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Abstract

Automated acoustic recognition of species aims
to provide a cost-effective method for biodiversity
monitoring. This is particularly appealing for de-
tecting endangered animals with a distinctive call,
such as the New Forest cicada. To this end, we pur-
sue a crowdsourcing approach, whereby the mil-
lions of visitors to the New Forest will help to mon-
itor the presence of this cicada by means of a smart-
phone app that can detect its mating call. However,
current systems for acoustic insect classification are
aimed at batch processing and not suited to a real-
time approach as required by this system, because
they are too computationally expensive and not ro-
bust to environmental noise. To address this short-
coming we propose a novel insect detection algo-
rithm based on a hidden Markov model to which
we feed as a single feature vector the ratio of two
key frequencies extracted through the Goertzel al-
gorithm. Our results show that this novel approach,
compared to the state of the art for batch insect clas-
sification, is much more robust to noise while also
reducing the computational cost.

1 Introduction

Biodiversity is a key measure of the health of an ecosystem,
and as land-use and climate change impact on the natural en-
vironment, many countries are increasingly seeing the need to
monitor and protect it. For example, the UK has formalised
this within the UK Biodiversity Action Plan (UK BAP) and
has established a priority species list to focus work on a small
number of critically important species [Joint Nature Conser-
vation Committee, 2010]. One of these, of particular interest
in this paper, is the New Forest cicada (cicadetta montana s.
str., see Figure 1); the only native cicada known to the UK,
which was first identified in the New Forest, a national park
on the south coast of England, in 1812. Despite being well
studied at a number of sites in the 1960s, there has been no
confirmed observation of the New Forest cicada in the last 20
years [Pinchen and Ward, 2002]. Understanding whether this
is simply due to the migration of the cicada to as yet undis-
covered sites, or whether the cicada is now extinct in the UK

Figure 1: Cicadetta montana. Photograph by Jaroslav Maly,
reproduced with permission.

due to climate change or land-use change, is an important
question for UK biodiversity research.

Today, traditional approaches to searching for rare species
typically call for trained ecologists to perform detailed man-
ual surveys. However, the obvious costs of such work have
led to significant recent research into automated approaches
whereby animals and plants can be classified remotely with-
out requiring that trained experts be in the field. In the
case of insects, this is most often performed by deploy-
ing fixed sensors with sensitive microphones that record the
sounds that the insects emit [MacLeod, 2007]. These record-
ings are then analysed later to automatically identify the in-
sects whose calls were heard. The algorithms to do so typ-
ically range from those that operate solely in the time do-
main, such as time domain signal coding [Chesmore, 2004;
Chesmore and Ohya, 2004], to those inspired by the litera-
ture of human speech recognition. The latter typically use
a hidden Markov model (HMM) for classification [Leqing
and Zhen, 2010], and perform a number of pre-processing
stages, often taken directly from the human speech recogni-
tion literature, to extract features from the raw recording. For
example, [Chaves et al., 2012] present a state-of-the-art ap-
proach that pre-processes the recorded sound to remove un-
sounded periods where no insect call is detected, that maps
the raw frequencies to the mel scale, which better represents
human hearing; then it converts it back into a pseudo-time do-
main, called the cepstrum, by calculating a number of mel fre-
quency cepstral coefficients (MFCC), that are used as features
for the HMM classification with just one state per species.

The use of automatic acoustic recognition is particularly
appealing in the case of the New Forest cicada, since this in-



sect has a particularly loud high-pitched mating song which,
while being close to the upper frequency limit of a normal
adult hearing range, can easily be detected by conventional
microphones. However, the use of fixed sensors to collect
these recordings for later analysis is less compelling. The
New Forest covers 600 km2, and, to exhaustively survey it for
potential cicada breeding sites, would require tens of thou-
sands of sensors. Therefore, in our work, we are pursuing
a different approach, and are seeking to exploit the 13 mil-
lion day visits to the New Forest that occur each year by the
general public to crowdsource the search for the New Forest
cicada. In particular, in this paper, we describe a HMM-based
detection algorithm that runs within a smartphone app, to be
used by these visitors, that can automatically detect the mat-
ing call of the male cicada, identify it as such to the user in
real-time, and prompt the user to make a recording that can
be uploaded for further analysis once the smartphone has an
acceptable Internet connection. A similar approach to crowd-
sourcing for sustainability problems using mobile phones was
employed by Quinn et al. [2011], however it has not yet been
applied to crowdsourcing biodiversity using acoustics.

