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Abstract. Since the innovation of the ubiquitous Kalman filter more than five decades back it is well known

that to obtain the best possible estimates the tuning of its statistics X0, P0, H, R and Q namely initial state and

covariance, unknown parameters, and the measurement and state noise covariances is very crucial. The manual

and other approaches have not matured to a routine approach applicable for any general problem. The present

reference recursive recipe (RRR) utilizes the prior, posterior, and smoothed state estimates as well as their

covariances to balance the state and measurement equations and thus form generalized cost functions. The filter

covariance at the end of each pass is heuristically scaled up by the number of data points and further trimmed to

provide the P0 for subsequent passes. The importance of P0 as the probability matching prior between the

frequentist approach via optimization and the Bayesian approach of the Kalman filter is stressed. A simultaneous

and proper choice for Q and R based on the filter sample statistics and other covariances leads to a stable filter

operation after a few iterations. A typical simulation study of a spring, mass and damper system with a weak

nonlinear spring constant by RRR shows it to be better than earlier techniques. Part-2 of the paper further

consolidates the present approach based on an analysis of real flight test data.

Keywords. Adaptive EKF; expectation maximization; maximum likelihood; covariance matching; recursive

parameter estimation; Cramer Rao bound; probability matching prior.

1. Introduction

The solution for the linear filtering problem in discrete time

was proposed in the famous 1960 paper by Kalman [1].

This was followed for continous time in 1961 by Kalman

and Bucy [2]. Not many know that the enthusiasm that

followed soon after Kalman introduced his filter was

damped, since the statistics of the process (Q) and mea-

surement noise (R) had to be specified to implement the

filter. Gauss had an ideal situation with a good system

model and only the measurement noise and thus with his

least squares approach he could get an estimate and a

qualitative measure for the uncertainty. Kalman when he

proposed the filter dealt with only state estimation. Pre-

sently the scale and magnitude of many difficult and

interesting problems that estimation theory (ET) is handling

could not have been comprehended by Gauss or Kalman. In

many present day applications one does not even know the

structure of the state and measurement equations as well as

the parameters in them and the statistical characteristics of

the state and measurement noise. One can add the unknown

initial conditions of the state as well. The estimation of the

system parameters H, the initial state X0 and its covariance

P0, together with Q and R is called filter tuning. Tuning is

mostly done manually even today since the adaptive fil-

tering method has not fully matured in spite of its appli-

cations in many fields of science and engineering.

Examples are airplane flight test data analysis [3], target

tracking [4], evolution of the space debris scenario [5],

fusion of GPS and INS data [6], study of the tectonic plate

movements [7], high energy physics [8], agriculture, biol-

ogy and medicine [9], dendroclimatology [10], finance [11],

source separation problem in telecommunications, biome-

dicine, audio, speech and in particular astrophysics [12] and

atmospheric data assimilation for weather prediction [13].

In the present work, a reference recursive recipe (RRR)

for tuning the Kalman filter is proposed. A simultaneous

and proper choice for Q and R based on the filter sample

statistics and certain other covariances leads to a stable fil-

ter operation and provides converged results after a few*For correspondence
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Sādhanā Vol. 41, No. 12, December 2016, pp. 1473–1490 � Indian Academy of Sciences

DOI 10.1007/s12046-016-0562-z



iterations. We have also suggested another statistic for the

estimation of Q based upon the difference between the

stochastic and dynamic trajectories (see section 5.2a). The

RRR attains statistical equilibrium after a few filter itera-

tions (without any direct optimization) over the data toge-

ther with consistency checks. These cost functions (see

section 5) help the user to decide on the convergence of

RRR and compare its performance with those of other

formulations of the Kalman filter. The present RRR is

shown to achieve near-optimal Cramer Rao bound (CRB)

for the unknown parameters.

In Part-1 of the paper, the problem is set up in an extended

Kalman filter (EKF) framework in section 2. The filter tuning

and its importance is discussed in section 3. Brief reviews of

the earlier adaptive tuning methods and the present approach

are discussed in sections 4 and 5, respectively. Section 6

discusses the results of the proposed RRR applied to a sim-

ulated spring, mass and damper system with weak nonlinear

spring constant. The concluding remarks are made in section

7. Part-2 of the paper shows the effectiveness of the proposed

RRR on more involved real airplane flight test data.

2. EKF equations

We consider an EKF formulation as it provides the best

scenario. Other filter formulations contain the effect of

approximations, discretization and other features. Consider

the following well-known discrete time nonlinear filtering

problem given by

xk ¼ f ðxk�1;H; uk�1Þ þ wk ð1Þ
Zk ¼ hðxk;HÞ þ vk; k ¼ 1; 2; . . .;N ð2Þ

where ‘x’ is the state vector of size n� 1, ‘u’ is the control

input and ‘Z’ is the measurement vector of size m� 1. The

‘f’ and ‘h’ are nonlinear functions of state and measurement

equations, respectively. The process noise wk �N (0, Q)

and the measurement noise, vk �N (0, R) are assumed to be

zero mean additive white Gaussian. The normal or Gaus-

sian distribution is represented by ‘N ’ and it is further

assumed that

E wkw
T
j

h i
¼ Q dðk � jÞwithE wk½ � ¼ 0

E vkv
T
j

h i
¼ R dðk � jÞwithE vk½ � ¼ 0

E wkv
T
j

h i
¼ 0 8 j; k ¼ 1; 2; . . .;N

where E½ � is the expectation operator and d is the Kro-

necker delta function defined as

dðk � jÞ ¼ 0 if k 6¼ j;
1 if k ¼ j:

�

In the EKF formulation the parameter vector ‘H’ of size

p� 1 is augmented as additional states

xk
Hk

� �
¼ f ðxk�1;Hk�1; uk�1Þ

Hk�1

� �
þ wk

0

� �
:

The nonlinear filtering problem is now redefined as

Xk ¼ f ðXk�1Þ þ wk ð3Þ
Zk ¼ hðXkÞ þ vk; k ¼ 1; 2; . . .;N ð4Þ

where ‘X’ and ‘w’ are, respectively, the augmented state

and process noise vector of size ðnþ pÞ � 1 and thus

wk �N 0;
Q 0

0 0

� �� �
. The control input ‘u’ and ‘hat’

symbol for estimates are not shown for brevity. A solution

to the above problem is summarized in Brown and Hwang

[14],

Initialization: X0 ¼ E Xt0½ �;
P0 ¼ E ðX0 � Xt0ÞðX0 � Xt0ÞT

h i

Prediction step: Xkjk�1 ¼ f ðXk�1jk�1Þ;
Pkjk�1 ¼ Fk�1Pk�1jk�1F

T
k�1 þQ

Update step: Kk ¼ Pkjk�1H
T
k ðHkPkjk�1H

T
k þ RÞ�1

Xkjk ¼ Xkjk�1 þ KkðZk � hðXkjk�1ÞÞ;
Pkjk ¼ ðI � KkHkÞPkjk�1

where all the symbols have their usual meaning and

true initial state: Xt0

initial state estimate : X0j0 ¼ X0

initial state covariance matrix: P0j0 ¼ P0

state Jacobian matrix: Fk�1 ¼ of
oX

h i
X¼Xk�1jk�1

measurement Jacobian matrix: Hk ¼ oh
oX

� �
X¼Xkjk�1

:

There are five steps in the Kalman filter, namely state and

covariance propagation with time, Kalman gain calculation

and the state and covariance updates by incorporating the

measurement. The state propagation and update refer to the

sample while the covariance propagation, update and the

Kalman gain refer to the ensemble characteristics. These

steps that statistically combine two estimates at any given

time point, one from state Xkjk�1 and the other from mea-

surement Zk equation, are formal only if their uncertainties

denoted by their covariances are available. The states can

be estimated given the initial X0 and P0 along with the

process noise input with covariance Q and updated with

measurements with noise covariance R. Over a time span in

order to match or minimize the difference mk ¼ Zk �
hðXkjk�1Þ of the estimates from the states and measurements

called the innovation, in some best possible sense a well-

known criterion is the method of maximum likelihood

estimation (MMLE). The innovation follows a white
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Gaussian distribution [15] which is operationally equivalent

to minimizing the cost function

J ¼ 1

N

X
mkðHkPkjk�1H

T
k þ RÞ�1

mTk

¼ JðX0;P0;Q;R;HÞ or
¼ JðX0;H;Kðtraded forP0;Q;RÞÞ

based on the summation over all the N measurements and

thus solving for either X0;P0;Q; R,H or solving for X0,H,

K as the case may be. When Q = 0, the MMLE is called as

the output error method with the Kalman gain matrix being

zero. In the usual Kalman filter implementation generally

one does not solve for the statistics P0, Q and R but they

are adjusted manually to obtain acceptable results. The

numerical effort of minimizing J has to appear in the

estimation of the filter statistics. The Kalman filter is not a

panacea to obtain better results when compared to simpler

techniques of data analysis. The accuracy of the results

using Kalman filter depends on its design based on the

choice of X0, P0, H, R and Q. If the above values are not

chosen properly then the filter results can be inferior to

those from simpler techniques.

3. Tuning of the Kalman filter statistics

In spite of its immense applications for more than five

decades in many problems of science and technology, the

filter tuning has not matured to an easily imple-

mentable approach even to handle a constant signal with

measurement noise! The ghost of filter tuning chases every

variant and formulations of the filter. If not tuned properly,

it is difficult to infer if the performance of the filter is due to

its formulation or filter tuning! Generally the tuning is

manual or with ad hoc quick fix solutions such as limiting

P from going to zero, or adding Q to increase P before

calculating the gain and multiplying P by a factor to limit

K, all have obviously limitations in handling involved

problems or scenarios. All the above introduce additional

parameters to be adjusted that varies for every problem.

The present work follows a heuristic approach together

with consistency check.

3.1 Qualitative features of the filter statistics

The P0 is tricky and generally the off-diagonal elements are

set to zero and the diagonal elements are set to large values.

However their relative values are crucial for an optimum

filter operation. The R can be determined from the mea-

sured data. The Q can account for inaccuracy in the initial

conditions and system model, control input and even

account for computational errors in the filter. Though Q is

considered notorious it is the life line of the Kalman filter to

do good work. The Q is helpful to track systems whose

dynamical equations are unknown. Some classic examples

are the GPS receiver clocks, satellite, trajectory of aircraft,

missiles and reentry objects. These are handled by using the

kinematic relations among the position, velocity, accelera-

tion and even jerk [16] driven by white Gaussian noise Q to

enable the filter to track these systems. The process noise

inhibits the onset of instability of the filter operation.

3.2 Choice of X0 and P0 for states and parameters

Since some of the states are generally measured either the

first or the average of the first few measurements can be

taken as the initial value X0 for the state. The initial

parameters values can be guessed if experimental or com-

putational results are available.

The P0 is one of the important tuning parameters as

stressed by very few like Maybeck [17], Candy [18], and

Gemson [19] but most people treat it casually. Generally a

guess P0 tends to become very low after some data points.

In order to make the filter learn from the subsequent

measurements an additional Q is introduced into the state

equations even when there is no model uncertainty. In the

present work, a proper P0 without any Q is shown to be

possible for the above. The choice of P0 can affect the final

covariance (PNjNÞ from the filter operation, which can be

crucial in certain state estimation problems such as impact

point estimation and its uncertainty for target tracking.

Even in parameter estimation problems the estimates and

their uncertainties can be important in the design of control

systems.

3.3 Tuning filter statistics with both R and Q

When the data contain the effect of both R and Q it

becomes notorious for analysis. The R makes the dynamics

blurred but Q makes the dynamics wander randomly. The

interesting point is the filter by tracking the drifted

dynamical behaviour even with large Q, it estimates the

parameters controlling the original dynamics of the system

without the effect of R and Q. Since R and Q occur,

respectively, in the measurement and state equations their

effects on the filter are negatively correlated [20]. Thus

during simultaneous recursive estimation if the statistics for

estimating them are not properly chosen then R is overes-

timated and Q is underestimated and vice versa. This is just

the reason why Gemson [19] and Gemson and Anan-

thasayanam [21] in their approach had to update R and

Q alternately.

When process noise is also present in the simulated data,

without solving the involved optimization problem, we

look for consistency based on a comparison between the

injected and estimated sequences of R and Q. Further the

various cost functions proposed in our work based on bal-

ancing the state and measurement equations helped obtain
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confidence in the results. When the filter operates through

the data it generates prior, posterior, and smoothed state

estimates and their covariances, which help generate can-

didate ‘statistic’ to estimate both R and Q.

4. Review of earlier adaptive Kalman filtering
approaches

In EKF if the unknown noise covariances are incorrectly

specified biased estimates can arise [22, 23]. Even when the

system parameters are known, if an inaccurate description

of the noise statistics are used the filter may give poor

estimates, or even diverge.

We now briefly discuss the four broad adaptive filtering

techniques namely the Bayesian, maximum likelihood

(ML), covariance matching and correlation as well as a few

other approaches.

Every update in a Kalman filter is obviously a Bayesian

update. A typical approach of Alspach [24] deals with a

bank of autonomous Kalman filter run with a range of

Kalman gains. Each one stores a running sum of the square

of the residuals. Subsequently it is possible to obtain the

estimates of the unknowns based on a weighted sum over

the grid points of the gain.

The ML method [20, 25] maximizes the likelihood

function containing the unknown covariances Q and

R. Usually time consuming gradient based numerical

optimization procedures are required to estimate the

unknowns. Shumway and Stoffer [26] proposed an iterative

expectation maximization (EM) technique. Here firstly the

states are estimated using an initial guess of the unknowns

based on a Kalman smoother. Secondly, the unknowns are

next updated in the maximization step. This process is

repeated till convergence. Bavdekar et al [27] used both a

direct optimization method and an extended EM method for

EKF.

In the covariance matching, the sample filter statistics

should be internally consistent with their ensemble prop-

erties also provided by the filter. The approaches of Myers

and Tapley [28], Gemson [19], Mohamed and Schwarz [29]

and Bavdekar et al [27] and the present approach are

examples for the covariance matching. Myers and Tapley

[28] approach using the innovation can at times make the

R lose its positive definiteness. To overcome this Mohamed

and Schwarz [29] have suggested a more stable statistic

based on the filtered residue for estimating R. Similarly

other available statistics are used to estimate Q.

The correlation technique depends on the innovation

theorem of Kailath [15], which states that the innovation

sequence is zero-mean white Gaussian. If the filter is sub-

optimal then the innovation mean will be nonzero and its

autocorrelation will not follow the Kronecker delta func-

tion, indicating that the choices of any or all of the system

matrices as well as the covariances are incorrect. This

technique was pioneered by Mehra [31, 32], Carew and

Belanger [30] and Belanger [33]. Starting from an assumed

value for the unknown R and Q [31] an initial estimate for

the steady state Kalman gain is obtained. The innovations

are checked to see if the particular Kalman gain generates a

statistically acceptable white noise sequence. But it should

be noted that the Kalman gain can take correct value even

when R and Q are incorrect since different combinations of

R and Q can lead to the same gain.

