
International Journal of Security and Its Applications

Vol.7, No.5 (2013), pp.257-268

http://dx.doi.org/10.14257/ijsia.2013.7.5.24

ISSN: 1738-9976 IJSIA

Copyright ⓒ 2013 SERSC

A Heuristics-based Static Analysis Approach for Detecting Packed
PE Binaries

Rohit Arora, Anishka Singh, Himanshu Pareek and Usha Rani Edara

Centre for Development of Advanced Computing,
Hyderabad, India

{rarora, anishkas, himanshup, ushae}@cdac.in

Abstract
Malware authors evade the signature based detection by packing the original malware

using custom packers. In this paper, we present a static heuristics based approach for the
detection of packed executables. We present 1) the PE heuristics considered for analysis and
taxonomy of heuristics; 2) a method for computing the score using power distance based on
weights and risks assigned to the defined heuristics; and 3) classification of packed
executable based on the threshold obtained with the training data set, and the results
achieved with the test data set. The experimental results show that our approach has a high
detection rate of 99.82% with a low false positive rate of 2.22%. We also bring out difficulties
in detecting packed DLL, CLR and Debug mode executables via header analysis.

Keywords: Obfuscated, packed, static analysis, heuristics

1. Introduction

To evade widely deployed and trusted signature-based detection malware authors
obfuscate the code using various techniques [1]. The obfuscation of a binary file can be
achieved either by packing the original file or trying to create new versions of the old
malware program by modifying syntax of code without changing semantics. Our focus in this
paper is to detect the binary executables that are packed. This method of obfuscation refers to
encrypting the original file or code and embedding it as data in another file. For this malware
authors may rely on existing packer tools such as UPX [2], Themida [3], AS Pack [4] etc or
write their own custom packers. Packed executable detection on static parameters can be done
either by using signature based approach or by using static heuristics based approach. PEiD
[5] is a commonly used packed executable detector based on signatures. These approaches
will be of little help to identify executables packed with previously unknown packers.

Figure 1(a) shows the format of a PE executable file [6]. PE file contains essential headers
and various sections containing code and data. Each section has its corresponding section
header. File starts with IMAGE_DOS_HEADER which provides location of
IMAGE_NT_HEADERS. IMAGE_OPTION_HEADER contains fields like number of
sections, size of code, address of entry point, size of initialized data and un-initialized data
etc. To construct an executable which unpacks itself into memory, malware authors first
encrypt the executable and create a new executable with the encrypted code as data and the
code to decrypt the data. This is depicted in Figure 1(b). Our tool extracts various section
header characteristics from the PE file and also calculates entropy of all sections. The
extracted characteristics are quantified and a score is computed based on power distance
method. This score is used in classifying a binary as packed or not-packed. The above
mentioned contributions apply essentially to Windows PE executable files.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

258 Copyright ⓒ 2013 SERSC

Figure 1(a). PE File Structure Figure 1(b). Unpacking process of a Packed
 PE

The rest of this paper is organized as follows. Section 2 brings out the related work.
Section 3 presents our approach towards packed executable detection. Section 4 brings out the
results and Section 5 concludes the paper with future work.

2. Related Work

Rober Lyda and James Hamrock presented an entropy analysis approach for detecting the
encrypted and packed malware [8]. Their analysis is based on the fact that encrypted bytes
possess a high degree of randomness. Roberto et al. proposed a packed executable detection
method based on feature extraction. PE header features are extracted, analysed, and finally
given to the classifier for packed executable classification. The experiments were performed
using various machine learning algorithms [9]. Choi et al., proposed an approach to detect
packed executables based on header analysis. Eight characteristic values are selected from the
attributes of the PE file header. Their approach uses Euclidean distance as a quantifying
measure [10]. S. Treadwell and M. Zhou proposed a heuristic approach for detection of
obfuscated malware [11]. Their approach utilizes a risk analysis matrix and a risk score is
computed to determine if file under analysis is malicious. Igor Santos et al., presented a
collective-learning-based packed executable detection system [12]. Various PE header
characteristics and entropy are used and collective classifier algorithms are used to classify
the packed executable files. S. Han et al., also proposed a static analysis approach to detect
packed executable files [13]. On the other hand, dynamic analysis techniques such as code
emulation and dynamic translation also exist for packed executable detection but it may be
difficult for deployment at host level or gateway level [14].

