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ABSTRACT

Motivation: Time series experiments of cDNA microarrays have

been commonly used in various biological studies and conducted

under a lot of experimental factors. A popular approach of time

series microarray analysis is to compare one gene with another in

their expression profiles, and clustering expression sequences is a

typical example. On the other hand, a practically important issue in

gene expression is to identify the general timing difference that is

caused by experimental factors. This type of difference can be

extracted by comparing a set of time series expression profiles

under a factor with those under another factor, and so it would be

difficult to tackle this issue by using only a current approach for time

series microarray analysis.

Results: We have developed a systematic method to capture the

timing difference in gene expression under different experimental

factors, based on hidden Markov models. Our model outputs a real-

valued vector at each state and has a unique state transition

diagram. The parameters of our model are trained from a given set of

pairwise (generally multiplewise) expression sequences. We eval-

uated our model using synthetic as well as real microarray datasets.

The results of our experiment indicate that our method worked

favourably to identify the timing ordering under different experi-

mental factors, such as that gene expression under heat shock

tended to start earlier than that under oxidative stress.

Contact: t-yoneya@kirin.co.jp

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Experiments by cDNA microarray, which have been widely

used for comprehensive gene expression profiling, can be

classified into two types: static and time series. A static

experiment is used to measure a snapshot of the expression

profile in an experimental condition, while a time series

experiment is used to measure a continuous change under an

experimental condition. Analyzing time series microarray

data is important to understanding the dynamic mechanism

of biological phenomena, and, in this paper, we focus on

the data from time series microarray experiments. In fact,

time series experiments have been used to analyze a

variety of biological phenomena, including environmental

stresses (Gasch et al., 2000; Tirosh et al., 2006), immune

responses (Guillemin et al., 2002), developmental

studies (Arbeitman et al., 2002), etc.

A major purpose of conducting time series microarray

analysis is to check the genes that are expressed in

some expected manner under an experimental condition.

Computational approaches for assisting this purpose often

attempt to check the similarity/difference in time series

expression between genes, and clustering time series sequences

is a typical example. A lot of techniques including clustering

expression sequences have been used for time series

analysis (Bar-Joseph, 2004; Filkov et al., 2002). They contain

dynamic time warping (Aach and Church, 2001), singular value

decomposition (Alter et al., 2000), ANOVA and related

approaches (Park et al., 2003; Storey et al., 2005), hidden

Markov models (Costa et al., 2005; Schliep et al., 2003, 2004),

kernel-based approaches (Borgwardt et al., 2006), clustering

with predefined expression patterns (Ernst et al., 2005; Ernst

and Bar-Joseph, 2006), etc. We emphasize that the attention of

all these methods is concentrated on genes.

In contrast, our focus is not on genes but on factors in

microarray experiments, such as experimental conditions.

That is, the purpose of this paper is to find the timing difference

in the effects of experimental factors on genes. This purpose is

obviously important, since we often have to evaluate the timing

difference by experimental factors, to understand their exact

effects on genes (Chen et al., 2003). In particular, we address the

issue of finding the timing difference made by overall genes

rather than by specific ones. In order to examine the effect on

overall genes, we’ll not check the behavior of each gene, but use a

set of time series expression profiles obtained under the same

experimental factor.We describe our data usagemore concretely

by using a sample dataset. Table 1 shows a sample of time series

expression sequences under two conditions. We can modify this

dataset into a set of pairwise sequences, which is shown in

Figure 1. By doing so, time series sequences between two

experimental conditions can easily be compared. That is, we can

see that a gene under ConditionA is always expressed earlier that*To whom correspondence should be addressed.
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under Condition B. Thus, the next issue is to build a method to

capture this type of rules found in a set of pairwise (generally

triplewise or more) time series sequences.

For this issue, we present a systematic approach based

on a hidden Markov model (HMM) (Durbin et al., 1998;

Rabiner et al., 1986). Our model has two specific

characteristics: First, a real-valued vector is generated at each

state of our model. This is because the output/input of our

model at each time point is a pair (or more generally multiple)

of expression values. Second, the state transition diagram of

our model has two types of states: the first state for relatively

average expression values and the second for expression values

that are different from the average. The parameters of the first

state are fixed and not trained. This setting is useful to capture

time points with expression values that are very different from

the average, because they will be generated at the second states

while others are generated at the first states. By using these two

characteristics, our approach can identify an expression

pattern, like that found in Figure 1. An important feature of

our model is that the given pairwise (generally multiplewise)

sequences can vary in length, because of the nature of hidden

Markov models.

