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ABSTRACT With the continuous development of the Internet of Things (IoT) and communications

technology, especially under the epoch of 5G, mobile tasks with big scales of data have a strong demand in

deep learning such as virtual speech recognition and video classification. Considering the limited computing

resource and battery consumption of mobile devices (MDs), these tasks are often offloaded to the remote

infrastructure, like cloud platforms, which leads to the unavoidable offloading transmission delay. Edge

computing (EC) is a novel computing paradigm, capable of offloading the computation tasks to the edge

of networks, which reduces the transmission delay between the MDs and cloud. Therefore, combining

deep learning and EC is expected to be a solution for these tasks. However, how to decide the offloading

destination [cloud or deep learning-enabled edge computing nodes (ECNs)] for computation offloading is

still a challenge. In this paper, a heuristic offloading method, named HOM, is proposed to minimize the total

transmission delay. To be more specific, an offloading framework for deep learning edge services is built

upon centralized unit (CU)-distributed unit (DU) architecture. Then, we acquire the appropriate offloading

strategy by the origin-destination ECN distance estimation and heuristic searching of the destination virtual

machines for accommodating the offloaded computation tasks. Finally, the effectiveness of the scheme is

verified by detailed experimental evaluations.

INDEX TERMS Edge computing, deep learning, computation offloading, 5G, cloud.

I. INTRODUCTION

As a network technology, Internet of Things (IoT), con-

necting ubiquitous Mobile Devices (MDs) with sensors via

wireless networks, is extended from Internet technology [1].

IoT has been applied in many fields widely, including

communication device, healthcare system, logistics man-

agement, etc. Currently, massive applications are operating

through IoT in these domains, and some of these applications,

such as virtual reality, augmented reality and video process-

ing, need some properties that traditional IoT is unable to

provide, such as low latency, high throughput and so on [2].

Fortunately, 5G can make up the shortfall in IoT. 5G con-

nects innumerable smart devices, realizing data sharing and

interaction. Besides, the basic idea of internet of everything

The associate editor coordinating the review of this manuscript and
approving it for publication was Kim-Kwang Raymond Choo.

could be provisioned by 5G to enlarge the scope of coverage

of IoT, where billions of MDs are connected to the Inter-

net [2]. In terms of speed, 5G runs nearly hundred times faster

than 4G [3]. With these observations, 5G basically meets the

needs of traditional IoT for computation and data offloading.

Benefit from 5G, the real-time applications can acquire the

processing resources in time.

With the evolution of 5G, the mobile applications have a

higher requirement of computing power to MDs. The battery

level of MDs consumes fast when MDs operate computation-

intensive applications and such applications can be split into

many computation tasks. Currently offloading these com-

putation tasks from MDs to the remote infrastructure with

computing power is a fashion way for resource provisioning.

One of the most popular offloading strategy is offloading

tasks to the cloud platform due to its elastic and unlim-

ited resource [4], [5]. End users are able to visit and hire
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the infrastructure resources from cloud conveniently through

Internet, which provides favorable conditions for data sharing

between these users. Meanwhile, considering the long dis-

tance between cloud and MDs, transmission delay of compu-

tation tasks should be taken into account [6].

The high-speed mobile networking of 5G and the

improvement of IoT promote the development of big data

applications. Many applications in 5G, such as face recogni-

tion, natural language processing and so on, are able to oper-

ate in the terminal [7]. As a powerful analysis tool for big data,

deep learning could extract accurate information from the

original data of terminal devices. Nowadays, deep learning is

applied into IoT and mobile applications for achieving abun-

dant of early results. Considering the limited performance of

data transfer networks, transmitting massive data to Cloud for

deep learning will consume much energy and produce much

transmission delay, which reduces the efficiency of deep

learning tasks. In [8], the challenge of cloud-centric system

was considered and an autonomous and incremental comput-

ing framework and architecture for deep learning based IoT

applications was proposed to tackle it. Meanwhile, with the

fashion of Edge Computing (EC), offloading deep learning

tasks from Cloud to the edge of network becomes possible,

which can effectively shorten the transmission delay.

EC is a novel computing paradigm which is powerful to

offload the computation tasks of MDs to the Edge Com-

puting Nodes (ECNs) for performing, to alleviate the trans-

mission delay [9]. Taking advantage of the EC paradigm,

network load and the transmission delay of deep learning

tasks are both optimized, which makes positive contribution

to ease the computational burden of MDs and improve life of

battery [10].

However, if all the deep learning tasks in MDs are only

offloaded to the edge, ECNs would suffer from overload in all

probability [11] [12]. On the other hand, if all these tasks are

offloaded to cloud, they will consume a mass of transmission

delay and the big number of these tasks will bring challenges

of cost and energy consumption for cloud [9], [13]–[15].