The requirements of the automatic detection algorithm that
will run on these smartphones are somewhat different to those
that have been previously proposed for post recording analy-
sis of insect calls. Firstly, we must be aware of the limited
computational resources available on some lower-end mobile
devices. The algorithms described above are typically de-
signed to run on high-end servers, and thus, are relatively
unconstrained by both memory and processor speed. Sec-
ondly, we note that the algorithms above are designed to run
in batch-mode on existing recordings, whereas in our appli-
cation, we require that the algorithms provide real-time feed-
back to the user as to the identification of the insect being
heard; firstly, so that if it is not a cicada we do not force the
user to upload unnecessary recordings1, and conversely, if a
cicada is detected, so that we can prompt the user to collect
the best quality recording possible and keep them engaged in
the search. Finally, the pre-processing approaches described
above may actually impair detection in certain cases. In par-
ticular, while often insects can easily be classified by differ-
ences in the frequencies of their song, we demonstrate that
these methods fail to distinguish between the song of the
New Forest cicada (which sings continuously at 14 kHz),
and that of the dark bush cricket, common in the New For-
est (that chirps intermittently at 14 kHz). This is because
the conversion of the raw frequency domain data into mel
frequency cepstral coefficients fails to generate any distin-
guishing features in the frequency-domain (since the mel fre-
quency conversion has poor resolution at high frequencies,
being intended for the much lower frequencies which con-
stitute typical human speech), while the automatic removal
of un-sounded periods from the recording also removes the
time-domain features which would have differentiated them.

Thus, to address these shortcomings, in this paper we
present an algorithm specifically intended for real-time de-

1A 60s mono recording at 44,100 samples per second, is about
5MB; a significant file to upload in areas with poor mobile phone
reception where connection rates may be down to 100kbps or less.

tection and recognition of insects (and specifically, the New
Forest cicada) on computationally constrained smartphones.
Rather than calculating a number of mel frequency cepstral
coefficients, as above, we use the Goertzel algorithm — an
efficient method for approximating individual terms of a dis-
crete Fourier transform (DFT) [Goertzel, 1958] — to calcu-
late the magnitude of two specific frequency bands; one cen-
tred at 14 kHz, corresponding the central frequency of both
the insects’ calls, and one centred at 8 kHz, which is far from
both general background noise and the insects’ call. We use
the ratio of these magnitudes as a single feature, which iden-
tifies the song of either the bush cricket or the New Forest ci-
cada. Then, we use a four-state hidden Markov model that ex-
plicitly represents both the idle, un-sounded period between
insect calls, and also the short pauses between the chirps
of the bush cricket’s song. Hence, rather than attempting
to recover the time domain information lost while removing
un-sounded periods through heuristic methods, we explicitly
capture this in the HMM, as this approach can be readily ex-
tended to cover insect calls of more complexity, all within the
same principled framework. We then use the Viterbi algo-
rithm to identify the most likely sequence of insect calls at
any point in time, as in Sun et al. [2009].

We evaluate our approach using recordings made by the au-
thors with an Apple iPhone 4S of both the New Forest cicada
(recorded in Slovenia where the same species is still abun-
dant) and the dark bush cricket (recorded in the New For-
est). Unlike standard library recordings, our trial dataset rep-
resents the quality of crowdsourced data that we are likely
to encounter, exhibiting significant noise (including, among
others, handling noise, background road traffic, human voice
and noise generated by the wind), and insect calls of varying
amplitude depending on the proximity of the recording device
to the specimen.

We show how our approach is capable of identifying the ci-
cada call in normal environmental noise more accurately than
the state-of-the-art batch classification algorithms described
earlier. In particular, we achieve an F1 score of 0.955 for the
detection of the cicada on a large data set of over 30 calls,
recorded with a smartphone, while the method proposed by
Chaves et al. [2012] only scores F1 = 0.126 due to the con-
fusion with the cricket’s calls. Our efficient feature extraction
procedure is robust to noise and decreases the computational
complexity of the detection process, providing the capability
for real time classification.