Neethling and Young [34] noted large R and Q from

Mehra’s approach. Odelson et al [35] showed, based on

counter examples, that the mathematical conditions

regarding the system and measurement matrices are not

sufficient and not necessary in Mehra’s [31] work. They

also showed that the variance estimates of Mehra are larger

and at times negative. Their constrained autocovariance

least squares method provided better results and none

negative definite.

Valappil and Georgakis [36] assumed that R is available

and Monte Carlo simulations were run with uncertain

parameter values sampled from the assumed normal dis-

tribution. Then the difference between the nominal and the

random state trajectory over many simulations provide Q at

any time instant. Manika et al [37] identified the critical Q
by forming two metrics based on the innovation covariance

for chosen suitable values of X0, P0 and R. These vary from
zero to the number of measurements and vice versa as

Q changes from zero to infinity and they proposed that

Q can be chosen around the intersection point of these two

metrics.

Some attempts have been made like Powell [38] using

the simplex method, Oshman and Shaviv [39] using the

genetic algorithm and controlled random search by

Anilkumar [40]. However when the dimension, nonlin-

earity and the range of search space become large these

could become computationally prohibitive and could lead

to local minimum. Lau and Lin [41] also discuss the

limitations of simulated annealing and particle optimiza-

tion techniques for filter tuning. One can summarize that

deterministic or probabilistic optimization approaches do

not appear to be efficient and general for solving the filter

tuning problem. We tried if a recursive filtering approach

would work and fortuitously it did and will be demon-

strated subsequently.

5. RRR for tuning filter statistics

Fundamentally the estimation theory (ET) is an optimiza-

tion problem. Hence a suitable cost function J has to be

chosen. Essentially there are two elements in ET: (i)

defining a cost function and (ii) adopting a suitable algo-

rithm to minimize the cost function. In general, the log

likelihood cost (L) for normally distributed error (e) is

given by Gemson [19]
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LðHÞ ¼ 1

N

XN
k¼1

ðekÞTAk
�1ðekÞ þ logðdetðAkÞÞ ð5Þ

where A is the error covariance matrix and det(A) repre-
sents determinant of matrix A. It may be noted that the

parameters (H) occur implicitly and not explicitly in the

cost function L. Since the filter provides many quantities it

is possible to form many weighted cost functions based on

(i) a priori knowledge about the initial estimates, (ii) bal-

ancing the measurement equations and (iii) balancing the

system equations. One can evolve many cost functions

J0; J1; J2; J3; J4; J5; J6; J7 and J8 as follows:

J0 ¼ 1

2
ðX0 � Xt0ÞTP�1

0 ðX0 � Xt0Þ

J1 ¼ 1

N

XN
k¼1

ðZk � hðXkjk�1ÞÞTS1�1
k ðZk � hðXkjk�1ÞÞ

J2 ¼ 1

N

XN
k¼1

ðZk � hðXkjkÞÞTS2�1
k ðZk � hðXkjkÞÞ

J3 ¼ 1

N

XN
k¼1

ðZk � hðXkjNÞÞTS3�1
k ðZk � hðXkjNÞÞ

J4 ¼ 1

N

XN
k¼1

ðZk � hðXdkjNÞÞTðZk � hðXdkjNÞÞ

J5 ¼ 1

N

XN
k¼1

ðZk � hðXkjk�1ÞÞTS1�1
k ðZk � hðXkjk�1ÞÞ

þ logðdetðS1kÞÞ

J6 ¼ 1

N

XN
k¼1

w1TkjNW1�1
k w1kjN

J7 ¼ 1

N

XN
k¼1

w2TkjNW2�1
k w2kjN

J8 ¼ 1

N

XN
k¼1

w3TkjkW3�1
k w3kjk:

The ‘S’ and ‘W’ are functions of the second order moments

given below [42] and their details are provided in the later

sections.

S1k ¼HkPkjk�1H
T
k þ R

S2k ¼� HkjkPkjkHT
kjk þ R

S3k ¼� HkjNPkjk�1H
T
kjN þ R

W1k ¼� PkjN � Fk�1jNPk�1jk�1F
T
k�1jN

þ Pk;k�1jNFT
k�1jN þ PTk;k�1jNFk�1jN þQ

W2k ¼� PkjN � Fdk�1jNPk�1jk�1Fd
T
k�1jN

þ Pk;k�1jNFdTk�1jN þ PTk;k�1jNFdk�1jN þQ

W3k ¼Pkjk�1 � Pkjk:

If the initial states are known then J0 is not necessary but if

they are unknown, their estimate and covariance can be

obtained, respectively, by the smoothed estimates X0jN and

P0jN. The costs J1, J2 and J3 for data with measurement

noise are expected to tend towards the number of mea-

surements (m). The costs J6, J7 and J8 defined for states

with process noise effect are expected to tend towards the

number of states (n). The cost J4 is expected to tend

towards the trace of R for Q = 0 case and J5 is the neg-

ative log likelihood function. One can formulate any

number of cost functions to estimate the parameters and the

filter statistics. However it is not possible to estimate the

true value of the unknowns but be around them due to

statistical fluctuations percolating over all the unknowns.

5.1 Choice of X0 and P0 in RRR

Commencing from an assumed reasonable initial choice for

X0, P0, H, R and Q the first filter pass through the data is

made. Then a backward smoothing is carried out using the

Rauch et al [43] smoother. The smoothing leads to the best

possible state and parameter estimates and their covariances

given all the data. After smoothing the state estimates and

their covariances change but not those of the parameters.

We next describe how the above are updated for further

filter passes through the data to eventually reach statistical

equilibrium.

If one uses the smoothed initial state covariance (P0jN)
and use it as the P0 for the next pass then the final

covariance will keep on decreasing with further filter passes

and eventually tend towards zero. In order to remedy the

above behaviour the final covariance at the end of the pass

was scaled up [44] by N to provide P0 at the beginning of

the next pass:

P0 ¼ N � PNjN : ð6Þ
A heuristic reasoning that can be provided from statistics is

that the mean from a sample has an uncertainty P that keeps

decreasing with sample size as P/N where P is the popu-

lation variance. Since, in the filter steps, the estimates and

their update refer to the sample and the other covariance

propagation and their update and the calculation of the

Kalman gain refers to the ensemble characteristics before

every filter pass, we carry out the above scale up method to

obtain the P0 for the next filter pass. A backward propa-

gation of the final covariance using the estimated parame-

ters did not differ much from the above simple scaled up

P0.

The usual recommendation [31] when the states are

measured is to set P0 = R. Even by using the Inverse of

Information Matrix (IIM) approach [19] obtained the same

estimate for P0 as R. The IIM is given by

A heuristic reference recursive recipe for adaptively tuning the Kalman filter 1477



P0 ¼ 1

N

XN
k¼1

FT
k�1H

T
k R

�1HkFk�1

" #�1

: ð7Þ

After thiswe have to further trim the aboveP0 to obtain the best

possible CRB after some passes. The scaled up P0 is a full

matrix.Manychanges suchas usingonly thediagonal elements

and manymore variations were tried out. Finally the reference

P0 to obtain the proper CRB for the parameter estimates turns

out to have all the elements are zero (the covariance of all the

states and their cross covariance with the parameters as well)

except the diagonal elements corresponding to the parameters.

