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Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the
rising energy consumption of cloud data centers has become a prominent problem. In this paper, we �rst introduce an energy-aware
framework for task scheduling in virtual clusters. �e framework consists of a task resource requirements prediction module, an
energy estimatemodule, and a scheduler with a task bu	er. Secondly, based on this framework, we propose a virtual machine power
e
ciency-aware greedy scheduling algorithm (VPEGS). As a heuristic algorithm, VPEGS estimates task energy by considering
factors including task resource demands, VM power e
ciency, and server workload before scheduling tasks in a greedy manner.
We simulated a heterogeneous VM cluster and conducted experiment to evaluate the e	ectiveness of VPEGS. Simulation results
show that VPEGS e	ectively reduced total energy consumption by more than 20% without producing large scheduling overheads.
With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%,
respectively.

1. Introduction

Cloud computing gains its popularity since it satis�es the
elastic demands of computing capability fromboth individual
and enterprise users. Cloud platforms not only support
a diversity of applications, but also provide a virtualized
environment for the applications to run in an e
cient and
low-costmanner [1]. As cloud computing is getting prevailing
in IT industry, the huge amount of electricity consumed by
cloud data centers also becomes a rising concern. According
to the previous statistics, globally there are over 5million data
centers [2], which account for about 1.5% of the global energy
consumption [3]. �e �gure may continuously go up as our
demands for computing are still growing. Hence, in order to
minimize the negative impact brought by energy wasting and
overconsumption, it is of great necessity to improve resource
utilization and to reduce energy consumption for cloud data
centers.

Applying energy-aware resource scheduling is an e	ective
way to save energy. Cloud data centers are usually virtualized.

�us in an IaaS (Infrastructure-as-a-Service) cloud, virtual
machine (VM) is the basic unit for resource provisioning.
A�er a user-de�ned job is submitted, it is �rst “sliced”
into a number of tasks and generally each task will be
assigned to one VM for execution. During the execution,
the virtual resources allocated to the VM can be thought
of being occupied by the task. �e mapping from tasks to
VMs is one-to-one. On the one hand, we do not consider
a many-to-one mapping because resource competition o�en
causes SLA (Service-Level Agreement) violations. On the
other hand, one-to-many mapping can be avoided by a
�ne-grained job decomposition. Although the jobs or tasks
may not contain any attributes initially, we can exploit
available techniques to estimate their resources demands
including total instructions, amount of disk I/O, and the
data throughput on network. Besides, to attain the goal
of saving task execution energy, it is of great necessity to
consider servers’ power e
ciency. Assigning tasks to high-
performance servers may enhance the data centers’ overall
performance but at the same time can cause extra energy
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Figure 1: Resource scheduling in IaaS cloud.

consumption (i.e., operational cost). �is is because some
servers of high processing speed may not be power-e
cient.
Hence, we argue that the power e
ciency of servers and VMs
should be regarded as an important metric in today’s energy-
aware resource management.

Resource scheduling can be separated into two phases:
task scheduling and VM scheduling. �e �rst phase of
mapping shown in Figure 1 represents task scheduling, which
is the focus of this paper. Previous task scheduling algorithms
(e.g., [4–6]) allocated tasks directly to physical servers.
However, these algorithms are not rather feasible and e	ective
since currently virtualization has been widely deployed on
physical servers. �e running environment for tasks is the
virtual cluster. Besides, the majority of task scheduling
algorithms use the strategy that VM is dynamically created
on a selected server only when new tasks arrive. �is kind of
strategy is useful to aggregate workload in order to avoid too
many idle servers. But it lowers the system’s response ability
as powering on a new VM takes time. An ideal target for
task scheduling is to reduce system energy consumption with
acceptable e
ciency. �us, in this paper, we propose to build
a virtual cluster maintenance mechanism which combines
VM “precreating” and “delayed shutdown.” To be detailed,
“precreating” means virtual machine can be started up on
servers under relatively light workload before tasks arrive.
“Delayed shutdown” allows a VM to stay alive for a certain
period a�er it �nishes its task. In cloud environment, this
mechanism can maintain a large-scale idle VM cluster and
thus allows a shorter task response time without bringing big
overhead cost. At the same time, this mechanism is helpful to
reducemigration operations, so it can be used to simplify VM
consolidation (the 2nd mapping phase in Figure 1) strategies
such as [7, 8].

