
Journal of Artificial Intelligence Research 34 (2009) 27–59 Submitted 12/07; published 01/09

A Heuristic Search Approach to Planning
with Continuous Resources in Stochastic Domains

Nicolas Meuleau nicolas.f.meuleau@nasa.gov
NASA Ames Research Center
Mail Stop 269-3
Moffet Field, CA 94035-1000, USA

Emmanuel Benazera ebenazer@laas.fr
LAAS-CNRS, Université de Toulouse
7, av. du Colonel Roche
31077 Toulouse Cedex 4, France

Ronen I. Brafman brafman@cs.bgu.ac.il
Department of Computer Science
Ben-Gurion University
Beer-Sheva 84105, Israel

Eric A. Hansen hansen@cse.msstate.edu
Department of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762, USA

Mausam mausam@cs.washington.edu

Department of Computer Science and Engineering

University of Washington

Seattle, WA 981952350, USA

Abstract
We consider the problem of optimal planning in stochastic domains with resource constraints,

where the resources are continuous and the choice of action at each step depends on resource avail-
ability. We introduce the HAO* algorithm, a generalization of the AO* algorithm that performs
search in a hybrid state space that is modeled using both discrete and continuous state vari-
ables, where the continuous variables represent monotonic resources. Like other heuristic search
algorithms, HAO* leverages knowledge of the start state and an admissible heuristic to focus
computational effort on those parts of the state space that could be reached from the start state
by following an optimal policy. We show that this approach is especially effective when resource
constraints limit how much of the state space is reachable. Experimental results demonstrate
its effectiveness in the domain that motivates our research: automated planning for planetary
exploration rovers.

1. Introduction

Many NASA planetary exploration missions rely on rovers – mobile robots that carry a suite of
scientific instruments for use in characterizing planetary surfaces and transmitting information back
to Earth. Because of difficulties in communicating with devices on distant planets, direct human
control of rovers by tele-operation is infeasible, and rovers must be able to act autonomously for
substantial periods of time. For example, the Mars Exploration Rovers (MER), aka, Spirit and
Opportunity, are designed to communicate with the ground only twice per Martian day.

Autonomous control of planetary exploration rovers presents many challenges for research in
automated planning. Progress has been made in meeting some of these challenges. For example, the
planning software developed for the Mars Sojourner and MER rovers has contributed significantly

c©2009 AI Access Foundation. All rights reserved.

Meuleau, Benazera, Brafman, Hansen & Mausam

to the success of these missions (Bresina, Jonsson, Morris, & Rajan, 2005). But many important
challenges must still be addressed to achieve the more ambitious goals of future missions (Bresina,
Dearden, Meuleau, Ramakrishnan, Smith, & Washington, 2002).

Among these challenges is the problem of plan execution in uncertain environments. On planetary
surfaces such as Mars, there is uncertainty about the terrain, meteorological conditions, and the state
of the rover itself (position, battery charge, solar panels, component wear, etc.) In turn, this leads
to uncertainty about the outcome of the rover’s actions. Much of this uncertainty is about resource
consumption. For example, factors such as slope and terrain affect speed of movement and rate of
power consumption, making it difficult to predict with certainty how long it will take for a rover
to travel between two points, or how much power it will consume in doing so. Because of limits
on critical resources such as time and battery power, rover plans are currently very conservative
and based on worst-case estimates of time and resource usage. In addition, instructions sent to
planetary rovers are in the form of a sequential plan for attaining a single goal (e.g., photographing
an interesting rock). If an action has an unintended outcome that causes a plan to fail, the rover
stops and waits for further instructions; it makes no attempt to recover or achieve an alternative
goal. This can result in under-utilized resources and missed science opportunities.

Over the past decade, there has been a great deal of research on how to generate conditional
plans in domains with uncertain action outcomes. Much of this work is formalized in the framework
of Markov decision processes (Puterman, 1994; Boutilier, Dean, & Hanks, 1999). However, as
Bresina et al. (2002) point out, important aspects of the rover planning problem are not adequately
handled by traditional planning algorithms, including algorithms for Markov decision processes. In
particular, most traditional planners assume a discrete state space and a small discrete number of
action outcomes. But in automated planning for planetary exploration rovers, critical resources such
as time and battery power are continuous, and most of the uncertainty in the domain results from
the effect of actions on these variables. This requires a conditional planner that can branch not
only on discrete action outcomes, but on the availability of continuous resources, and such a planner
must be able to reason about continuous as well as discrete state variables.

Closely related to the challenges of uncertain plan execution and continuous resources is the
challenge of over-subscription planning. The rovers of future missions will have much improved
capabilities. Whereas the current MER rovers require an average of three days to visit a single rock,
progress in areas such as automatic instrument placement will allow rovers to visit multiple rocks
and perform a large number of scientific observations in a single communication cycle (Pedersen,
Smith, Deans, Sargent, Kunz, Lees, & Rajagopalan, 2005). Moreover, communication cycles will
lengthen substantially in more distant missions to the moons of Jupiter and Saturn, requiring longer
periods of autonomous behavior. As a result, space scientists of future missions are expected to
specify a large number of science goals at once, and often this will present what is known as an over-
subscription planning problem. This refers to a problem in which it is infeasible to achieve all goals,
and the objective is to achieve the best subset of goals within resource constraints (Smith, 2004). In
the case of the rover, there will be multiple locations the rover could reach, and many experiments
the rover could conduct, most combinations of which are infeasible due to resource constraints. The
planner must select a feasible subset of these that maximizes expected science return. When action
outcomes (including resource consumption) are stochastic, a plan that maximizes expected science
return will be a conditional plan that prescribes different courses of action based on the results of
previous actions, including resource availability.

In this paper, we present an implemented planning algorithm that handles all of these problems
together: uncertain action outcomes, limited continuous resources, and over-subscription planning.
We formalize the rover planning problem as a hybrid-state Markov decision process, that is, a Markov
decision process (MDP) with both discrete and continuous state variables, and we use the continuous
variables to represent resources. The planning algorithm we introduce is a heuristic search algorithm
called HAO*, for Hybrid-state AO*. It is a generalization of the classic AO* heuristic search al-
gorithm (Nilsson, 1980; Pearl, 1984). Whereas AO* searches in discrete state spaces, HAO* solves

28

HAO*

planning problems in hybrid domains with both discrete and continuous state variables. To handle
hybrid domains, HAO* builds on earlier work on dynamic programming algorithms for continuous
and hybrid-state MDPs, in particular, the work of Feng et al. (2004).

Generalizing AND/OR graph search for hybrid state spaces poses a complex challenge, and we
only consider a special case of the problem. In particular, continuous variables are used to represent
monotonic resources. The search is for the best conditional plan that allows branching not only on
the values of the discrete variables, but on the availability of these resources, and does not violate a
resource constraint.

It is well-known that heuristic search can be more efficient than dynamic programming because it
uses reachability analysis guided by a heuristic to focus computation on the relevant parts of the state
space. We show that for problems with resource constraints, including over-subscription planning
problems, heuristic search is especially effective because resource constraints can significantly limit
reachability. Unlike dynamic programming, a systematic forward search algorithm such as AO* keeps
track of the trajectory from the start state to each reachable state, and thus it can check whether the
trajectory is feasible or violates a resource constraint. By pruning infeasible trajectories, a heuristic
search algorithm can dramatically reduce the number of states that must be considered to find an
optimal policy. This is particularly important in our domain where the discrete state space is huge
(exponential in the number of goals), and yet the portion reachable from any initial state is relatively
small, due to resource constraints.

2. Problem Formulation and Background

We start with a formal definition of the planning problem we are tackling. It is a special case of
a hybrid-state Markov decision process, and so we first define this model. Then we discuss how
to include resource constraints and formalize over-subscription planning in this model. Finally we
review a class of dynamic programming algorithms for solving hybrid-state MDPs, since some of
these algorithmic techniques will be incorporated in the heuristic search algorithm we develop in
Section 3.

2.1 Hybrid-State Markov Decision Process

A hybrid-state Markov decision process, or hybrid-state MDP, is a factored Markov decision process
that has both discrete and continuous state variables. We define it as a tuple (N,X, A, P,R), where
N is a discrete state variable, X = {X1, X2, ..., Xd} is a set of continuous state variables, A is a set
of actions, P is a stochastic state transition model, and R is a reward function. We describe these
elements in more detail below. A hybrid-state MDP is sometimes referred to as simply a hybrid
MDP. The term “hybrid” does not refer to the dynamics of the model, which are discrete. Another
term for a hybrid-state MDP, which originates in the Markov chain literature, is a general-state
MDP.

Although a hybrid-state MDP can have multiple discrete variables, this plays no role in the algo-
rithms described in this paper, and so, for notational convenience, we model the discrete component
of the state space as a single variable N . Our focus is on the continuous component. We assume the
domain of each continuous variable Xi ∈ X is a closed interval of the real line, and so X =

⊗
i Xi

is the hypercube over which the continuous variables are defined. The state set S of a hybrid-state
MDP is the set of all possible assignments of values to the state variables. In particular, a hybrid
state s ∈ S is a pair (n,x) where n ∈ N is the value of the discrete variable, and x = (xi) is a vector
of values of the continuous variables.

State transitions occur as a result of actions, and the process evolves according to Markovian
state transition probabilities Pr(s′ | s, a), where s = (n,x) denotes the state before action a and
s′ = (n′,x′) denotes the state after action a, also called the arrival state. These probabilities can be
decomposed into:

29

Meuleau, Benazera, Brafman, Hansen & Mausam

• the discrete marginals Pr(n′|n,x, a). For all (n,x, a),
∑

n′∈N Pr(n′|n,x, a) = 1;

• the continuous conditionals Pr(x′|n,x, a, n′). For all (n,x, a, n′),
∫

x′∈X
Pr(x′|n,x, a, n′)dx′ =

1.

We assume the reward associated with a transition is a function of the arrival state only, and let
Rn(x) denote the reward associated with a transition to state (n,x). More complex dependencies
are possible, but this is sufficient for the goal-based domain models we consider in this paper.

2.2 Resource Constraints and Over-Subscription Planning

To model the rover planning problem, we consider a special type of MDP in which the objective
is to optimize expected cumulative reward subject to resource constraints. We make the following
assumptions:

• there is an initial allocation of one or more non-replenishable resources,

• each action has some minimum positive consumption of at least one resource, and

• once resources are exhausted, no further action can be taken.

One way to model an MDP with resource constraints is to formulate it as a constrained MDP,
a model that has been widely studied in the operations research community (Altman, 1999). In
this model, each action a incurs a transition-dependent resource cost, Ci

a(s, s′), for each resource
i. Given an initial allocation of resources and an initial state, linear programming is used to find
the best feasible policy, which may be a randomized policy. Although a constrained MDP models
resource consumption, it does not include resources in the state space. As a result, a policy cannot
be conditioned upon resource availability. This is not a problem if resource consumption is either
deterministic or unobservable. But it is not a good fit for the rover domain, in which resource
consumption is stochastic and observable, and the rover should take different actions depending on
current resource availability.