We have conducted a variety of experiments, using both

synthetic and real datasets, to evaluate the effectiveness of our

approach of finding the timing difference in two or more

experimental conditions. The results obtained by synthetic

datasets showed that our method could capture an embedded

timing difference in a set of pairwise time series sequences. We

then checked the difference in time series gene expressions of

four different strains under a certain stress, using real

microarray datasets. From the comparison of all six combina-

tions of four different strains, our method could find a clear

time series ordering in gene expression of four strains. Finally,

we compared the effects of four different stresses on gene

expression of a certain strain and found a clear timing

difference in gene expression caused by two stresses.

These results indicate that our method can identify timing

differences in gene expression that are caused by different

experimental factors.

2 METHOD

2.1 Notations

Let Y be a set of real-valued sequences, and let all sequences in Y have

the same length. Let N(Y) be the length of a sequence in Y, and K be the

number of sequences in Y. In practice, Y is a set of time series

microarray expression sequences, and K is the number of conducted

time series microarray experiments. We call Y an example in this paper.

Let Y be a set of Ys, and jYj be the number of Ys in Y. In practice, jYj is

the number of genes for which time series microarray experiments are

conducted under K conditions. Figure 1 shows a simple example of Y

with jYj ¼ 3, K¼ 2, and N(Y) is 5 for all Y 2 Y. We note that Kmust be

kept the same in Y, but N(Y) not. That is, our model can deal with time

series microarray datasets with different time points. In fact, in

synthetic datasets of our experiments, we will deal with the case that

N(Y) takes a value from 6 to 10. Let N be maxY2Y NðYÞ: In Y, let yt be

the K real-valued expression values at time t, which we call a vector in

this paper. Each square in Figure 1 is a vector. Let yt,k be the k-th

(expression) value of yt. For example, in the first example of Y in

Figure 1, y1, 1 ¼ 1:2 and y2, 2 ¼ 1:5. For simplicity, we sometimes just

write y for yt.

Let q be a state of our model, and let Q ¼ ðq1, . . . , qjQjÞ be a state

transition of a given example in our proposed model, which will be

described in detail later.

2.2 Definition of the proposed model

The proposed model is a special case of the so-called hidden Markov

model (HMM). Our model has two types of probabilities: state

transition probability ai, j for a transition from state i to j and continuous

value generation probability bi (y) to generate real-valued vector y at

state i, which satisfy that
P

j ai, j¼1 and
Rþ1

�1
biðyÞdy ¼ 1.

Let �i and vi be real-valued vectors of size K, and �i, k and vi,k be the

k-th values of vectors �i and vi, respectively. Assuming that

yt, k ðk ¼ 1,KÞ are independent of each other, the probability bi (yt) is

defined as a normal (Gaussian) distribution, which has �i as the average

and vi as the variance, as follows:

biðyt;�i, viÞ ¼
Y
k

bi, kðyt, k;�i, k, vi, kÞ

¼
Y
k

1

2�vi, k

� �1=2

e
�
P

k
1

vi,k
ðyt, k��i,kÞ

2

Thus, totally, our model has three types of parameters: ai, j, �i, k and vi,k.

Figure 2 shows the state transition diagram of the proposed model. A

state q of this model can be classified into two types, which we write F

and G, called a feature state and a control state, respectively. The

parameters �i and vi at a control state are fixed and not trained,

whereas the �j and vj at a feature state are trained. LetM be the number

of feature states in a given model.

Table 1. Data example of three genes (genes 1, 2 and 3) with five time

points (T1 to T5) under two conditions (Conditions A and B)

Condition A Condition B

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Gene 1 1.2 0 0 0 0 0 1.5 0 0 0

Gene 2 0 0 0 1.8 0 0 0 0 0 1.5

Gene 3 0 1.8 0 0 0 0 0 0 1.8 0

Fig. 1. An input dataset example, which is just a modification of

Table 1.
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2.3 Likelihood computation

Given an example Y and a state transition Q, we can compute

probability P(Y,Q) as follows:

PðY,QÞ ¼ a0, 1
YjQj

t¼1

aqt , qtþ1
bqt ðyt;�qt , vqt Þ,

where q0 and qjQjþ1 are the begin and end states, respectively, where no

values are generated.