Supported by VM “precreating” and “delayed shutdown”
mechanism, we in this paper propose an energy-aware task
scheduling framework for virtualized cloud environment.
�e framework consists of a task resource requirements pre-
diction module, an energy estimate module, and a scheduler
with a task bu	er. �e bu	er works as an improvement on

simple FIFO queue of arriving tasks. �e size of the bu	er is
designed to be adaptive to the arrival rate of tasks. Receiving
the output from the task resource requirements prediction
module, task energy estimate module is responsible for esti-
mating the energy consumption of executing. As the key part,
the scheduler adopts a VM power e
ciency-aware greedy
scheduling algorithm (VPEGS) to schedule the tasks in the
bu	er heuristically. Experiments were conducted to evaluate
the performance of VPEGS in a simulated heterogeneous vir-
tual cluster. �e results show that VPEGS averagely reduced
more than 20% energy consumption and outperformedMin-
Min [9], RASA [10], and Random-Mapping [11].

2. Related Work

Task scheduling has been proved to be a NP-problem [12].
Even with the mechanism of VM “precreating” and “delayed
shutdown,” task scheduling in a heterogeneous cloud is still
a nontrivial problem. Heuristic scheduling algorithms such
as Min-Min [9] and ant colony optimization [13, 14] are
widely used in cloud task scheduling because they are quite
e
cient and sometimes able to approach optimal solutions
[15]. Min-Min is a typical task scheduling algorithm oriented
to heterogeneous infrastructures. Gutierrez-Garcia and Sim
[11] compare 14 heuristic scheduling algorithms with respect
to average taskmakespan.�e results show thatMin-Min and
Max-Min [9] are the most e	ective among the algorithms
using batch mode. Besides, Etminani and Naghibzadeh [16]
proved that dynamically selecting Min-Min or Max-Min as
the scheduler according to the standard deviation of expected
task execution time can improve system performance. Priya
and Subramani [10] propose a heuristic scheduling named
RASA that consists of 3 phases. In initialization phase the
execution e
ciency matrix is initialized, while the scheduler
�nds the best-�t VM and returns its ID in the second and
third phase. �e idea of RASA is using Min-Min and Max-
Min alternatively to schedule the tasks that arrived. Uddin et
al. [17] tested and analyzed the performance of RASA, TPPC,
and PALB inCloudSim considering power e
ciency and cost
as well as CO2 emissions. �ey concluded that TPPC is most
e	ective but neglected the detailed parameter settings of these
algorithms.

Cloud servers are usually virtualized. �us it is of great
necessity to perform task scheduling in virtual clusters.
Sampaio and Barbosa propose POFARE [4], considering
both VM reliability and e
ciency. �is heuristic algorithm
promotes the energy utilization (MFLOPS/Joules) but pays
no attention to server virtualization. Lakra and Yadav [18]
conducted task scheduling by solving a multiobjective opti-
mization via nondominated sorting a�er quantifying theQoS
values of tasks and VMs. However, it has the drawbacks
of not being energy-aware and evaluating VM performance
merely by MIPS (Million Instructions per Second). VM
consolidation is another e	ective way to save energy with
the basic ideology that powering o	 idle servers can reduce
energy consumption. For example, HHCS [19], an energy-
saving scheduling strategy, makes use of the advantages of
two open-source schedulers (Condor and Haizea) in order
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to further increase CPU utilization of physical servers. In
addition, there are also implements (e.g., [20–22]) based on
setting thresholds and constrains. Ding et al. [23] adopt this
method to perform resource provisioning at the VM-level.
Current technology allows dynamic VM migration, which is
helpful to balance workload between servers. However, VM
migration causes extra time and energy overheads. Hence,
it is a better scheme to precreate and maintain a number of
VMs on servers under light workload. �en these idle VMs
can respond quickly when a new batch of tasks arrives.

