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1. INTRODUCTION

Stochastic models for precipitation have several
important applications. For example, simulations from
these models enter as input into flooding, runoff and
crop growth models. Historically, rainfall modeling has
followed 2 main themes. Some models were con-
structed to incorporate physical principles (e.g. Hobbs
& Locatelli 1978), while others gave a more statistical
description of the data. Along the lines of the former
approach, point process models were developed by Le
Cam (1961), Waymire et al. (1984) and Goodall & Phe-
lan (1991). In the context of statistical descriptions of
rainfall data, Gabriel & Neumann (1962) modeled pre-
cipitation occurrences as a first-order Markov chain.
Their approach has been extended to allow seasonal
differences (Stern & Coe 1984, Woolhiser 1992) by

using time-varying parameters. Chain-dependent
models have been developed where precipitation oc-
currences are assumed to follow a first-order Markov
chain while precipitation amounts are taken to be con-
ditionally independent given the occurrence process,
with the amount distribution at each time point de-
pending on occurrence at the present and preceding
time points (Katz 1977, Katz & Parlange 1996). 

Recently, the idea of relating daily precipitation to
synoptic atmospheric patterns has led to the develop-
ment of weather-state models. One motivation for
including atmospheric variables in the model is the
desire to assess the regional and local effects of global
climate changes. General circulation models (GCMs),
which typically operate on grids on the order of 3° lati-
tude × 3° longitude, can capture large-scale atmos-
pheric patterns and determine the effect of changes in
the atmosphere on those patterns. However, GCMs are
not as adequate for reproducing local and regional
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phenomena, such as rainfall (Giorgi & Mearns 1991).
Thus, there is a need for models that can downscale
the GCM predictions of global climate to local precipi-
tation patterns. Stochastic models for rainfall that do
not include synoptic atmospheric information cannot
be used for this purpose, since they can only produce
simulations under the current climate regime. In
weather-state models, synoptic atmospheric patterns
are the basis for classifying each day into a weather
state and precipitation is then modeled within each
state via multivariate distributions. Different versions
of these models have been proposed by, for example,
Hay et al. (1991), Bardossy & Plate (1992), Hughes et
al. (1993) and Bartholy et al. (1995). 

Our goal is to obtain a model that allows simulation
of precipitation amounts, conditional on the value of
some synoptic atmospheric variables. We base our
approach on nonhomogeneous hidden Markov models
(NHMMs), a class of models introduced by Hughes &
Guttorp (1994). NHMMs extend the hidden Markov
models (HMMs) used by Zucchini & Guttorp (1991) 
by incorporating synoptic atmospheric information.
NHMMs assume the existence of weather states, but
they differ from the weather-state models mentioned
above in the way the states are defined. In weather-
state models, each day is classified a priori into a state,
according to synoptic patterns. Precipitation does not
affect the state definition. In contrast, in NHMMs the
states are identified as precipitation patterns that
result from the model fitting procedure, while the role
of synoptic atmospheric information is to influence the
state transitions. In Hughes et al. (1994, 1999) NHMMs
are used to model precipitation occurrences. Here we
extend this approach to precipitation amounts. 

In Section 2 we describe the assumptions that define
an NHMM, the parameterization we use and the meth-
ods we apply to obtain estimates of the model para-
meters. Section 2 also explains our approach to the
problem of determining the model order and to the
treatment of the atmospheric variables. Section 3 de-
scribes an application of our methods to precipitation
amounts at a network of gauges in Washington State.
In section 4, we conclude with a discussion. 

2. METHODS

2.1. Model assumptions

The NHMM assumes the existence of a hidden or
unobservable stochastic process, which can take on a
discrete number of states. In the context of precipita-
tion modeling, we interpret this process as the ‘state of
the weather.’ The adjective ‘nonhomogeneous’ derives
from the assumption that the state of the weather at

time t depends not only on the state of the weather at
the previous time point, but also on the current value of
some atmospheric variables. Thus, the state transition
matrix varies in time with the atmospheric quantities.
The assumptions for the hidden process can be sum-
marized as: 

(1)

where St is the weather state at time t and Xt is a vec-
tor of atmospheric variables at time t, 1 ≤ t ≤ T. The
notation X1

T indicates all the values of Xt from time 1
to T and similarly S1

t –1 denotes all the values of St be-
tween time 1 and time t–1. 

