can be applied to the current solution X, define a set of neighbouring solutions
for a given subspace as: Neighborhood(X) = series-parallel structures obtained by applying a
single move to X. The move applied to X consists in changing the number of components in
parallel by adding and subtracting one, if possible, for any subsystem The move applied to X
consists in changing the number of components in parallel by adding and subtracting one, if
possible, for any subsystem (xi1j1 → xi1j1 + 1 and xi2j2 → xi2j2 − 1). It follows that address X
does not change after a local transformation of X and the search process remains in the same
subspace. TS enhances the local search performance by using memory structures: once a poten-
tial solution has been determined, it is marked as tabu, so that the algorithm does not visit that
possibility repeatedly. That is, tabus are used to prevent from cycling when moving away from
local optima through non-improving moves. At each iteration, the best solution X’ in a subset
V (X) Neighborhood(X) is selected and considered as a tabu solution for some next iterations.
The subset V (X), called the effective neighborhood), is generated by eliminating the tabu solu-
tions from Neighborhood(X). Tabu solutions are stored in a short-term memory, called tabu list,
which contains the solutions that have been visited in the recent past. The size of the tabu list
(tabu tenure) used in this paper is dynamic, as it is usually found that using a variable size tabu
list is more efficient (Gendreau, 2002; Ouzineb et al., 2008). Furthermore, the objective function
(to be minimized) is penalized by adding to C(X) the term α max(0, A0 − A(X)), with α is a
sufficiently large number. This term represents a penalty for constraint violation, which forces
the TS algorithm to consider only feasible solutions. Finally, the stopping criterion is specified
in terms of a maximum number of local iterations (mnli) without improving the best-known
solution.

3.3 Steady-state genetic algorithm

The GA is a meta-heuristic that operates with ”chromosomal” representation of solutions, where
crossover, mutation, and selection operators are applied. Instead of using only one candidate
solution, a GA maintains a population of candidate solutions during its search. In our ”chro-
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mosomal” representation, each individual in the population is coded as a finite-length string of
integers, and it represents one region in the search space. The version of GA used in this paper
is commonly known as the steady-state GA or GENITOR (Whitley and Kauth, 1988). We first
generate randomly an initial population of Ns solutions (strings). Within this population, new
solutions are obtained during the genetic cycle by using crossover operators and applying tabu
search. The crossover produces a new solution (child or offspring) from a randomly selected
pair of parent solutions. We use the so-called two-point (or fragment) crossover operator, which
creates the child string O for the given pair of parent strings X1 and X2 by:

1. choosing randomly two positions k and m in the string O;

2. copying string elements belonging to the fragment between k and m from X1; and

3. copying the rest of string elements from X2.

The following example illustrates this crossover procedure (the elements belonging to the frag-
ment are in bold):

• Parent string X1:(2 0 0 1 3 0 0 0 0 1 1 0);

• Parent string X2:(0 0 2 0 1 0 1 0 0 0 4 0);

• Child string O:(2 0 2 0 1 0 1 0 0 1 1 0).

Each child solution represents a new selected subspace to which the tabu search algorithm
described above is applied. To avoid the application of TS to the same subspace more than
once, a set E (initially empty) is used to store the addresses of already visited subspaces, while
TS is not applied to the child if its address belongs to E. Each new solution obtained by TS
is decoded to obtain the objective function (fitness) values. These values, which are a measure
of quality, are used to compare different solutions. This fitness is evaluated according to the
penalized objective function C(X) + α max(0, A0 − A(X)). The comparison is performed by a
selection procedure that specifies which solution is better: the new solution obtained by TS or the
worst solution in the population. The better solution (representing the better subspace) joins
the population, while the other is discarded. If the population contains equivalent subspaces
following selection, redundancies are eliminated and the population size decreases consequently.
After new solutions are reproduced Nrep times (or if the population contains only one subspace),
new randomly constructed solutions are generated to replenish the population, and a new genetic
cycle begins. The GA is terminated after Nc genetic cycles. The final GA population contains
the best selected subspace represented by its best solution found by TS.