3. Energy-Aware Task Scheduling Framework

3.1. Energy Estimate Module. In an IaaS cloud, virtualization
makes physical resources “transparent” as the applications
are run in VMs. To some extent, virtual machine provides
independent runtime environment and it is also the basic unit
allocated to user applications. In the proposed framework,
the energy estimatemodule predicts the expected task energy
consumption on each available VM and sends the data to the
scheduler. For energy estimation, the required information
includes task resource demands and the power e
ciency of
each VM.

Job submitted to the cloud will �rst be decomposed into
several tasks.�e decomposition principle can be data-based
or function-based. Practically, total number of instructions
and I/O data size can be estimated by analyzing the submitted
code or exploiting other existing techniques. Actually there
aremanyways to estimate the resource demands of a task.�e
methods mentioned in [24] can be applied to process I/O-
intensive tasks while, according to [25], the required amount
of resources by the tasks belonging to the same job are usually
similar. In this paper, we use four “static” attributes to pro�le
a task: number of instructions, the size of data through disk
input/output, the size of data through network transmission,
and job id indicating the job it is generated from. �e values
of these attributes remain unchanged despite the decisions
of the scheduler. On the contrary, “dynamic” attributes,
including the execution time and energy consumption of a
task, are dependent on the features of the VM that executes
it.

VM’s power features are directly related to the features of
its host. According to the de�nition of power e
ciency, the
power e
ciency of a server can be de�ned in three aspects:

PEproc = proc perf

�proc ,

PEio = io rate

�io ,
PEtrans = trans rate

�trans ,
(1)

where proc perf denotes the processor performance, which
can be quanti�ed using MIPS (Million Instructions per Sec-
ond). io rate and trans rate represent the max disk I/O rate
andmaxnetwork transmission rate, respectively.�eirmetric
is MB/s. �proc, �io, and �trans are the power consumption
of the corresponding functional components. All these data
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Figure 2: Simpli�ed data exchanging by appointing designated task.

can be sampled on physical servers (e.g., we can obtain�proc by measuring CPU power). It is worth noting that
PEtrans denotes the power e
ciency in transport data between
servers and it is stored in a matrix. PEtrans are exploited
to calculate the energy cost in multitask communications.
In order to shield the complexity of network, we use a
simple star network topology in designing the way that
tasks communicate with each other, assuming that only tasks
decomposed from the same job will conduct data transport
between each other.We select one of them to be a “designated
task” and other tasks follow the principle that they only send
data to or receive data from the “designated task” (Figure 2).

�ere exists a di	erence between the power e
ciency of a
VMand its host server because of virtualization. For example,
di	erent types of hypervisors su	er di	erent degrees of
degradation in VM performance. We use �proc, �io, and�trans to represent the degradation in VM power e
ciency
of processing, disk I/O, and data transmission, respectively.
�us the power e
ciency of a VM can be expressed as below:

PE�proc = PEproc ⋅ (1 − �proc) ,
PE�io = PEio ⋅ (1 − �io) ,

PE�trans = PEtrans ⋅ (1 − �trans) .
(2)

As a summary, Table 1 lists the power features of VMs.
�e dynamic power consumption of cloud data centers

is mainly produced from the workload on each running
server, while the resource demands of tasks are the major
sources that drive server workloads. In cloud environment,
the demands of tasks can be generally modeled by the task
attributes mentioned above. However, it is very di
cult to
precisely predict the workload as a whole because actually
a server has several components (e.g., CPU, memory, disk,
and NIC) that keep producing static (idle) and dynamic
power. �us a possible way is to consider the workload of
each component separately. We adopted this ideology and
propose to calculate separately the power of computing,
storage accessing, and communicating. Particularly in this
paper we take the load of the whole server into account and
use it to model performance loss.