The log-likelihood of an entire dataset Y is then given as follows:

LðYÞ ¼
X
Y2Y

logPðYÞ

¼
X
Y2Y

log
X
Q

PðY,QÞ ð1Þ

2.4 Parameter estimation

A standard way to estimate the parameters of a probabilistic model is

the maximum likelihood, i.e. to maximize the log-likelihood given in

Equation (1). A popular approach of the maximum likelihood is a so-

called EM (expectation-maximization) algorithm, by which it is

guaranteed that we can find a local optimum. To estimate the

parameters of our model, we use the EM algorithm, which iterates

the following E- and M-steps alternately until some stopping condition

is satisfied.

E-step: For each Y 2 Y, we compute two auxiliary probabilities, which

we call forward and backward probabilities. The forward probability

�Yð j, tÞ is the probability that all expression values at time points 1 to t

are already generated and the current state is j. Similarly, the backward

probability �Yði, tÞ is the probability that all expression values at time

point t to the last time point of Y are already generated and the current

state is i. The forward probabilities are computed recursively

by increasing t from zero to the last time point, according to the

following equation.

�Yð j, tþ 1Þ ¼ bjð ytþ1;�j, vjÞ
X
i

�Yði, tÞai, j

The backward probabilities are computed in the reverse order using the

following equation as well.

�Yði, tÞ ¼
X
j

bjð ytþ1;�j, vjÞ�Yð j, tþ 1Þai, j

M-step: Using the forward and backward probabilities computed in the

E-step, we can update the three parameters in our model: ai,j, �i and vi,

as follows:

âi, j ¼

P
Y2Y

P
t �Yði, tÞ�Yðj, tþ 1Þai, jbjðytþ1;�j, vjÞP

Y2Y

P
t �Yði, tÞ�Yði, tÞ

�̂i, k ¼

P
Y2Y

P
t �Yði, tÞ�Yði, tÞyt, kP

Y2Y

P
t �Yði, tÞ�Yði, tÞ

v̂i, k ¼

P
Y2Y

P
t �Yði, tÞ�Yði, tÞðyt, k � �i, kÞ

2P
Y2Y

P
t �Yði, tÞ�Yði, tÞ

Initial values of the above iteration in our experiments are set up as

follows: we first computed the variance of all expression values in a

given dataset and then assigned it as initial values for vi, k at both

control states and feature states. On the other hand, as initial values for

�i, k, we assigned zero for control states and some fixed large value,

which is larger than zero, for each feature state.

2.5 Time and space complexities

Our state transition diagram in Figure 2 shows that the number of

outgoing edges at a node is three at maximum. So, the number (space

complexity) of ai, j can be almost linear in the number of states. Thus, in

each iteration of the EM algorithm, the most time-consuming

part is updating � (or v) in the M-step. When we update each

�i, k ði ¼ 1, . . . ,M, k ¼ 1, . . . ,KÞ, we have to sum up �Yði, tÞ�Yði, tÞyt, k
over all Y 2 Y and t ð¼ 1, . . . ,NðY ÞÞ. The maximum of t is N, and so

the time complexity of our method is OðM � K � jYj �NÞ. Our model

generates a vector at each state, and so the above complexity is larger

than that of a usual HMM by K, i.e. the size of a vector.

On the other hand, the space complexity of our method is kept the

same as that by a standard HMM for real-valued sequences that have

been used in some applications including speech recognition. That is, at

first, a is almost linear in the number of states, and all �, v, � and � stay

at quadratic complexity (We note that we do not have to store � and �

for each Y.). Thus, the space complexity of our method is

maxfOðM � KÞ,OðM �NÞg.

2.6 Why the model works

Our model has two unique characteristics: First, our model generates a

real-valued vector at each state, while a usual HMM generates only one

real value (or symbol) at a state. Second, the probability b is trained at

feature states only. It is not trained at control states where the

parameters of b are fixed at some reasonable value like an average over

all expression values in the given data.