4 Computational results

All the algorithms were implemented in C++. The numerical tests were completed on an Intel
Pentium IV 3000 MHz DEC station 5000/240 with 1024 Mbytes of RAM running under Linux.
All computations use real float point precision without truncating or rounding values.
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4.1 Test problems

Four design optimization problems (benchmarks) are used to analyze the SP/TG methodology
for the non-homogeneous RAP for series-parallel MSS. The first three problems were introduced
in (Lisnianski et al., 1996)-(Levitin et al., 1998), while the fourth is a larger instance introduced
in (Ouzineb et al., 2008). For the tables of input data, the reader is referred to (Ouzineb et
al., 2008) where these four benchmarks were denoted by lis4-(7/11)-4, lev5-(4/9)-4, lev4-(4/6)-3
and ouz6-(4/11)-4. In the notation xxxa-(b/c)-d, xxx are the first three characters of the first
author’s name in the paper where the instance was first introduced; a is the number of subsystems
connected in series; (b/c) means that (from b to c) different components types are available in the
market; and d is the number of levels in the cumulative load-demand curve. When considering
that mixing of components is allowed, the total number of different solutions to be examined and
the number of subspaces are given by the following equations:

Size of the search space =
n∏

i=1

mi∏

j=1

Mij (9)

Number of subspaces =
n∑

i=1

mi∑

j=1

Mij − n + 1 (10)

Let us consider for example that the maximum number of components allowed to reside in
parallel is 10 for each subsystem. In this case, Table 1 presents, for each benchmark, the size of
the search space and the number of subspaces for the homogeneous and non-homogeneous cases.
From this table, we remark that the sizes of the problems increase drastically when considering
non-homogeneous redundancy. As a result, solution methodologies for homogeneous redundancy,
including our heuristic developed in (Ouzineb et al., 2008), are no longer valid.

Cases lev4-(4/6)-3 lev5-(4/9)-4 lis4-(7/11)-4 ouz6-(4/11)-4
Size of the homogeneous 106 108 107 1010

search space non-homogeneous 1020 1026 1034 1042

Nbr. of homogeneous 60 79 74 102
subspaces non-homogeneous 197 286 337 415

Table 1: Search space size and disjoint subspaces (maxi-
mum of 10 components in parallel)

4.2 Parameter settings

Meta-heuristics generally depend on their parameters. Setting these parameters is an important
task that can be time-consuming. Regarding this, we would like to underline first that even
if the proposed heuristic combines two meta-heuristics, it has the advantage of using only a
few parameters that correspond to the termination criterion. Moreover, we have performed our
parameters in such a way that we have not to update their values whenever we change the problem
data. In fact, preliminary numerical tests were used to set the values of the parameters. For
each problem instance, other data are randomly generated and used to calibrate the parameters.
Once the values of the parameters are set for these preliminary problems data, they are used
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for the variations of the problem instances to be solved in this paper. In this way, we avoid any
parameter’s over-fitting. Parameters’ values are presented in Table 2. The value of α is set to
10000 for all problems.

lev4-(4/6)-3 lev5-(4/9)-4 lis4-(7/11)-4 ouz6-(4/11)-4
Nrep 100 200 300 200
Ns 500 500 500 500
mnli 20 10 20 10
Nc 10 50 50 50

Table 2: SP/TG parameters values

4.3 GA re-implementation for comparison

To the best of our knowledge, the only existing method to solve the non-homogeneous RAP for
MSS is the GA proposed in (Levitin et al., 1997). To compare the proposed methodology with
this GA, we have re-implemented it in the same conditions (computer, programming language,
operating systems, etc.) as for the SP/TG heuristic. On the one hand, this allows us to determine
the best feasible GA solutions for the problems that are solved for the homogeneous case in
(Lisnianski et al., 1996; Levitin et al., 1998). On the other hand, it will be possible to solve by
GA the problem instance in (Ouzineb et al., 2008), which is a larger benchmark also never solved
in the literature for the non-homogeneous case. The values of the GA parameters are presented
in Table 3. In this table, the notation Pm refers to the mutation probability used in (Levitin et
al., 1997). Note that for the non-homogeneous problem solved in (Levitin et al., 1997), all the
parameters are the same as in this reference. Furthermore, the parameters used for the problems
newly solved by GA are calibrated using preliminary numerical tests. These parameters were
varied to establish the values most beneficial to the optimization process.