The remainder of this paper is organised as follows. In
Section 2, we describe our proposed approach, highlighting
the different techniques used. In Section 3 we analyse its per-
formance in comparison to a state-of-the-art model for batch
classification, providing the relevant accuracy metrics. We
conclude in Section 4 along with an overview of future work.

2 Real-Time Insect Detection Using Hidden

Markov Models

We now give a description of our proposed approach for real-
time insect detection. We first describe a method by which
we efficiently extract individual terms of a DFT from the raw
audio recordings using the Goertzel algorithm. We then de-



Figure 2: Spectrogram and waveform of a New Forest cicada
call (recording by Jim Grant, 1971 and courtesy of the British
Library, wildlife sounds collection).

scribe how two of these terms can be combined to produce a
feature that is robust to noise. Last, we show how this feature
is used to classify periods of a recording to a particular insect
using a four-state HMM.

2.1 Feature Extraction Using Goertzel Algorithm

For the purposes of our system, it was observed that the call
of the New Forest cicada displays a strong frequency compo-
nent centred around 14 kHz (see Figure 2). This frequency is
sufficiently distant from any common background noise, such
as wind noise, road traffic or people speaking, to be a reliable
identifier of the presence of the cicada. An efficient approx-
imation of the magnitude of this given frequency can be cal-
culated using the Goertzel algorithm, a method that evaluates
individual terms of a DFT, implemented as a second order
infinite impulse response (IRR) filter.

An efficient implementation of the Goertzel algorithm re-
quires two steps. The first step produces a coefficient that can
be pre-computed and cached to reduce CPU cycles:

c = 2 cos

(

2πf

fs

)

(1)

where f is the central frequency in question and fs the sam-
pling rate of the recording.

The second step consists of iteratively updating the values
of a temporary sequence y with any incoming sample s such
that:

yn = hamming(s) + (c · yn−1)− yn−2 (2)

where the samples are passed through a Hamming filter, given
by:

hamming(s) = 0.54− 0.46 cos

(

2πs

N − 1

)

(3)

and the length of the sequence of samples N determines the
bandwidth B of the Goertzel filter, such that:

B = 4
fs

N
(4)

A sequence length N yields larger bandwidth, at the cost of
a noisier output. In practice, we use multiples of 64 samples
to match a typical smartphone’s buffer size. For example, a
block size N = 128 samples gives a bandwidth of just under
1.4 kHz. The magnitude m of the frequency band centred at
f and with bandwidth B is then given by:

mf =
√

y2N + y2N−1
− c · yN · yN−1 (5)

z1 z2 z3 zT

x1 x2 x3 xT

Figure 3: A hidden Markov model. Unshaded square nodes
represent observed discrete variables, while shaded circular
nodes represent hidden continuous variables.

In terms of computational complexity, this approach shows
a considerable benefit compared to the single-bin DFT. An
efficient algorithm to compute the latter, the fast Fourier
transform (FFT), has a complexity of O(NlogN), while the
Goertzel algorithm is only computed in order O(N), where
N is the number of samples per window. Moreover, the sam-
ple update described in equation 5 can be processed in real-
time, eliminating the need for an independent background
thread on the smartphone app.

2.2 Feature Combination Using Filter Ratio

The magnitude of the frequency component at 14 kHz is a
good indicator of the presence of a New Forest cicada, ro-
bust against generic background noise. However, it may be
sensitive to white noise that covers the entire frequency spec-
trum, such as handling noise. Therefore, in order to reduce
this sensitivity, we divide the magnitude of this feature by the
magnitude observed around 8 kHz, also computed with the
Goertzel algorithm described above. This band is outside the
range of both the cicada call and environmental noise. Hence,
this ratio will be high in the presence of a cicada and tend to
zero when either no sound is detected in the cicada range or
if sound is present across both bands. The ratio of the se-
quences of these two terms mf,1, . . . ,mf,T , computed over
time T , results in the feature vector x = x1, . . . , xT such
that:

x =
m14

m8

(6)

Once the ratio between the 14 kHz and 8 kHz frequencies
has been calculated, this can be used as a single feature vec-
tor, x, for our classification model. In order to obtain real-
time computationally efficient insect identification, we adopt
a HMM based approach to classification.