Let ��proc, ��io, and ��trans denote the VM’s power con-

sumption in processing, disk I/O, and network data transfer,
respectively. We assume that VMs stay busy when execut-
ing the tasks assigned. So we regard ��proc, ��io, and ��trans
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Table 1: VM power features.

VM power features Description

host id Indicates the VM’s host server

proc perf � Max processing speed of the VM

io rate� Max disk I/O rate of the VM

trans rate� Max data transfer rate of the VM

PE�proc VM power e
ciency (processor)

PE�io VM power e
ciency (disk I/O)

PE�trans VM power e
ciency (data transfer)

�proc PEcal degradation�io PEio degradation�trans PEtrans degradation

as unchanged values during execution. Considering task
resource demands, VM power features, and the workload on
host servers, we can estimate the energy consumption of a
task run on a VM via

task energy = 	proc + 	io + 	trans

= ��proc ⋅ 
proc + ��io ⋅ 
io + ��trans ⋅ 
trans,
(3)

where


proc = �proc

proc perf � ⋅ (1 − �) ,


io = �io

io rate� ⋅ (1 − �) ,

trans = �trans

trans rate� ⋅ (1 − �) ,

(4)

where �proc denotes the number of instructions, while �io

and �trans represent the amount of disk data throughput and
the amount of data transferred through network, respectively.
�ese task attributes can be estimated by existing techniques.� is the performance loss caused by high workload on the
server. It is intuitive that the higher the load a server works
under, the greater value � has. �e correlation between the
workload ofCPUand other components is quite complex, but
there is a basic knowledge that the performance of the whole
system probably degrades when CPU is working under high
load. So as a simpli�cation, we model � as follows:

� = {{{
�1/�, 0 ≤ � ≤ 0.95,
1, 0.95 < � < 1, (5)

where � represents the current CPU utilization of the host
server. � is the high-load penalty factor and � ∈ (0, 1]. With
(3) and (4), we �nally have

task energy = ( �proc

PE�proc
+ �io

PE�io
+ �trans

PE�trans
) ⋅ 1

1 − � , (6)

where PE�proc, PE
�
io, and PE

�
trans represent the power e
ciency

of VM regarding instructions processing, disk I/O, and data

transmission. From (6) we can see that assigning tasks
to virtual machines with high power e
ciency is of great
signi�cance to reduce energy consumption. Meanwhile, the
workload on servers should also be considered because high
load leads to great performance degradation, which increases
the energy required to �nish a task.

3.2. Task Bu
er. �ere are two methods to determine the
scheduling order: FIFO mode and bu	er mode (or batch
mode). In completely FIFO mode, all tasks are organized
and scheduled sequentially according to the arrival time.
�us FIFO mode provides best fairness but may fail to
satisfy the QoS (Quality of Service) of some speci�c tasks.
As an improvement, bu	er mode allows bu	ering a certain
number of tasks and schedules them by some principles.
Bu	er mode is similar to priority queue but it is not global,
which guarantees the scheduler’s e
ciency and enhances its
e	ectiveness at the same time. Algorithms that adopt bu	er
or batch mode include Min-Min, Max-Min [9], and RASA
[10]. Practically, it is not easy to determine the bu	er’s size
because oversized bu	er causes low e
ciency while making
it too small may reduce the chance to �nd better scheduling
solutions.

In this paper, a variable-sized task bu	er is adopted on
the basis of a global FIFO queue. To be more detailed, tasks
at the head of the FIFO queue are put in the bu	er then
their minimum energy consumption (relevant to currently
available VMs) will be estimated. Tasks with lower predicted
energy consumption will be scheduled with higher priorities.
Assume that the arriving of cloud tasks is a Poisson process
with its intensity equal to �; then the expectation of task
arrival interval is 1/�. Hence, it is a feasible way to set the
bu	er size to a multiple of � (and round it):

buf size = ⌈� ⋅ �⌉ , (7)

where � is a system parameter that can be set empirically.
Increasing the size of bu	er is helpful to �nd better (more
energy-saving) scheduling solutions when tasks arrive inten-
sively. Meanwhile a smaller bu	er can make the scheduler
more e
cient in the condition that the arrival rate is relatively
low.