lev4-(4/6)-3 lev5-(4/9)-4 lis4-(7/11)-4 ouz6-(4/11)-4
Pm 1 1 1 1
Ns 500 500 500 500
Nrep 1000 2000 2000 2000
Nc 100 200 200 500

Table 3: GA parameters values

4.4 Comparisons of the proposed SP/TG with GA

The percent that one solution improves upon another is defined in terms of objective function
and CPU time as:

MPCI = 100% ×
(Minimal GA Cost - Minimal SP/TG Cost)

Minimal GA Cost
. (11)

MPTI = 100% ×
(Minimal GA Time - Minimal SP/TG Time)

Minimal GA Time
. (12)
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4.4.1 Comparing the best solutions and running times over ten runs

Using different random seeds, ten runs were made for each problem instance. The results of
the best solutions obtained over ten runs by SP/TG and GA, for each instance, are presented in
Tables 4 and 5. In these tables, each sub-system structure i is represented by an ordered sequence
of strings as follows: 1(xi1), 2(xi2), ...,mi(ximi

), that are directly taken from the corresponding
solution X = (x11, x12, ..., x1m1

, x21, x22, ..., x2m2
, ..., xn1, xn2, ..., xnmn

).

Problem name A0 A(X) C(X) Best solution
1 2 3 4 5 6

0.900 0.901 5.423 4(1) 3(2) 1(3) 3(1), 5(1) – –
lev4-(4/6)-3 0.960 0.963 7.009 1(3) 2(1), 3(2) 1(3) 3(1), 5(1) – –

0.990 0.991 8.180 1(3) 3(3) 1(3) 3(1), 4(2) – –
0.975 0.976 12.855 4(2), 6(1) 5(6) 1(1), 4(1) 7(3) 4(3) –

lev5-(4/9)-4 0.980 0.981 14.770 4(2), 6(1) 3(2) 2(1), 3(2) 7(3) 3(2), 4(1) –
0.990 0.992 15.870 4(2), 6(1) 3(2) 2(2), 3(1) 7(3) 4(3) –
0.910 0.914 14.886 11(1) 7(1) 2(4) 3(5) – –
0.920 0.920 15.075 10(1) 7(1) 2(4) 3(5) – –
0.940 0.941 17.418 1(5) 7(1) 2(5) 2(1), 3(4) – –
0.950 0.950 19.861 1(5) 3(2) 2(5) 2(3), 3(2) – –

lis4-(7/11)-4 0.960 0.961 20.570 10(1) 2(1), 5(2) 2(4) 2(1), 3(4) – –
0.970 0.970 21.288 10(1) 2(1), 5(2) 2(5) 2(3), 3(2) – –
0.980 0.981 22.738 1(5) 2(1), 5(2) 2(5) 2(1), 3(4) – –
0.990 0.990 23.779 1(5) 1(1), 5(2) 2(5) 2(5) – –
0.999 0.999 26.919 1(6) 3(4) 2(5) 2(3), 3(3) – –
0.975 0.979 11.241 3(4) 1(4) 2(5) 2(7) 3(2) 4(1)

ouz6-(4/11)-4 0.980 0.980 11.369 3(4) 1(5) 2(5) 2(8) 3(2) 4(1)
0.990 0.992 12.764 3(4) 1(4) 2(4) 2(8) 3(2) 4(2)

Table 4: SP/TG best solutions over ten runs

Problem name A0 A(X) C(X) Best solution
1 2 3 4 5 6

0.900 0.900 5.803 2(1), 3(1) 3(2) 1(3) 3(1), 4(1) – –
lev4-(4/6)-3 0.960 0.960 7.365 2(2) 2(2), 3(1) 1(3) 2(2), 3(1) – –