Our approach is based on the analysis of various characteristics pertaining to the PE such
as section headers, section entropy etc. Our study is based on an insight that a sensibly chosen
set of PE characteristics could yield tangible results in the process of packed executable
detection.

3. Our Approach

Firstly, we define various static parameters for analysis and associate a weight and risk
with each defined parameter. Then we analyse a given binary to find if these parameters are

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 259

exhibited. A score is calculated and PE file is classified as packed or not packed. Figure 2
shows the flow chart depicting the process followed for packed executable detection.

3.1. PE Heuristics

We started with experiments to identify attributes which can be used to classify the packed
executables. These attributes are explained in subsections outlined below. We also present
taxonomy of PE header heuristics that could be used in general with any heuristic analysis
approach based on the PE file format. Essentially, the heuristics pertaining to the PE file
format could be classified based on the scheme depicted in Figure 3. The categories include
viz. Entry point checks, Permissions checks, checks on Import table, and Section name
checks. The heuristic related to entry point for e.g., “Is entry point pointing to the executable
section” goes into the Entry point category of checks. Likewise, the heuristics pertaining to
the import table goes into the Import checks category and so on. This kind of classification
provides ease of use and facilitates to add new heuristics pertaining to any of the categories.
In addition, it enables to derive a mechanism for final score computation based on weights
assigned to each category.

Figure 2 Steps Involved in Packed Executable Detection

3.1.1. Section Names

IF_PACKED_NAMES: By analysing a large dataset of packed malwares, we construct a
list of section names which are commonly used by packers. If a section name used in PE file
belongs to this list then this property is set. For example, .UPX, .PECOMPACT etc.

NUM_NOT_KNOWN: We construct a list of standard section names as per the Microsoft
PE specification [7]. If a section name is not found neither in this list nor in the list of names

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

260 Copyright ⓒ 2013 SERSC

used by packers, then this property is set. The usage of previously unseen section names is
suspicious.

NUM_SECTION_WITH_NON_PRINTCHAR: This property defines the number of
sections containing non printable characters. Standard practice of defining section names does
not contain any non-printable characters. Thus, while examining a PE file if any section name
appears with non-printable characters then this property is set.

Figure 3. Taxonomy of PE Heuristics

NUM_NO_NAME: This property is set when a section is found with no name. Many
packed executables are found with no section name. This heuristic also provides an effective
contribution in identifying a packed executable.

3.1.2. Permissions

NO_CODE_SECTION: An executable which does not contain code section gives a direct
indication in packed executable detection, as there is a higher probability of code section
being hidden.

NUM_EXE_CODE_MISMATCH: If a section contains code, it is essential to have
executable permissions for executing that particular code and vice versa. If any mismatch is
found in these conditions then this property is set.

NUM_MEM_EXE_WRITE: The packed executable program should first run an
unpacking routine in order to unpack the packed program. The unpacking process entails
writing unpacked code in an executable section of the memory image of running program.
Therefore, a packed program needs to include at least one section which is writeable as well
as executable at the same time. On the other hand, the executable sections in the non-packed
PE file need not be writeable and so the MEM_EXE_WRITE flag is not set. Consequently,
counting the number of sections which are writeable and executable makes a significant
contribution in concluding whether an executable is packed.

NUM_DATA_EXECUTE: The .data section contains the initialized data. In case of non-
packed files read and write permissions are desirable for the .data section. However .data
section can be used to store the unpacking routine in case of a packed executable. In such a
case .data section needs to be given executable permissions. Therefore, a data section having
executable permissions gives an upswing.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 261

NUM_DATA_CODE: If an executable is packed or encrypted then it may contain the
code and data in the same section in order to run the unpacking routine. If any such section
exists this property is set.

3.1.3. Entry Point

FAKE_ENTRY_POINT: Entry point of an executable is where the execution starts. The
section where the entry point lies should have the code and execute flags. If entry point of an
executable violates this condition, then it is considered as fake entry point.

IS_TLS_CODE: An executable can optionally contain the entry point function in Thread

Local Storage. This is considered as hidden entry point.

3.1.4. Import Tables

IS_LESS_IMPORTS: Packed executables contains less number of imports as actual
functionality is encrypted and code which decrypts the encrypted executable is the only one in
original form. If number of import is less than 20, then this property is set.