2.3 Classification Using Four-State HMM

A HMM consists of a Markov chain of discrete latent vari-
ables and a sequence of continuous observed variables, each
of which is dependent upon one discrete variable’s state
[Blasiak and Rangwala, 2011]. Figure 3 shows the graphical
structure of a HMM, where the discrete, hidden variables (the
singing states) are represented by the sequence z1, . . . , zT ,
and the continuous, observed variables (the song feature) are
represented by the sequence x1, . . . , xT . The value of each
discrete variable zt corresponds to one of K states, while each
continuous variable can take on the value of any real number.

The behaviour of a hidden Markov model is completely de-
fined by the following three parameters. First, the probability
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Figure 4: Log-normal distribution of the extracted feature for
the cicada call

of each state of the hidden variable at t = 1 is represented by
the vector π such that:

πk = p(z1 = k) (7)

Second, the transition probabilities from state i at t − 1 to
state j at t are represented by the matrix A such that:

Ai,j = p(zt = j|zt−1 = i) (8)

Third, the emission probabilities that describe the observed
feature, x, given parameters φ, follow a log-normal distribu-
tion such that:

xt|zt,φ ∼ lnN (µzt , σ
2

zt
) (9)

where φ = {µ,σ2}, and µzt and σ2

zt
are the mean and vari-

ance of the Gaussian distribution for state zt. Figure 4 shows
a histogram of data generated by a cicada’s song, along with
our log-normal distribution fitted to the data. Despite the dis-
tribution’s long tail, it still has poor support for data of un-
usually high magnitude, as are often generated by handling
noise. In order to prevent the model from strongly favouring
a certain state when a data point is in the extreme of the log-
normal distribution, we add a uniform term over all emission
probabilities, with small probability, to capture cases where
our data are likely to be poorly represented.

Equations 7, 8 and 9 can then be used to calculate the joint
likelihood of a hidden Markov model:

p(x, z|θ) = p(z1|π)
T
∏

t=2

p(zt|zt−1,A)

T
∏

t=1

p(xt|zt,φ) (10)

where the model parameters are defined by θ = {π,A,φ}.
We use the Viterbi algorithm to infer the most likely se-

quence of hidden states given the features described. Despite
the fact that the number of possible paths grows exponentially
with the length of the chain, this algorithm efficiently finds
the most probable sequence by maximising Equation 10, with
a cost that grows only linearly with the length of the chain.

2.4 Finite State Model of Insect Call

We propose a four-state HMM for cicada detection, in which
the states consist of: an idle state in which no insect is singing
(I), a cicada singing state (C), a state where the dark bush

I C

BC BSP

B

Figure 5: Four-state finite state machine. BC represents the
bush cricket’s chirp, BSP represents the short pause between
chirps, I represents the idle state and C represents the ci-
cada’s song.

C B

Figure 6: Two-state finite state machine. C represents the
cicada’s song and B represents the cricket’s chirp.

cricket is chirping (BC) and a short pause in between the
dark bush cricket’s chirps (BSP ). The model parameters µ
and σ2 are learned empirically for each state k using:

µk =

∑T

t=1
ln(xt)

T
, σ2

k =

∑T

t=1
(ln(xt)− µ)2

T
(11)

The transition matrices describing the dynamics of a
Markovian process can be represented graphically using fi-
nite state machines. Figure 5 shows the four states described
above and all possible transitions, where those with non-zero
probability are represented by arrows connecting two states.
Our model explicitly represents the silence between the dark
bush cricket song, which is essential information for distin-
guishing between the two insects’ songs. This is in contrast
to the model used by Chaves et al. [2012], in which each in-
sect is represented by a single state, as shown by Figure 6.

Having presented our model, we now go on to compare its
performance to the more complex system for batch process-
ing proposed by Chaves et al. [2012]. This system mimics a
standard speech recognition model based on HMMs.