3.3. Task Scheduling Framework. Now we brie�y depict the
entire energy-aware task scheduling framework. A�er being
submitted to the cloud, users’ jobs are �rst decomposed into
several tasks. �ese tasks are put in a FIFO queue and then
those at the head are transferred to the task bu	er. �e
energy estimate module is in charge of estimating the energy
consumption of each task in the bu	er. A�er receiving the
output from energy estimate module, the scheduler �nishes
the scheduling of this batch of tasks. �en the next batch
is pushed into the bu	er and the above process is repeated.
Figure 3 illustrates the whole energy-aware task scheduling
framework.

�e algorithm inside the scheduler is the key part for
making energy-saving task allocations. �us we propose an
energy-saving heuristic task scheduling algorithm.
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Figure 3: Energy-aware task scheduling framework.

Table 2: List of parameters used in the algorithm’s pseudocode.

Parameter Description

� �e set of currently available VMs

� �e set of physical servers

Bu	er Task bu	er

� Global task queue (FIFO)

buf size �e size of task bu	er

4. VM Power Efficiency-Aware Greedy
Scheduling Algorithm (VPEGS)

With the expansion of cloud data centers and the increase of
computing demands from users, it is of great signi�cance to
consider the heterogeneity of both infrastructures and task
demands. Currently, many researches (e.g., [23, 26]) only cast
their sight on VM consolidation because it is an e	ective
way to reduce wasted energy by controlling the workload on
servers.However, ifmuch load is imposed on serverswith low
power e
ciency, it will cause higher energy cost to warrant
the QoS of tasks, which is the situation that service providers
are unwilling to face.

A feasible and e	ective solution is to consider power e
-
ciency in task scheduling. In virtualized environment, colo-
cated VMs can be regarded to have equal power e
ciency,
which can be calculated by applying (2). �us, assuming
that the infrastructure supports VM precreating and delayed
shutdown, we propose a virtual machine power e
ciency-
aware greedy scheduling algorithm (VPEGS). �e algorithm
takes VM power e
ciency and task demands into account
and provides a sort of energy-saving task scheduling. We
�rst list the parameters used in the algorithm and give brief
descriptions (Table 2).

VPEGS is heuristic and takes the estimated task execution
energy as the evaluation function. We exploit (6) to estimate
the execution energy consumption (task energy�,�) of task �
on VM �, considering VM e
ciency, e
ciency loss caused
by virtualization, and the performance loss caused by high
server workload. Since we adopt task bu	er, the process of
scheduling is similar to Min-Min and RASA. In other words,
the program attempt to search the bu	er for a (�∗, �∗) satis�es

task energy�∗ ,�∗ = min {task energy�,�} , (8)

Input: �, �, �
Output: task-to-VM Mapping
(1) Initialize Bu	er
(2) Initialize min energy = MAX FLOAT
(3) while � is not empty do
(4) for ! = 1 to min{size(�), buf size} do
(5) � = dequeue(�)
(6) add � into Bu	er
(7) end

(8) while Bu	er is not empty do
(9) for each task � in Bu	er do
(10) for each VM � in � do

(11) calculate task energyt,k
(12) if task energy�,� < min energy then

(13) min energy = task energy�,�
(14) selected task = �
(15) selected VM = �
(16) end if

(17) end for

(18) end for

(19) assign selected task to selected VM
(20) remove task t from Bu	er
(21) update the states of � and �
(22) end while

(23) end while

(24) return task-to-VM Mapping

Algorithm 1: Virtual machine power e
ciency-aware greedy
scheduling algorithm (VPEGS).

where � = 0, 1, . . . , (buf size − 1) and � = 0, 1, . . . , ". " is the
number of VMs currently available. �en in this round, the
scheduler assigns task � to VM �. �e pseudocode of VPEGS
is shown in Algorithm 1.