Due to these two characteristics, our model works as follows: if the

expression values at a time point are all rather normal (or average), they

should be generated at a control state; otherwise they can be generated

at a feature state. More concretely, if one or more expression values in

the vector of a time point are very different from the average, this vector

can be generated at a feature state. That is, our model attempts to

Fig. 2. A state transition diagram of our model, with n feature states

and nþ 1 control states. A real-valued vector of size K is generated at

each state, and each value of this vector is generated according to a

normal distribution. This distribution is trained at a feature state, but

not at a control state, where a prefixed normal distribution is used.
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capture a time point with unusual (or unique) values, and these values

will appear at feature states.

Figure 3 shows a simple example of the state transition diagram of

our model with only two feature states. When we train this model by the

data in Figure 1, the shaded areas (in Figure 1) with expression values

of zero will be assigned to control states. On the other hand, the white

squares in Figure 1 will be assigned to the two feature states, because

the values in these squares are much higher than zero. More concretely,

the case of a high value at Condition A and zero at Condition B will be

assigned to F1, and the reverse case will be assigned to F2. This meets

our purpose of finding the difference between a given set of pairwise

(generally multiplewise) sequences. Finally, we note that by checking

the parameter values of b at feature states of the trained model, we can

easily see the difference between a given set of time series sequences.

3 TIME SERIES DATA

3.1 Synthetic data

We first evaluated our model using two types of synthetic

datasets, which we call SD1 and SD2. Each dataset had 100

examples, and each example had a pair of real-valued

sequences, assuming that two time series expression values are

measured under two different experimental conditions, which

we name Condition A and Condition B for further explana-

tions. Thus, jYj ¼ 100 and K¼ 2. The length of a sequence

ranged from six to ten and was randomly chosen according to

the uniform distribution. Of course, the length of two sequences

in a pair was kept the same.
A time point of each sequence randomly takes a value from

�1 to þ1, except some time points that randomly take higher

values ranging from þ1 to þ4. We note that this high value

simulates that a gene is highly expressed at this time point.

In SD1, only one randomly chosen time point of a sequence

takes a high value, and this high value appears in the first half

for Condition A and in the last half for Condition B. Figure 4a

shows a schematic example of a dataset of SD1. On the other

hand, randomly chosen three continuous time points take

high values, and they start in the first half in Condition A and

in the last half of Condition B. This is also shown in Figure 4b

as a schematic example.

3.2 Real microarray data

We used GSE3406 (Tirosh et al., 2006) of the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)

(Edgar et al., 2002). This dataset included time series expression

values of four different yeast strains measured under four

different stresses. Table 2 shows a summary of this dataset.

From GSE3406, we generated datasets with K¼ 2, each of

which was a set of pairwise sequences under two different

factors, i.e. stresses or stains, keeping other factors the same.

The purpose of this experiment is to find the difference in

gene expression under different stresses or strains. We

then focused on genes, which are categorized into ‘response

to stress’ in the Gene Ontology (Gene Ontology Consortium.,

2006), and selected all of them from the SGD database (Christie

et al., 2004). Table 3 shows the list of 56 genes we used. For

each pair of stresses or strains, we generated a dataset by using

Fig. 3. A state transition diagram example of our model with only two

feature states.

Fig. 4. Schematic figures of two synthetic datasets. (a) SD1:

A randomly chosen high-valued point is randomly in the first half

of a sequence for Condition A and randomly in the last half for

Condition B. (b) SD2: Randomly chosen three continuous high values

Table 2. Yeast microarray dataset generated from GSE3406

Strains S.cerevisiae (Sc), S.paradoxus (Sp), S.mikatae (Sm),

S.kudriavzevii (Sk)

Stresses 37�C heat shock (Heat shock), 0.3mM H2O2

(Oxidative stress), Glucose to glycerol (glycerol),

0.02% MMS (DNA damage)