In order to avoid overload of ECNs, reduce the renting cost

of cloud services, as well as alleviate transmission delay

between MDs and cloud, how to choose the best offloading

destination of the deep learning tasks from cloud and ECNs

is still a challenge. Facing with this challenge, a Heuristic

Offloading Method (HOM) for deep learning edge services

in 5G networks is proposed.

Specially, our main contributions are as follow:

• Present an offloading framework for deep learning edge

services in 5G networks.

• Realize the optimal computation offloading by heuristi-

cally placing the deep learning tasks to the appropriate

computing infrastructure.

• Conduct specific simulation experiment to evaluate the

effectiveness of HOM.

The following is the arrangement for the rest of this

paper. Section 2 displays an offloading framework for deep

learning edge services and the offloading time model of

TABLE 1. Symbols and corresponding descriptions.

FIGURE 1. Offloading framework built upon CU-DU architecture.

this framework. The Heuristic Offloading Method is devised

in Section 3. Simulation results are provided in Section 4.

Section 5 is the related work. Section 6 exhibits what we

conclude for this paper.

II. SYSTEM MODEL

In this section, an offloading framework for deep learning

edge services in 5G networks is considered. In this frame-

work, some formalized concepts are defined for the sake

of building a computational migration optimization model.

Table 1 presents the key notations of optimization model and

the corresponding descriptions.

A. AN OFFLOADING FRAMEWORK FOR DEEP LEARNING

EDGE SERVICES IN 5G NETWORKS

As shown in Fig. 1, an offloading framework is built upon

Centralized Unit (CU)-Distributed Unit (DU) architecture.

Because the CU-DU architecture is widely distributed by
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means of numerous IoT, the offloading framework has a good

adaptation in 5G networks [2]. Consequently, 5G urges the

evolution of IoT, which makes IoT have more security, more

reliability, lower latency, etc.

In general, the offloading framework is divided into four

parts: Cloud, ECNs, DUs and MDs. Cloud, equipped with

scalable computing resources, is powerful to execute the deep

learning tasks by leveraging Virtual Machines (VMs) which

are employed for hosting the deep learningmodel [16]. ECNs,

co-located with CUs, which have the similar functions with

Cloud, are edge computing nodes, where a certain number

of VMs with deep learning models are installed. The ECNs

receive a mass of data produced by the surroundingMDs, and

they perform pre-processing and execute parts of deep learn-

ing tasks it can resolve [7]. Considering the limited resources

that ECNs own, each ECN only performs a certain number of

deep learning tasks. DUswork as transferring stations for data

transmission to offload the data, generated by the surrounding

MDs, to the ECNs they connect.MDs, such asmobile phones,

laptops and flat computers, are able to be distributed to any

places where they have access to 5G networks and offload

deep learning tasks at any time they need.

To be specific, in this framework, Cloud accommodates

any number of deep learning tasks it receives by extending

computing resources. ECNs are connected with Cloud and

transmitted deep learning tasks to Cloud. Each ECN is com-

posed of multiple Mobile Edge Computing (MEC) servers

and one CU. For MEC servers, their computing and storage

resources are expressed in the form of VMs, which gives

ECNs the ability of handling deep learning tasks. For CUs,

their functions are receiving deep learning tasks, choosing

servers that sustain the deep learning tasks and then trans-

mitting these tasks to the chosen servers. For ECNs, any

two ECNs are able to conduct data transmission through

data channel and each ECN is connected with multiple DUs.

Deep learning tasks are sent from DUs to ECNs through

data channels. For each DU, its functions are receiving the

deep learning tasks fromMDs and transmitting these tasks to

ECNs. Moreover, each MD is only connected with one DUs.

For MDs, they transmit noisy and highly redundant deep

learning tasks to ECNs for deep learning.

Assume that N represents the number of MDs and each

MD can generate one deep learning task, denoted as pn =

{dan, tn} (n = {1, 2, . . . ,N }), where dan represents the

data size of pn, and Tn represents the running time of pn.

Accordingly, P = {p1, p2, . . . , pN } represents the collection

of all the total deep learning tasks that MDs generate. After

producing the task set P, MDs transmit the tasks to the

base stations for data transmission with DUs, denoted as

D = {d1, d2, . . . , dM }, where M is the number of DUs, and

dm(m = {1, 2, . . . ,M}) represents a DU instance. Through

DUs, deep learning tasks are transferred to ECNs, denoted as

C = {c1, c2, . . . , cK }, where K is the number of ECNs and

ck (k = {1, 2, . . . ,K }) represents an ECN instance. Let ek
represent the number of VMs that ECN ck (k = {1, 2, . . . ,K })

contains [17]. We suppose that each deep learning task takes

up only one VM, and it chooses a VM as its offloading

destination to host which needs to be obtained by the design

of offloading strategies. Let zn denote the offloading strategy

of pn. Correspondingly, the total strategy collection for the

deep learning task set P is denoted as Z = {z1, z2, . . . , zN }.