We adopt a different approach to modeling resource constraints in which resources are included
in the state description. Although this increases the size of the state space, it allows decisions to be
made based on resource availability, and it allows a stochastic model of resource consumption. Since
resources in the rover domain are continuous, we use the continuous variables of a hybrid-state MDP
to represent resources. Note that the duration of actions is one of the biggest sources of uncertainty
in our rover problems, and we model time as one of the continuous resources. Resource constraints
are represented in the form of executability constraints on actions, where An(x) denotes the set of
actions executable in state (n,x). An action cannot be executed in a state that does not satisfy its
minimum resource requirements.

Having discussed how to incorporate resource consumption and resource constraints in a hybrid-
state MDP, we next discuss how to formalize over-subscription planning. In our rover planning
problem, scientists provide the planner with a set of “goals” they would like the rover to achieve,
where each goal corresponds to a scientific task such as taking a picture of a rock or performing an
analysis of a soil sample. The scientists also specify a utility or reward for each goal. Usually only
a subset of these goals is feasible under resource constraints, and the problem is to find a feasible
plan that maximizes expected utility. Over-subscription planning for planetary exploration rovers
has been considered by Smith (2004) and van den Briel et al. (2004) for deterministic domains.
We consider over-subscription planning in stochastic domains, especially domains with stochastic
resource consumption. This requires construction of conditional plans in which the selection of goals
to achieve can change depending on resource availability.

In over-subscription planning, the utility associated with each goal can be achieved only once; no
additional utility is achieved for repeating the task. Therefore, the discrete state must include a set
of Boolean variables to keep track of the set of goals achieved so far by the rover, with one Boolean

30

HAO*

variable for each goal. Keeping track of already-achieved goals ensures a Markovian reward structure,
since achievement of a goal is rewarded only if it was not achieved in the past. However, it also
significantly increases the size of the discrete state space. Maintaining history information to ensure a
Markovian reward structure is a simple example of planning with non-Markovian rewards (Thiebaux,
Gretton, Slaney, Price, & Kabanza, 2006).

2.3 Optimality Equation

The rover planning problem we consider is a special case of a finite-horizon hybrid-state MDP in
which termination occurs after an indefinite number of steps. The Bellman optimality equation for
this problem takes the following form:

Vn(x) = 0 when (n,x) is a terminal state; otherwise,

Vn(x) = max
a∈An(x)

[∑
n′∈N

Pr(n′ | n,x, a)
∫
x′

Pr(x′ | n,x, a, n′) (Rn′(x′) + Vn′(x′)) dx′
]

. (1)

We define a terminal state as a state in which no actions are eligible to execute, that is, An(x) = ∅.
We use terminal states to model various conditions for plan termination. This includes the situation
in which all goals have been achieved; the situation in which resources have been exhausted; and the
situation in which an action results in some error condition that requires executing a safe sequence
by the rover and terminating plan execution. In addition to terminal states, we assume an explicit
initial state denoted (n0,x0).

Assuming that resources are limited and non-replenishable, and that every action consumes
some resource (and the amount consumed is greater than or equal to some positive quantity c), plan
execution will terminate after a finite number of steps. The maximum number of steps is bounded by
the initial resource allocation divided by c, the minimal resource consumption per step. The actual
number of steps is usually much less and indefinite, because resource consumption is stochastic and
because the choice of action influences resource consumption. Because the number of steps it takes
for a plan to terminate is bounded but indefinite, we call this a bounded-horizon MDP in contrast
to a finite-horizon MDP. However, we note that any bounded-horizon MDP can be converted to a
finite-horizon MDP by specifying a horizon that is equal to the maximum number of plan steps, and
introducing a no-op action that is taken in any terminal state.

Note that there is usually a difference between the number of plan steps and the time a plan takes
to execute. Since we model time as one of the continuous resources, the time it takes to execute a
plan step is both state and action dependent, and stochastic.

Given a hybrid-state MDP with a set of terminal states and an initial state (n0,x0), the objective
is to find a policy, π : (N × X) → A, that maximizes expected cumulative reward; specifically, an
optimal policy has a value function that satisfies the optimality equation given by Equation (1). In
our rover domain, cumulative reward is equal to the sum of rewards for the goals achieved before
reaching a terminal state and there is no direct incentive to save resources; an optimal solution saves
resources only if this allows achieving more goals. However, our framework is general enough to
allow reasoning about both the cost and the availability of resources. For example, an incentive for
conserving resources could be modeled by specifying a reward that is proportional to the amount of
resources left unused upon entering the terminal state. Note that our framework allows reasoning
about both the cost and availability of resources without needing to formulate this as a problem of
multi-objective optimization, and we stay in a standard decision-theoretic framework.

2.4 Dynamic Programming for Continuous-State and Hybrid-State MDPs

Because the planning problem we consider is a finite-horizon hybrid-state MDP, it can be solved
by any algorithm for solving finite-horizon hybrid-state MDPs. Most algorithms for solving hybrid-
state (and continuous-state) MDPs rely on some form of approximation. A widely-used approach is

31

Meuleau, Benazera, Brafman, Hansen & Mausam

Figure 1: Value function in the initial state of a simple rover problem: optimal expected return as
a function of two continuous variables (time and energy remaining).

to discretize the continuous state space into a finite number of grid points and solve the resulting
finite-state MDP using dynamic programming and interpolation (Rust, 1997; Munos & Moore,
2002). Another approach is parametric function approximation; a function associated with the
dynamic programming problem – such as the value function or policy function – is approximated
by a smooth function of k unknown parameters. In general, parametric function approximation is
faster than grid-based approximation, but has the drawback that it may fail to converge, or may
converge to an incorrect solution. Parametric function approximation is used by other algorithms for
solving continuous-state MDPs besides dynamic programming. Reinforcement learning algorithms
use artificial neural networks as function approximators (Bertsekas & Tsitsiklis, 1996). An approach
to solving MDPs called approximate linear programming has been extended to allow continuous as
well as discrete state variables (Kveton, Hauskrecht, & Guestrin, 2006).

We review another approach to solving hybrid-state (or continuous-state) MDPs that assumes
the problem has special structure that can be exploited by the dynamic programming algorithm.
The structure assumed by this approach ensures that the convolution

∫
x′ Pr(x′ | n,x, a, n′)(Rn′(x′)+

Vn′(x′))dx′ in Equation (1) can be computed exactly in finite time, and the value function computed
by dynamic programming is piecewise-constant or piecewise-linear. The initial idea for this approach
is due to the work of Boyan and Littman (2000), who describe a class of MDPs called time-dependent
MDPs, in which transitions take place along a single, irreversible continuous dimension. They
describe a dynamic programming algorithm for computing an exact piecewise-linear value function
when the transition probabilities are discrete and rewards are piecewise linear. Feng et al. (2004)
extend this approach to continuous state spaces of more than one dimension, and consider MDPs with
discrete transition probabilities and two types of reward models: piecewise constant and piecewise
linear. Li and Littman (2005) further extend the approach to allow transition probabilities that are
piecewise-constant, instead of discrete, although this extension requires some approximation in the
dynamic programming algorithm.

The problem structure exploited by these algorithms is characteristic of the Mars rover domain
and other over-subscription planning problems. Figure 1 shows the optimal value functions from
the initial state of a typical Mars rover problem as a function of two continuous variables: the
time and energy remaining (Bresina et al., 2002). The value functions feature a set of humps and
plateaus, each of them representing a region of the state space where similar goals are pursued by
the optimal policy. The sharpness of a hump or plateau reflects uncertainty about achieving the
goal(s). Constraints that impose minimal resource levels before attempting some actions introduce

32

HAO*

sharp cuts in the regions. Plateau regions where the expected reward is nearly constant represent
regions of the state space where the optimal policy is the same, and the probability distribution over
future histories induced by this optimal policy is nearly constant.

The structure in such a value function can be exploited by partitioning the continuous state
space into a finite number of hyper-rectangular regions. (A region is a hyper-rectangle if it is the
Cartesian product of intervals at each dimension.) In each hyper-rectangle, the value function is
either constant (for a piecewise-constant function) or linear (for a piecewise-linear function). The
resolution of the hyper-rectangular partitioning is adjusted to fit the value function. Large hyper-
rectangles are used to represent large plateaus. Small hyper-rectangles are used to represent regions
of the state space where a finer discretization of the value function is useful, such as the edges of
plateaus and the curved hump where there is more time and energy available. A natural choice of
data structures for rectangular partitioning of a continuous space is kd-trees (Friedman, Bentley,
& Finkel, 1977), although other choices are possible. Figures 6 and 10 in Section 4.1 show value
functions for the initial state of a simple rover planning problem, created by a piecewise-constant
partitioning of the continuous state space.

The continuous-state domains of the transition and reward functions are similarly partitioned into
hyper-rectangles. The reward function of each action has the same piecewise-constant (or piecewise-
linear) representation as the value function. The transition function partitions the state space into
regions for which the set of outcomes of an action and the probability distribution over the set of
outcomes are identical. Following Boyan and Littman (2000), both relative and absolute transitions
are supported. A relative outcome can be viewed as shifting a region by a constant δ. That is, for
any two states x and y in the same region, the transition probabilitiesPr(x′|x, a) and Pr(y′|y, a)
are defined in term of the probability of δ, such that δ = (x′ − x) = (y′ − y). An absolute outcome
maps all states in a region to a single state. That is, for any two states x and y in the same region,
Pr(x′|x, a) = Pr(x′|y, a). We can view a relative outcome as a pair (δ, p), where p is the probability
of that outcome, and we can view an absolute outcome as a pair (x′, p). This assumes there is
only a finite number of non-zero probabilities, i.e., the probability distribution is discretized, which
means that for any state and action, a finite set of states can be reached with non-zero probability.
This representation guarantees that a dynamic programming update of a piecewise-constant value
function results in another piecewise-constant value function. Feng et al. (2004) show that for such
transition functions and for any finite horizon, there exists a partition of the continuous space into
hyper-rectangles over which the optimal value function is piecewise constant or linear.

The restriction to discrete transition functions is a strong one, and often means the transition
function must be approximated. For example, rover power consumption is normally distributed,
and thus must be discretized. (Since the amount of power available must be non-negative, our
implementation truncates any negative part of the normal distribution and renormalizes.) Any con-
tinuous transition function can be approximated by an appropriately fine discretization, and Feng et
al. (2004) argue that this provides an attractive alternative to function approximation approaches in
that it approximates the model but then solves the approximate model exactly, rather than finding
an approximate value function for the original model. (For this reason, we will sometimes refer
to finding optimal policies and value functions, even when the model has been approximated.) To
avoid discretizing the transition function, Li and Littman (2005) describe an algorithm that allows
piecewise-constant transition functions, in exchange for some approximation in the dynamic pro-
gramming algorithm. Marecki et al.(2007) describe a different approach to this class of problems in
which probability distributions over resource consumptions are represented with phase-type distri-
butions and a dynamic programming algorithm exploits this representation. Although we use the
work of Feng et al. (2004) in our implementation, the heuristic search algorithm we develop in the
next section could use any of these or some other approach to representing and computing value
functions and policies for a hybrid-state MDP.