3 Empirical Evaluation Using Smartphone

Recordings

We compare our approach, as described in Section 2, to the
state-of-the-art approach used by [Chaves et al., 2012]. In the
latter, the signal is firstly stripped of un-sounded areas and
segmented to extract individual calls. It is then pre-processed
by removing the DC offset, dividing it into frames, empha-
sising high frequencies, and passing it through a windowing
function. The windows are then run through a FFT and con-
verted into the mel frequency scale, from which the mel fre-
quency cepstral coefficients are generated. These are used as
individual features for a simple HMM. For the recording in
analysis, this consists of two states, one for the cicada and one
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Figure 7: The proposed model, run on a recording with several dark bush cricket’s calls and three cicada songs. I, C and B
represent the idle, cicada and cricket states respectively, as in Figure 5. B encompasses both the cricket’s chirping (BC) and
short pause (BSP ) states.

for the bush cricket, with a feature vector of 24 cepstral co-
efficients, each assumed to be normally distributed. No state
for silence is considered, as this has been removed during the
pre-processing stage.

To evaluate the accuracy of our approach, we collected
recordings of the New Forest cicada from a known habitat
in Slovenia and the dark bush cricket from the New Forest
using an Apple iPhone 4S. In contrast to existing recording
libraries, this data set represents the quality of crowdsourced
data that we are likely to encounter, exhibiting significant
noise (including, among others, handling noise, background
road traffic, human voice and noise generated by the wind),
and insect calls of varying amplitude depending on the prox-
imity of the recording device to the specimen.

Figure 7 shows a comparison of the two approaches us-
ing a concatenation of three cicada calls and several instances
of the dark bush cricket call intertwined. Figure 7a shows
a spectrogram with the time domain on the x-axis, and the
frequency domain on the y-axis, with the magnitude of the
frequency bins varying with the colour of the plot. The three
cicada calls can be identified as the prolonged strong compo-
nent in the high frequency band. The chirping calls are visi-
ble as thin vertical bars on the top half of the spectrum. Note
that the different recordings, merged together into this data
set, have varying background noise, identifiable particularly
as high magnitude components at the bottom of the spectrum.
Figure 7b shows the ground truth, labelled manually, i.e. the
correct classification of the different insects. The states are
labelled as in Figure 5, where I represents the un-sounded
idle state, C represents the cicada’s song and B represents
both the bush cricket’s chirping and short pause states. Figure
7c shows the output of the model from Chaves et al. [2012].
For this approach, areas identified as idle have been removed
from the feature by the pre-processing stage, but have been

reintroduced in the output for the sake of comparison. On the
plot they are marked as idle, although the model itself does
not account for an idle state. Since the comparison is focused
on the discernment of the two insects rather than the detec-
tion of sounded and un-sounded areas we manually label the
sounded and un-sounded areas. Finally, Figure 7d shows the
output of the model proposed in this paper. The two states
used to identify the dark bush cricket’s call are merged into
one, again as represented in Figure 5. It is immediately appar-
ent how closely our proposed approach matches the ground
truth in comparison to Chaves et al. [2012].

It emerges clearly that removing silence between calls also
removes the time domain features crucial at discerning these
two insects. The output of the HMM in Figure 7c, displays
confusion between the chirping call and the prolonged call
and is unable to identify them correctly. The visual intuition
is confirmed by the accuracy measures described below and
reported in Table 1. On the contrary, our proposed model is
able to take advantage of the clear time-domain feature and,
despite the emission probabilities of the two sounded and the
two un-sounded states being identical, the transition proba-
bilities ensure that prolonged periods of silence are classi-
fied as the idle state. To this extent, the backward pass of
the Viterbi algorithm ensures that any mistakes due to a state
having the highest local probability are corrected to provide
the most likely overall path. Furthermore, this approach can
be readily extended to calls of more complexity by further
increasing the number of sub-states attributed to each insect.