In this paper, we intend to optimize the offloading time

according to the destination of deep learning task, thus, in the

following sections, we will introduce the offloading time

model at length.

B. OFFLOADING TIME MODEL

The transmission delay is the embodiment of the execu-

tion efficiency for the deep learning offloading strategy. The

transmission delay is the standard to judge the quality of

the offloading strategy. Before calculating the transmission

delay, the destination of deep learning tasks and the route

these tasks passed should be determined. Cloud and MEC

servers are able to be served as the accommodation destina-

tion for task implementation. The transmission delay consists

of four parts, including the transmission time between MD

and DU (MT), the waiting time for the other deep learning

tasks transmitted to the hosted ECN (WT), the transmission

time from task migration between DU and ECN (DT) and the

transmission time for task migration between ECN and the

destination VM (CT).

Here are the formulas for the calculation of transmission

delay for deep learning task offloading:

Result of a one-to-many relationship between an ECN

and DUs, I km is used to express this relationship which is a

binary variable which is defined by

I km =

{

1, if dm connected to ck ,

0, otherwise.
(1)

Similarly, there is a one-to-many relationship between a

DU and MDs. f nm is a binary variable for expressing the

relationship between a DU and MDs, which is defined by

f mn =

{

1, if pn is connected to dm,

0, otherwise.
(2)

The calculation ofMT (zxn) and DT (zn) has similar mathe-

matical formula.MT (zn) is depended on the transmission rate

among MDs, DUs and dan. The mathematical calculation of

MT (Zn) is specified as follows:

MT (zn) =
dan

λmn
(3)

In (3), λmn is the transmission rate between pn and dm. Analo-

gously, DT (zn) is calculated by

DT (zn) =
dan

λkm
(4)

where λkm is the transmission rate between dm to ck .

The calculation of WT(zn) is decided by the time of the

other tasks that are transmitted before pn taking up DU.
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Therefore, WT(zn) is calculated by

WT (zn) =

k
∑

i=1

(MT (qi) + DT (qi)) (5)

where k is the number of these tasks transmitted before pn and

qi is the offloading strategy set for these tasks.

The calculation ofCT(zn) is divided into two cases in terms

of the location of the destination VM of pn. Since VMs are

installed in the Cloud andMEC servers, the deep learning task

pn can employ any unoccupied VM from the Cloud or MEC

servers. Therefore, CT(zn) is calculated by

CT (zn) =



















dan

λck
, if pn chooses Cloud

dan

λk2k1

, if pn chooses MEC servers

(6)

where λck is the transmission rate between ck and the cloud

platform, and λk2k1 is the transmission rate between ck1 and ck2.

In conclusion, the transmission delay of pn, denoted as Tn,

is the summation of MT(zn), WT(zn), DT(zn) and CT(zn),

which is calculated by

Tn =

M
∑

m=1

K
∑

k=1

f mn I
k
m(MT (zn) +WT (zn)

+DT (zn) + CT (zn)) (7)

and the total occupied time of all the deep learning tasks,

denoted as Tall , is calculated by

Tall =

N
∑

n=1

Tn (8)

C. PROBLEM FORMULATION

The problem considered in this paper is to select the opti-

mal offloading strategy for the deep learning tasks to mini-

mize Tall . In other words, the ultimate goal is to identify a

proper destination VM for hosting each deep learning task

to optimize the overall transmission time in the offloading

system. Therefore, the problem formulation is expressed as

follows:

minimize(Tall) (9)

III. HOM: HEURISTIC OFFLOADING METHOD FOR DEEP

LEARNING EDGE SERVICES IN 5G NETWORKS

A. METHOD OVERVIEW

In tradition, the deep learning tasks are offloaded to the cloud

platform which has massive computing resources that the

users don’t need to consider whether these tasks are able to

be accommodated or not [18], [19]. This solution seems to

be simple and useful, but after being carefully considered,

the transmission delay that this solution spends is too much

due to the slow transmission rate betweenCloud andMDs and

the large size of the deep learning tasks. In order to solve this

problem, ECNs, which have high transmission rate to MDs,

are coming up with to host some tasks with urgent time

requirements. It’s worth mentioned that ECNs have a certain

amount of computing power, which causes the appearance of

another computation offloading policy. The policy considers

all of deep learning tasks are offloaded to the ECNs which

they are connected to, which only pays attention to the high

transmission rate between ECNs and MDs, overlooking the

depletable computing resources of ECNs. In other words,

a single ECN doesn’t have enough resource to support all

deep learning tasks for resource provisioning at the same

time. These tasks need to wait for the tasks that occupied

the VMs on the relevant ECN to release these VMs. This

method consumes much transmission delay for this behavior

above. In this session, a heuristic offloading algorithm, named

HOM, is designed to solve the optimization of computation

offloading transmission delay.