IT_NON_STD_SECTION: The Import Address Table (IAT) holds the addresses of the
imported functions. In case of normal files, this IAT is stored in the standard sections such as
.text section. When an executable is packed, as the standard section names are encapsulated
into the newly added sections, apparently the IAT appears in a non-standard section.

3.1.5. Entropy

SECTION_ENTROPY: Entropy is a method for measuring the uncertainty in the series
of bytes. Frequency of each byte (00h-FFh) is used to calculate the entropy. Entropy is
calculated as

)(log)(
0

2 ipipentropy
N

i
∑
=

−=

where)(ip is the probability of the occurrence of a byte in that particular section. Higher
entropy score reflects more uncertainty in a series of bytes and indicates towards encrypted
data. Thus, we calculate the entropy of each section and the highest entropy among all the
sections is considered as the final entropy measure of the executable [8].

3.2. Score Computation

Secondly, we perform executable analysis using the heuristics defined above. This analysis
essentially involves computing a score using power distance method based on weights and
risk score associated with each heuristic. Table 1 shows the weight and risk score associated
with each of the heuristics. Weight given to each heuristic represents how better it is an
indication that the executable under analysis could be packed. The risk score is assigned
based on how risky a particular property is if found in a binary file. Both weight and risk
score together are used in computing a score value, which further determines whether a PE
has been PACKED or NOT. Initially, we assigned a predefined weight and risk score for each
heuristic based on our study and experience with respect to packed executables. Likewise, for

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

262 Copyright ⓒ 2013 SERSC

few heuristics such as IF_PACKED_NAMES, NUM_SECTION_WITH_NONPRINTCHAR
and NUM_NO_NAME we observed that the actual value of the heuristic stands more
appropriate for weight rather than an assigned number. Therefore, for those heuristics
mentioned the weight is considered as the ‘count’ obtained for that heuristic. After carrying
out the tests with the training data set, we have stabilized the values for weight and risk score
against each heuristic. The stabilized values are shown in Table 1.

For computing the score, our approach uses power distance. The formula is mentioned
below.

∑
=

=
N

i

R
i

iWscore
0

Where iW represents weight of the ith parameter and iR is the corresponding risk.

3.3. Classify Executable

Finally, we classify the executable as PACKED or NOT PACKED based on the score
value obtained in score computation above. The score value is compared against a threshold
value, and if the score value is above the threshold then the executable is said to be PACKED
else NOT PACKED. The threshold value is evolved based on the results obtained with the
training data set. The next subsection under the Results section showcases the results obtained
with the training data set and the evolved threshold value.

Table 1. PE Heuristics with Weights and Risk Score

S. No Type Parameters Weight Risk

1 Section Name IF_PACKED_NAMES Count 5
2 Section Name NUM_NOT_KNOWN 0.5 1
3 Section Name NUM_SECTION_WITH_NONPRINTCHAR Count 2
4 Section Name NUM_NO_NAME Count 2
5 Permission NO_CODE_SECTION 5 3
6 Permission NUM_EXE_CODE_MISMATCH 5 4
7 Permission NUM_MEM_EXE_WRITE 5 4
8 Permission NUM_DATA_EXECUTE 5 4
9 Permission NUM_DATA_CODE 5 2

10 Entry point FAKE_ENTRY_POINT 5 3
11 Entry point IS_TLS_CODE 3 2
12 Import IS_LESS_IMPORTS 3 2
13 Import IT_NON_STD_SECTION 7 3
14 Entropy SECTION_ENTROPY 3 2

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 263

4. Results

4.1. Training Data Set and Test Environment

Our test lab environment has a honey-pot setup using Dionaea tool at a broadband internet
connection. This tool emulates the vulnerabilities, invites the attacks and logs the malware. In
addition, we have collected malware from other sharing websites like
offensivecomputing.net, and contagiodump.blogspot.com. Out of the collection from our lab,
we extracted the training set consisting of 2078 packed executables. For identifying the
packed executables, we used the emulation approach [14]. A set of 4677 benign executables
is also collected from System32 folder of a freshly installed Windows machine.

4.2. Fallouts Obtained with the Training Data Set

This section presents the results obtained from analysis carried out on the training data set.
Figure 4 shows the true positive rate i.e. the number of input packed executables classified
correctly as PACKED. It represents the true positive rate for different threshold values. For
the threshold values of 1, 2 and 3 there is no change in the true positive rate.