Assumption (1) asserts that, given the state of the
weather at the previous time point and the current
value of some atmospheric variables, the state of the
weather at time t does not depend on any other history
of states or on any other past or future values of the
atmospheric quantities. 

The parameterization we adopt for P(St|St–1, Xt) is

(2)

where S is the variance-covariance matrix for the
atmospheric data and all the atmospheric variables are
centered around their mean. The µij parameters repre-
sent the mean vectors of the atmospheric variables when
the state of the weather at the previous time point was
state i and the current state of the weather is j, while the
γi j parameters can be interpreted as baseline transition
probabilities. It is necessary to impose the constraints ∑j

γi j = 1 and ∑j µij = 0, in order to ensure identifiability of
the parameters. The latter constraint preserves the
means of the (centered) atmospheric variables. 

Eq. (2) has the general form of a multiplicative tran-
sition model—P(St|St–1, X) = γ· g(X), where γ is the
baseline transition matrix and g(X) is any positive
function. Since the atmospheric measures we use are
usually continuous and symmetrically distributed, we
have found the Gaussian kernel used in Eq. (2) to be 
a convenient functional form, but other forms are pos-
sible. 

The other fundamental element in the NHMM is the
observed stochastic process—in this context precipita-
tion—which is assumed to be conditionally temporally
independent, given the weather state. The hidden
Markov model assumptions for the observed process
can be summarized by

(3)

where ƒ denotes a probability density function, Rt is
the vector of precipitation amounts at a network of sta-
tions at time t and R1

t–1 indicates all the precipitation
data from time 1 to t –1. Thus, given the current

   
ƒ ( ) = ƒ ( )−( )R R X Rr r

t
T t T t tS S
1 1

1
1, ,

     

P S j S it t t

ij t ij t ij

= =( )

− −( ) −( )[ ]
−1

1
2

,

’

X

X X

∝
γ exp µ µS–1

   P S S P S St
t T

t t t1
1

1 1
−

−( ) = ( ),X X,

2



Bellone et al.: Downscaling atmospheric patterns to precipitation amounts

weather state, precipitation is assumed independent
from all the past precipitation values, all other past and
future weather states and from any values of the
atmospheric variables. 

Assumptions (1) & (3) determine the temporal struc-
ture in the precipitation process. The definition of the
spatial structure requires additional hypotheses. In the
analysis presented here, we assume conditional spatial
independence of both occurrences and amounts given
the weather state, i.e. we hypothesize that all the
dependence between rain gauges is induced by the
common weather state. In the discussion we suggest
possible extensions to this relatively simple depen-
dence structure. 

The parameterization for the observed process
builds on the spatial independence model for precipi-
tation occurrences of Hughes & Gattorp (1994).
Amounts are introduced by modeling precipitation at
each station, given the weather state, as a mixture of a
point mass at zero and a gamma distribution. In other
words, conditional on the current weather state and on
the occurrences, we model the amounts at each gauge
as a gamma distribution (with state-specific parame-
ters). The resulting parameterization is

(4)

where N is the number of rain stations, psi is the pre-
cipitation probability at Stn i in state s and r t

i is the pre-
cipitation amount at Stn i and time t. With GG (r t

i;αsi, βsi)
we indicate the density at r t

i of a gamma distribution
with parameters αsi and βsi which depend on the state
s and the Stn i:

(5)

where Γ(α is) is the gamma function with argument α is.
The indicator function 1[rt

i > c] takes on a value of 1 if the
precipitation amount at time t and Stn i is above the
prespecified cutoff c; it takes on a value of 0 if the pre-
cipitation amount is below c. Thus amounts below c
are treated as no precipitation. 

In the model described by Eqs. (2) & (4) the number
of unconstrained parameters is 

S (S – 1) (M + 1) + 3SN

where M is the number of atmospheric variables in-
cluded in the model and S the number of weather states. 