The aim of HOM is to find the ideal destination VM from

ECNs and Cloud to shorten the offloading time. HOM avoids

the waste of waiting time for the occupied resources of ECNs.

The detailed procedures of this method are as follow:

• According to the distribution of ECNs, we confirm

shortest offloading path between any pair of original and

destination ECNs.

• Tasks are transmitted to their own local ECN, and then

determine the best offloading destination from ECNs

and Cloud.

• According to the offloading strategy above, we evaluate

the offloading time of tasks.

B. SHORTEST OFFLOADING PATH CONFIRMATION

On account of the complicated route of ECNs, there are

multiple paths between any two ECNs. For shortening trans-

mission delay of deep learning tasks, acquiring the shortest

path between any two ECNs is necessary. An example below

shows the process of acquiring the shortest path.

FIGURE 2. An example of a deep learning-enabled edge computing
network.

Fig. 2 shows an example of a deep learning-enabled edge

computing network. In Fig. 2, there are 13 nodes distributed

geographically which represent the ECNs, denoted as c1,

c2, . . . , and ck . The links between different nodes for connect-

ing ECNs are treated as the data channels. In this example,
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c1 is the local ECN and c13 is the destination ECN which the

task is decided to be offloaded to.

There are three routes between c1 and c13, which is selected

for comparison: P1 = {c1, c3, c7, c6, c10, c11, c13}, P2 =

{c1, c4, c6, c10, c11, c13}, P3 = {c1, c2, c5, c8, c9, c12, c13}.

In Fig.2, the blue, red and green paths are denoted as P1, P2
and P3 respectively. For finding the shortest path among P1,

P2 andP3, the transmission rates of these paths are considered

as follows.

Assume that the transmission rates between connected

ECNs, denoted as τ , are all equal. Let τ k1k2 be the transmission

rate of the shortest route between the ECNs k1 and k2. If the

ECN k2 is connectedwith another ECN k3, there is an internal

relationship among τ k1k3 , τ
k1
k2 and τ :

1

τ k1k3

=
1

τ
+

1

τ k1k2

(10)

Deduced from (10), τ k1k3 can be calculated by

τ k1k3 =
τ k1k2 · τ

τ k1k2 + τ
(11)

According to (10) and (11), it is obvious that the value of

τ k1k3 is smaller than that of τ k1k2 . It is proved that the more

data channels path contains, the lower the transmission rate is.

Therefore, the shortest path means the least number of chan-

nels.

In the above example, the channels number of P1, P2, P3
are 6, 5 and 6 respectively, thus the path P2 is the shortest path

among these three paths. This is the process of acquiring the

shortest path between c1 and c13.

Through analysis, the paths between any two ECNs can be

seen as a weighted undirected graph. The transmission rate

can be understood by weight. The problem is transformed

to find the shortest path on the weighted undirected graph.

There are many methods solving this problem, like Dijkstra

Algorithm and Floyd Algorithm. Consequently, we choose

the Dijkstra Algorithm to solve this problem, where the input

is a two-dimensional matrix that denotes the transmission rate

between any two ECNs [20], [21]. We use a two-dimensional

array to record the output of Dijkstra Algorithm, denoted

as s [22]–[24].

C. OFFLOADING PATH IDENTIFICATION

The offloading strategies for a task are classified as 3 cases

by the destination location the task locates in.

• Case 1: Offload this task to an unoccupied VM in

local ECN. This case has the shortest transmission delay

which is almost zero.

• Case 2: Offload this task to unoccupied VMs in ECNs

except local ECN. The transmission delay of this case

is calculated by (6). Because of the complicated route

between ECNs, finding a route to make the average

transmission rate λk2k1 be the shortest is a problem.

• Case 3: Offload this task to Cloud. dan/λ
c
k is transmis-

sion delay of CT(zn) in this case.

Case 1 is the best choice obviously, thus offload deep learn-

ing task to local ECN when local ECN has unoccupied VMs.

When there is no idle VMs in local ECN, it’s time to choose

the better solution between case 2 and case 3.