0.990 0.991 8.180 1(3) 3(3) 1(3) 3(1), 4(2) – –
0.975 0.976 12.855 4(2), 6(1) 5(6) 1(1), 4(1) 7(3) 4(3) –

lev5-(4/9)-4 0.980 0.981 14.770 4(2), 6(1) 3(2) 2(1), 3(2) 7(3) 3(2), 4(1) –
0.990 0.992 15.870 4(2), 6(1) 3(2) 2(2), 3(1) 7(3) 4(3) –
0.910 0.914 14.886 11(1) 7(1) 2(4) 3(5) – –
0.920 0.920 15.075 10(1) 7(1) 2(4) 3(5) – –
0.940 0.941 17.418 1(5) 7(1) 2(5) 2(1), 3(4) – –
0.950 0.950 19.861 1(5) 3(2) 2(5) 2(3), 3(2) – –

lis4-(7/11)-4 0.960 0.961 20.570 10(1) 2(1), 5(2) 2(4) 2(1), 3(4) – –
0.970 0.970 21.288 10(1) 2(1), 5(2) 2(5) 2(3), 3(2) – –
0.980 0.981 22.562 10(1) 3(3) 2(5) 2(4), 3(1) – –
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Problem name A0 A(X) C(X) Best solution
1 2 3 4 5 6

0.990 0.990 23.779 1(5) 1(1), 5(2) 2(5) 2(5) – –
0.999 0.999 26.919 1(6) 3(4) 2(5) 2(3), 3(3) – –
0.975 0.979 11.241 3(4) 1(4) 2(5) 2(7) 3(2) 4(1)

ouz6-(4/11)-4 0.980 0.980 11.516 3(5) 1(5) 2(5) 2(7) 3(2) 4(1)
0.990 0.990 12.911 3(5) 1(4) 2(4) 2(7) 3(2) 4(2)

Table 5: GA best solutions over ten runs

In the comparison results given in Table 6, the best solutions and the best running times are
independently selected among the ten runs. These results indicate that the proposed SP/TG
generally outperforms the GA. In fact, in terms of the solution quality, Table 6 shows that SP/TG
obtained lower cost in 4 of the 18 test cases, one higher cost, and it is equal to GA in the other
13 cases. In terms of the execution time, SP/TG is quicker than GA for all instances.

Cost Running time
Problem name A0 SP/TG GA MPCI SP/TG GA MPTI

0.900 5.423 5.803 06.55 03.68 10.03 63.31
lev4-(4/6)-3 0.960 7.009 7.365 04.83 04.12 10.29 59.96

0.990 8.180 8.180 00.00 03.68 10.34 64.41
0.975 12.855 12.855 00.00 18.48 71.01 73.98

lev5-(4/9)-4 0.980 14.770 14.770 00.00 17.32 61.05 71.63
0.990 15.870 15.870 00.00 21.36 67.09 68.16
0.910 14.886 14.886 00.00 61.46 166.75 63.14
0.920 15.075 15.075 00.00 56.05 172.72 67.55
0.940 17.419 17.418 00.00 52.70 139.48 62.22
0.950 19.861 19.861 00.00 25.37 137.28 81.52

lis4-(7/11)-4 0.960 20.570 20.570 00.00 46.33 154.23 69.96
0.970 21.288 21.288 00.00 38.83 156.68 75.22
0.980 22.738 22.562 -00.77 62.14 112.79 44.91
0.990 23.779 23.779 00.00 64.69 119.73 45.97
0.999 26.919 26.919 00.00 70.20 197.44 64.44
0.975 11.241 11.241 00.00 77.00 372.76 79.34

ouz6-(4/11)-4 0.980 11.369 11.516 01.28 66.60 415.45 83.97
0.990 12.764 12.911 01.14 45.58 377.57 87.93

Table 6: The comparison results (the best costs and run-
ning times among ten runs are in bold

4.4.2 Comparing the mean values over ten runs

The mean values obtained by each method (i.e., mean costs and mean CPU over ten runs) are
given in Table 7. In terms of the mean objective function, SP/TG obtained lower costs in 13 of
the 18 test cases, obtained higher costs in 2 of the 18 test cases, and is equal to GA in the other
3 cases. In terms of the mean running time, SP/TG is quicker than GA for all instances.
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Cost Running time
Problem name A0 SP/TG GA MPCI SP/TG GA MPTI