�e task bu	er is initialized �rst and then the global
FIFO queue which dequeues the tasks at the head. A�er the
bu	er is �lled (or FIFO queue becomes empty), the scheduler
computes task energy�,� for each task � on every available
VM � (line (11)). Its time complexity equals inspecting a
buf size ∗ " sized matrix. �e minimum element is found
and the correspondingVM ID and task ID are recorded (lines
(14)∼(15)). �en the selected task is assigned to the selected
VM. �is process repeats until the bu	er is clear. �en the
next batch of tasks will be sent into it.

We analyze the complexity of VPEGS as below: each
decision of assignment has to check the whole matrix whose
size is buf size ∗ ", so the complexity of assigning one task
is %(buf size ∗ "). Suppose the total number of tasks that
arrived is �. �us the overall time complexity of �nishing the
scheduling is %(� ∗ buf size ∗ ").
5. Algorithm Evaluation

5.1. Experimental Setup. We implemented VPEGS and eval-
uated it in a simulated environment. We also implemented
Min-Min [9], RASA [10], and Random-Mapping [11] in
order to compare their e	ectiveness. �e algorithms and
test programs were written in Java (JDK version 1.8.0 65).
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Table 3: �e setting of task attributes in the experiment.

Task attribute Value

�proc ∼&(170, 510)

�io ∼&(100, 3000)

�trans ∼&(100, 2000)

�reads {1, 2, 3, 4}
Table 4: �e setting of server con�gurations in the experiment.

Type PEproc PEio �proc �io �trans Number

Server 0 0.33 10.50 0.2 0.2 0.1 20

Server 1 0.15 9.00 0.1 0.3 0.1 8

Server 2 0.17 9.50 0.1 0.2 0.1 20

Server 3 0.28 21.50 0.1 0.1 0.1 12

Server 4 0.21 15.50 0.2 0.2 0.1 40

�e simulation was run on a PC equipped with a dual-core
Pentium CPU (2.10GHz) and 4.0GB memory.

For every task decomposed from a job, the experimental
setting of its attributes is listed in Table 3. Where the metric
of �proc is Million instructions, while the unit of �io and�trans is MB. In order to simulate the di	erence of power
e
ciency between heterogeneous physical servers, we set 5
types of servers and the corresponding con�gurations are
listed in Table 4. In the experiment, we suppose the power
e
ciency of data transfer is in�nity (i.e., zero overhead) if
twoVMs are server-local.Otherwise, it equals 50.Meanwhile,
the task with the smallest task id is always appointed to be
the “designated task” when multiple tasks that belong to the
same job are active in the virtual cluster.�us the elements in
PEtrans matrix are de�ned as

PEtrans (!, ') = {{{
+∞, ! = ',
50, ! ̸= '. (9)

5.2. Experimental Results. In the experiment we set the
number of servers (2) to 100 according to Table 4 �xedly.
�e program randomly generated 250 to 300VMs in the
initialization phase. High-load penalty factor � was set to
0.15. �e intervals of task arrivals followed exponential
distribution with � = 3 and the bu	er size was set to 15
initially. A�er initialization, the test programutilizedVPEGS,
Min-Min, RASA, and Random-Mapping (RM) separately
as the scheduling strategy to run the simulation. Each test
repeated 30 times and we took the average as our results.
�e comparison regarding total system energy consumption
is shown in Figure 4.

�e result illustrates that VPEGS performed the best
among the four scheduling algorithms with respect to energy
saving (Figure 4). Min-Min and RASA had similar perfor-
mance since their heuristic principles behind are similar.
VPEGS saved 29.1% and 28.6% energy when compared to
them on average. As for the reason, we argue that Min-
Min and RASA in some way can be energy-saving because
shortening overall execution time reduces the consumption
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Figure 4: Comparing the performances of VPEGS, Min-Min,
RASA, and RM on total energy consumption (bu	er size = 15).

brought by server idle power. However, as power e
ciency
is not taken into account, assigning tasks to those high-
performance nodesmay cause extra energy consumption.On
the contrast, VPEGS considers both the performance and
power features of VMs and exploits power e
ciency as the
prime metric. Speci�cally speaking, Min-Min and RASA are
more likely to utilize the servers with great processing speed
or throughput rate, whereas VPEGS prefers those with high
power e
ciency. In our experiment, actually a big number of
high-performance servers were of comparatively low power
e
ciency. As a result, VPEGS showed its advantage in energy
saving. It is also noticed that Random-Mapping (RM) seemed
to be slightly more energy-saving than Min-Min and RASA.
Essentially this is because RM assigns tasks evenly so usually
high workload would not be imposed on servers with low
power e
ciency. Averagely, VPEGS outperforms Random-
Mapping by about 23.0%.

