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METHODOLOGY ARTICLE Open Access

A hidden Markov model for reconstructing
animal paths from solar geolocation
loggers using templates for light intensity
Eldar Rakhimberdiev1,2,3* , David W. Winkler1, Eli Bridge4, Nathaniel E. Seavy5, Daniel Sheldon6,7, Theunis Piersma2,8

and Anatoly Saveliev9

Abstract

Background: Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct

their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and

seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need

for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty

about the position estimates.

Results: We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for

animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an

uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially

explicit behavioural masks.

The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF)

algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of

simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east

and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America.

Conclusions: We provide a model that increases accuracy in analyses of noisy data and movements of animals with

complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states

(e.g., migrating or sedentary), and distance and direction of movement.

Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light

data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a

fast-growing number of tracking studies with this technology.

Keywords: Bird migration, FLightR, Hidden Markov models, Particle filter, Solar geolocation, Template fitting

Background
The ability to track animal movements across long dis-

tances has revolutionized our understanding of animal

ecology and has been helpful to conservation [1, 2].

Until recently, our ability to record this information was

limited to larger animals that could carry satellite trans-

mitters. However, recent technological advances have

developed miniaturized devices that extend our ability to

track much smaller animals, especially migratory song-

birds [3]. Solar geolocation data loggers (or geolocators),

are simple animal tracking devices that record ambient

light levels for the purpose of estimating the latitude and

longitude of an animal that wears the device. One of ad-

vantage of geolocators is that they typically can record

data for a year or longer, i.e. cover an annual migration

cycle. Despite an ongoing miniaturization of GPS and

other satellite-linked tracking devices, geolocators re-

main useful because their low mass (currently ca. 0.35 g)

broadens the range of species that may be tagged [3].
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Furthermore, current GPS tracking devices for small

birds are limited to a relatively small (e.g. 8–10) number

of locations that can be recorded, thus it is difficult to

use them to generate information on departure and arrival

dates. In addition, the simplicity of geolocators design

makes them inexpensive, which opens the prospect of af-

fordable population-wide studies of migration and mi-

gratory connectivity.

While the theory of estimating latitude and longitude

from the elevation of the sun is not new, the process of

reconstructing animal movements by using light intensity

levels recorded with geolocators presents several challenges.

From the perspective of the hidden Markov modelling

framework [4], sketched in Fig. 1, positioning by light

level requires at least two parts: (1) an observational

model and (2) a process model. In the case of animal

positioning we refer to these parts as physical and move-

ment models, respectively. The most common approach

to solar geolocation [5] uses a simplified physical model.

This model, which is referred to as the ‘threshold method’,

requires the definition of each twilight event in a dataset

as the time point corresponding to the moment when

solar irradiance reaches some arbitrary, but constant,

threshold level ([6, 7], see first column in Table 1). Lati-

tude is then estimated by the duration of time between

consequent pairs of twilights and the longitude by the

time of solar noon or midnight. This threshold approach

is still widely used, but it is plagued by many well-known

problems such as biased estimates [8], unrealistic assump-

tions of constant shading, and a null assumption of no

movement [9]. Aside from its general simplicity and ac-

cessibility, the advantage of the threshold method is

that it needs only one data point per twilight period,

which makes it well suited to data storage by tiny and

simple tags that log a very narrow band of light intensities

and have very limited data storage capacity.

Fig. 1 Sketch of solar geolocation principles and our method of analysis. A solar geolocator (shown in black on bird’s back) records light levels

and times (example raw data in lower panel). When the animal moves, its position is unobserved (hidden), but it can be estimated by the pattern

of light changes measured at twilight. We combine a physical (observation) model about how light levels change with position and time with

some basic knowledge of the patterns of movement between twilights (movement model) along with all previous and subsequent positions in a

hidden Markov model framework. Then, using the particle filter, we arrive at the most likely position and movement for each twilight
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Early attempts to improve upon the results of thresh-

old analyses involved the application of a specially de-

veloped state-space models on locations estimated with

the threshold method [10]. These models served as post

hoc smoothers and generally improved the estimates,

but they did not erase biases because of the original

biases in the threshold-based location estimates [11]. In

response to the problems of the threshold method

stemming from atmospheric properties implicit in the

observational model, Ekstrom ([7, 12]; column 2 in

Table 1) developed the template fit method. Based on

the physics of the atmosphere he derived the relation-

ship between solar angle (angle above the horizon) and

near-surface light intensity. Ekstrom [12] showed that

the template fit model was robust to the effects of

shading (see equations 4–7 in the current contribution).