2.2. Parameter estimation

Parameter estimates are obtained by numerically
maximizing the likelihood. The likelihood of the ob-
served data given the atmospheric variables is

where u is the vector of the model parameters. In rain-
fall modeling, the number of observation times, T, is
usually large. But even for small Ts, computation of the
likelihood directly as in Eq. (8) is intractable. However,
the calculation is possible using the recursive forward-
backward algorithm, originally developed by Baum
(1972). A useful tutorial on this algorithm and others
related to HMMs is given in Rabiner & Juang (1986).
The main idea is to write the likelihood as:

L(u) = d(x1) B(r1)A(x2)B(r2) ...A(xT) B(rT)1’,

where B(r) is an S × S diagonal matrix, with bss(r) = 
ƒRt|St = s(r), A(x) is an S × S transition matrix with aij(x) =
P(St= j |St–1= i, Xt = x), 1’ is a length S column vector of
ones and d(x) is a row vector of length S. The quantity
d(x) is the solution to d(x)A(x) = d(x) [i.e. it is the sta-
tionary distribution for A(x)]. 

To maximize the likelihood, we apply the EM algo-
rithm. Hughes et al. (1999) give a detailed description
of this procedure. 

2.3. Model order

Fitting an NHMM to precipitation data involves the
choice of a model order and of the atmospheric vari-
ables to be included. We first determine the order of
the NHMM, i.e. the number of hidden weather states,
and include the atmospheric variables afterwards. The
choice of the number of hidden states is a non-trivial
issue. Standard likelihood-based methods—such as
the Akaike information criterion (AIC) (Akaike 1974)
and the Bayesian information criterion (BIC) (see Kass
& Raftery 1995 for a review)—rely upon assumptions
that do not hold for the order selection problem.
Nonetheless, the Bayesian information criterion, de-
fined as: 

BIC = –2loglikelihood  
+ log(no. of observations)(no. of free parameters)

yields reasonable models in terms of interpretability
and fit to the data (Hughes et al. 1999). Thus, BIC is
one of the elements—but not the sole determining fac-
tor—that we use in choosing the number of weather
states. 

Models of different order can also be compared with
respect to their capability of reproducing some key
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features in the observed data. For example, an impor-
tant characteristic we try to match is the distribution of
the ‘storm’ durations at the different rain gauges,
where ‘storm’ is defined as a string of consecutive days
when precipitation occurred. 

Another consideration is the increase in the number
of parameters induced by an increase in the number of
weather states. Choosing too many states can lead to
an intractable model in terms of computer time. 

2.4. Atmospheric variables

Atmospheric data are used to help determine the
current (hidden) weather state (see Eqs. 1 & 2). To re-
duce the number of model parameters, we prefer to
include relatively few atmospheric variables in the
model. However, synoptic-scale atmospheric variables
are typically available on regular grids and several
grid nodes usually cover the region of interest. Thus, a
method for summarizing the grid data into few values
is needed. Our approach is based on the singular value
decomposition (SVD) technique (von Storch & Zwiers
1999). For each atmospheric field Y we compute a
matrix C, with element cij given by the correlation
between the precipitation process at Stn i and the
atmospheric variable Y at node j. This matrix is decom-
posed using the SVD method, to obtain

C = U W V’ (9)

Letting N denote the number of rain gauges and G the
number of grid nodes, U is a N × N matrix, V is a G × N
matrix and W is a diagonal N × N matrix. The SVD
technique ensures that U’U = V’V = I and the diagonal
elements of W, w1,…,wN, are the singular values of the

matrix C, in non-increasing order. If we standardize
the atmospheric variable Y at each node j separately
and call the resulting field Y std, we can construct a
summary of the original field by multiplying Y std by the
ith column of the matrix V, V(i). This summary variable 

explains of the correlation between the pre-

cipitation process and the atmospheric field Y. The
number of summary variables needed to explain a cer-
tain portion of the correlation depends on the relative
magnitude of the singular values. 

Once the SVD procedure has been applied to each of
the atmospheric fields under consideration, the deci-
sion on how many and which of the resulting summary
variables are to be included in the model is based on
BIC.