33

Meuleau, Benazera, Brafman, Hansen & Mausam

3. Heuristic Search in a Hybrid State Space

In this section, we present the primary contribution of this paper: an approach to solving a special
class of hybrid-state MDPs using a novel generalization of the heuristic search algorithm AO*. In
particular, we describe a generalization of this algorithm for solving hybrid-state MDPs in which
the continuous variables represent monotonic and constrained resources and the acyclic plan found
by the search algorithm allows branching on the availability of these resources.

The motivation for using heuristic search is the potentially huge size of the state space, which
makes dynamic programming infeasible. One reason for this size is the existence of continuous
variables. But even if we only consider the discrete component of the state space, the size of the
state space is exponential in the number of discrete variables. As is well-known, AO* can be very
effective in solving planning problems that have a large state space because it only considers states
that are reachable from an initial state, and it uses an informative heuristic function to focus on
states that are reachable in the course of executing a good plan. As a result, AO* can often find an
optimal plan by exploring a small fraction of the entire state space.

We begin this section with a review of the standard AO* algorithm. Then we consider how
to generalize AO* to search in a hybrid state space and discuss the properties of the generalized
algorithm, as well as its most efficient implementations.

3.1 AO*

Recall that AO* is an algorithm for AND/OR graph search problems (Nilsson, 1980; Pearl, 1984).
Such graphs arise in problems where there are choices (the OR components), and each choice can
have multiple consequences (the AND component), as is the case in planning under uncertainty.
Hansen and Zilberstein (2001) show how AND/OR graph search techniques can be used in solving
MDPs.

Following Nilsson (1980) and Hansen and Zilberstein (2001), we define an AND/OR graph as
a hypergraph. Instead of arcs that connect pairs of nodes as in an ordinary graph, a hypergraph
has hyperarcs, or k-connectors, that connect a node to a set of k successor nodes. When an MDP is
represented by a hypergraph, each node corresponds to a state; the root node corresponds to the start
state, and the leaf nodes correspond to terminal states. Thus we often use the word state to refer to
the corresponding node in the hypergraph representing an MDP. A k-connector corresponds to an
action that transforms a state into one of k possible successor states, with a probability attached to
each successor such that the probabilities sum to one. In this paper, we assume the AND/OR graph
is acyclic, which is consistent with our assumption that the underlying MDP has a bounded-horizon.

In AND/OR graph search, a solution takes the form of an acyclic subgraph called a solution
graph, which is defined as follows:

• the start node belongs to a solution graph;

• for every non-terminal node in a solution graph, exactly one outgoing k-connector (correspond-
ing to an action) is part of the solution graph and each of its successor nodes also belongs to
the solution graph;

• every directed path in the solution graph terminates at a terminal node.

A solution graph that maximizes expected cumulative reward is found by solving the following
system of equations,

V ∗(s) =
{

0 if s is a terminal state; otherwise,
maxa∈A(s)

[∑
s′∈S Pr(s′|s, a) (R(s′) + V ∗(s′))

]
,

(2)

where V ∗(s) denotes the expected value of an optimal solution for state s, and V ∗ is called the
optimal evaluation function (or value function in MDP terminology). Note that this is identical to

34

HAO*

the optimality equation for hybrid-state MDPs defined in Equation (1), if the latter is restricted to
a discrete state space. In keeping with the convention in the literature on MDPs, we treat this as a
value-maximization problem even though AO* is usually formalized as solving a cost-minimization
problem.

For state-space search problems that are formalized as AND/OR graphs, an optimal solution
graph can be found using the heuristic search algorithm AO* (Nilsson, 1980; Pearl, 1984). Like other
heuristic search algorithms, the advantage of AO* over dynamic programming is that it can find an
optimal solution for a particular starting state without evaluating all problem states. Therefore, a
graph is not usually supplied explicitly to the search algorithm. An implicit graph, G, is specified
implicitly by a start node or start state s and a successor function that generates the successors
states for any state-action pair. The search algorithm constructs an explicit graph, G′, that initially
consists only of the start state. A tip or leaf state of the explicit graph is said to be terminal if
it is a goal state (or some other state in which no action can be taken); otherwise, it is said to be
nonterminal. A nonterminal tip state can be expanded by adding to the explicit graph its outgoing
k-connectors (one for each action) and any successor states not already in the explicit graph.

AO* solves a state-space search problem by gradually building a solution graph, beginning from
the start state. A partial solution graph is defined similarly to a solution graph, with the difference
that tip states of a partial solution graph may be nonterminal states of the implicit AND/OR graph.
A partial solution graph is defined as follows:

• the start state belongs to a partial solution graph;

• for every non-tip state in a partial solution graph, exactly one outgoing k-connector (corre-
sponding to an action) is part of the partial solution graph and each of its successor states also
belongs to the partial solution graph;

• every directed path in a partial solution graph terminates at a tip state of the explicit graph.

The value of a partial solution graph is defined similarly to the value of a solution graph. The
difference is that if a tip state of a partial solution graph is nonterminal, it does not have a value
that can be propagated backwards. Instead, we assume there is an admissible heuristic estimate
H(s) of the maximal-value solution graph for state s. A heuristic evaluation function H is said to
be admissible if H(s) ≥ V ∗(s) for every state s. We can recursively calculate an admissible heuristic
estimate V (s) of the optimal value of any state s in the explicit graph as follows:

V (s) =

0 if s is a terminal state,

H(s) if s is a nonterminal tip state,
maxa∈A(s)

[∑
s′∈S Pr(s′|s, a) (R(s′) + V (s′))

]
otherwise.

(3)

The best partial solution graph can be determined at any time by propagating heuristic estimates
from the tip states of the explicit graph to the start state. If we mark the action that maximizes
the value of each state, the best partial solution graph can be determined by starting at the root of
the graph and selecting the best (i.e., marked) action for each reachable state.

Table 1 outlines the AO* algorithm for finding an optimal solution graph in an acyclic AND/OR
graph. It interleaves forward expansion of the best partial solution with a value update step that
updates estimated state values and the best partial solution. In the simplest version of AO*, the
values of the expanded state and all of its ancestor states in the explicit graph are updated. But in
fact, the only ancestor states that need to be re-evaluated are those from which the expanded state
can be reached by taking marked actions (i.e., by choosing the best action for each state). Thus,
the parenthetical remark in step 2(b)i of Table 1 indicates that a parent s′ of state s is not added
to Z unless both the estimated value of state s has changed and state s can be reached from state
s′ by choosing the best action for state s′. AO* terminates when the policy expansion step does not

35

Meuleau, Benazera, Brafman, Hansen & Mausam

1. The explicit graph G′ initially consists of the start state s0.

2. While the best solution graph has some nonterminal tip state:

(a) Expand best partial solution: Expand some nonterminal tip state s of the best partial
solution graph and add any new successor states to G′. For each new state s′ added to
G′ by expanding s, if s′ is a terminal state then V (s′) := 0; else V (s′) := H(s′).

(b) Update state values and mark best actions:

i. Create a set Z that contains the expanded state and all of its ancestors in the explicit
graph along marked action arcs. (I.e., only include ancestor states from which the
expanded state can be reached by following the current best solution.)

ii. Repeat the following steps until Z is empty.
A. Remove from Z a state s such that no descendant of s in G′ occurs in Z.
B. Set V (s) := maxa∈A(s)

∑
s′ Pr(s′|s, a) (R(s′) + V (s′)) and mark the best action

for s. (When determining the best action resolve ties arbitrarily, but give prefer-
ence to the currently marked action.)

(c) Identify the best solution graph and all nonterminal states on its fringe

3. Return an optimal solution graph.

Table 1: AO* algorithm.

find any nonterminal states on the fringe of the best solution graph. At this point, the best solution
graph is an optimal solution.

Following the literature on AND/OR graph search, we have so far referred to the solution found
by AO* as a solution graph. But in the following, when AO* is used to solve an MDP, we sometimes
follow the literature on MDPs in referring to a solution as a policy. We also sometimes refer to it as
a policy graph, to indicate that a policy is represented in the form of a graph.

3.2 Hybrid-State AO*

We now consider how to generalize AO* to solve a bounded-horizon hybrid-state MDP. The challenge
we face in applying AO* to this problem is the challenge of performing state-space search in a hybrid
state space.

The solution we adopt is to search in an aggregate state space that is represented by an AND/OR
graph in which there is a node for each distinct value of the discrete component of the state. In other
words, each node of the AND/OR graph represents a region of the continuous state space in which
the discrete value is the same. Given this partition of the continuous state space, we use AND/OR
graph search techniques to solve the MDP for those parts of the state space that are reachable from
the start state under the best policy.

However, AND/OR graph search techniques must be modified in important ways to allow search
in a hybrid state space that is represented in this way. In particular, there is no longer a correspon-
dence between the nodes of the AND/OR graph and individual states. Each node now corresponds
to a continuous region of the state space, and different actions may be optimal for different hy-
brid states associated with the same search node. In the case of rover planning, for example, the
best action is likely to depend on how much energy or time is remaining, and energy and time are
continuous state variables.

To address this problem and still find an optimal solution, we attach to each search node a set of
functions (of the continuous variables) that make it possible to associate different values, heuristics,
and actions with different hybrid states that map to the same search node. As before, the explicit

36

HAO*

search graph consists of all nodes and edges of the AND/OR graph that have been generated so far,
and describes all the states that have been considered so far by the search algorithm. The difference
is that we use a more complex state representation in which a set of continuous functions allows
representation and reasoning about the continuous part of the state space associated with a search
node.

We begin by describing this more complex node data structure, and then we describe the HAO*
algorithm.

3.2.1 Data Structures

Each node n of the explicit AND/OR graph G′ consists of the following:

• The value of the discrete state variable.

• Pointers to its parents and children in the explicit graph and the policy graph.

• Openn(·) → {0, 1}: the “Open list”. For each x ∈ X, Openn(x) indicates whether (n,x) is on
the frontier of the explicit graph, i.e., generated but not yet expanded.

• Closedn(·) → {0, 1}: the “Closed list”. For each x ∈ X, Closedn(x) indicates whether (n,x)
is in the interior of the explicit graph, i.e., already expanded.