Figure 4. True Positive Rate with Various Threshold Values

Figure 5 represents the false positive rate (FPR) with various threshold values. FPR is
percentage number of benign executables classified as PACKED. The false positive rate
decreases as we increase the threshold value. False positive rate for threshold values of 1, 2
and 3 are 2.26%, 2.22% and 2.22% respectively. As threshold value is increased to 4 false
positive rate falls considerably but it also reduces the true positive rate which is detrimental
and optimized threshold value is 3.

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

264 Copyright ⓒ 2013 SERSC

Figure 5. False Positive Rate for Various Threshold Values

Figure 6 shows the false negative rate. It is number of input packed executables that are
incorrectly classified as NOT PACKED. Our approach shows a very low false negative rate
of 0.086% on the training data set.

Figure 6. False Negative Detection Rate with Varying Thresholds

Table 2. Results Obtained with the Training Data Set

Results with Training
Data Set

Threshold Value = 1 Threshold Values = 2 & 3

Total Test Set (Packed/Not
Packed)

6755 (2078/4677) 6755 (2078/4677)

Detected 4571 4571

Not Detected 2060 2060

Detection Rate 99.13% 99.13%

False Positive Rate 2.26% 2.22%

False Negative Rate 0.08% 0.08%

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 265

4.3. Results with the Test Data Set

We have arrived at the threshold value of 3 for our approach on basis of the detection rates
mentioned in Table 2. For the test data set, we have collected 8568 samples from
virussign.com. Out of that, our approach classified 4500 binaries as PACKED and 4068 as
NOT PACKED with a False Negative rate of 0.17%. Figure 7 represents the final scores
calculated for test data.

Figure 7. Test Set Result

4.4. Analysis of Common Packers

In Table 3 shown below, we present the score ranges of some common packers analysed.

Table 3. Score Range of known Packers

S. No. Packer Name Score Range
1 UPX 16.10 – 48.86
2 PECompact 25.17 – 44.91
3 VMProtect 31.81 – 48.21
4 Armadillo 01.00 – 48.68
5 MingWin32 25.00 – 43.59
6 AsPack 16.37 – 49.94
7 NsPack 40.32 – 48.12
8 Yoda 19.02 – 48.21

We also present scores of some common malwares analysed with our solution in Table 4.

Table 4. Score Range of known Malwares

Malware Name MD5 Hash Score Peid Status

W32/Conficker 83c52b56b1ecbe23183bae5e05474e3e 48.68 UPX

Stuxnet b4429d77586798064b56b0099f0ccd49 3.08 Unknown

Backdoor.Win32.Evilbot 54faf63f7833cfad9c1422087e9f767e 9.89 Unknown

Additional Flamer ee4b589a7b5d56ada10d9a15f81dada9 45.01 UPX

Flamer 37c97c908706969b2e3addf70b68dc13 3 Unknown

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

266 Copyright ⓒ 2013 SERSC

4.5. Observations

4.5.1. Exceptions with DLL, Debug Mode, and CLR files

With our tests we observed that some of the heuristics cannot be applied to files such as
DLLs, PEs built in debug mode, and PEs built with CLR. Previous work to detect packed
executables fails to make this observation. The details indicated by these files are given
below.

(a) DLL: When our solution has been tested over DLL’s, exceptional results were
recognized. Separate evaluation was done for the DLL files to see the unusual behaviour.
While evaluating them we encountered that it is setting NUM_DATA_EXECUTE property.
Analysis on the characteristic IMAGE_DLLCHARACTERISTICS_NO_SEH was done to
check whether the DLL files set this flag. When this flag is found set in the DLL files, it will
also have data section with executable permissions. Therefore, NUM_DATA_EXECUTE
heuristic cannot effectively contribute towards detection in case of such DLL files.

 (b) PE built in Debug mode: While running our solution on the executables built in
debug mode, we observed that many of the heuristic check are true resulting in high scores.
By analysing the executables, we found that properties viz.
NUM_EXE_CODE_MISMATCH, NUM_MEM_EXE_WRITE, NUM_DATA_EXECUTE
and NUM_DATA_CODE are present inside the executable. This is due to .textbss section
which is included in all debug built executables. So we have kept a check on whether
executable is built with debug mode or not by checking
IMAGE_DEBUG_TYPE_CODEVIEW type. If it is a debug built executable then above
mentioned heuristics are not considered.