3. AN APPLICATION

We used the NHMM to analyze precipitation
amounts at a network of rain gauges in Washington
state. The precipitation data set consists of daily pre-
cipitation amounts for the winters (November through
March) 1973/74 to 1989/90, at the 24 rain gauges
shown in Fig. 1. These data (available on CD ROM—
Earthinfo Inc. 1990), were recorded by the National
Weather Service and cooperators and corrected by the
National Climatological Data center (NCDC) ‘Vali-
dated Historical Daily Data’ project. The cutoff c men-
tioned in Eq. (4) is 0 inches. The 12 winters 1973/74 to
1984/85 were used for model fitting, while the 5 win-
ters 1985/86 to 1989/90 were reserved for model vali-
dation. The atmospheric data consists of daily geopo-

tential height at 1000 and 850 mb,
temperature at 850 mb and relative
humidity at 1000 and 850 mb from the
NCAR/NCEP (National Center for
Atmospheric Research/National Cen-
ter for Environmental Prediction) Re-
analysis project, provided through the
NOAA (National Oceanic and Atmos-
pheric Administration) Climate Diag-
nostic Center. These variables are
given on a 2.5° latitude × 2.5° longi-
tude grid for the same period as the
precipitation data. The area of interest
spans 48 grid nodes. 

The model fitting procedure was
hierarchical. The number of weather
states was first determined by fitting
HMMs with 2 through 7 states to the
occurrence data. Several considera-
tions contributed to the decision to
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Fig. 1. Map of the rain gauges
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include 6 states. The Bayesian information criterion
suggested a ‘large’ number of states, since BIC de-
creased monotonically as the number of states in-
creased, actually pointing at the 7-state model. How-
ever, the 7th state did not seem to improve the fit of the
model to the observed storm duration distribution or
any other important feature of the data. Thus we
focused the remainder of our model building efforts on
the 6-state model. 

Atmospheric variables were added to the 6-state
model after performing the SVD decomposition on
each of the 5 fields—geopotential height at 1000 and
850 mb, temperature at 850 mb and relative humidity
at 1000 and 850 mb—to summarize the 48 grid values
into a few quantities. A few summary variables explain
most of the correlation between each field and the pre-
cipitation process, as shown in Table 1. 

As an example of the type of summary variables
obtained with the SVD technique, consider the first lin-
ear combination variable for geopotential height at
1000 mb. The weights assigned to each grid node are
highest just at the northwest of Washington state, and
decay in all directions away from this region. The
resulting summary variable can be interpreted as a
weighted mean of the standardized 1000 mb geopo-
tential height field. 

Several NHMMs with 6 states were fit to precipita-
tion occurrences using different combinations of the
selected summary variables, and BIC was used to
choose the best model. The model that minimizes BIC
contains 2 atmospheric variables: the first summary
variable for geopotential height at 1000 mb and the
first summary variable for relative humidity at 850 mb. 

A NHMM with 6 states and including the first sum-
mary variables for geopotential height at 1000 mb and
relative humidity at 850 mb was then fit to the precipi-
tation amounts. The 6 states identified by the NHMM
correspond to the precipitation patterns in Fig. 2a.
States 1 and 6 are clear cut wet and dry respectively,
for all the stations in the network. The other states cor-
respond to intermediate patterns that reflect regional
differences. Fitting the 6-state NHMM to occurrences
only leads to very similar patterns, indicating that the
inclusion of amounts does not seem to substantially
change the state definitions, in terms of precipitation

probabilities. The 6 weather states also correspond to
different amount distributions. For each state, Fig. 2b
shows the distribution of the positive precipitation
amounts at Puyallap, in the South Puget region. Larger
amounts correspond to the predominantly wet states,
especially State 1, where the precipitation probability
is large at all stations. In predominantly dry states,
when precipitation occurs the amounts tend to be
smaller. State 4, which is dry in Eastern Washington
and relatively wet around Puget Sound, corresponds to
smaller amounts with respect to the first 3 states, even
at the stations where the precipitation probability re-
mains fairly large. 