If all the elements of the parameter covariances were included

and the state and its cross covariances set to zero, it did not

make much of a difference in the final results.

5.1a Probability matching prior interpretation for P0: If the

deterministic Newton–Raphson (NR) optimization approach

[45] is considered to provide frequentist results then the

Kalman filtering approach corresponds to the Bayesian route.

The choice of appropriate probability distribution for P0 is

the probability matching prior (PMP) that provides a bridge

between the above approaches [46]. Consider the simple case

of a constant signal with noise. In the frequentist approach

the calculation of the mean and standard deviation is direct.

However in the Bayesian approach the above result is not

reachable unless a proper P0 is chosen, which is the PMP.

5.2 Estimation of R and Q using the EM method

The measurement noise covariance R can be estimated

using the expectation maximization (EM) algorithm

extended to a nonlinear system given by [27]

R ¼ 1

N

XN
k¼1

E vkv
T
k jZN

� �
: ð8Þ

Consider the measurement noise vk ¼ Zk � hðXkÞ, which
can be approximated using first order Taylor series

expansion around the smoothed estimate XkjN , given by

vk � Zk � hðXkjNÞ � HkjN ~XkjN

where HkjN ¼ oh
oXjX¼XkjN

and ~XkjN ¼ Xk � XkjN

vkv
T
k ¼ ZkZ

T
k � Zkh

TðXkjNÞ � Zk ~X
T

kjNH
T
kjN � hðXkjNÞZT

k

þ hðXkjNÞhTðXkjNÞ þ hðXkjNÞ ~XT

kjNH
T
kjN � HkjN ~XkjNZT

k

þ HkjN ~XkjNhTðXkjNÞ þ HkjN ~XkjN ~X
T

kjNH
T
kjN :

We know that

E½ ~XkjN � ¼ E½Xk � XkjN � ¼ 0

E½ ~XkjN ~X
T

kjN � ¼ E½ðXk � XkjNÞðXk � XkjNÞT� ¼ PkjN :

Thus the conditional expectation for R is given by

E vkv
T
k jZN

� � ¼ ZkZ
T
k � Zkh

TðXkjNÞ � hðXkjNÞZT
k

þ hðXkjNÞhTðXkjNÞ þ HkjNPkjNHT
kjN :

Rearranging the above terms and using Eq. (8), we get

R ¼ 1

N

XN
k¼1

ðZk � hðXkjNÞÞðZk � hðXkjNÞÞT þ HkjNPkjNHT
kjN

n o
:

ð9Þ
Similarly the process noise covariance Q can be estimated

as [27]

Q ¼ 1

N

XN
k¼1

E wkw
T
k jZN

� �
; ð10Þ

It results in the following expression for Q;

Q ¼ 1

N

XN
k¼1

fw1kjNw1TkjN þ PkjN þ Fk�1jNPk�1jNFT
k�1jN

� Pk;k�1jNFT
k�1jN � PTk;k�1jNFk�1jNg ð11Þ

where w1kjN ¼ XkjN � f ðXk�1jNÞ, Fk�1jN ¼ of
oX

h i
X¼Xk�1jN

,

PkjN is the smoothed covariance, Pk;k�1jN is the lag-one

covariance for k ¼ N � 1;N � 2; . . .; 1 given by

Pk;k�1jN ¼ E½ðXk � XkjNÞðXk�1 � Xk�1jNÞT�
Pk;k�1jN ¼ PkjkKT

k�1jN þ KkjNðPkþ1;kjN � FkPkjkÞKT
k�1jN

where PN;N�1jN ¼ ðI � KNHNÞFN�1PN�1jN�1, KkjN is the

smoothed gain (RTS 1965).

5.2a The proposed DSDT method for estimating Q: We now

estimate Q using the difference between the stochastic and

dynamical trajectory (DSDT). The stochastic trajectory

with the process noise can be approximated using the first

order Taylor series expansion around a nominal point (Xn)

as

Xk ¼ f ðXnk�1
Þ þ f 0ðXnk�1

ÞðXk�1 � Xnk�1
Þ þ wk: ð12Þ

The dynamical trajectory (Xd) without the process noise is

defined as

Xdk ¼ f ðXdk�1Þ ¼ f ðXnk�1
Þ þ f 0ðXnk�1

ÞðXdk�1 � Xnk�1
Þ
ð13Þ

where and Xd0 ¼ X0. It is assumed that the nominal point

(Xn) of both the above trajectories are close to the estimated

dynamical trajectory (Xnk � XdkjN) where XdkjN ¼
f ðXdk�1jNÞ and Xd0jN ¼ X0jN . Subtracting Eq. (13) from

Eq. (12) we get
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Xk � Xdk ¼ f 0ðXdk�1jNÞðXk�1 � Xdk�1jN � Xdk�1 þ Xdk�1jNÞ þ wk

wk ¼ Xk � Xdk � Fdk�1jNðXk�1 � Xdk�1Þ
ð14Þ

where the dynamical state Jacobian, Fdk�1jN ¼ of
oXjX¼Xdk�1jN

.

Thus

wkw
T
k ¼XkX

T
k �XkXd

T
k �XkX

T
k�1Fd

T
k�1þXkXd

T
k�1Fd

T
k�1

�XdkX
T
k þXdkXd

T
k þXdkX

T
k�1Fd

T
k�1�XdkXd

T
k�1Fd

T
k�1

�Fdk�1jNXk�1X
T
k þFdk�1jNXk�1Xd

T
k

þFdk�1jNXk�1X
T
k�1Fd

T
k�1�Fdk�1jNXk�1Xd

T
k Fd

T
k�1

þFdk�1jNXdk�1X
T
k �Fdk�1jNXdk�1Xd

T
k

�Fdk�1jNXdk�1X
T
k�1F

T
k�1jN þFdk�1jNXdk�1Xd

T
k Fd

T
k�1:

We have the following results:

E½XkX
T
k jZN � ¼ XkjNXT

kjN þ PkjN
E½XkX

T
k�1jZN � ¼ XkjNXT

k�1jN þ Pk;k�1jN
E½XkXd

T
k jZN � ¼ E½XkjZN �E½XdTk jZN � ¼ XkjNXdkjN

E½XdkXdTk jZN � ¼ XdkjNXdTkjN þ PdkjN
E½XdkXdTk�1jZN � ¼ XdkjNXdTk�1jN þ Pdk;k�1jN

9>>>>>=
>>>>>;

ð15Þ

where XdkjN ¼ f ðXdk�1jNÞ is the predicted dynamical state

trajectory without the measurement and process noise using

the estimated parameter HNjN . Using Eq. (15) we get

E wkw
T
k jZN

� � ¼w2kjNw2TkjN þ PkjN þ Fdk�1jNPk�1jNFdk�1jN

� Pk;k�1jNFdTk�1jN � Fdk�1jNPTk;k�1jN
þ PdkjN þ Fdk�1jNPdk�1jNFdk�1jN
� Pdk;k�1jNFdTk�1jN � Fdk�1jNPdTk;k�1jN

ð16Þ
where w2kjN ¼ XkjN � XdkjN � Fdk�1jNðXk�1jN � Xdk�1jNÞ.
Consider the following term;

Xdk � XdkjN ¼ f ðXdk�1Þ � f ðXdk�1jNÞ
� f ðXdk�1jNÞ þ Fdk�1jNðXdk�1 � Xdk�1jNÞ � f ðXdk�1jNÞ
� Fdk�1jNðXdk�1 � Xdk�1jNÞ;