For case 2, choosing which ECN to offload deep learning

tasks is the key to the question. We use s, the output of

Dijkstra Algorithm, to solve this problem.

Here is an example for the offloading of deep learning

tasks pn. Assuming that the ECN c1 in Fig. 2 is local ECN of

the task pn and the transmission rate τ between any adjacent

ECNs is set to 540 (M/s). Therefore, the transmission rates

between local ECN c1 and all ECNs could be calculated

by (11) and the results are {∞, 540, 540, 540, 270, 270,

270, 180, 135, 180, 135, 108, 108} (M/s), donated as τc1. The

corresponding ECNs, denoted as C, are {c1, c2, c3, c4, c5, c6,

c7, c8, c9, c10, c11, c12, c13}. In order to determine the ideal

ECN, the ECN which has higher transmission rate to local

ECN is given priority. Therefore, sort τc1 from large to

small [25], [26] and change C according to τc1. After do

this, τc1 and C are changed to {∞, 540, 540, 540, 270,

270, 270, 180, 180, 135, 135, 108, 108} (M/s) and {c1, c2, c3,

c4, c5, c6, c7, c8, c10, c9, c11, c12, c13} respectively. Then,

check whether MEC servers of these ECNs have idle VMs

or not in terms of the sequence of C. Last, the first ECN

which has idle VMs is chosen as the ideal ECN. Algorithm 1

OPI (s, local) describes the determination of the ideal ECN

in detail.

In order to make choice effectively, rank s from the largest

to the smallest. After that, search for ECNs and its task case

of computing resource in sequence according to s. While we

find an ECN meeting ek > rk , this ECN ck is decided to be

the destination of offloading. That is whatOPI (s, local) does.

Moreover, OPI(s, local) also contributes transmission rate of

the shortest path between local ECN and ideal ECN. The

process of OPI(s, local) is ranking s, changing the sequence

of no(line 4 to line 11), traversing ECNs in terms of the

sequence of no and determining the ideal ECN of the deep

learning task (line 12 to line 16).

ThroughOPI(s, local), the serial number of the ideal ECN,

denoted asb_no, and its transmission rate of shortest path,

denoted as b_s, are acquired.

For case 3, the calculation of CT(zn) relies on the trans-

mission rate between local ECN and Cloud according

to (6). [27]

D. OFFLOADING DESTINATION CONFIRMATION

Algorithm 2 ODC(b_s, b_no, local, C2W) is considered

to determine the offloading destination and calculate the

offloading time of target task, where C2W is the transmission

rate between Cloud and ECNs.

Considering the offloading destination confirmation, target

task searches for local ECN at first. If local ECN has unem-

ployed VMs, this task will choose local ECN as offloading

destination. While local ECN doesn’t have usable VMs, this

task will search for usable ECN by Algorithm 1OPI(s, local)

and then compare the transmission rate of the usable ECN
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Algorithm 1 Offloading Path Identification OPI(s, local)

Require: s, local

Ensure: b_no, b_s

1: for i in K do

2: no(i) = i;

3: end for

4: for i in K − 1 do

5: for j = i+ 1 in K do

6: if s(local, j)>s (local, i) then

7: exchange s(local, j) and s(local, i)

8: exchange no(j) and no(i)

9: end if

10: end for

11: end for

12: for i in K do

13: if no(i) has unoccupied VMs then

14: b_no = no(i), b_s = s(i)

15: end if

16: end for

17: return b_no,b_s

Algorithm 2 Offloading Destination Confirmation

ODC(b_s, b_no, local, C2W)

Require: b_no, b_s, local,C2W

Ensure: Tn
1: for m in M do

2: find dm which is connected to pn
3: num = 0

4: for n in N do

5: find MDs which are connected to dm
6: getNOof MDs getNOof MDs

7: get dan of MDs

8: num++

9: end for

10: end for

11: sort NOs according to dan
12: for i in num

13: if NO(i) 6= n then

14: Add time of NO(i)’s transmission to WT(zn)

15: end if

16: end for

17: if local has unoccupied VMs then

18: CT (zn) = 0, employ a VMs from local

19: else

20: s = max (b_s, C2W(local))

21: CT (zn) = dan/s

22: end if

23: Tn += MT (zn) + DT (zn) + CT (zn) +WT (zn)

24: return Tn

with Cloud’s. The strategy which has bigger transmission rate

is chosen as the destination strategy.