We also see that when the number of servers is �xed, it
seems to be tougher to maintain energy-saving performance
as the number of tasks increases (Figure 5). When virtual
resources are su
cient to satisfying tasks’ demands, using
VPEGS can reduce total energy consumption by more than
20%. However, as the task arrival rate remained unchanged
(� = 3), the workload of the whole cluster went high
as the total number of tasks increased. In other words,
comparatively energy-e
cient VMs were gradually used
up. Onto the �xed-scale simulated data centers with 100
heterogeneous servers, the performance of VPEGS degraded
in our experiment when the number of tasks is more than 90
(Figure 5).

We mentioned that the size of task bu	er may in�uence
the performances of scheduling algorithms. To verify it, we
changed the task arrival rate, namely, �, to 6. Correspond-
ingly, the size of bu	er was adjusted to 30. We reinitialized
the clusters and conducted the experiment again. Figures 6
and 7 show the results. In this case, compared withMin-Min,
RASA, and RM, VPEGS averagely saved 29.8%, 29.0%, and
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Figure 6: Comparing the performances of VPEGS, Min-Min,
RASA, and RM on total energy consumption (bu	er size = 30).

23.3% energy, respectively. It is a little surprising to �nd that
enlarging the task bu	er does not have big impact. Butwe also
see that the performance of VPEGS in this case was slightly
improved when the number of tasks exceeded 100.

Tasks may not gain their earliest completion time in
VPEGS since energy consumption is considered primarily.
�ere is a kind of con�ict, as mentioned in [27], between
optimizing execution time and energy consumption. VPEGS,
to some degree, sacri�ces the e
ciency of task execution to
attain the goal of savingmore energy. However,Min-Min and
RASA pay more attention to reducing total makespan and
task execution time. Figure 8 shows the total task execution
time of Min-Min, RASA, Random-Mapping, and VPEGS
with the bu	er size equal to 15. As a result, Min-Min and
RASA are e	ective in shortening the overall execution time
of all the tasks. �e reason is simple: Min-Min and RASA
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Figure 7: Normalized energy consumptions with di	erent total
number of tasks (bu	er size = 30).
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Figure 8: Comparing di	erent task scheduling algorithms on the
total task execution time (bu	er size = 15).

take predicted task completion time as the heuristic. Besides,
short tasks outnumbered long tasks in our experiment;
thus RASA yielded no better performance in reducing total
execution time than pure Min-Min. We ran the test again
a�er changing the task arrival rate and the bu	er’s size
(Figure 9). Combining Figure 8 and Figure 9, we can see that
the change of bu	er size did not a	ect the total task execution
time for VPEGS. But the time for RASA was shortened when
we reduced the number of tasks per batch (Figure 9). �is is
because when the number of tasks in the bu	er was reduced,
RASA was more likely to make the same decisions with Min-
Min.

We also carried out experiments to test the impact of the
bu	er’s size on scheduling overheads (Figure 10). Scheduling
overhead represents the average time that the scheduler takes
to make a task assignment decision. We use the average time
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Figure 9: Comparing di	erent task scheduling algorithms on the
total task execution time (bu	er size = 5).

10 15 20 25 305

Bu�er size

0

50

100

150

200

250

S
ch

ed
u

li
n

g 
o

ve
rh

ea
d

 (
m

il
li

se
co

n
d

s)

VPEGS

Min-Min

RASA

RM

Figure 10: �e scheduling overheads of VPEGS, Min-Min, RASA,
and RM with di	erent bu	er sizes.

that a task stays in the bu	er to evaluate the scheduler’s
e
ciency in the experiment.