Time points 10, 20, 30, 45, 60, 90 min

Table 3. A list of genes used for generating real microarray datasets in

Table 2

YAL028W YBL075C YBR001C YBR072W YBR082C

YBR126C YCR021C YDL190C YDR001C YDR017C

YDR074W YDR143C YDR171W YDR184C YDR214W

YDR258C YER011W YER012W YER103W YFL053W

YFR019W YGR088W YGR234W YGR253C YHL028W

YHR043C YHR104W YIL033C YIL101C YJL001W

YJR032W YKL062W YKL201C YLL010C YLL026W

YLL039C YLR019W YLR266C YML014W YML070W

YML100W YMR037C YMR169C YMR186W YMR251W-A

YMR261C YNL160W YNL234W YNL281W YOL052C-A

YOL151W YOR010C YOR324C YPL223C YPL240C

YPR026W
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only genes of which at least one expression value is higher than

1.0 in GSE3406. This means that jYj, i.e. the size of a dataset,

varies.

4 RESULTS

4.1 Synthetic data

We used M¼ 2 in this experiment, i.e. the state transition

diagram in Figure 3. Table 4a and b show the parameter values

obtained by applying our method to the two synthetic datasets,

SD1 and SD2, respectively. We note that, in this table, a �

value is bolded if it is higher than that at the other feature

state under the same condition. For example, the � value at

state F1 for Condition A in SD1 is bolded, because it was 2.83,

which is higher than 0.01, i.e. the � value at state F2 for

Condition A, by more than 1.0. This indicates that this state

captured a time point with a high value for Condition A (and

a low value for Condition B). From the table, we can see that

the � of F1 was high for Condition A and around zero for

Condition B, and became almost zero for Condition A and high

for Condition B. This indicates that our model captured the

embedded pattern in SD1, i.e. that a high value appears first in

Condition A and then in Condition B.
These results and observations were basically true of SD2.

However, interestingly, the � of state F1 for Condition A was

3.83 and that of state F2 for Condition B was 3.47, indicating

that these values were higher than those in SD1. We think that

this is from the following reason. At first, the model used in this

experiment has only two feature states, and high values in SD2

appear first in Condition A and then in Condition B, indicating

that one of the two feature states can be given to each

condition. More concretely, one of the three high continuous

values in a sequence of SD2 was assigned to one feature state

of our model. Thus, the highest value of the three high values

was assigned to a feature state, since the � of a control state

was fixed at around zero (i.e. a very low value). Finally, the � of

SD2 must be higher than that of SD1.

From these results on synthetic data, we can say that our

method worked favorably in finding expression values that are

different between given two sets of sequences.

4.2 Real microarray data: difference between yeast

strains under a stress

Out of the four stresses, we focused on the 37�C heat shock.

We first show the result obtained by M¼ 2, corresponding to

the transition diagram in Figure 3.
A same experiment is conducted twice for Saccharomyces

paradoxus in GSE3406, meaning that we can have two datasets,

which we call Sp and Sp2, for a set of sequences of S.paradoxus.

We first examined the difference in gene expression between

Sp and Sp2, which are obtained for the same strain under the

same stress, to check the variability/stability of microarray

expression values. Table 5 shows the trained parameter values

at feature states in this combination. From the table, we can see

that the � of Sp was almost the same as that of Sp2 at F1,

whereas they were not always the same at F2. In fact, the � of

Sp was larger than that of Sp2 by around 0.5, indicating

that a difference in gene expression of 0.5 can happen even

when we compare two datasets obtained by the same

experiment. Thus we can say that when we compare two

datasets obtained under different conditions, we have to

focus on a larger difference, say 1.0 or more. We think that

1.0 would be a natural threshold to judge that a difference

happens in gene expression between two different experimental

factors (Speed et al., 2003).

Table 4. Estimated parameters from synthetic data

(a) Synthetic Data 1 (SD1) (b) Synthetic Data 2 (SD2)

F1 F2 F1 F2

Condition A

� 2.83 0.01 3.83 0.01

v 1.16 0.31 0.65 0.36

Condition B

� �0.06 2.94 �0.04 3.47

v 0.33 1.31 0.39 1.03

Table 5. The difference in gene expression between duplicated sets of

S.paradoxus: Sp and Sp2, under the 37�C heat shock

F1 F2

Sp � 1.56 1.97

v 1.50 1.37

Sp2 � 1.60 1.45

v 2.26 1.11

Table 6. The difference in gene expression between different strains

under the 37�C heat shock. Sc, Sp, Sm and Sk stand for Saccharomyces

cerevisiae, Saccharomyces paradoxus, Saccharomyces mikatae and

Saccharomyces kudriavzevii, respectively

F1 F2 F1 F2

(a) (b)