Considering the calculation of offloading time, the calcu-

lation of WT(zn) is a problem, because DU only transmits

one deep learning task at the same time [28]. For calcu-

lating WT(zn), it is necessary to know when pn is invoked

by local ECN. In this paper, we schedule the sequence of

deep learning tasks being invoked by data size. Because the

offloading time of deep learning task which has bigger data

size is more in the same case, task which has smaller data size

is priority selection. An example below shows the process of

calculating the offloading time of p4.

FIGURE 3. An example of route distribution of DUs and deep learning
tasks under ECN c1.

Fig. 3 shows an example of the distribution of the DUs and

the deep learning tasks covered within an ECN, denoted as c1.

In Fig. 3, there are 1 ECN (i.e., c1), 3 DUs (i.e., d1, d2, and d3)

and 10 MDs (i.e., p1 ∼p10). Let s = {20, 50, 60, 30, 10, 60,

20, 50, 70, 80} represent the data size of these tasks. In Fig. 3,

the deep learning tasks are divided into three subsets: l1 =

{p1, p3}, l2 = {p2, p4, p8, p6, p7}, l3 = {p10, p5, p9}. Tasks

from l1 are all transmitted to d1. Analogously, tasks from l2
and l3 are transmitted to d2 and d3 respectively. d1, d2 and d3
are all connected to c1.

The waiting time for p4 needs to be achieved by l2 since all

the tasks in l2 including p4 are covered by the same DU d2.

The storage size for the computing tasks in l2, denoted as s2,

is set to {50, 30, 50, 60, 20}. Then, s2 is sorted in the decreas-

ing order of the storage size and l2 is adjusted accordingly.

As a result, s2 and l2 are changed to {60, 50, 50, 30, 20} and

{p6,p2, p8,p4, p7} respectively. The transmitting order for all

the computing tasks that needs to be offloaded is determined

by the task sequence inl2. In this example, p6, p2 and p8
are transmitted through d2 before p4. Therefore, WT(z4) is

the accumulation of MT and DT for p6, p2 and p8. Finally,

the total time of p4 is the accumulation of MT(z4),WT(z4),

DT (z4) and CT(z4).

Algorithm 2 ODC(b_s, b_no, local, C2W) describes the

calculation of Tn in detail, which aims at achieving a col-

lection of deep learning tasks that are co-located with pn
in the same ECN (line 1 to line 10), sorting the collection

in descending order of storage (line 11), calculating WT(zn)

(line 12 to line 16), confirming the offloading destination

and calculating CT (zn) (line 17 to line 22), calculating the

transmission delay of target task (line 23).

E. OFFLOADING TIME EVALUATION

Tall is the cumulative transmission delay of all the deep

learning tasks, which is the important index for evaluating

the offloading strategy. Algorithm 3 OTC(Tn) describes the
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Algorithm 3 Offloading Time Calculation OTC(Tn)

Require: Tn
Ensure: Tall
1: Dijkstra Algorithm

2: for n in N do

3: for m in M do

4: find dm which is connected to pn through f
m
n

5: calculate MT(zn)

6: find ck which is connected to dm through Imn
7: calculate DT(zn)

8: local = k

9: end for

10: Algorithm 1 OPI(s, local)

11: Tn = Algorithm 2 ODC(b_s, b_no, local, C2W)

12: add Tn to Tall
13: end for

14: return Tall

calculation of Tall , where Dijkstra Algorithm is used to get

the shortest path and the transmission rate between any two

ECNs (line 1), Algorithm 1 is used to find the usable ECN

with the highest transmission rate for task pn (line 10), and

Algorithm 2 is used to confirm the offloading destination and

calculate the transmission delay of the task pn (line 11). [29]

IV. SIMULATION EXPERIMENT

In order to evaluate the performance of HOM, a series of

simulation experiments are conducted. Before performing

experiments, it is necessary to set the simulation parameter,

whose function is enriching the offloading framework tomeet

the requirements of simulation experiments. Moreover, two

comparative methods, described in the following section,

are searched to evaluate the performance of HOM. Above

all, through changing the number of deep learning tasks,

the influence of transmission delay is evaluated.

A. SIMULATION SETUP

An application scenario is taken into consideration that the

deep learning tasks are faced with a difficulty of the destina-

tion confirmation between Cloud and ECNs. On this basis,

assume that there are K ECNs,M DUs and NMDs. There are

ek VMs are accommodated in the k-th ECN. Besides, each

ECN controls multiple DUs and each DU covers some MDs.

Here, all simulation parameters are list in Table 2. According

to the relationship between any two ECNs, a network topol-

ogy of ECNs in our simulation is shown in Fig. 4.

In order to show the performance of HOM, two basic

offloading methods different from HOM are employed to

compare. The two comparative strategies are introduced as

follows.