To produce the amount distributions shown in
Fig. 2b, each day has to be classified into 1 of the
weather states defined by the NHMM. The Viterbi
algorithm (Rabiner & Juang 1986) identifies the most
probable sequence of states with resulting relative
frequencies of the weather states 16, 15, 14, 18, 12
and 25%. Averaging the geopotential height at
1000 mb field over all days classified into a particular
state gives the predominant pattern associated with
that state. The same procedure leads to the predomi-
nant 850 mb relative humidity pattern associated with
each of the 6 weather states. One may compare these
atmospheric patterns to the corresponding precipita-
tion patterns in Fig. 2a. Fig. 3 shows the contour plots
for geopotential height at 1000 mb and relative
humidity at 850 mb for all 6 states. State 6 is charac-
terized by a high pressure system and low relative
humidity over the Washington region, which corre-
spond to low precipitation probability. In State 1, low
pressure at the northwest of Washington State and
high moisture over the entire region correspond to the
high precipitation probability at all stations. The other
atmospheric patterns are consistent with the observed
precipitation patterns and suggest that some of the
weather states might be regarded as ‘transition
states’. For example, we find that State 5 typically
moves to either State 4 or more likely State 6, but
tends not to persist. 

Some indications of how well the NHMM fits the
data derives from the comparison between observed
and model-based precipitation probabilities (Fig. 4a),
and between observed and model-based log odds

5

gph 1000 gph 850 tem 850 hum 1000 hum 850
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

0.95 0.03 0.96 0.03 0.84 0.11 0.91 0.07 0.96 0.03

Table 1. Proportion of correlation explained by the summary variables. gph: geopotential height; tem: temperature; hum: 
relative humidity
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ratios (Fig. 4b). The log odds ratio is a common mea-
sure of association for binary variables and it is used in
Fig. 4b to reflect the spatial correlation between occur-
rences at each pair of stations. The log odds ratio for
Stns i and j can be defined as

(10)

where we denote n11 as the number of days when pre-
cipitation occurs at both Stns i and j, n00 as the number

  
log

n n
n n

11 00

10 01
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Fig. 2. Precipitation probabilities and histograms of amounts (in inches) corresponding to the 6 weather states identified by the
NHMM (nonhomogeneous hidden Markov model) including the first summary variables for geopotential height at 1000 mb and 

relative humidity at 850 mb
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of days when precipitation occurs neither at Stn i nor at
Stn j, n10 as the number of days when precipitation
occurs at Stn i but not at Stn j, and n01 as the number of
days when precipitation occurs at Stn j but not at Stn i.
The quantity in Eq. (10) takes on values in (–∞, +∞),

with large negative numbers indicating strong nega-
tive association, large positive numbers corresponding
to strong positive association and values close to 0
reflecting a weak association. In Fig. 4, the precipita-
tion probabilities are reproduced well, while the log

7

 0 20 40 60

80

80

100 120 140

State 1

60
80

100

100

120

State 2

20

40 60 80
100

120 140 160

State 3

80 100 120

140

160

State 4

140
160 160

170

State 5

160 180 200

75

75

80
80

80

85
85

85

90

State 1

70
7075

75

80

80

85

85

90

State 2

75

75

75

80
80

80

85

85
90

State 3

65

70 75

75

80

80

85

85

90

State 4

60
65 70

75

75

75

80

80

85

90

State 5

505560

65

6570

70

75

75

80

80

85

85

90

State 6

(a) geopotential height at 1000 mb (meters)

(b) relative humidity at 850 mb (percentage) 

Fig. 3. Contour of the geopotential height at 1000 mb and relative humidity at 850 mb fields for each weather state identified by 
the NHMM



0 5 10 15

0.
00

5
0.

01
0

0.
05

0
0.

10
0

0.
50

0
1.

00
0

  Days

 P
(D

ur
at

io
n 

>
=

 D
ay

s)

0 2 4 6 8

0.
01

0.
05

0.
10

0.
50

1.
00

  Days

 P
(D

ur
at

io
n 

>
=

 D
ay

s)