(c) PE built with CLR: Executables built with CLR i.e. Common Language Runtime
defined for .net framework, imports only the mscoree.dll. This increases the score due to the
IS_LESS_IMPORT heuristic. So, if an executable built with .net framework is found, then
IS_LESS_IMPORT heuristic does not contribute in the detection process.

4.6. Performance Analysis

Performance analysis of our implementation has been carried out for calculating the time
taken by a PE file to get analysed. A set of 2000 already classified packed executables is
taken and tested on both windows and Linux platform. Similar analysis has been done for a
set of classified benign executables and a set of mixed files (Benign + Packed files). Average
time taken per file is presented in Table 5.

Table 5. Average Time Taken to Analyse PE Files

 Packed Benign Packed and
Unpacked

Average Time
on Windows (ms) 0.51 0.34 0.41

Average Time
on Linux (ms) 1.7 1.91 1.82

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

Copyright ⓒ 2013 SERSC 267

Average time taken to analyse any file on Microsoft’s Windows 7 platform is 0.41
milliseconds and for Ubuntu 11.10 it is 1.82 milliseconds. This analysis was carried out on an
Intel Core i7-3770 CPU with a clock frequency of 3.40GHz.

5. Conclusion and Future Work

In this paper, we presented a static analysis approach for packed executable detection. We
also presented taxonomy of heuristics that provides ease of use and facilitates accumulation
of additional heuristics in a structured manner. Our approach used power distance for score
computation based on weights and risks assigned to the defined heuristics and classified the
packed binaries based on the threshold observed with the training data set. We also
emphasized that heuristics applied in such a manner has to be optimized for executables built
in debug mode, DLLs and CLR executables. Our future direction extends to detect packed
files based on combination of static analysis and emulation based approaches.

References
[1] F. Guo, P. Ferrie and T. Chiueh, “A study of the packer problem and its solutions”, Recent Advances in

Intrusion Detection, (2008).
[2] M. Oberhumer, “Ultimate Packer for Executables”, http://upx.sourceforge.net/. 2007.
[3] Oreans Technology, “Themida Packer”, http://www.oreans.com/themida.php. 2008.
[4] ASPack Software, “ASPACK Tool”, http://www.aspack.com. 2007.
[5] X. P. Snaker, “PEiD”, Available in: http://www.peid.info/. 2008.
[6] M. Pietrek, “Peering inside the PE: A Tour of the Win32 Portable Executable File Format”, Microsoft

Systems Journal-US Edition, (1994), pp. 15-38.
[7] Microsoft, MSDN, “Microsoft PE and COFF Specification”, http://msdn.microsoft.com/en-

us/library/windows/hardware/gg463119.aspx. 2013.
[8] R. Lyda, and J. Hamrock, “Using entropy analysis to find encrypted and packed malware”, Security &

Privacy, IEEE, vol. 5, no. 2, (2007) March-April, pp. 40-45.
[9] R. Perdisci, A. Lanzi and W. Lee, “Classification of packed executables for accurate computer virus

detection”, Pattern Recognition Letters, vol. 29, no. 14, (2008), pp. 1941-1946.
[10] Y. Choi, I. Kim, J. Oh and J. Ryou, “Encoded Executable File Detection Technique via Executable File

Header Analysis”, International Journal of Hybrid Information Technology, vol. 2, no. 2, (2009) April.
[11] S. Treadwell and M. Zhou, “A heuristic approach for detection of obfuscated malware”, IEEE International

Conference on Intelligence and Security Informatics, (2009) June.
[12] I. Santos, X. Ugarte-Pedrero, B. Sanz, C. Laorden and P. G. Bringas, “Collective classification for packed

executable identification”, Proceedings of the 8th Annual Collaboration, Electronic messaging, Anti- Abuse
and Spam Conference (CEAS), (2011), pp. 23-30.

[13] S. Han, K. Lee and S. Lee, “Packed PE File Detection for Malware Forensics”, 2nd International Conference
on Computer Science and its Applications, (2009) December.

[14] A. E. Stepan, “Defeating polymorphism: beyond emulation”, Proceedings of the Virus Bulletin International
Conference, (2005).

International Journal of Security and Its Applications

Vol.7, No.5 (2013)

268 Copyright ⓒ 2013 SERSC

	A Heuristics-based Static Analysis Approach for Detecting Packed PE Binaries
	Abstract
	Packer Name
	MD5 Hash