We assess the accuracy by which each approach can cor-
rectly classify the cicada using the standard precision, recall
and F1 score metrics. The precision represents the fraction
of time slices in which the approach detected the cicada as
singing when it was in fact singing, while the recall represents
the fraction of time slices in which the cicada was singing that



Approach Precision Recall F1-score

Our approach 1.000 0.914 0.955
Chaves et al. [2012] 0.563 0.071 0.126

Table 1: Accuracy metrics of cicada detection

were correctly detected. Precision and recall are defined as:

precision =
tp

tp+ fp
(12)

recall =
tp

tp+ fn
(13)

where tp represents the number of correct cicada song de-
tections, fp represents the number of cicada song detections
when it was actually not singing, and fn represents the num-
ber of cicada songs which were not detected. In this work,
we are not concerned by the accuracy of the cricket’s detec-
tion. We also use the F1 score, which represents a weighted
combination of precision and recall, defined as:

F1 = 2 ·
precision · recall

precision+ recall
(14)

Table 1 shows the precision, recall and F1 score metrics
both for the approach described in this paper and that used by
Chaves et al. 2012 over a much larger data set of over 30 dif-
ferent cicada songs. It is clear that the approach proposed by
Chaves et al. [2012] fails to distinguish between the cicada’s
song and the bush cricket’s chirp, resulting in poor precision
and recall statistics. Conversely, both the precision and recall
metrics for our proposed approach are close to 1, as a result
of our model’s ability to use the periods between the bush
cricket’s chirps to differentiate between the two songs. Fur-
thermore, the vastly greater precision and recall metrics for
our proposed approach have resulted in a greater F1 score.
Our approach’s F1 score can be interpreted as a suitable trade
off between false detections and missed detections.

It is also worth comparing the computational efficiency of
the approach used by Chaves et al. [2012] to the approach
described in this paper. In the Chaves et al. [2012] model,
the two most costly operations, namely the sound detection
algorithm and the computation of the cepstral coefficients,
both require an order O(NlogN) to compute, with N being
the number of samples in the recording. In comparison, the
entire feature extraction process in our proposed model only
requires O(N) operations. This complexity corresponds to
a computation time of 537s for the Chaves et al. [2012] ap-
proach, while our approach takes 45s to process the record-
ing of length 311s, shown in Figure 7. Since the Chaves et
al. [2012] method takes longer to run than the length of the
recording, clearly it is not efficient enough to run in real-time.
In comparison, our approach processed the whole recording
in one seventh of the recording time, and therefore is suitable
to run in real-time. These values, although dependent on im-
plementation details, corroborate the hypothesis that the for-
mer model has a considerably higher computational complex-
ity, as shown in Section 2. This, together with the increased
robustness to noise shown by the accuracy metrics, allows us
to conclude that our model is better suited to real-time de-
tection than the state of the art for insect classification. The

Figure 8: Prototype app interface showing the real-time feed-
back presented to the user during a 60 second survey, indicat-
ing the detection of a cicada song, and the electronic cicada
that replicates the sound of the cicada, used for user testing.

execution times of both approaches were evaluated on a mid-
range modern computer (Intel Core 2 Duo CPU, 2.4 GHz,
8 GB RAM), with the software entirely written in Python.

4 Conclusions

In this paper we have presented a novel automated insect de-
tection algorithm that, to the best of our knowledge, is the first
targeted at real-time identification of selected species. We
have shown that with a careful analysis of the call to be de-
tected, key features can be extracted at minimal cost, greatly
simplifying the identification process. We compared our ap-
proach with a state-of-the-art technique, and identified sce-
narios where such a technique would fail to distinguish two
given calls in a smartphone recording.

Our results show that the proposed system achieves an ac-
curacy of F1 = 0.955 on a data set of recordings taken with
an Apple iPhone 4S at 44,100 kHz in their original sound-
scape, which includes various forms of background noise and
different animal calls, as well as human voice, interfering
with the signal. Rather than focusing on batch processing
of large data sets of species, our approach aims at identifying
a small number of species in real time.

With the development of the robust acoustic classifier com-
plete, we have integrated the technology into the prototype
smartphone app shown by Figure 8. We are currently carry-
ing out user testing of the app through the use of an electronic
cicada, a stand-alone circuit board and speaker that replicates
the sound of the New Forest cicada’s song. The project will
launch publicly in June 2013, and will constitute the first live
crowdsourced system to search for an endangered species of
insect of national importance.
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