ð17Þ
Using Eq. (17), we get the covariance of the dynamical

trajectory as

PdkjN ¼ E½ðXdk � XdkjNÞðXdk � XdkjNÞT�
¼ Fdk�1jNPdk�1jNFdTk�1jN

where Pd0jN ¼ P0jN since Xd0jN ¼ X0jN . The lag-one

covariance of dynamical trajectory is

Pdk;k�1jN ¼ E½ðXdk � XdkjNÞðXdk�1 � Xdk�1jNÞT�
¼ Fdk�1jNPdk�1jN :

Substituting the value of Pdk;k�1jN and PdkjN in Eq. (16) and

using Eq. (10) we get

Q ¼ 1

N

XN
k¼1

fw2kjNw2TkjN þ PkjN þ Fdk�1jNPk�1jNFdTk�1jN

� Pk;k�1jNFdTk�1jN � PTk;k�1jNFdk�1jNg:
ð18Þ

If Q = 0 then X = Xd and assuming that P0jN � 0, R can

be estimated as

R � 1

N

XN
k¼1

ðZk � hðXdkjNÞÞðZk � hðXdkjNÞÞT
n o

: ð19Þ

5.3 Possible choices of R

The choice of R for the next filter pass can utilize one

appropriate among the many that are possible. Bavdekar

et al [27] used the smoothed residue Zk � hðXkjNÞ for R

estimation using the extended EM method given by

R ¼ 1

N

XN
k¼1

ðZk � hðXkjNÞÞðZk � hðXkjNÞÞT þ HkjNPkjNHT
kjN

n o
;

ð20Þ
The choice of Mohamed and Schwarz (MS) for R estima-

tion based on the filtered residue is

R ¼ 1

N

XN
k¼1

ðZk � hðXkjkÞÞðZk � hðXkjkÞÞT þ HkjkPkjkHT
kjk

n o
:

ð21Þ
The choice of Myers and Tapley (MT) for R estimation

based on the innovation is

R ¼ 1

N

XN
k¼1

ðZk � hðXkjk�1ÞÞðZk � hðXkjk�1ÞÞT � HkPkjk�1H
T
k

n o
:

ð22Þ
All the above measurement noise statistics innovations,

filtered residue and smoothed residue are assumed to be of

zero mean. The smoothed residue is the best statistic for

R estimation.

5.4 Possible choices of Q

The choice of Q for the next filter pass can utilize one

appropriate among the many that are possible. Bavdekar

et al [27] used the smoothed statistic XkjN � f ðXk�1jNÞ for
the Q estimation using the extended EM method given

by
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Q ¼ 1

N

XN
k¼1

w1kjNw1TkjN þ PkjN þ Fk�1jNPk�1jNFT
k�1jN

n

�Pk;k�1jNFT
k�1jN � PTk;k�1jNFk�1jN

o
ð23Þ

where w1kjN ¼ XkjN � f ðXk�1jNÞ.
The new DSDT statistic for Q (section 5.2a) is

Q ¼ 1

N

XN
k¼1

w2kjNw2TkjN þ PkjN þ Fdk�1jNPk�1jNFdTk�1jN
n

�Pk;k�1jNFdTk�1jN � PTk;k�1jNFdk�1jN
o

ð24Þ
where w2kjN ¼ XkjN � XdkjN � Fdk�1jNðXk�1jN � Xdk�1jNÞ.
Mohamed and Schwarz (MS) used innovations and gain for

estimating Q given by

Q ¼ KN

1

N

XN
k¼1

ðZk � hðXkjk�1ÞÞðZk � hðXkjk�1ÞÞT
( )

KT
N :

ð25Þ
The choice of Myers and Tapley (MT) for Q is w3kjk ¼
Xkjk � Xkjk�1 and is given by

Q ¼ 1

N

XN
k¼1

w3kjkw3Tkjk � Fk�1Pkjk�1F
T
k�1 � Pkjk

	 
n o
: ð26Þ

All the process noise samples, w1kjN ;w2kjN and w3kjk, are
assumed to be of zero mean. We note that the smoothed

statistics w1kjN and w2kjN provide very close results and are

the best for the Q estimation.

5.5 Adaptive tuning and the present RRR

The different methods and options for developing RRR,

based on sensitivity studies, are

1. P0 can be estimated by scale up, IIM or by smoothing

(P0jN).
2. Options for P0 split as cov([state-S;parameter-P]) are (a)

reference Matrix [0,0;0,�], (b) diagonal matrix [*,0;0,*]

and (c) full matrix [*,*;*,*]. The checkmark (*) repre-

sents a nonzero value at the indicated position. The ‘cov

(.)’ represents covariance matrix.

3. The process noise Q can be estimated using Eq. (23),

(24), (25) or (26).

4. Options for Q = cov([S;P]) are (a) reference matrix

[*,0;0,0], (b) diagonal matrix [*,0;0,*] and (c) full matrix

[*,*;*,*].

5. The measurement noise R can be estimated using

Eq. (20), (21) or (22).

The following steps explain the recursive or iterative

algorithm for tuning the EKF:

1. Given the system model and the measurements the first

iteration of EKF is carried out with guess values of X0,

P0, H, R and Q.

2. Run the extended RTS smoother using the filtered data to

get the smoothed state estimate XkjN and the correspond-

ing smoothed covariance PkjN .
3. The P0 can be estimated by scale up (Eq. (7)), IIM

(Eq. (6)) or the smoothed (P0jN), which will have to be

scaled up and modified for obtaining proper results.

4. The R and Q can be estimated by any of the options as

discussed in sections 5.3 and 5.4.

5. EKF is run using the updated estimates of X0, P0, H,

Q and R at the beginning of further iterations until

statistical equilibrium is reached.

6. Different cost functions (J1–J8) are checked for

convergence.

7. Many simulation runs (say 50) are carried out by varying

the injected measurement (v) and process noise

(w) sequences.

For theQ = 0 case the value ofQ is set at 10�10 or lower for

all iterations to help the filter, which would otherwise gen-

erate a pseudo-Q, and then slowly grind it to zero in hundreds

of iterations. For theQ[0 case if any of the states is known to

have Q = 0 then it can be set at 10�10 or lower. For Q = 0

case one can estimate R even by ignoring the second order

terms. It is of interest to note that for Q[0 case unless the

second order terms of the filter output covariance terms are

also included in (i) the estimate for R and Q using the EM

option and (ii) the estimate for R using the EM together with

Q using the DSDT option theR andQ do not converge to the

proper value. The different adaptive approaches analysed in

the paper are provided in table 1. Based on a comparative

study the proposed RRR is as below.

The reference recursive recipe (RRR)

Q = 0 Q[ 0

X0 : Given or X0jN X0 : Given or X0jN
H : HNjN H : HNjN
P0 : Scaled up and trimmed-

[0,0;0,*]

P0 : Scaled up and trimmed-

[0,0;0,*]

Q : 10�10 and trimmed-

[*,0;0,0]

Q : EM/DSDT and trimmed-

[*,0;0,0]

R : EM-diag R : EM-diag

The P0 is a matrix involving both the uncertainty of the

initial state and parameter and their cross-covariance. Thus

we can split it into four submatrices. The line ‘P0 : scaled

up-[0,0;0 ;*]’ means that P0 is estimated using the scaled up

method (section 5.1) and the three submatrices are forced to
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zero except for the last submatrix involving initial param-

eter uncertainty as indicated by the tick mark ‘*’. The

scaling refers to the final PNjN multiplied by N (Eq. (6)), the

number of time points, and the trimming refers to setting all

the elements of the estimated P0 matrix to zero except the

ones corresponding to the parameters. Similarly trimming

is done for Q to set the submatrix involving parameter

uncertainty to zero.