0.900 5.423 5.803 06.55 04.59 10.17 54.87
lev4-(4/6)-3 0.960 7.009 7.369 04.88 04.72 10.36 54.44

0.990 8.193 8.195 00.02 04.47 10.45 57.22
0.975 12.855 12.855 00.00 28.68 74.14 61.32

lev5-(4/9)-4 0.980 14.774 14.778 00.01 25.51 69.44 63.26
0.990 15.870 15.870 00.00 25.66 74.36 65.49
0.910 14.886 14.937 00.34 125.16 183.17 31.67
0.920 15.075 15.075 00.00 81.51 210.64 61.30
0.940 17.477 17.500 00.13 142.27 174.00 18.24
0.950 19.861 20.363 02.46 73.87 180.73 59.13

lis4-(7/11)-4 0.960 20.570 20.802 01.12 108.99 174.80 37.65
0.970 21.324 21.424 00.47 72.71 194.24 62.57
0.980 22.738 22.781 00.19 106.31 194.26 45.27
0.990 23.825 23.867 00.18 147.81 151.08 2.16
0.999 27.391 26.923 -01.71 122.62 209.41 41.45
0.975 11.296 11.241 -00.49 101.54 382.71 73.47

ouz6-(4/11)-4 0.980 11.401 11.516 00.10 96.22 419.77 77.08
0.990 12.779 12.911 01.02 96.49 388.37 75.16

Table 7: The comparison results in terms of the mean
values (ten trials)

4.4.3 Comparing the worst results over ten runs

The worst results obtained by each method (i.e., worst costs and worst CPU among the ten runs)
are given in Table 8. In terms of the worst objective function, SP/TG obtained lower costs in
8 of the 18 test cases, obtained higher costs in 6 of the 18 test cases, and is equal to GA in the
other 4 cases. In terms of the worst running time, SP/TG is quicker than GA in 14 of the 18
test cases and it is less efficient in the other 4 cases.

Cost Running time
Problem name A0 SP/TG GA MPCI SP/TG GA MPTI

0.900 5.423 5.803 06.55 05.82 10.34 43.71
lev4-(4/6)-3 0.960 7.009 7.403 05.32 05.84 10.53 44.54

0.990 8.315 8.328 00.16 05.66 10.58 46.56
0.975 12.855 12.855 00.00 38.68 77.64 50.18

lev5-(4/9)-4 0.980 14.789 14.780 -00.06 33.68 71.24 52.72
0.990 15.870 15.870 00.00 31.46 77.96 59.56
0.910 14.886 15.218 02.18 406.95 194.66 -52.17
0.920 15.075 15.075 00.00 140.52 225.04 37.56
0.940 18.004 17.711 -01.63 375.92 199.73 -46.87
0.950 19.861 20.748 04.27 174.07 226.18 23.04

lis4-(7/11)-4 0.960 20.570 21.148 02.73 234.27 195.37 -16.60
0.970 21.556 21.541 -00.01 134.30 218.10 38.42
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Cost Running time
Problem name A0 SP/TG GA MPCI SP/TG GA MPTI

0.980 22.738 22.965 00.99 174.81 260.10 32.79
0.990 24.136 24.227 00.38 424.76 172.94 -59.28
0.999 29.249 26.952 -07.58 211.19 228.90 07.74
0.975 11.794 11.241 -04.69 143.74 389.33 63.08

ouz6-(4/11)-4 0.980 11.687 11.516 -01.46 142.78 432.91 67.02
0.990 12.911 12.911 00.00 158.64 394.81 59.82

Table 8: The comparison results in terms of the worst
values (among ten trials)

4.4.4 Comparing the average results of SP/TG with the best results of GA

From Table 9, we conclude that if the average solutions of SP/TG are compared to the best
solutions of GA, in 4 instances SP/TG is better, in 8 instances GA is better, and in the remaining
instances (6) they are equal. Moreover, when comparing the average running time of SP/TG
with the best CPU of GA, in 16 instances SP/TG is better, and in 2 instances GA is better.
This comparison of average performances of SP/TG versus best-of-ten GA performances (GA)
highlights clearly the efficiency of SP/TG.