Sc � 0.36 1.92 Sc � 1.02 2.01

v 0.35 1.55 v 0.34 1.22

Sp � 1.81 0.98 Sm � 2.02 0.23

v 1.33 1.16 v 0.68 0.38

(c) (d)

Sc � 0.98 1.85 Sp � 1.46 1.79

v 0.21 1.38 v 1.69 1.21

Sk � 1.60 1.45 Sm � 2.14 1.42

v 1.38 0.58 v 0.68 0.42

(e) (f)

Sp � 1.64 1.31 Sm � 1.99 0.90

v 0.78 1.22 v 1.89 0.29

Sk � 1.72 1.70 Sk � 0.49 2.12

v 1.09 0.31 v 0.20 0.98
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We then focused on four strains under the 37�C heat shock.

Table 6 shows the trained parameters at feature states in all

possible six combinations of the four strains. We note that

a � value is bolded if it is higher than that at the other feature

state under the same condition by more than around 1.0. In this

table, (a) shows the comparison between Saccharomyces

cerevisiae (Sc) and S.paradoxus (Sp). The � for Sp was

significantly high at F1 but decreased to a low value at F2,

while that for Sc was first low at F1 and then increased to

a significantly high value at F2. This indicates that ‘gene

expression tended to start earlier in Sp than in Sc under the heat

shock stress’. We can see similar results in (b) and (e). The

results in (c) and (d) were not so clear, but we would be

able to say that gene expression in Sk seemed to tend to start

earlier than in Sc. This is true of (d). On the other hand,

the � values in (e) imply that there are not such significant

timing differences in gene expression between Sp and Sk. We

can summarize these results as follows:

(a) Gene expression tended to start earlier in Sp than in Sc.

(b) Gene expression tended to start much earlier in Sm than

in Sc.

(c) Gene expression tended to start a little earlier in Sk than

in Sc.

(d) Gene expression tended to start a little earlier in Sm than

in Sp.

(e) No significant timing difference in gene expression was

found between Sp and Sk.

(f) Gene expression tended to start earlier in Sm than in Sk.

Figure 5 shows a summary picture of the obtained parameter

values. To draw this picture, we first computed the average over

the three � values at F1 (F2) of a corresponding strain in

Table 6. We then plotted the average � values at F1 and F2 and

drew the line connecting these two and zero at Begin and

End states. Finally, this line was smoothed using spline

interpolation. We note that Begin, F1, F2 and End are located

at an equal interval in this figure. This figure confirms the

above six observations, implying that gene expression tended

to start in the timing ordering of Sm ! Sp ! Sk ! Sc. We

note that this ordering agrees with all the above six observa-

tions without any contradictions. We further checked a set of

genes that clearly agrees with each tendency of (a) to (f)

except (e), in which no significant difference was found.

Table 7 shows the lists of these genes. When we selected each

of these genes, we first checked the highest value of each of the

two given sequences of a gene, and this gene was selected if the

following two conditions were satisfied: (1) The two highest

values are both larger than 1.0. (2) The two time points that

provide these highest values are rightly ordered, like that the

time point of Sp is earlier than that of Sc.
We then conducted experiments for M¼ 3 using the same

setting as done for M¼ 2. The trained parameter values, which

are in the supplementary information, show that the results

were almost similar to the case of M¼ 2. Thus, we skip the

detailed explanation for M¼ 3 due to space limitation.

4.3 Real microarray data: difference in gene expressions

of S.cerevisiae under different stresses

We then focused on S.cerevisiae to check the difference between

four types of stresses, i.e. 37�C heat shock (heat shock),

H2O2 (Oxidative stress), a transfer of medium from glucose to

glycerol (Glycerol) and 0.02% MMS (DNA damage). Table 8

shows the trained parameter values at features states of all six

combinations of the above four different stresses. As in the case

of different strains, this table shows the timing difference in

gene expression between two different stresses. From (a), we

can see that at F1, the � was high for Heat shock and low for

Oxidative stress, while they were reversed at F2. This result

clearly indicates that gene expression under Heat shock tended

to start earlier than that under Oxidative stress. A similar type

of conversion in the timing of gene expression were slightly

shown in (b) and (e), but they were not necessarily significant.