Over a fairly wide range of initial values the RRR con-

verges to the same final estimates for all the unknowns, thus

showing its stability. We call this as a reference and not as a

standard since improvements could be made later when

such recursive filtering approaches match the solutions

provided by optimization techniques like NR or other

involved ones including Q. The X0 in all cases is either

given or obtained by the smoother. The smoothed initial

estimate can be split as X0jN = ðx0jN ;H0jNÞT including both

state and parameter. The estimated parameter is taken as

HNjN obtained from XNjN ¼ ½xNjN ;HNjN � with covariance

PH obtained at the end of the final filter pass over the data,

PNjN = ½Pxx; PxH; PHx; PH�. Should the measurement data

change then the converged parameters also change (!), thus

showing sensitivity.

The present RRR contains no direct optimization of any

cost function. We have purely iterated the filter on the

measured data but after every iteration the unknowns P0,Q,

R and H have been updated as mentioned earlier. Such an

iterative procedure together with well chosen updates leads

to a converged solution for the estimate as well as the CRB

that is very close to that obtained using any optimization

method that minimizes any suitable cost function. Checking

for the values of the various cost functions with their

expected values provides a good indication as to how best

the solutions are. In fact it is such a feature that indicated

superiority of the present approach in particular in the real

flight test data analysis. Such a difference between the

optimization and the present iterative approach corresponds

to the frequentist and the Bayesian approach. The crucial

success of the present approach has been due to the proper

choice of P0 by scaling and trimming, which turns out to be

PMP, and the appropriate choice of the statistics for R and

Q after every iteration. The perfect match of results based

on optimization and purely filtering approach (which are

procedurally different though both have Kalman filters in

them) would form a very interesting topic for further

research.

6. Simulation study of a spring, mass and damper
(SMD) system

The convergence of any technique even in simulation

studies is not a guarantee for a proper solution to the

problem. Even the simple case of a linear fit to a set of data

with many variants tends to different results [42]. Hence we

still lean on simulation studies with exact solutions avail-

able to the analyst. Hence presently the filter methods have

been applied firstly to a very simple spring, mass and

damper system with only R and Q = 0. For such a situa-

tion, the NR procedure [45] served as an anchor for tuning

the filter statistics to get the closest possible estimates and

the CRB. Subsequently when the process noise is included

in the system we looked at the consistency between the

injected measurement and process noise sequences and

Table 1. Different adaptive methods for comparative analysis.

Method Options for P0 Options for Q Options for R Remarks

NR [42] Not applicable Not applicable Using Z � hðXHÞð Þ Applicable only for Q = 0 case.

RRR (present) Scaled up PNjN
(Eq. (6)) trimmed to

[0,0;0,*]

EM algorithm (Eq. (23)) or

DSDT (Eq. (24)) trimmed to

[*, 0; 0, 0]

Smoothed residue

Zk � hðXkjNÞ
	 


Eq. (20)

Statistical equillibrium and

CRBs are achieved

IIM (Similar to

Gemson’s

method)

IIM (Eq. (7)) trimmed

to [0,0;0,*]

MT method (Eq. (26)) trimmed

to [*, 0; 0, 0]

Innovations

Zk � hðXkjk�1Þ
	 


Eq. (22)

Initial R should be close to the

true value.

Bavdekar et al

method

Smoothed P0jN EM algorithm (Eq. (23)) with

full matrix

Smoothed residue

Zk � hðXkjNÞ
	 


Eq. (20)

Cost functions diverge after

some iterations. CRBs are not

achieved.

MT Method* Scaled up PNjN
(Eq. (6)) trimmed to

[0,0;0,*]

MT method (Eq. (26)) trimmed

to [*, 0; 0, 0]

Innovations

Zk � hðXkjk�1Þ
	 


Eq. (22)

Cost function sometimes

oscillates

MS Method* Scaled up PNjN
(Eq. (6)) trimmed to

[0,0;0,*]

MS Method (Eq. (25)) trimmed

to [*, 0; 0, 0]

Filtered residue

Zk � hðXkjkÞ
	 


Eq. (21)

R can go to a very high value

*Since in MS and MT methods the P0 is not specified we have suggested the above.
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their statistics. Consider the SMD system with weak non-

linear spring constant in the continuous time (t) state space

form given by

_x1ðtÞ ¼ x2ðtÞ
_x2ðtÞ ¼ �H1x1ðtÞ �H2x2ðtÞ �H3x

3
1ðtÞ

where x1 and x2 are the displacement and velocity state with

initial conditions 1 and 0, respectively. The ‘dot’ represents

differentiation with respect to time (t). The unknown

parameter vector is H ¼ ½H1;H2;H3�T with the true values

Htrue ¼ ð4; 0:4; 0:6ÞT. The H3 is a weak parameter since its

values do not affect the system dynamics much. The

complete state vector X ¼ ½x1; x2;H1;H2;H3�T is of size

ðnþ pÞ � 1. The measurement equation is given by

Zk ¼ HXk þ vk

where H ¼ 1 0 0 0 0

0 1 0 0 0

� �
is the measurement matrix

of size m� ðnþ pÞ where m ¼ n ¼ 2 and p ¼ 3. The

values of the noise variances are R = diag(0.001,0.004)

and Q = diag(0.001,0.002) where ‘diag’ is the diagonal

operator as used in MATLAB�. All the figures are pre-

sented for only one simulation run to prevent cluttering. In

the SMD system study, the guess value of P0 chosen is

10�1 for all states, which is assumed to be a diagonal

matrix in the first iteration. The guess value of Q chosen

is 10�1 for all states and zero for the augmented param-

eters. The guess value of R chosen is 2�1 for all mea-

surement channels. The initial parameters are chosen to be

within ± 20% error. A total of N = 100 measurement

data are simulated with the time varying from 0 to 10 s in

very small steps of dt = 0.1 s. For zero process noise

case, the maximum number of iterations is set to 20 over

ns = 50 simulations and for nonzero process noise case it

is set to 100 over 50 simulations for obtaining generally

four digits accuracy (though not necessary) in the results

as presented in tables 2 and 3. In the present RRR it was

noticed that generally even if the initial state covariance,

initial process and measurement noise covariances were

varied over a wide range of powers from -3 to þ3

together with the initial parameter values being set to zero

one can reach the same estimation results for a given data.

Such studies show that RRR leads to a nondiverging and

consistent filter performance over many simulations and

provides better results when compared with earlier

approaches. The convergences of the following quantities

[42] through the iterations are analysed.

1. The parameter estimates H and their covariances PH.

2. The noise covariances Q and R.
3. The state dynamics without R and Q based on the

estimated parameter after the filter pass through the data

Xd, the prior state X�, the posterior state Xþ, the

smoothed state Xs and the measurement Z.

4. The sample innovation, filtered residue and the smoothed

residue along with �r bounds.

5. The estimated measurement and process noise samples

as well as their autocorrelations.

6. The cost functions (J1–J8) after the final convergence.

6.1 Discussion of the results

The SMD system was solved using RRR and with other

possible choices for the filter statistics. The following

results averaged over 50 simulations are tabulated.