Note that, for all (n,x), Openn(x) ∩ Closedn(x) = ∅. (A state cannot be both open and
closed.) There can be parts of the continuous state space associated with a node that are
neither open nor closed. Until the explicit graph contains a trajectory from the start state
to a particular hybrid state, that hybrid state is not considered generated, even if the search
node to which it corresponds has been generated; such states are neither open nor closed. In
addition, only non-terminal states can be open or closed. Note that we do not refer to open
or closed nodes; instead, we refer to the hybrid states associated with nodes as being open or
closed.

• Hn(·): the heuristic function. For each x ∈ X, Hn(x) is a heuristic estimate of the optimal
expected cumulative reward from state (n,x).

• Vn(·): the value function. For any open state (n,x), Vn(x) = Hn(x). For any closed state
(n,x), Vn(x) is obtained by backing up the values of its successor states, as in Equation (4).

• πn(·) → A: the policy. Note that it is defined for closed states only.

• Reachablen(·) → {0, 1}: For each x ∈ X, Reachablen(x) indicates whether (n,x) is reachable
by executing the current best policy beginning from the start state (n0,x0).

We assume that these various continuous functions, which represent information about the hy-
brid states associated with a search node, partition the state space associated with a node into a
discrete number of regions, and associate a distinct value or action with each region. Given such
a partitioning, the HAO* algorithm expands and evaluates these regions of the hybrid state space,
instead of individual hybrid states. The finiteness of the partition is important in order to ensure
that the search frontier can be extended by a finite number of expansions, and to ensure that HAO*
can terminate after a finite number of steps. In our implementation of HAO*, described in Sec-
tion 4, we use the piecewise-constant partitioning of a continuous state space proposed by Feng et
al. (2004). However, any method of discrete partitioning could be used, provided that the condition
above holds; for example, Li and Littman (2005) describe an alternative method of partitioning.
Note that two forms of state-space partitioning are used in our algorithm. First, the hybrid state
space is partitioned into a finite number of regions, one for each discrete state, where each of these

37

Meuleau, Benazera, Brafman, Hansen & Mausam

regions corresponds to a node of the AND/OR graph. Second, the continuous state space associ-
ated with a particular node is further partitioned into smaller regions based on a piecewise-constant
representation of a continuous function, such as the one used by Feng et al. (2004).

In addition to this more complex representation of the nodes of an AND/OR graph, our algorithm
requires a more complex definition of the the best (partial) solution. In standard AO*, the one-
to-one correspondence between nodes and individual states means that a solution or policy can
be represented entirely by a graph, called the (partial) solution graph, in which a single action is
associated with each node. In the HAO* algorithm, a continuum of states is associated with each
node, and different actions may be optimal for different regions of the state space associated with a
particular node. For the HAO* algorithm, a (partial) solution graph is a sub-graph of the explicit
graph that is defined as follows:

• the start node belongs to a solution graph;

• for every non-tip node in a solution graph, one or more outgoing k-connectors are part of the
solution graph, one for each action that is optimal for some hybrid state associated with the
node, and each of their successor nodes also belongs to the solution graph;

• every directed path in the solution graph terminates at a tip node of the explicit graph.

The key difference in this definition is that there may be more than one optimal action associated
with a node, since different actions may be optimal for different hybrid states associated with the
node. A policy is represented not only by a solution graph, but by the continuous functions πn(.)
and Reachablen(.). In particular, a (partial) policy π specifies an action for each reachable region of
the continuous state space. The best (partial) policy is the one that satisfies the following optimality
equation:

Vn(x) = 0 when (n,x) is a terminal state,
Vn(x) = Hn(x) when (n,x) is a nonterminal open state,

Vn(x) = max
a∈An(x)

[∑
n′∈N

Pr(n′ | n,x, a)
∫
x′

Pr(x′ | n,x, a, n′) (Rn′(x′) + Vn′(x′)) dx′
]

. (4)

Note that this optimality equation is only satisfied for regions of the state space that are reachable
from the start state, (n0,x0) by following an optimal policy.

3.2.2 Algorithm

Table 2 gives a high-level summary of the HAO* algorithm. In outline, it is the same as the AO*
algorithm, and consists of iteration of the same three steps; solution (or policy) expansion, use of
dynamic programming to update the current value function and policy, and analysis of reachability
to identify the frontier of the solution that is eligible for expansion. In detail, it is modified in several
important ways to allow search of a hybrid state space. In the following, we discuss the modifications
to each of these three steps.

Policy expansion All nodes of the current solution graph are identified and one or more open
regions associated with these nodes are selected for expansion. That is, one or more regions of the
hybrid state space in the intersection of Open and Reachable is chosen for expansion. All actions
applicable to the states in these open regions are simulated, and the results of these actions are added
to the explicit graph. In some cases, this means adding a new node to the AND/OR graph. In other
cases, it simply involves marking one or more regions of the continuous state space associated with
an existing node as open. More specifically, when an action leads to a new node, this node is added to
the explicit graph, and all states corresponding to this node that are reachable from the expanded
region(s) after the action under consideration are marked as open. When an action leads to an

38

HAO*

1. The explicit graph G′ initially consists of the start node and corresponding start state (n0,x0),
marked as open and reachable.

2. While Reachablen(x) ∩Openn(x) is non-empty for some (n,x):

(a) Expand best partial solution: Expand one or more region(s) of open states on the frontier
of the explicit state space that is reachable by following the best partial policy. Add new
successor states to G′. In some cases, this requires adding a new node to the AND/OR
graph. In other cases, it simply involves marking one or more regions of the continuous
state space associated with an existing node as open. States in the expanded region(s)
are marked as closed.

(b) Update state values and mark best actions:

i. Create a set Z that contains the node(s) associated with the just expanded regions
of states and all ancestor nodes in the explicit graph along marked action arcs.

ii. Decompose the part of the explicit AND/OR graph that consists of nodes in Z into
strongly connected components.

iii. Repeat the following steps until Z is empty.
A. Remove from Z a set of nodes such that (1) they all belong to the same connected

component, and (2) no descendant of these nodes occurs in Z.
B. For every node n in this connected component and for all states (n,x) in any

expanded region of node n, set

Vn(x) :=

max
a∈An(x)

[∑
n′∈N

Pr(n′ | n,x, a)
∫
x′

Pr(x′ | n,x, a, n′) (Rn′(x′) + Vn′(x′)) dx′
]

,

and mark the best action. (When determining the best action resolve ties arbi-
trarily, but give preference to the currently marked action.) Repeat until there
is no longer a change of value for any of these nodes.

(c) Identify the best solution graph and all nonterminal states on its frontier. This step
updates Reachablen(x).

3. Return an optimal policy.

Table 2: HAO* algorithm.

existing node, any region(s) of Markov states in this node that is both reachable from the expanded
region(s) and not marked as closed, is marked open. Expanded regions of the state space are marked
as closed. Thus, different regions associated with the same node can be opened and expanded at
different times. This process is illustrated in Figure 2. In this figure, nodes corresponding to a
distinct value for the discrete state are represented as rectangles, and circular connectors represent
actions. For each node, we see how many distinct continuous regions exist. For each such region we
see whether it is closed (“C”) or open (“O”), and whether it is reachable from the initial state (“R”)
when executing the current best policy (“OPT”). For instance, in Figure 2(a), node At(Start) has
a single region marked closed and reachable, and node Lost has two regions: the smallest, open and
reachable, and the largest, closed and unreachable.

Dynamic programming As in standard AO*, the value of any newly-expanded node n must
be updated by computing a Bellman backup based on the value functions of the children of n

39

Meuleau, Benazera, Brafman, Hansen & Mausam

Panoramic
 Camera

(Start, Loc1)
 Navigate

OPT

 O

C
R

 R
 C

O
R

Lost

At(Start)

 At(Loc1)

Panoramic
 Camera

(Start, Loc1)
 Navigate

OPT

Lost

R

 Navigate
(Loc1, Loc2)

C
R

C

 O

 R
 O C C

At(Start)

 At(Loc2)

 At(Loc1)

 O

(a) Before expansion (b) After expansion

Figure 2: Expanding a region of the state space. (a) Before expansion: The nodes At(Start),
At(Loc1) and Lost have been previously created. The unique region in At(Loc1) is the
next region to be expanded. (b) After expansion: The action Navigate(Loc1,Loc2) that
can be applied in the expanded region has been added to the graph. This action can lead
either to the preexisting node Lost, or to the new node At(Loc2). The expanded region (in
At(Loc1)), as well as the continuous regions reachable from there (in Lost and At(Loc2)),
are highlighted in a dotted framed. Following expansion, the expanded region is closed.
Discrete state At(Loc2) has been added to the graph and all its reachable regions are
open. Additionally, new open regions have been added to node Lost.

in the explicit graph. For each expanded region of the state space associated with node n, each
action is evaluated, the best action is selected, and the corresponding continuous value function
is associated with the region. The continuous-state value function is computed by evaluating the
continuous integral in Equation (4). We can use any method for computing this integral. In our
implementation, we use the dynamic programming algorithm of Feng et al. (2004). As reviewed
in Section 2.4, they show that the continuous integral over x′ can be computed exactly, as long as
the transition and reward functions satisfy certain conditions. Note that, with some hybrid-state
dynamic programming techniques such as Feng et al. (2004), dynamic programming backups may
increase the number of pieces of the value function attached to the updated regions (Figure 3(a)).

Once the expanded regions of the continuous state space associated with a node n are re-
evaluated, the new values must be propagated backward in the explicit graph. The backward
propagation stops at nodes where the value function is not modified, or at the root node. The
standard AO* algorithm, summarized in Figure 1, assumes that the AND/OR graph in which it
searches is acyclic. There are extensions of AO* for searching in AND/OR graphs that contain
cycles. One line of research is concerned with how to find acyclic solutions in AND/OR graphs
that contain cycles (Jimenez & Torras, 2000). Another generalization of AO*, called LAO*, allows
solutions to contain cycles or “loops” in order to specify policies for infinite-horizon MDPs (Hansen
& Zilberstein, 2001).

40

HAO*

Panoramic
 Camera

(Start, Loc1)
 Navigate

OPT

Lost

R

 O

 Navigate
(Loc1, Loc2)

C

 O

 R
 O

 C C C
 R R R

OPT CC

At(Start)

 At(Loc1)

 At(Loc2)
Panoramic
 Camera

(Start, Loc1)
 Navigate

OPT

Lost

R

 O

 Navigate
(Loc1, Loc2)

C

 O

 R
 O

 C C C
 R R R

OPT CC

 R

 R R

At(Start)

 At(Loc2)

 At(Loc1)

(a) Dynamic programming (b) Reachability analysis

Figure 3: Dynamic programming and reachability analysis (Figure 2 continued). (a) Dynamic pro-
gramming: The optimal policy has been reevaluated and Navigate(Loc1,Loc2) appears
optimal in some continuous states of At(Loc2). Node At(Loc1) is represented with a finer
partition of the continuous state space to illustrate the fact that the backup increased the
number of pieces of the value function associated with the expanded region. (b) Reach-
ability analysis: The newly created region of At(Loc2) becomes reachable, as well as the
regions of Lost that can be reached through Navigate(Loc1,Loc2).