Similarly, such a clear conversion was not found in (c), (d)

and (f). Figure 6 shows a summary picture computed from the

parameter values in Table 8. This picture was drawn in the

same manner as done in drawing Figure 5. From the figure, we

can see that gene expression under Heat shock tended to start

earlier than that under other stresses, Oxidative stress in
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Fig. 5. A schematic picture of the timing in gene expression of four

strains under the Heat shock stress.

Table 7. A list of genes clearly satisfying the tendencies of (a), (b), (c),

(d) and (f) in the experiment of four strains under the 37�C heat shock

(a)

YDR074W YGR088W YGR234W YHR104W YML070W

YML100W YNL160W

(b)

YDR074W YER012W YGR088W YGR253C YHR043C

YHR104W YJL001W YML070W YML100W YMR251W-A

YMR261C YNL160W

(c)

YDR074W YIL033C YML070W YML100W YNL160W

(d)

YDR074W YDR171W YER012W YGR253C YHR104W

YJL001W YML070W YMR251W-A YOL151W

(f)

YDR074W YDR171W YER012W YGR088W YGR253C

YHR104W YIL101C YJL001W YML070W YMR251W-A

YMR261C YOL151W
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particular. In other words, gene expression tended to start

earlier under Heat shock, later under Oxidative stress and

normal under DNA damage and Glycerol. Another finding

from this figure is that gene expression under Glycerol is always

higher than that under the other three stresses. Overall, this

result indicates that our method is useful in understanding

the time series ordering in gene expression under different

stresses/species.
We then performed an experiment for the case of M¼ 3 to

check the difference in gene expression of different stresses. The

result of M¼ 3, which are in the supplementary information,

was almost the same as that of M¼ 2, and so we skip the

detailed explanation due to space limitation.

5 CONCLUSION AND DISCUSSION

We have developed a systematic approach to capture the

differences in microarray time series sequences obtained by

different factors, based on the learning of hidden Markov

models. We emphasize that our model has the following two

unique features. First, a real-valued vector, which corresponds

to a set of expression values at a time point, is generated at each

state. Second, our model has an unique state transition

diagram, which is designed to identify a time point with

distinctive expression values from an average value. Based on

these two characteristics, our method allows to capture the

differences in a given set of time series sequences.
We have conducted a series of experiments to evaluate the

effectiveness of our method using synthetic datasets as well as

real microarray datasets. In the synthetic datasets, one apparent

timing difference was embedded in gene expression as a pattern.

The parameters of the trained probabilistic model showed that

our method clearly captured the embedded pattern in gene

expression. The experiments using real microarray datasets

showed that our method could identify the timing differences in

gene expression, which are caused by external experimental

factors. The typical two results are as follows: (1) Under the

heat shock stress, gene expression tended to start in the ordering

of in S.mikatae, S.paradoxus, S.kudriavzevii and S.cerevisiae. (2)

Gene expression of S.cerevisiae tended to start earlier under

heat shock stress than under oxidative stress. We stress that

these findings are very useful for biologists who are conducting

time series microarray experiments to compare the experimental

conditions (or species) like environmental stresses.

In our experiments, the result of M¼ 3 was almost the same

as that of M¼ 2. This is probably because the number of time

points in our datasets is only six. If we use a larger number of

time points, a larger M may be more useful to analyze the data.

This would be possible future work. Another possible direction

in future experiments is to use a larger number of sequences as

one example. That is, by increasing K, a larger number of

experimental conditions can be combined, and we can see the

relations by two or more conditions at once. However, by

increasing K, the number of timing differences between

triplewise or more sequences will also increase, and they will

not be captured by a small number of feature states easily. This

problem was avoided by focusing on only a pair of sequences in

this paper. Another plausible future direction is to deal with

periodic patterns in time series gene expression, which already

have often been found in time series microarray data. It would

be an interesting research theme to design another state

transition diagram that may be more useful in capturing the

periodic timing difference in gene expression of different

experimental factors.
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