• The H EKF/NR is the ratio of EKF estimated

parameter to that by the NR method.

• The H EKF/true is the ratio of EKF estimated

parameter to that of true value.

• The CRB ratio is the ratio of the square root of the

parameter covariance (PH) estimated by EKF to that of

the CRB estimated by the NR method.

• Consistency ratio =

1
ns

Pns
s¼1

ðHs� �HÞ2
� �1

2

1
ns

Pns
s¼1

ffiffiffiffiffi
PsH

p where ns is the

total number of simulations, s is the simulation number

and �H is the sample mean of the estimated parameters.

• Spread factor is a measure of percentage spread seen in

the parameter estimates given by

spread factor ¼ 1

ns

Xns
s¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH�HsÞ2 þ PsH

q" #
� 100

jHj :

• R ratio EKF/true is the ratio of the EKF estimated R to

that of the true value of R.
• R ratio EKF/NR is the ratio of the EKF estimated R to

that estimated by the NR method.

• Q ratio is the ratio of the EKF estimated Q to that of

the true Q.

• The mean (l) and standard deviation (r) of the cost

functions (J1–J8) are over many simulations

(ns ¼ 50).

6.1a Without process noise (Q = 0): Table 2 shows the

results for the Q = 0 case. The appropriate reference

results are shown in the second set of rows. The other rows

present results with different options. One can note that the

parameter estimates, the ratio of R and the cost functions

are fairly comparable for different options. However it is

the ratio of the filter estimated CRBs (whose effect is

amplified and shown) by the consistency ratio and the

spread factor that differ from the corresponding NR esti-

mates. This feature indicates that the reference procedure

with its choice of P0, H, Q and R updates is about the

simplest and best among all possible options. Table 2

shows the effect of using simply the smoothed P0 without

any scaling but using possible options. In this process-
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Table 2. Sensitivity study : (Q = 0). No. of iterations = 20, no. of simulations = 50.

Study

H ratio

EKF/NR

CRB ratio

EKF/NR

Consistency

ratio-EKF

Consistency

ratio-NR

Spread

factor EKF

Spread

factor NR

R ratio

EKF/NR

l of J1–
J5

r of

J1–J5

P0 : Scaled up-

[0,0;0,*]

Reference adaptive EKF used for Q[ 0 case gives extremely slow convergence of Q taking hundreds of iterations.

Q : EM-

[*,0;0,0]

R : EM-diag

1.9704 0.0512

P0 : Scaled up-

[0,0;0, *]

1.0007 1.0048 1.0140 1.0533 0.8128 0.8126 1.9702 0.0512

Q : 10�10-

[*,0;0,0

1.0000 0.9832 1.3764 1.3138 1.5488 1.5079 1.0139 1.9999 0.0013

R : EM-diag 0.9869 0.9830 1.0919 1.0817 14.5838 14.5843 1.0128 0.0048 0.0008

�10.3911 0.2243

1.9530 0.0570

P0 : Scaled up-

diag

0.9998 1.2439 1.0518 1.0533 1.0223 0.8126 1.9534 0.0570

Q : 10�10-

[*,0;0,0]

1.0024 1.3877 1.2966 1.3138 2.1729 1.5079 1.0117 1.9998 0.0050

R : EM-diag 1.0255 1.7525 1.1761 1.0817 26.6449 14.5843 1.0061 0.0047 0.0008

�10.3252 0.2308

1.9668 0.0438

P0 : Scaled up-

full

0.9991 0.9487 1.3638 1.0533 0.8922 0.8126 1.9670 0.0438

Q : 10�10-

[*,0;0,0]

1.0023 1.1580 1.5696 1.3138 2.0313 1.5079 1.0045 1.9999 0.0014

R : EM-diag 1.0471 1.0710 1.8936 1.0817 21.6826 14.5843 1.0006 0.0047 0.0008

�10.4051 0.2293

1.9690 0.0776

P0 : IIM-

[0,0;0,*]

1.0014 1.0066 1.1296 1.0533 0.8997 0.8126 1.9710 0.0776

Q : 10�10-

[*,0;0,0]

0.9990 0.9942 2.2338 1.3138 2.3360 1.5079 1.0228 1.9998 0.0015

R : EM-diag 0.9667 0.9792 1.3654 1.0817 17.3808 14.5843 1.0204 0.0050 0.0009

�10.2078 0.2349

1.9530 0.0655

P0 : IIM-diag 0.9995 1.2489 1.0476 1.0533 1.0205 0.8126 1.9542 0.0655

Q : 10�10-

[*,0;0,0]

1.0023 1.386 1.5883 1.3138 2.4209 1.5079 1.0160 1.9998 0.0049

R : EM-diag 1.0375 1.7504 1.1881 1.0817 26.8883 14.5843 1.0102 0.0049 0.0009

�10.1918 0.2403

1.9540 0.0656

P0 : IIM-full 0.9997 1.2493 1.0479 1.0533 1.0185 0.8126 1.9532 0.0656

Q : 10�10-

[*,0;0,0]

1.0025 1.7885 1.6662 1.3138 2.4988 1.5079 1.0178 1.9999 0.0050

R : EM-diag 1.0340 1.7501 1.1851 1.0817 26.7966 14.5843 1.0116 0.0050 0.0009

�10.2001 0.2420

1.9982 0.0009

P0 : Smoothed-

[0,0;0,*]

1.0006 0.2361 4.2997 1.0533 0.5240 0.8126 1.9982 0.0009

Q : 10�10-

[*,0;0,0]

1.0002 0.2306 5.7348 1.3138 1.0375 1.5079 0.9990 1.9999 0.0001

R : EM-diag 0.9911 0.2315 4.5352 1.0817 9.5986 14.5843 0.9997 0.0048 0.0008

�10.5276 0.2240
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noise-free case, due to the absence of scaling up of the P0,

the CRB ratio decreases due to the continuously decreasing

smoothed P0jN with iterations and leads to incorrect con-

sistency and spread factors in spite of deceptively good R
ratio and cost function values. The above results show the

importance of proper scaling and trimming the P0. When

Q = 0 one can use smoothed residue, filtered residue and

innovations with and without second order terms to esti-

mate R. In addition another estimate for R can be the dif-

ference between the measured and predicted dynamics. It

turns out that for process noise free case all these options

lead statistically to the same results. Figures 1–3 show the

variation of the estimated initial parameters and their

variances through 20 iterations using the RRR (Q = 0).

The x-axis for the above three plots is the cumulatively

increasing time with iterations. For example, in the simu-

lated SMD system, the time instants vary from 0 to 10 s in

the first iteration in small time steps of 0.1 seconds. The

second iteration has time instants varying from 10 to 20 s,

the third iteration with 20–30 s and so on till 200 s for the

20th iteration. The parameter and the uncertainty reach

almost their final estimated values with three digits

Table 2 continued

Study

H ratio

EKF/NR

CRB ratio

EKF/NR

Consistency

ratio-EKF

Consistency

ratio-NR

Spread

factor EKF

Spread

factor NR

R ratio

EKF/NR

l of J1–
J5

r of

J1–J5

1.9960 0.0016

P0 : Smoothed-

diag

1.0021 0.0991 10.8182 1.0533 0.5565 0.8126 1.9960 0.0016

Q : 10�10-

[*,0;0,0]

0.9999 0.2380 7.4621 1.3138 1.5098 1.5079 0.9904 1.9997 0.0002

R : EM-diag 0.9560 0.0993 16.1755 1.0817 14.2577 14.5843 0.9872 0.0047 0.0008

�10.5493 0.2294

1.9970 0.0011

P0 : Smoothed-

full

0.9997 0.3089 4.1863 1.0533 0.6813 0.8126 1.9971 0.0011

Q : 10�10-

[*,0;0,0]

1.0011 0.3272 5.4617 1.3138 1.5528 1.5079 0.9891 1.9998 0.0003

R : EM-diag 1.0260 0.4565 4.3984 1.0817 18.0659 14.5843 0.9859 0.0047 0.0008

�10.5523 0.2290

Table 3. Sensitivity study : (Q[ 0). No. of iterations = 100, no. of simulations = 50.