Given our assumption that every action has positive resource consumption, there can be no
loops in the state space of our problem because the resources available decrease at each step. But
surprisingly, there can be loops in the AND/OR graph. This is possible because the AND/OR
graph represents a projection of the state space onto a smaller space that consists of only the
discrete component of the state. For example, it is possible for the rover to return to the same
site it has visited before. The rover is not actually in the same state, since it has fewer resources
available. But the AND/OR graph represents a projection of the state space that does not include
the continuous aspects of the state, such as resources, and this means the rover can visit a state that
projects to the same node of the AND/OR graph as a state it visited earlier, as shown in Figure 4.
As a result, there can be loops in the AND/OR graph, and even loops in the part of the AND/OR
graph that corresponds to a solution. But in a sense, these are “phantom loops” that can only
appear in the projected state space, and not in the real state space.

Nevertheless we must modify the dynamic programming (DP) algorithm to deal with these loops.
Because there are no loops in the real state space, we know that the exact value function can be
updated by a finite number of backups performed in the correct order, with one backup performed
for any state that can be visited along a path from the start state to the expanded node(s). But
because multiple states can map to the same AND/OR graph node, the continuous region of the
state space associated with a particular node may need to be evaluated more than once. To identify
the AND/OR graph nodes that need to be evaluated more than once, we use the following two-step
algorithm.

41

Meuleau, Benazera, Brafman, Hansen & Mausam

energy = 80
At(Location1)

energy = 50
At(Location1)

energy = 65
At(Location2)

energy = 35
At(Location2)

energy = 100
At(Start)

At(Location1)

At(Location2)

At(Start)

Figure 4: Phantom loops in HAO*: solid boxes represent Markov states. Dashed boxes represent
search nodes, that is, the projection of Markov states on the discrete components. Arrows
represent possible state transition. Bold arrows show an instance of phantom loop in the
search space.

First, we consider the part of the AND/OR graph that consists of ancestor nodes of the just
expanded node(s). This is the set Z of nodes identified at the beginning of the DP step. We
decompose this part of the graph into strongly connected components. The graph of strongly
connected components is acyclic and can be used to prescribe the order of backups in almost the
same way as in the standard AO* algorithm. In particular, the nodes in a particular component are
not backed up until all nodes in its descendant components have been backed up. Note that in the
case of an acyclic graph, every strongly connected component has a single node. It is only possible
for a connected component to have more than one node if there are loops in the AND/OR graph.

If there are loops in the AND/OR graph, the primary change in the DP step of the algorithm
occurs when it is time to perform backups on the nodes in a connected component with more than one
node. In this case, all nodes in the connected component are evaluated. Then, they are repeatedly
re-evaluated until the value functions of these nodes converge, that is, until there is no change in
the values of any of the nodes. Because there are no loops in the real state space, convergence is
guaranteed to occur after a finite number of steps. Typically, it occurs after a very small number
of steps. An advantage of decomposing the AND/OR graph into connected components is that it
identifies loops and localizes their effect to a small number of nodes. In experiments in our test
domain, most nodes of the graph need to be evaluated just once during the DP step, and only a
small number of nodes (and often none) need to be evaluated more than once.

Note that decomposition of the nodes in Z into connected components is a method for improving
the efficiency of the dynamic programming step, and is not required for its correctness. The alter-
native of repeatedly updating all nodes in Z until all their values converge is also correct, although
it is likely to result in many useless updates of already converged nodes.

Analysis of reachability Change in the value function can lead to change in the optimal policy,
and, thus, to change in which states are visited by the best policy. This, in turn, can affect which
open regions of the state space are eligible to be expanded. In this final step, HAO* identifies the
best (partial) policy and recomputes Reachablen for all nodes and states in the explicit graph, as
follows (see Figure 3(b)). For each node n in the best (partial) solution graph, consider each of its
parents n′ in the solution graph, and all the actions a that can lead from one of the parents to n.
Then Reachablen(x) is the support of Pn(x), where

Pn(x) =
∑

(n′,a)∈Ωn

∫
X

Reachablen′(x′) Pr(n | n′,x′, a) Pr(x | n′,x′, a, n)dx′ , (5)

42

HAO*

that is, Reachablen(x) = {x ∈ X : Pn(x) > 0}. In Equation (5), Ωn is the set of pairs (n′, a) where
a is the best action in n′ for some reachable resource level:

Ωn = {(n′, a) ∈ N ×A : ∃x ∈ X, Pn′(x) > 0, πn′(x) = a, Pr(n | n′,x, a) > 0} .

It is clear that we can restrict our attention to state-action pairs in Ωn, only.
By performing this reachability analysis, HAO* identifies the frontier of the state space that is

eligible for expansion. HAO* terminates when this frontier is empty, that is, when it does not find
any hybrid states in the intersection of Reachable and Open.

3.3 Convergence and Error Bounds

We next consider some of the theoretical properties of HAO*. First, under reasonable assumptions,
we prove that HAO* converges to an optimal policy after a finite number of steps. Then we discuss
how to use HAO* to find sub-optimal policies with error bounds.

The proof of convergence after a finite number of steps depends, among other things, on the
assumption that a hybrid-state MDP has a finite branching factor. In our implementation, this
means that for any region of the state space that can be represented by a hyper-rectangle, the set
of successor regions after an action can be represented by a finite set of hyper-rectangles. From
this assumption and the assumption that the number of actions is finite, it follows that for every
assignment n to the discrete variables, the set

{x|(n,x)is reachable from the initial state using some fixed sequence of actions}

is the union of a finite number of open or closed hyper-rectangles. This assumption can be viewed
as a generalization of the assumption of a finite branching factor in a discrete AND/OR graph upon
which the finite convergence proof of AO* depends.

Theorem 1 If the heuristic functions Hn are admissible (optimistic), all actions have positive re-
source consumptions, both continuous backups and action application are computable exactly in finite
time, and the branching factor is finite, then:

1. At each step of HAO*, Vn(x) is an upper-bound on the optimal expected return in (n,x), for
all (n,x) expanded by HAO*;

2. HAO* terminates after a finite number of steps;

3. After termination, Vn(x) is equal to the optimal expected return in (n,x), for all (n,x) reachable
under an optimal policy, i.e., Reachablen(x) > 0.

Proof: (1) The proof is by induction. Every state (n,x) is assigned an initial heuristic estimate,
and Vn(x) = Hn(x) ≥ V ∗

n (x) by the admissibility of the heuristic evaluation function. We make the
inductive hypothesis that at some point in the algorithm, Vn(x) ≥ V ∗

n (x) for every state (n,x). If a
backup is performed for any state (n,x),

Vn(x) = max
a∈An(x)

[∑
n′∈N

Pr(n′ | n,x, a)
∫
x′

Pr(x′ | n,x, a, n′) (Rn′(x′) + Vn′(x′)) dx′
]

≥ max
a∈An(x)

[∑
n′∈N

Pr(n′ | n,x, a)
∫
x′

Pr(x′ | n,x, a, n′) (Rn′(x′) + V ∗
n′(x′)) dx′

]
= V ∗

n (x) ,

where the last equality restates the Bellman optimality equation.

43

Meuleau, Benazera, Brafman, Hansen & Mausam

(2) Because each action has positive, bounded from below, resource consumption, and resources
are finite and non-replenishable, the complete implicit AND/OR graph must be finite. For the same
reason, this graph can be turned into a finite graph without loops: Along any directed loop in
this graph, the amount of maximal available resources must decrease by some ε which is a positive
lower-bound on the amount of resources consumed by an action. Each node in this graph may be
expanded a number of times that is bounded by the number of its ancestor. (Each time a new
ancestor is discovered, it may lead to an update in the set of reachable regions for this node.)
Moreover, finite branching factor implies that the number of regions considered within each node
is bounded (because there are finite ways of reaching this node, each of which contributes a finite
number of hyper-rectangles). Thus, overall, the number of regions considered is finite, and the
processing required for each region expansion is finite (because action application and backups are
computed in finite time). This leads to the desired conclusion.

(3) The search algorithm terminates when the policy for the start state (n0,x0) is complete,
that is, when it does not lead to any unexpanded states. For every state (n,x) that is reachable
by following this policy, it is contradictory to suppose Vn(x) > V ∗

n (x) since that implies a complete
policy that is better than optimal. By the Bellman optimality equation of Equation (1), we know
that Vn(x) ≥ V ∗

n (x) for every state in this complete policy. Therefore, Vn(x) = V ∗
n (x). �

HAO* not only converges to an optimal solution, stopping the algorithm early allows a flexible
trade-off between solution quality and computation time. If we assume that, in each state, there
is a done action that terminates execution with zero reward (in a rover problem, we would then
start a safe sequence), then we can evaluate the current policy at each step of the algorithm by
assuming that execution ends each time we reach a leaf of the policy graph. Under this assumption,
the error of the current policy at each step of the algorithm can be bounded. We show this by
using a decomposition of the value function described by Chakrabarti et al.(1988) and Hansen and
Zilberstein (2001). We note that at any point in the algorithm, the value function can be decomposed
into two parts, gn(x) and hn(x), such that

gn(x) = 0 when (n,x) is an open state, on the fringe of the greedy policy; otherwise,

gn(x) =
∑

n′∈N

Pr(n′ | n,x, a∗)
∫
x′

Pr(x′ | n,x, a∗, n′) (Rn(x) + gn′(x′)) dx′ , (6)

and

hn(x) = Hn(x) when (n,x) is an open state, on the fringe of the greedy policy; otherwise,

hn(x) =
∑

n′∈N

Pr(n′ | n,x, a∗)
∫
x′

Pr(x′ | n,x, a∗, n′) hn′(x′)dx′ , (7)

where a∗ is the action that maximizes the right-hand side of Equation (4). Note that Vn(x) =
gn(x)+hn(x). We use this decomposition of the value function to bound the error of the best policy
found so far, as follows.

Theorem 2 At each step of the HAO* algorithm, the error of the current best policy is bounded by
hn0(x0).

Proof: For any state (n,x) in the explicit search space, a lower bound on its optimal value is given
by gn(x), which is the value that can be achieved by the current policy when the done action is
executed at all fringe states, and an upper bound is given by Vn(x) = gn(x) + hn(x), as established
in Theorem 1. It follows that hn0(x0) bounds the difference between the optimal value and the
current admissible value of any state (n,x), including the initial state (n0,x)).�

Note that the error bound for the initial state is hn0(x0) = Hn0(x0) at the start of the algorithm;
it decreases with the progress of the algorithm; and hn0(x0) = 0 when HAO* converges to an optimal
solution.