• Cloud-Offloading (CO): The deep learning tasks are

all offloaded to Cloud. Cloud owns enough computing

resources that the users have not to worry about the

dynamic resource requirements of the deep learning

tasks.

TABLE 2. Simulation parameter.

FIGURE 4. Network topology of ECNs in our simulation.

FIGURE 5. Comparison of HOM’s total latency by different number of
deep learning tasks.

• Local-Offloading (LO): The deep learning tasks are all

offloaded to their ‘local ECN’ sequentially. If the ‘local

ECN’ does not have enough unoccupied VMs to support

the coming deep learning task, this task will wait in

queue until the ‘local ECN’ have enough VMs for it.

This method will not stop until all deep learning tasks

are offloaded into MEC servers.

B. PERFORMANCE ANALYSIS OF HOM

The aim of HOM is to shorten the transmission delay of

deep learning tasks and to take full advantages of computing

resources for ECNs. We observe the growth of transmis-

sion delay through gradually increasing the number of tasks.

Fig. 5 shows the comparison of total transmission delay for

HOM in different number of deep learning tasks.

From Fig. 5, the total transmission delay is very short when

the number of deep learning tasks is 100. With the increase

of deep learning tasks, transmission delay of these tasks is

becoming higher and higher. HOM works well when ECNs
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have adequate computing resources for tasks. Note that the

transmission delay in our experiments does not contain the

running time of all the deep learning tasks.

C. COMPARISON ANALYSIS

HOM, CO and LO are performed and analyzed with the

same experimental environment configuration. We evaluate

the performance of each offloading method by comparing

the transmission delay of deep learning tasks. Furthermore,

the number of employed VMs in ECNs, the range of running

time for deep learning tasks, the range of data volume for the

deep learning tasks and the capacity of ECNs are taken into

consideration for evaluating the offloading efficiency. The

comparison results of these metrics are respectively shown

in Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10.

FIGURE 6. Comparison of the total latency of HOM, CO, and LO by
different number of deep learning tasks.

FIGURE 7. Comparison of the number of employed VMs of HOM and LO
by different number of deep learning tasks.

1) Comparison of the total computation offloading trans-

mission delay: Generally, the offloading transmission delay

has huge changes when the number of deep learning tasks for

different computing methods has changed. We compare the

total transmission delay of HOM, CO and LO by changing

the number of deep learning tasks. Fig.6 shows the result,

where we discover that the total transmission delay of three

methods all increases fast, but the transmission delay of

HOM is shorter than the other two methods. Meanwhile,

FIGURE 8. Comparison of the total latency of HOM, CO, and LO by
different range of tasks’ running time.

FIGURE 9. Comparison of the total latency of HOM, CO and LO by
different range of tasks’ data volume.

FIGURE 10. Comparison of the total latency of HOM, CO, and LO by
different capacities of each ECN.

compared with the other two methods, the total transmission

delay of LO is more affected by the number of deep learning

tasks.With these observations, HOMachieves the shortest the

offloading transmission delay among these three methods.

2) Comparison of the number of employed VMs in ECNs:

In our experiments, each deep learning task only employs

one VM and all these tasks are offloaded in terms of the

computation offloadingmethod. The number of the employed

VMs in ECNs decides whether the resource of ECNs is taken

full advantage or not. As exhibited in Fig. 7, the number of
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VMs that HOM employs is equal or larger than LO employs.

There is no VM of ECNs employed to offload deep learning

tasks when the offloading method is CO. When these tasks

are few, the ‘local ECN’ owns enough VMs to support the

offloading of these tasks. In this situation, the number of

employed VMs for HOM is equivalent to LO. When the deep

learning tasks are not all supported by their ‘local ECN’,

HOM finds other ECNs for holding tasks but LO makes the

tasks in queue sequentially wait for the ‘local ECN’ to release

the occupied VMs. Therefore, the performance of HOM is

better than any other two methods for this metric.

3) Comparison of the range of running time: We compare

the total transmission delay by different range of running time

for the deep learning tasks. This experiment is on the premise

that the number of tasks is less than the capacity of all ECNs.

So, this experiment is conducted when the total number of

the deep learning tasks is set to 100 and the capacity of each

ECN is set to 20. In Fig. 8, the total transmission delay by

HOM and CO is not affected by the running time. The total

transmission delay of LO is closely related to the running

time. The longer the range of running time for tasks is,

the higher total transmission delay of LO is. From the aspect

of running time, the performance of HOM is the best in these

three offloading strategies.

4) Comparison of the range of data volume: In Fig. 9,

the range of data volume for deep learning tasks is compared.