Cost Running time
Problem name A0 SP/TG GA MPCI SP/TG GA MPTI

0.900 5.423 5.803 06.55 04.59 10.03 54.24
lev4-(4/6)-3 0.960 7.009 7.365 04.83 04.72 10.29 54.13

0.990 8.193 8.180 -00.16 04.47 10.34 56.77
0.975 12.855 12.855 00.00 28.68 71.01 59.61

lev5-(4/9)-4 0.980 14.774 14.770 -00.01 25.51 61.05 58.21
0.990 15.870 15.870 00.00 25.66 67.09 61.75
0.910 14.886 14.886 00.00 125.16 166.75 24.94
0.920 15.075 15.075 00.00 81.51 172.72 52.80
0.940 17.477 17.418 -00.34 142.27 139.48 -01.96
0.950 19.861 19.861 00.00 73.87 137.28 46.19

lis4-(7/11)-4 0.960 20.570 20.570 00.00 108.99 154.23 29.33
0.970 21.324 21.288 -00.17 72.71 156.68 53.59
0.980 22.738 22.562 -00.77 106.31 112.79 05.74
0.990 23.825 23.779 -00.19 147.81 119.73 -19.00
0.999 27.391 26.919 -01.72 122.62 197.44 37.89
0.975 11.296 11.241 -00.49 101.54 372.76 72.76

ouz6-(4/11)-4 0.980 11.401 11.516 01.00 96.22 415.45 76.84
0.990 12.779 12.911 01.02 96.49 377.57 74.44

Table 9: Comparison of mean SP/TG with best GA per-
formances over 10 seeds
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4.5 Robustness

To measure the robustness of the SP/TG and GA algorithms, the standard deviations over ten
runs are given in Table 10 for each instance. We remark from this table that for each instance,
the standard deviation is very low for both algorithms. This implies that the proposed method
and GA are both robust. Nevertheless, our SP/TG has a lower standard deviation in 13 of the
18 test cases. Therefore, SP/TG can be considered as more robust than GA, while yielding
generally solutions with lower costs in a shorter time.

Problem name A0 SP/TG GA
0.900 00.00 00.00

lev4-(4/6)-3 0.960 00.00 00.02
0.990 00.04 00.05
0.975 00.00 00.00

lev5-(4/9)-4 0.980 00.01 00.00
0.990 00.00 00.00
0.910 00.00 00.11
0.920 00.00 00.00
0.940 00.18 00.11
0.950 00.00 00.34

lis4-(7/11)-4 0.960 00.00 00.15
0.970 00.09 00.13
0.980 00.00 00.20
0.990 00.11 00.19
0.999 00.97 00.01
0.975 00.17 00.00

ouz6-(4/11)-4 0.980 00.10 00.00
0.990 00.05 00.00

Table 10: Standard deviations of SP/TG and GA

4.6 Convergence of SP/TG and GA

The convergence curves of SP/TG and GA were drawn for all the 18 test cases, showing similar
behaviour in all these cases. Figures 1-4 present examples of these curves and show that the
proposed SP/TG algorithm requires generally less numbers of iterations than GA. We remark
that even if the solutions of our algorithm are generally not as good as GA solutions during the
first iterations of the search process, they tend to become quickly better.

5 Conclusion

The non-homogeneous redundancy allocation problem for multi-state series-parallel systems has
been efficiently solved in this paper by combining two meta-heuristics, and the idea of space por-
tioning that proceeds by dividing the search space into a set of disjoint regions. A steady-state
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Figure 1: Convergence curves for GA and SP/TG for lev4-(4/6)-3
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Figure 2: Convergence curves for GA and SP/TG for lev5-(4/9)-4
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genetic algorithm has been used for the selection of subspaces, while an efficient tabu search
has been applied to each selected subspace. Four test problems have been analyzed and the
results have been attractive, showing that the proposed methodology can be used as an efficient
alternative to GA. When compared to GA, SP/TG results in a superior performance in terms of
solution quality, execution time and reduced variability. By re-implementing the GA, we have
not only shown the greater efficiency of our SP/TG but also re-proven that the GA proposed in
(Levitin et al., 1997) is effective for the non-homogeneous RAP of series-parallel MSS.
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