44

HAO*

3.4 Heuristic Function

The heuristic function Hn focuses the search on reachable states that are most likely to be useful.
The more informative the heuristic, the more scalable the search algorithm. In our implementation
of HAO* for the rover planning problem, which is described in detail in the next section, we used
the simple admissible heuristic function which assigns to each node the sum of all rewards associated
with goals that have not been achieved so far. Note that this heuristic function only depends on the
discrete component of the state, and not on the continuous variables; that is, the function Hn(x)
is constant over all values of x. It is obvious that this heuristic is admissible, since it represents
the maximum additional reward that could be achieved by continuing plan execution. Although it
is not obvious that a heuristic this simple could be useful, the experimental results we present in
Section 4 show that it is. We considered an additional, more informed heuristic function that solved
a relaxed, suitably discretized, version of the planning problem. However, taking into account the
time required to compute this heuristic estimate, the simpler heuristic performed better.

3.5 Expansion Policy

HAO* works correctly and converges to an optimal solution no matter which continuous region(s)
of which node(s) are expanded in each iteration (step 2.a). But the quality of the solution may
improve more quickly by using some “heuristics” to choose which region(s) on the fringe to expand
next.

One simple strategy is to select a node and expand all continuous regions of this node that
are open and reachable. In a preliminary implementation, we expanded (the open regions of) the
node that is most likely to be reached using the current policy. Changes in the value of these
states will have the greatest effect on the value of earlier nodes. Implementing this strategy requires
performing the additional work involved in maintaining the probability associated with each state.
If such probabilities are available, one could also focus on expanding the most promising node, that
is, the node where the integral of Hn(x) times the probability over all values of x is the highest, as
described by Mausam, Benazera, Brafman, Meuleau, and Hansen (2005).

Hansen and Zilberstein (2001) observed that, in the case of LAO*, the algorithm is more efficient
if we expand several nodes in the fringe before performing dynamic programming in the explicit
graph. This is because the cost of performing the update of a node largely dominates the cost of
expanding a node. If we expand only one node of the fringe at each iteration, we might have to
perform more DP backups than if we expand several nodes with common ancestors before proceeding
to DP. In the limit, we might want to expand all nodes of the fringe at each algorithm iteration.
Indeed, this variant of LAO* proved the most efficient (Hansen & Zilberstein, 2001).

In the case of LAO*, updates are expensive because of the loops in the implicit graph. In HAO*,
the update of a region induces a call to the hybrid dynamic programming module for each open
region of the node. Therefore, the same technique is likely to produce the same benefit.

Pursuing this idea, we allowed our algorithm to expand all nodes in the fringe and all their
descendants up to a fixed depth at each iteration. We defined a parameter, called the expansion
horizon and denoted k, to represent, loosely speaking, the number of times the whole fringe is
expanded at each iteration. When k = 1, HAO* expands all open and reachable regions of all
nodes in the fringe before recomputing the optimal policy. When k = 2, it expands all regions in
the fringe and all their children before updating the policy. At k = 3 it also consider the grand-
children of regions in the fringe, and so on. When k tends to infinity, the algorithm essentially
performs an exhaustive search: it first expands the graph of all reachable nodes, then performs one
pass of (hybrid) dynamic programming in this graph to determine the optimal policy. By balancing
node expansion and update, the expansion horizon allows tuning the algorithm behavior from an
exhaustive search to a more traditional heuristic search. Our experiments showed that a value of k
between 5 and 10 is optimal to solve our hardest benchmark problems (see section 4).

45

Meuleau, Benazera, Brafman, Hansen & Mausam

: Waypoint

: Rock

: IP + CHAMP

: Science Cam.

Name

Start ObsPt3

W1W2

W3

Obs
Pt5 ObsPt2

ObsPt1

Obs
Pt4

C4

C6

Far

Featureless

Audience

Unsafe

Demo
label

Figure 5: The K9 rover (top left) was developed at the Jet Propulsion Laboratory and NASA Ames
Research Center as a prototype for the MER rovers. It is used to test advanced rover
software, including automated planners of the rover’s activities. Right: topological map
of the 2004 IS demo problem. Arrows labeled “IP + CHAMP” represent the opportunity
to deploy the arm against a rock (instrument placement) and take a picture of it with
the CHAMP Camera. Arrows labeled “Science Cam” represent the opportunity to take a
remote picture of a rock with the Science Camera.

3.6 Updating Multiple Regions

The expansion policies described above are based on expanding all open regions of one or several
nodes simultaneously. They allow leveraging hybrid-state dynamic programming techniques such as
those of Feng et al. (2004) and Li and Littman (2005). These techniques may compute in a single
iteration piecewise constant and linear value functions that cover a large range of continuous states,
possibly the whole space of possible values. In particular, they can back up in one iteration all
continuous states included between given bounds.

Therefore, when several open regions of the same node are expanded at the same iteration of
HAO*, we can update all of them simultaneously by backing-up a subset of continuous states that
includes all these regions. For instance, one may record lower bounds and upper bounds on each
continuous variable over the expanded regions, and then compute a value function that covers the
hyper-rectangle between these bounds.

This modification of the algorithm does not impact convergence. As long as the value of all
expanded regions is computed, the convergence proof holds. However, execution time may be ad-
versely affected if the expanded regions are a proper subset of the region of continuous states that is

46

HAO*

(a) Value function Vn(.) for the initial node. The
first plateau corresponds to analyzing R1, the sec-
ond plateau to analyzing R2, and the third plateau
to analyzing both R1 and R2.

(b) The policy πn(.) for the starting
node shows the partitions of the re-
source space where different actions
are optimal. Dark: no action; Grey:
navigation to R2; Light: analysis of
R1.

Figure 6: (a) Optimal value function for the initial state of the simple rover problem over all possible
values for the continuous resources (time and energy remaining). The value function is
partitioned into 3476 pieces. (b) Optimal policy for the same set of states.

backed-up. In that case, the values of states that are not open or not reachable is uselessly computed,
which deviates from a pure heuristic search algorithm.

However, this modification may also be beneficial because it avoids some redundant computation.
Hybrid-state dynamic programming techniques manipulate pieces of value functions. Thus, if several
expanded regions are included in the same piece of the value function, their value is computed only
once. In practice, this benefit may outweigh the cost of evaluating useless regions. Moreover, cost
is further reduced by storing the value functions associated with each node of the graph, so that
computed values of irrelevant regions are saved in case these regions become eligible for expansion
(i.e., open and reachable) later. Thus, this variant of HAO* fully exploits hybrid-state dynamic
programming techniques.

4. Experimental Evaluation

In this section, we describe the performance of HAO* in solving planning problems for a simulated
planetary exploration rover with two monotonic and continuous-valued resources: time and battery
power. Section 4.1 uses a simple “toy” example of this problem to illustrate the basic steps of
the HAO* algorithm. Section 4.2 tests the performance of the algorithm using a realistic, real-size
NASA simulation of a rover and analyzes the results of the experiments. The simulation uses a
model of the K9 rover (see Figure 5) developed for the Intelligent Systems (IS) demo at NASA
Ames Research Center in October 2004 (Pedersen et al., 2005). This is a complex real-size model of
the K9 rover that uses command names understandable by the rover’s execution language, so that
the plans produced by our algorithm can be directly executed by the rover. For the experiments
reported in Section 4.2, we did not simplify this NASA simulation model in any way.

47

Meuleau, Benazera, Brafman, Hansen & Mausam

Figure 7: First iteration of HAO* on the toy problem. The explicit graph is marked by dim edges
and the solution graph is marked by thick edges. Tip nodes 4, 5, 6 and 7 are shown with
constant heuristic functions and expanded nodes 1, 2 and 3 are shown with backed up
value functions.

In the planning problem we consider, an autonomous rover must navigate in a planar graph
representing its surroundings and the authorized navigation paths, and schedule observations to
be performed on different rocks situated at different locations. Only a subset of its observational
goals can be achieved in a single run due to limited resources. Therefore, this is an oversubscribed
planning problem. It is also a problem of planning under uncertainty since each action has uncertain
positive resource consumptions and a probability of failing.

A significant amount of uncertainty in the domain comes from the tracking mechanism used by
the rover. Tracking is the process by which the rover recognizes a rock based on certain features in
its camera image that are associated with the rock. During mission operations, a problem instance
containing a fixed set of locations, paths, and rocks is built from the last panoramic camera image
sent by the rover. Each “logical rock” in this problem instance corresponds to a real rock, and
the rover must associate the two on the basis of features that can be detected by its instruments,
including its camera. As the rover moves and its camera image changes, the rover must keep track
of how those features of the image evolve. This process is uncertain and subject to faults that result
in losing track of a rock. In practice, tracking is modeled in the following way:

• In order to perform a measurement on a rock, the rover must be tracking this rock.

• To navigate along a path, it must be tracking one of the rocks that enables following this path.
The set of rocks that enable each path is part of the problem definition given to the planner.

• The decision to start tracking a rock must be made before the rover begins to move. Once
the rover starts moving, it may keep track of a rock already being tracked or voluntarily stop
tracking it, but it cannot acquire a new rock that was not tracked initially.

48

HAO*

Figure 8: Second iteration of HAO* on the toy problem.

• The rover may randomly lose track of some rocks while navigating along a path. The prob-
ability of losing track of a rock depends on the rock and the path followed, it is part of the
problem definition given to the planner.

• There is no way to reacquire a rock whose track has been lost, intentionally or by accident.

• The number of rocks tracked strongly influences the duration and resource consumption of
navigate actions. The higher the number of rocks tracked, the more costly it is to navigate
along a path. This is because the rover has to stop regularly to check and record the aspect
of each rock being tracked. This creates an incentive to limit the number of rocks tracked by
the rover given the set of goals it has chosen and the path it intends to follow.

So, the rover initially selects a set of rocks to track and tries to keep this set as small as possible
given its goals. Once it starts moving, it may lose track of some rocks, and this may cause it to
reconsider the set of goals it will pursue and the route to get to the corresponding rocks. It can
also purposely stop tracking a rock when this is no longer necessary given the goals that are left to
achieve.

Our implementation of HAO* uses the dynamic programming algorithm developed by Feng et
al. (2004) and summarized in Section 2.4 in order to perform backups in a hybrid state space, and
partitions the continuous state-space associated with a node into piecewise-constant regions. It uses
multiple-region updates as described in Section 3.6: an upper bound on the each resource over
all expanded regions is computed, and all states included between these bounds and the minimal
possible resource levels are updated.

In our experiments, we use the variant of the HAO* algorithm described in Section 3.5, where a
parameter k sets the number of times the whole fringe is expanded at each iteration of HAO*; this
allows the behavior of the algorithm to be tuned from an exhaustive search to a heuristic search. We
used an expansion horizon of k = 2 for the simple example in Section 4.1 and a default expansion
horizon of k = 7 for the larger examples in Section 4.2. Section 4.2.3 describes experiments with
different expansion horizons.