Study

H ratio EKF/

True

Consistency ratio-

EKF

Spread factor

EKF

R ratio EKF/

True

Q ratio EKF/

True

l of J1–
J8

r of J1–
J8

P0 : Smoothed-full Extended EM algorithm [27] : Cost functions diverges after few iterations. There is a need for a precise stopping

condition without which unity ratios cannot be achieved.Q : EM-full

R : EM-full

1.9650 0.0224

1.9700 0.0217

P0 : Scaled up-

[0,0;0,*]

0.9933 1.0327 7.9434 1.9982 0.0091

Q : EM-[*,0;0,0] 1.0201 1.0772 23.5655 0.9450 1.0648 0.0709 0.0396

R : EM-diag 1.0764 0.9128 98.4334 0.9135 1.0922 -8.7886 0.2281

1.9439 0.0422

1.9533 0.0618

1.9585 0.0373

1.9988 0.0241

1.9996 0.0241

P0 : Smoothed-diag 1.0210 13.3560 3.9686 1.9998 0.0076

Q : EM-diag 1.0018 10.0828 13.6349 0.9502 1.0286 0.0656 0.0325

R : EM-diag 0.6806 13.6464 51.6473 0.9703 0.8676 -8.9374 0.2290

2.0031 0.0147

2.0027 0.0239

1.9976 0.0282
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accuracy in about two and five iterations, respectively. The

correlation coefficient matrix obtained from the parameter

covariance matrix PH of a typical data set with zero process

noise is

C ¼
1:0000 �0:0024 �0:9387
�0:0024 1:0000 0:1193
�0:9387 0:1193 1:0000

2
4

3
5:

0 50 100 150 200

0.35
0.4

0.45
0.5

0.55
0.6

θ  smooth
θ  filtered
θ  initial

0 50 100 150 200
10–5

100

P smooth
P filtered
P0

Figure 2. Variation of H2 and PH2
with cumulative time and iterations (Q = 0).

0 50 100 150 200
3.5

4

4.5

5
θ  smooth
θ  filtered
θ  initial

0 50 100 150 200
10–4

10–2

100

102

P smooth
P filtered
P0

Figure 1. Variation of H1 and PH1
with cumulative time and iterations (Q = 0).

0 50 100 150 200
0.2
0.4
0.6
0.8

1
θ  smooth
θ  filtered
θ  initial

0 50 100 150 200
10–4

10–2

100

102
P smooth
P filtered
P0

Figure 3. Variation of H3 and PH3
with cumulative time and iterations (Q=0).
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Over a range of displacement, the weak nonlinear spring

constant (H3) can be estimated with high correlation only

with the linear spring constant (H1). If the range of dis-

placement is increased then the above correlation reduces.

However the damping coefficient (H2) is estimated with

modest correlation with other parameters since it is driven

by velocity than displacement.

6.1b With process noise (Q[ 0): Figures 4, 5 and 6 show,

respectively, the variation of (i) the initially estimated H

0 20 40 60 80 100
10–1

100

101

102

103

Figure 4. Variation of initial parameters H0(continuous) and its P0 (dashed) with iterations.

0 20 40 60 80 100
10–4

10–3

10–2

10–1

100

Figure 5. Variation of Q (dashed) and R (continuous) with iterations.

0 20 40 60 80 100
10–2

10–1

100

101

Figure 6. Variation of different costs (J1–J8) with iterations.
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and its variance, (ii) R and Q and (iii) the different cost

functions (J1–J8) through 100 iterations for the RRR (Q[
0) case. It has been further extensively checked and

reported by Shyam et al [42] that the variations of the

sample innovations, filtered residue and smoothed residue

are consistent with their �r bound. In the EKF approach

0 20 40 60 80 100
10–2

10–1

100

101

102

103

Figure 9. Variation of different costs (J1–J8) with iterations using the MS method.

0 2 4 6 8 10
–1

–0.5

0

0.5

1

1.5 a

0 2 4 6 8 10
–2

–1

0

1

2
b

h(Xd)
h(X+)
h(Xs)
Z

Figure 7. Comparison of the predicted dynamics h(Xd), posterior hðXþÞ, smoothed h(Xs) and the measurement Z corresponding to the

(a) displacement and (b) velocity from RRR.

0 20 40 60 80 100
10–6

10–5

10–4

10–3

10–2

10–1

100

Figure 8. Variation of Q (dashed) and R (continuous) with iterations using the MS method.
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since most of the quantities are Gaussian or approximated

as quasi-Gaussian and one would expect that all the above

quantities are close to being Gaussian and hence around

one-third of the total sample points to be outside the �r
bound. Similarly the injected and estimated measurement

noise distributions during the final iteration were very close

to each other, also their autocorrelations are ideally

expected to be close to the Kronecker delta function, which

provides confidence in the proposed filter algorithm.

Figure 7 shows the predicted dynamics and filtered and

smoothed estimate at the last iteration. There is an

expected mismatch in the estimated dynamics (without the

effect of R and Q) and the measurements made on the

wandering dynamics, indicating the presence of process

noise. Figures 8–13 show the variation of the noise R and

Q estimates and the cost functions J1–J8 for MS, MT and

Bavedkar et al approaches. The important feature to be

noted in the MS is that though the filter converges it leads

0 20 40 60 80 100
10 –2

10 –1

10 0

10 1

10 2

10 3

Figure 11. Variation of different costs (J1–J8) with iterations using the MT method.

0 5 10 15 20 25 30
10–4

10–2

100

102

104

106

Figure 12. Variation of Q (dashed) and R (continuous) with iterations using the [27] method.

0 20 40 60 80 100
10–6

10–5

10–4

10–3

10–2

10–1

100

Figure 10. Variation of Q (dashed) and R (continuous) with iterations using the MT method.
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to inaccurate estimates for the noise statistics and cost

functions. The MT and Bavedkar et al approaches in

general do not provide systematic variation and conver-

gence of the estimates. Table 3 shows for the reference

case in the second row that the cost functions J1–J3 and

J6–J8 are close to their expected values. The third row

shows, using the smoothed P0 without scaling and no

stopping condition, that the low spread factor is deceptive

since there is no consistency in the parameter estimates

with its covariance.

7. Conclusions

A comparative study among the existing adaptive tech-

niques suggested by Myers and Tapley, Mohamed and

Schwarz and Bavdekar et al is carried out and a reference

recursive recipe (RRR) for tuning the Kalman filter is

proposed. A new statistic for the estimation of Q based

upon the difference between the stochastic and dynamic

trajectories (DSDT) was introduced based on an extended

EM method. The different cost functions (J1–J8) help the

user to reach deceptive to decisive convergence. The pro-

posed RRR achieves the Cramer Rao bound (CRB) of the

unknown parameters and provides statistically equilibrium

solution after a few iterations. The importance of P0 has

been demonstrated and the best possible Q and R have been

obtained.
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