Observed
Model-based    

Clim Res 15: 1–12, 20008

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0.3 0.4 0.5 0.6

0.
3

0.
4

0.
5

0.
6

0.
7

 
 Observed

 M
od

el
 B

as
ed

•

•
•

•
•

•

••

•

•• •

•

•

•

•

•

•

•

••
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•
• •

•
•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

• •

•

•

•

••

•
•

•

•
•

•

•

•

•

•

••

•

•

•

•

•

•

•
••

•
•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

••

•

•
•

•

•

•

•

•

•

•
•

•

••
•

•
•

•

•

•

•• •

•

•

•

•

•

•

•

•
•

• •

•

•

•

••

•

•
•

•
•

•

•
•

•

•
•

•

•

• •

•

•

•

•

•

•

•
•

•

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

 
 Observed

 
  M

od
el

 B
as

ed

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

• •

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

••

•

•

• •

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

••
•

•
•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

•

•

•
•

•

•

••

•

•
• •

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•

• •

•

•

•

• •

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0.2 0.4 0.6 0.8

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

 
 Observed Correlations

 M
od

el
 B

as
ed

 C
or

re
la

tio
ns

Fig. 4. Observed versus model based (a) precipitation prob-
abilities, (b) log odds ratios and (c) correlations of positive
amounts between all station pairs (Spearman coefficient). The
model-based quantities are obtained by simulating data from 

the 6-state NHMM for amounts
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odds ratios are modeled less adequately, especially
when the observed correlation is high. This indicates
that the hypothesis of conditional spatial indepen-
dence, given the weather state, may need to be modi-
fied. The common weather state seems to explain
much of the correlation, but additional unexplained
local spatial correlation remains. A similar conclusion
is suggested by Fig. 4c, which shows the Spearman
correlation coefficient corresponding to the precipita-
tion amounts at each station pair. A relatively low spa-
tial correlation between amounts, as well as between
occurrences, can be adequately captured by the com-
mon weather state, but when the correlation between
gauges is strong, the weather state is not sufficient to
account for all of it. 

Temporal correlation in the data is also a feature that
the model should capture. The distribution of storm
durations, which is often important in hydrological
applications, seems to be reproduced quite well at
most rain gauges. Fig. 5 shows examples from the
Eastern Washington region chosen to represent from
best to worst fit. Plots similar to Fig. 5a,b are typical of
the Puget Sound region too, while Fig. 5c displays the
worst fit among all the rain stations and is not repre-
sentative of the fit at any other location. 

Another issue is whether the gamma distribution is
an appropriate choice to model the conditional distrib-
ution of precipitation amounts, given occurrence and
the weather state. The fit varies from station to station;
Fig. 6 shows quantile-quantile plots (qqplots) of ob-
served versus model-based precipitation amounts at 3
representative stations from 3 geographical regions in
Washington State. In general the distribution of precip-
itation amounts is best modeled at the stations in the
South Puget area, while the North Puget stations cor-
respond to the worst fit. The Eastern Washington
region, which is the driest area, shows the largest vari-
ability in fit from gauge to gauge. 

Plots similar to those in Figs. 4 & 6 were obtained
using the reserved data. The final 6-state NHMM
(which was fit using 1973 to 1985 data), together with
geopotential height at 1000 mb and relative humidity
at 850 mb for the 1985 to 1990 period, was used to gen-
erate precipitation amounts for the 1985 to 1990 win-
ters. The SVD weights obtained previously were
applied to form the summary atmospheric variables
from the 1985 to 1990 geopotential height and relative
humidity fields. The comparison of various statistics for
the observed and generated 1985 to 1990 precipitation
amounts indicates how well the model captures the
characteristics of the reserved data. Fig. 7 shows the
observed versus model-based precipitation probabili-
ties at all stations. The model underestimates the pre-
cipitation probability at most stations. To determine if
this consistent underprediction was due to model mis-
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Fig. 6. Quantile-quantile plots of observed versus model-
based amounts (in inches) at selected stations. The model- 

based amounts are simulated from the 6-state NHMM

(a) Coupeville (North Puget area)

(b) Puyallap (South Puget area)

(c) Yakima (East Washington area)
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specification, we generated several 5 yr realizations
from the NHMM and compared the resulting ‘ob-
served’ precipitation probabilities with the ‘model-
based’ probabilities obtained by averaging over many
sets of 5 yr realizations. Even for these cases, where the
observations are a realization from the model, the
‘observed probabilities’ are typically mostly smaller or
mostly larger than the ‘model-based’ ones. Thus the
consistent underprediction of the ‘model-based’ pre-
cipitation probabilities can be explained by spatially
correlated random variation and does not necessarily
indicate model misspecification. 