49

Meuleau, Benazera, Brafman, Hansen & Mausam

Figure 9: Third iteration of HAO* on the toy problem.

Our implementation of HAO* uses the simple heuristic described in Section 3.4, augmented with
a small amount of domain knowledge. The value Hn(x) of a state (n,x) is essentially equal to the
sum of the utilities of all goals not yet achieved in n. However, if the rover has already moved and a
certain rock is not being tracked in state n, then all goals requiring this rock to be tracked are not
included in the sum. This reflects the fact that, once the rover has moved, it cannot start tracking a
rock any more, and thus all goals that require this rock to be tracked are unreachable. The resulting
heuristic is admissible (i.e., it never underestimates the value of a state), and it is straightforward to
compute. Note that it does not depend on the current resource levels, so that the functions Hn(x)
are constant over all values of x.

4.1 Example

We begin with a very simple example of the rover planning problem in order to illustrate the steps
of the algorithm. We solve this example using the same implementation of HAO* that we use to
solve the more realistic examples considered in Section 4.2.

In this example, the targets are two rocks, R1 and R2, positioned at locations L1 and L2,
respectively. The rover’s initial location is L1, and there is a direct path between L1 and L2.
Analyzing rock R1 yields a reward of 10 and analyzing rock R2 yields a reward of 20. The rover’s
action set is simplified. Notably, it features a single action Pic(Rx) to represents all the steps of
analyzing rock Rx, and the “stop tracking” actions have been removed.

Figure 6 shows the optimal value function and the optimal policy found by HAO* for the starting
discrete state, and resources ranging over the whole space of possible values. Figures 7, 8 and 9
show the step-by-step process by which HAO* solves this problem. Using an expansion horizon of
k = 2, HAO* solves this problem in three iterations, as follows:

• Iteration 1: As shown in Figure 7, HAO* expands nodes 1, 2 and 3 and computes a heuristic
function for the new tip nodes 4, 5, 6 and 7. The backup step yields value function estimates
for nodes 1, 2 and 3. HAO* then identifies the best solution graph and a new fringe node 6.

50

HAO*

(a) 1012 pieces. (b) 3465pieces. (c) 6122pieces.

Figure 10: Optimal value functions for the initial state of the simple rover problem with increas-
ing initial resource levels (from left to right). The optimal return appears as a three
dimensional function carved into the reachable space of the heuristic function.

problem rover paths goals fluents actions discrete reachable explicit optimal longest
name loc- states discrete graph policy branch

ations (approx.) states

Rover1 7 10 3 30 43 1.1 109 613 234 50 35
Rover2 7 11 5 41 56 2.2 1012 5255 1068 48 35
Rover3 9 16 6 49 73 5.6 1014 20393 2430 43 43
Rover4 11 20 6 51 81 2.3 1015 22866 4321 44 43

Table 3: Size of benchmark rover problems.

• Iteration 2: As shown in Figure 8, HAO* expands nodes 6, 8, 9 and 10, starting with
previous fringe node 6, and computes heuristic functions for the new tip nodes 11, 12 and 13.
The heuristic value for node 12 is zero because, in this state, the rover has lost track of R2
and has already analyzed R1. The backup step improves the accuracy of the value function in
several nodes. Node 11 is the only new fringe node since 12 is a terminal node.

• Iteration 3: As shown in Figure 9, HAO* expands node 11 and node 14. The search ends
after this iteration because there is no more open node in the optimal solution graph.

For comparison, Figure 10 shows how the value function found by HAO* varies with different initial
resource levels. In these figures, unreachable states are assigned a large constant heuristic value, so
that the value function for reachable states appears as carved in the plateau of the heuristic.

4.2 Performance

Now, we describe HAO*’s performance in solving four much larger rover planning problems using the
NASA simulation model. The characteristics of these problems are displayed in Tables 3. Columns
two to six show the size of the problems in terms of rover locations, paths, and goals. They also show
the total number of fluents (Boolean state variables) and actions in each problem. Columns seven
to ten report on the size of the discrete state space. The total number of discrete states is two raised
to the power of the number of fluents. Although this is a huge state space, only a limited number
of states can be reached from the start state, depending on the initial resource levels. The eighth
column in Table 3 shows the number of reachable discrete states if the initial time and energy levels
are set to their maximum value. (The maximum initial resource levels are based on the scenario of
the 2004 IS demo and represent several hours of rover activity.) It shows that simple reachability

51

Meuleau, Benazera, Brafman, Hansen & Mausam

 0

 100

 200

 300

 400

 500

 600

 700

 0 100000 200000 300000 400000 500000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial energy

reachable
created

expanded
in optimal policy

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial time

reachable
created

expanded
in optimal policy

(a) Rover1

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100000 200000 300000 400000 500000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial energy

reachable
created

expanded
in optimal policy

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial time

reachable
created

expanded
in optimal policy

(b) Rover2

 0

 5000

 10000

 15000

 20000

 25000

 0 100000 200000 300000 400000 500000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial energy

reachable
created

expanded
in optimal policy

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial time

reachable
created

expanded
in optimal policy

(c) Rover3

 0

 5000

 10000

 15000

 20000

 25000

 0 100000 200000 300000 400000 500000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial energy

reachable
created

expanded
in optimal policy

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000

N
um

be
r o

f d
isc

re
te

 st
at

es

Initial time

reachable
created

expanded
in optimal policy

(d) Rover4

Figure 11: Number of nodes created and expanded by HAO* vs. number of reachable discrete states.
The graphs in the left column are obtained by fixing the initial time to its maximum value
and varying the initial energy. The graphs in the right column are obtained by fixing the
initial energy to its maximum value and varying the initial time. Results obtained with
k = 7.

52

HAO*

analysis based on resource availability makes a huge difference. This is partly due to the fact that
our planning domain, which is very close to the K9 execution language, does not allow many fluents
to be true simultaneously. Columns nine and ten show the number of discrete states in the explicit
graph and in the optimal policy. More precisely, the former is the number of nodes created by HAO*,
that is, a subset of the reachable discrete states. The number of reachable discrete states, and thus
the size of the graph to explore, may seem small compared to other discrete combinatorial problems
solved by AI techniques. But each iteration, a continuous approximation of the two-dimensional
backup is necessary to evaluate the hybrid state space associated with the graph. Finally, the last
column of Table 3 shows the length of the longest branch in the optimal policy when the initial
resource levels are set to their maximum value.

The largest of the four instances (that is, Rover4) is exactly the problem of the October 2004
IS demo. This is considered a very large rover problem. For example, it is much larger than the
problems faced by the MER rovers that never visit more than one rock in a single planning cycle.

4.2.1 Efficiency of Pruning

In a first set of simulations, we try to evaluate the efficiency of heuristic pruning in HAO*, that is,
the portion of the discrete search space that is spared from exploration through the use of admissible
heuristics. For this purpose, we compare the number of discrete states that are reachable for a given
resource level with the number of nodes created and expanded by HAO*. We also consider the
number of nodes in the optimal policy found by the algorithm.

Results for the four benchmark problems are presented in Figure 11. These curves are obtained
by fixing one resource to its maximum possible value and varying the other from 0 to its maximum.
Therefore, they represent problems where mostly one resource is constraining. These result show,
notably, that a single resource is enough to constrain the reachability of the state space significantly.

Not surprisingly, problems become larger as the initial resources increase, because more discrete
states become reachable. Despite the simplicity of the heuristic used, HAO* is able to by-pass
a significant part of the search space. Moreover, the bigger the problem, the more leverage the
algorithm can take from the simple heuristic.

These results are quite encouraging, but the number of nodes created and expanded does not
always reflect search time. Therefore, we examine the time it takes for HAO* to produce solutions.

4.2.2 Search Time

Figure 12 shows HAO* search time for the same set of experiments. These curves do not exhibit the
same monotonicity and, instead, appear to show a significant amount of noise. It is surprising that
search time does not always increase with an increase in the initial levels of resource, although the
search space is bigger. This shows that search complexity does not depend on the size of the search
space alone. Other factors must explain complexity peaks as observed in Figure 12.

Because the number of nodes created and expanded by the algorithm does not contain such noise,
the reason for the peaks of computation time must be the time spent in dynamic programming
backups. Moreover, search time appears closely related to the complexity of the optimal policy.
Figure 13 shows the number of nodes and branches in the policy found by the algorithm, as well as
the number of goals pursued by this policy. It shows that: (i) in some cases, increasing the initial
resource level eliminates the need for branching and reduces the size of the optimal solution; (ii) the
size of the optimal policy and, secondarily, its number of branches, explains most of the peaks in the
search time curves. Therefore, the question is: why does a large solution graph induce a long time
spent in backups? There are two possible answers to this question: because the backups take longer
and/or because more backups are performed. The first explanation is pretty intuitive. When the
policy graph contains many branches leading to different combinations of goals, the value functions
contain many humps and plateaus, and therefore many pieces, which impacts the complexity of
dynamic programming backups. However, we do not have at this time any empirical evidence to

53

Meuleau, Benazera, Brafman, Hansen & Mausam

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100000 200000 300000 400000 500000

Se
ar

ch
 ti

m
e

(s
)

Initial energy

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000

Se
ar

ch
 ti

m
e

(s
)

Initial time

(a) Rover1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 100000 200000 300000 400000 500000

Se
ar

ch
 ti

m
e

(s
)

Initial energy

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000

Se
ar

ch
 ti

m
e

(s
)

Initial time

(b) Rover2

 0

 5000

 10000

 15000

 20000

 25000

 0 100000 200000 300000 400000 500000

Se
ar

ch
 ti

m
e

(s
)

Initial energy

 0

 5000

 10000

 15000

 20000

 25000

 0 2000 4000 6000 8000 10000

Se
ar

ch
 ti

m
e

(s
)

Initial time

(c) Rover3

 0

 5000

 10000

 15000

 20000

 0 100000 200000 300000 400000 500000

Se
ar

ch
 ti

m
e

(s
)

Initial energy

 0

 5000

 10000

 15000

 20000

 0 2000 4000 6000 8000 10000

Se
ar

ch
 ti

m
e

(s
)

Initial time

(d) Rover4

Figure 12: HAO* search time. The graphs in the left column are obtained by fixing the initial time
to its maximum value, and the graphs in the right column are obtained by fixing the
initial energy to its maximum. Results obtained with k = 7.

54

HAO*

confirm this hypothesis. Conversely, we observe that the peak of Figure 12 comes with an increase
of the number of backups. More work is required to explain this.

4.2.3 Expansion Horizon

The results of Section 4.2.1 show that HAO* can leverage even a simple admissible heuristic to prune
a large portion of the search space. But it does not necessarily follow that HAO* can outperform an
“exhaustive search” algorithm that creates a graph of all reachable states, and then executes one pass
of dynamic programming in this graph to find the optimal policy. Although HAO* expands a smaller
graph than such an exhaustive search, it must evaluate the graph more often. In Section 3.5, we
introduced a parameter k for expansion horizon in order to allow adjustment of a trade-off between
the time spent expanding nodes and the time spent evaluating nodes. We now study the influence
of this parameter on the algorithm.