�ough theoretically Min-Min, RASA as well as VPEGS
have the same time complexity; it can be pointed out from
Figure 10 thatMin-Min su	ers the least scheduling overheads
among these three heuristic algorithms. �e reason is that
VPEGS spends extra time on estimating task energy. RASA
checks whether the number of available VMs is odd before
assigning tasks. VPEGS is slightly more e
cient than RASA
since it does not check the odd-even property and only
considers current availability of VMs. In other words, tasks
will not wait for occupied VMs in VPEGS even though
sometimes waiting helps to shorten the makespan and exe-
cution time. On this point, we conclude that VPEGS, as a
heuristic algorithm, only su	ers small scheduling overheads
when adopting an appropriate size of task bu	er.

As a summary, the experimental results illustrate that
as the scheduler of our proposed energy-aware scheduling
framework,VPEGS is e	ective to schedule tasks in an energy-
saving manner. Compared with traditional scheduling algo-
rithms focusing on optimizing overall makespan and task
execution time, VPEGS takes into account the task resource
demands, VM power e
ciency, and server workload. �e
target of algorithms like Min-Min and RASA are to shorten
the makespan and total execution time of a batch of tasks.
�is is in some way helpful to save system energy when
the di	erences between servers’ power e
ciencies are small
and server idle power makes great impact on the total
energy consumption. However, with the fast expanding on
data centers’ scale, cloud infrastructures probably consist of
hundreds of di	erent types of servers. �is heterogeneity
makes it necessary to consider more factors including server
performance, power e
ciency, and serverworkloads. Aiming
at reducing the energy consumption of heterogeneous clus-
ters, VPEGSprovides a highly feasibleway to conduct energy-
aware task scheduling.We list themain advantages of VPEGS
as follows:

(i) Multiple factors that in�uence system energy con-
sumption are considered. VPEGS conducts schedul-
ing according to the estimation on task energy,
which takes into account the information about task
resource demands, VMpower e
ciency, serverwork-
load, and performance loss.

(ii) VPEGS realizes a �ne-grained resource provisioning
and task scheduling at the level of virtual machine
clusters supporting “precreating” and “delayed shut-
down.”

(iii) VPEGS has high feasibility since it works without any
training. Besides, we set the size of the task bu	er to an
adaptive value to balance the scheduler’s performance
and e
ciency.

(iv) Greedy strategy ismade use of to realize low-overhead
task scheduling.

6. Conclusion and Future Work

Cloud computing is believed to have great potential in
satisfying diverse computing demand from both individuals
and enterprises. But at the same time the overconsump-
tion of electricity by cloud data centers becomes a big
worry. Considering the virtualized environment in cloud
data centers, in this paper, we propose an energy-aware
task scheduling framework consisting of a task resource
requirements predictionmodule, an energy estimatemodule,
and a scheduler. Based on this framework, we propose a
heuristic task scheduling algorithm named VPEGS. VPEGS
takes into account task resource demands, server/VM power
e
ciency as well as server workload. Oriented to heteroge-
neous cloud environment, the proposed algorithm does not
need training and is able to schedule tasks in an energy-saving
manner. VPEGS shares the similar heuristic ideology with
Min-Min and RASA, but it prominently saves system energy
by sacri�cing some e
ciency in task execution. Experiment
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based on simulation was carried out to evaluate VPEGS.
�e results illustrate its novelty that VPEGS reduced system
energy consumption by over 20% when compared to the
strategy of Random-Mapping. It also outperformedMin-Min
and RASA in saving energy by approximately 29% and 28%,
respectively, without producing large scheduling overheads.

Future research will focus on how to e	ectively combine
task scheduling and VM consolidation strategies in order to
further enhance the e	ectiveness of energy saving. Besides,
we plan to make a deeper investigation into the factors or
technologies (e.g., Dynamic Voltage Frequency Scaling) that
in�uence server’s power e
ciency.
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