Another characteristic of the reserved data that
should be captured by the model is the conditional
distribution of precipitation amounts, given occur-
rence. Fig. 8 shows the qqplots of observed versus
model-based precipitation amounts at the same sta-
tions as in Fig. 6. The model seems to reproduce the
distribution of observed precipitation amounts reason-
ably well overall, although the fit varies from station
to station. 

4. DISCUSSION

The model described in this paper can be used to
generate simulations of precipitation amounts that
incorporate synoptic atmospheric information. The
hidden Markov model assumptions simplify the tem-
poral and spatial structures to be parameterized, since
the common weather state accounts for the temporal
dependence and much of the spatial correlation
between rain gauges. Several possible improvements
to the model are currently under investigation, includ-

10

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Observed

M
od

el
 B

as
ed

0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6
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Fig. 8. Quantile-quantile plots of observed versus model-
based amounts (in inches) at selected stations for the reserved 

period, 1985/86 to 1989/90

(a) Couperville 
(North Puget area)

(b) Puyallap 
(South Puget area)

(b) Yakima 
(Eastern Washington area)
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ing more realistic spatial dependence structures and
reduced parameterizations. 

The conditional spatial independence structure ad-
opted in the present application is relatively simple.
Although this assumption captures most of the correla-
tion between rain gauges, Fig. 4b,c suggests the need
to include some additional dependence in the model.
We plan to investigate 2 alternative structures. The
first step is to introduce dependence between precipi-
tation occurrences and assume conditional spatial in-
dependence of amounts given occurrences and the
weather state. The autologistic model of Hughes et al.
(1999) can be adopted to describe the dependence of
precipitation occurrences at different rain gauges. Pre-
cipitation amounts, conditional on occurrences, would
be modeled independently at each gauge as in the pre-
vious sections. 

If this structure still does not account for all the
observed correlation between rain gauges, more com-
plicated models which allow for interactions between
both precipitation occurrences and amounts at differ-
ent stations will be considered. The spatial depen-
dence between occurrences could still be described by
the autologistic model and, conditional on occurrences,
the amounts could be modeled jointly at all stations
through a multivariate gamma or exponential distribu-
tion. 

The proposed modifications to the spatial depen-
dence structure would increase the number of parame-
ters, already large in the NHMM applied to the Wash-
ington State data. A possibility that will need to be
investigated is the reduction of the number of parame-
ters, both in the hidden and observed parts of the
model. One reasonable modification of the hidden part
is to have only 1 vector µj of means of the atmospheric
variables for each state j, regardless of the state of the
system at the previous time point. In the observed part
of the NHMM, one could specify some function of the
precipitation amount parameters to have a common
value at all stations within a sub-region. 

The likelihood for an NHMM is a non trivial function
of a large number of parameters and may have several
local maxima. In this situation, the estimates resulting
from numerical maximization can only be guaranteed
to correspond to a local maximum, which not necessar-
ily is also the global one. It is then important to choose
reasonable initial values for the maximization routines. 

Models like the NHMM can be used to study the
effect of climate variability. Repeated GCM simula-
tions under current climate conditions can constitute
different realizations of the atmospheric fields in-
cluded in the model. The NHMM can be used to gen-
erate occurrences and amounts for each realization,
thereby downscaling the effect of the variability in the
synoptic-scale variables to precipitation. The effect of

climate change is another issue that can be investi-
gated using NHMMs. The output of GCM runs under
altered climate conditions can serve as input into the
downscaling model described here. Thus, the effects of
the altered climate scenario could be downscaled to
the local-scale precipitation processes by generating
precipitation occurrences and amounts from the
NHMM. For this application of the NHMM to be valid,
the relationship between the synoptic-scale atmos-
pheric variables and the local scale precipitation, as
found under the model fitting conditions, would have
to hold also under the altered climate. A promising
result in this direction is given in Hughes et al. (1999).
The authors fitted a NHMM to rainfall occurrence data
in south-western Australia and verified that the model
responded to shifts in atmospheric circulation in a
reserved data set. Charles et al. (1999) discuss issues
related to validation of downscaling models for study-
ing climate change. 
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