Figure 14 shows the number of nodes created and expanded by HAO* as a function of the
expansion horizon for the four benchmark problem instances. Not surprisingly, the algorithm creates
and expands more nodes as the expansion horizon increases. Essentially, it behaves more like an
exhaustive search as k is increased. For the two smallest problem instances, and for large enough
values of k, the number of visited states levels off when the total number of reachable states is
reached. For the two largest problem instances, we had to interrupt the experiments once k reached
25 because search time became too long.

Figure 15 shows the effect of the expansion horizon on the search time of HAO*. For the smallest
problem instance (Rover1), HAO* does not have a clear advantage over an exhaustive search (with
k > 20), even though it explores fewer nodes. But for the three larger problem instances, HAO*
has a clear advantage. For the Rover2 problem instance, the search time of HAO* levels off after
k = 25, indicating the limit of reachable states has been reached. However, the duration of such
an exhaustive search is several times longer than for HAO* with smaller settings of k. The benefits
of HAO* are clearer for the two largest problem instances. As k is increased, the algorithm is
quickly overwhelmed by the combinatorial explosion in the size of the search space, and simulations
eventually need to be interrupted because search time becomes too long. For these same problem
instances and smaller settings of k, HAO* is able to efficiently find optimal solutions.

Overall, our results show that there is a clear benefit to using admissible heuristics to prune the
search space, although the expansion horizon must be adjusted appropriately in order for HAO* to
achieve a favorable trade-off between node-expansion time and node-evaluation time.

5. Conclusion

We introduced a heuristic search approach to finding optimal conditional plans in domains char-
acterized by continuous state variables that represent limited, consumable resources. The HAO*
algorithm is a variant of the AO* algorithm that, to the best of our knowledge, is the first algo-
rithm to deal with all of the following: limited continuous resources, uncertain action outcomes, and
over-subscription planning. We tested HAO* in a realistic NASA simulation of a planetary rover,
a complex domain of practical importance, and our results demonstrate its effectiveness in solving
problems that are too large to be solved by the straightforward application of dynamic program-
ming. It is effective because heuristic search can exploit resource constraints, as well as an admissible
heuristic, in order to limit the reachable state space.

In our implementation, the HAO* algorithm is integrated with the dynamic programming algo-
rithm of Feng et al. (2004). However HAO* can be integrated with other dynamic programming
algorithms for solving hybrid-state MDPs. The Feng et al. algorithm finds optimal policies under
the limiting assumptions that transition probabilities are discrete, and rewards are either piecewise-
constant or piecewise-linear. More recently-developed dynamic programming algorithms for hybrid-
state MDPs make less restrictive assumptions, and also have the potential to improve computational

55

Meuleau, Benazera, Brafman, Hansen & Mausam

 0

 10

 20

 30

 40

 50

 0 100000 200000 300000 400000 500000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial energy

Nodes
Branches

Goals

 0

 10

 20

 30

 40

 50

 0 2000 4000 6000 8000 10000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial time

Nodes
Branches

Goals

(a) Rover1

 0

 15

 30

 45

 60

 75

 0 100000 200000 300000 400000 500000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial energy

Nodes
Branches

Goals

 0

 15

 30

 45

 60

 75

 0 2000 4000 6000 8000 10000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial time

Nodes
Branches

Goals

(b) Rover2

 0

 15

 30

 45

 60

 75

 0 100000 200000 300000 400000 500000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial energy

Nodes
Branches

Goals

 0

 15

 30

 45

 60

 75

 0 2000 4000 6000 8000 10000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls
Initial time

Nodes
Branches

Goals

(c) Rover3

 0

 20

 40

 60

 80

 100

 0 100000 200000 300000 400000 500000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial energy

Nodes
Branches

Goals

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000
 0

 1

 2

 3

 4

 5

N
um

be
r o

f n
od

es

N
um

be
r o

f b
ra

nc
he

s a
nd

 g
oa

ls

Initial time

Nodes
Branches

Goals

(d) Rover4

Figure 13: Complexity of the optimal policy: number of nodes, branches, and goals in the optimal
policy in the same setting as Figure 11.

56

HAO*

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25

N
um

be
r o

f d
isc

re
te

 st
at

es

Expansion horizon

created
expanded

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

N
um

be
r o

f d
isc

re
te

 st
at

es

Expansion horizon

created
expanded

(a) Rover1 (b) Rover2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20

N
um

be
r o

f d
isc

re
te

 st
at

es

Expansion horizon

created
expanded

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20

N
um

be
r o

f d
isc

re
te

 st
at

es

Expansion horizon

created
expanded

(c) Rover3 (d) Rover4

Figure 14: Influence of the expansion horizon on the number of nodes visited by the algorithm.

efficiency (Li & Littman, 2005; Marecki et al., 2007). Integrating HAO* with one of these algorithms
could improve performance further.

There are several other interesting directions in which this work could be extended. In develop-
ing HAO*, we made the assumptions that every action consumes some resource and resources are
non-replenishable. Without these assumptions, the same state could be revisited and an optimal
plan could have loops as well as branches. Generalizing our approach to allow plans with loops,
which seems necessary to handle replenishable resources, requires generalizing the heuristic search
algorithm LAO* to solve hybrid MDPs (Hansen & Zilberstein, 2001). Another possible extension is
to allow continuous action variables in addition to continuous state variables. Finally, our heuristic
search approach could be combined with other approaches to improving scalability, such as hierarchi-
cal decomposition (Meuleau & Brafman, 2007). This would allow it to handle the even larger state
spaces that result when the number of goals in an over-subscription planning problem is increased.

Acknowledgments

This work was funded by the NASA Intelligent Systems program, grant NRA2-38169. Eric Hansen
was supported in part by a NASA Summer Faculty Fellowship and by funding from the Mississippi
Space Grant Consortium. This work was performed while Emmanuel Benazera was working at
NASA Ames Research Center and Ronen Brafman was visiting NASA Ames Research Center, both
as consultants for the Research Institute for Advanced Computer Science. Ronen Brafman was
supported in part by the Lynn and William Frankel Center for Computer Science, the Paul Ivanier
Center for Robotics and Production Management, and ISF grant #110707. Nicolas Meuleau is a
consultant of Carnegie Mellon University at NASA Ames Research Center.

57

Meuleau, Benazera, Brafman, Hansen & Mausam

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25

Se
ar

ch
 ti

m
e

(s
)

Expansion horizon

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 5 10 15 20 25 30

Se
ar

ch
 ti

m
e

(s
)

Expansion horizon

(a) Rover1 (b) Rover2

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20

Se
ar

ch
 ti

m
e

(s
)

Expansion horizon

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20

Se
ar

ch
 ti

m
e

(s
)

Expansion horizon

(c) Rover3 (d) Rover4

Figure 15: Influence of the expansion horizon on overall search time.

References

Altman, E. (1999). Constrained Markov Decision Processes. Chapman and HALL/CRC.

Bertsekas, D., & Tsitsiklis, J. (1996). Neural Dynamic Programming. Athena Scientific, Belmont,
MA.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

Boyan, J., & Littman, M. (2000). Exact solutions to time-dependent MDPs. In Advances in Neural
Information Processing Systems 13, pp. 1–7. MIT Press, Cambridge.

Bresina, J., Dearden, R., Meuleau, N., Ramakrishnan, S., Smith, D., & Washington, R. (2002).
Planning under continuous time and resource uncertainty: A challenge for AI. In Proceedings
of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 77–84.

Bresina, J., Jonsson, A., Morris, P., & Rajan, K. (2005). Activity planning for the mars exploration
rovers. In Proceedings of the Fifteenth International Conference on Automated Planning and
Scheduling, pp. 40–49.

Chakrabarti, P., Ghose, S., & DeSarkar, S. (1988). Admissibility of AO* when heuristics overesti-
mate. Aritificial Intelligence, 34, 97–113.

Feng, Z., Dearden, R., Meuleau, N., & Washington, R. (2004). Dynamic programming for struc-
tured continuous Markov decision problems. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence, pp. 154–161.

58

HAO*

Friedman, J., Bentley, J., & Finkel, R. (1977). An algorithm for finding best matches in logarithmic
expected time. ACM Trans. Mathematical Software, 3(3), 209–226.

Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds solutions with
loops. Artificial Intelligence, 129, 35–62.

Jimenez, P., & Torras, C. (2000). An efficient algorithm for searching implicit AND/OR graphs with
cycles. Artificial Intelligence, 124, 1–30.

Kveton, B., Hauskrecht, M., & Guestrin, C. (2006). Solving factored MDPs with hybrid state and
action variables. Journal of Artificial Intelligence Research, 27, 153–201.

Li, L., & Littman, M. (2005). Lazy approximation for solving continuous finite-horizon MDPs. In
Proceedings of the Twentieth National Conference on Artificial Intelligence, pp. 1175–1180.

Marecki, J., Koenig, S., & Tambe, M. (2007). A fast analytical algorithm for solving markov decision
processes with real-valued resources. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07, pp. 2536–2541.

Mausam, Benazera, E., Brafman, R., Meuleau, N., & Hansen, E. (2005). Planning with contin-
uous resources in stochastic domains. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pp. 1244–1251. Professional Book Center, Denver, CO.

Meuleau, N., & Brafman, R. (2007). Hierarchical heuristic forward search in stochastic domains. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07),
pp. 2542–2549.

Munos, R., & Moore, A. (2002). Variable resolution discretization in optimal control. Machine
Learning, 49 (2-3), 291–323.

Nilsson, N. (1980). Principles of Artificial Intelligence. Tioga Publishing Company, Palo Alto, CA.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley.

Pedersen, L., Smith, D., Deans, M., Sargent, R., Kunz, C., Lees, D., & Rajagopalan, S. (2005).
Mission planning and target tracking for autonomous instrument placement. In Proceedings
of the 2005 IEEE Aerospace Conference., Big Sky, Montana.

Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York, NY.

Rust, J. (1997). Using randomization to break the curse of dimensionality. Econimetrica, 65, 487–
516.

Smith, D. (2004). Choosing objectives in over-subscription planning. In Proceedings of the Fourteenth
International Conference on Automated Planning and Scheduling, pp. 393–401.

Thiebaux, S., Gretton, C., Slaney, J., Price, D., & Kabanza, F. (2006). Decision-theoretic planning
with non-Markovian rewards. Journal of Artificial Intelligence Research, 25, 17–74.

van den Briel, M., Sanchez, R., Do, M., & Kambhampati, S. (2004). Effective approaches for partial
satisfation (over-subscription) planning. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence, pp. 562–569.

59