In this experiment, the total number of tasks is set to 100 and

the capacity of each ECNs is set to 20. Through Fig. 10,

we know that the total transmission delay of HOM is lower

than any other two methods. The total transmission delay

of these three methods is all affected by the data volume

but CO is more obvious. From the aspect of data volume,

the performance of HOM is better.

5) Comparison of the capacity for each ECN: The capacity

of each ECN is considered to evaluate the total transmission

delay. In this experiment, the total number of deep learning

tasks is set to 200. Meanwhile, the range of running time and

data volume are stationary. In Fig. 10, the total transmission

delay of HOM and CO are not changed for the different

capacities of the ECNs. Oppositely, when the capacity is

small, LO needs to spend more time waiting for the ‘local

ECN’ to release the occupied VMs, as shown in Fig. 10. It is

noteworthy that total transmission delay of HOM is always

lower than CO generates by different capacities of each ECN.

Therefore, from all the comparison analysis presented above,

HOM exhibits the best performance for the offloading of the

deep learning tasks.

V. RELATED WORK

Researches on deep learning have made great achievements

recently. Deep learning has been used in nearly all fields to

optimize algorithm and increase efficiency. In [7], the authors

led deep learning into the edge computing environment and

an algorithm for increasing the number of tasks as far as

possible was proposed, which optimizes the network and

protect the user privacy. As a matter of fact, there are lots

of research achievements on deep learning and [30] has sum-

marized some of them. In order to meet the requirements of

gradually stricter users, deep learning still plays an important

role in the evolution of 5G.

In 5G networks, IoT will be expended massively from 4G

to meet the requirements of the future applications such as

security, ultra-low latency, massive connection networks and

so on. Just in time, 5G provides the technical advantages of

low latency, high reliability, security and so on [31]. In [32],

the infrastructure for deploying the base stations in 5G was

devised and the solutions for high bandwidth transmitters

were considered. In [33], Kitao et al. exploited an evalua-

tion tool for 5G, which is used to evaluate the performance

of 5G through propagation characteristics. 5G not only has

advantages, but also needs improvement. In the city networks,

massive connection networks are required by applications,

which causes the production of many heterogeneous IoT

networks [2]. These heterogeneous IoT networks bring many

challenges for 5G. To adapt the changes in 5G, we have

to consider how to choose ECNs and Cloud legitimately

to offload tasks [34]. In [35], a distributed and offload-

ing framework named DisCO was developed to offload

the data-intensive or computationally-intensive part of the

applications to the optimal mobile edge server. In addition,

there are also other investigations that have been realized

to offload the tasks to the ECNs. In [36], Ridhawi et al.

envisioned a service-composition collaborative framework,

which was real-time and context-aware, achieving load bal-

ancing between mobile and edge nodes. In [10], studying the

condition where tasks are uploaded to a MEC server in a

signal cell by multiple mobiles, an algorithm named SMSEF

is proposed to realize the solving process.

On the other hand, some researches pay close attention

to the consumption of energy and try their best to make

consumption lower. In [4], an offloading system model and

an innovative architecture called ‘‘MVR’’ were proposed to

contribute to computation offloading. MVR works in the

Edge Cloud platform by fine-grained offloading, conducive

to improve the application performance and mitigate the

resource burden. In [37], Xu et al. proposed a method of

energy-aware computing offloading, named EACO, which

is aimed to reduce the consumption of energy. In [38],

Yang et al. focusedmore on a small-cell network scenario and

an algorithm achieving global convergence was developed

to achieve energy efficiency. In [39], a novel privacy- pre-

serving and scalable service recommendation approach based

on SimHash was proposed for a cross-cloud service recom-

mendation scenario. In [40], Wang et al. proposed a green

service composition approach for the problem of network

resource consumption and energy of the composite services.

In [41], an approximate approach balancing the workload

between edge nodes was proposed for cost reduction and QoS

improvement.

However, the consumption of time is also of great sig-

nificance and there are few papers taking it into account.

Fortunately, in this paper, a heuristic offloading method is
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presented to shorten time latency for the deep learning edge

services in 5G networks.We consider the latency for subchan-

nels together with the resource situation of the edge nodes.

At last, the proposed offloading method is verified to be

suitable for the computation offloading of the deep learning

tasks in 5G networks.

VI. CONCLUSION

Computation offloading is a key technique for the deep learn-

ing edge services in 5G networks. In order to shorten the

transmission delay of deep learning tasks, a heuristic offload-

ing method is devised in this paper. Specifically, we build

an offloading framework within CU-DU architecture and

analyze the offloading time on this basis. Then, the offload-

ing process of deep learning tasks is stated in detail. Last,

we demonstrate the usability of the proposed method HOM

through experimental evaluations.
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