Despite the great potential of the template fit method, it

was not used in the next generation of methods nor, to

our knowledge, in any published analyses of empirical

data. The next generation of methods employed spe-

cially developed state space models that not only had a

better observational model, but also incorporated as-

sumption of animal movement [13, 14]. These models

provide more accurate and precise position estimates

and a measure of their uncertainty (see columns 3 and 4

in Table 1).

All the early approaches to solar geolocation were de-

veloped for the tracking of marine animals. This spe-

cialty called for relatively simple movement models that

assumed somewhat constant movement and also incor-

porated geographic masking under the assumption that

marine animals could only occur in the ocean [14] and

are not able to move over the land masses. For many

terrestrial organisms (e.g., migratory birds) more com-

plex models are needed that can account for prolonged

sedentary behaviour interspersed with-long distance

movements. Here we describe an approach that at-

tempts to fill the needs associated primarily with track-

ing small birds by implementing the following features

into a state space model: (1) accommodating the nar-

row band light level data that are recorded by many

tags used on birds; (2) allowing for systematic changes

in habitats throughout the annual cycle to make the ob-

servational model maximally independent from shading

regimes; (3) defining behavioural state parameters that

describe a bird as either sedentary or migrating; (4)

modelling total distance travelled between twilights as

opposed to modelling average velocity; (5) masking that

allows movements (migratory state) over unsuitable

habitats but not settling (sedentary state).

The new analytic framework (implemented in FLightR

R package [15]) provides the flexibility to incorporate all

of these characteristics. We demonstrate the approach

by analysing both simulated and real tracks of small mi-

gratory birds.

Data and models

The example data and a sketch of our approach of infer-

ring tag location are shown at Fig. 1.

Data

Although the method we outline here is applicable to light

level data collected by a wide variety of geolocator tags,

we focus our example on data collected by the widely used

Table 1 Review of the differences of the existing methods together with rationale for the current contribution

Customary approacha Ekstrom (2007) Nielsen & Siebert (2007) Sumner et al. 2009 Current
contribution

R package GeoLight Trackit TripEstimation FLightRb

Few points per twilight + +− +

Shading cloud cover free + + +

Optimisation least squares UKF MCMC (block update) particle filter

Movement allowed + + +

Landscape mask + +

Migratory-sedentary switch +

Behavioural-landscape masks +

Positions + − (not close the equinox) + + + +

Assesment of precision
of estimates

+ + +

Distribution of possible positions + +

Distribution of possible transitions +

afor the details on customary threshold methods one should refer to Hill [44]; Hill & Braun [6]; Ekstrom [7]); bFLightR package (availiable at https://github.com/

eldarrak/FLightR) is at the late development stage
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Mk geolocators developed by British Antarctic Survey

(BAS, Cambridge, United Kingdom). Although, BAS has

produced several models, they generally save a maximum

light level over time intervals ranging from 2 to 10 min

(Fig. 1). These tags are optimized for recording low light

levels within a narrow band of light intensities around twi-

light, which results in <10 points collected during each

twilight. Thus, a typical dataset will be dominated by min-

imal values (=0) in response to darkness and maximal

values (=64) for measurements in daylight.

To demonstrate our method, we used both real data

from BAS tags and simulations of BAS tag data. The real

data consist of two tracks. The first is a from a tree swal-

low Tachycineta bicolor tagged at the breeding grounds

in southern Canada and flying to wintering grounds in

Cuba by the North American East Coast. The second

track is from a golden-crowned sparrow Zonotrichia

atricapilla tagged on its wintering grounds in California

and flying to breed to Alaska via the West Coast. The

first track features a 2-min and the second employs a

ten-minute light logging interval. The simulated data are

representative of stationary (not moving) tags, and error

associated with weather-related and behavioural shading

was derived from real data collected by a tag attached to

the above-mentioned tree swallow while it was station-

ary at a known location.

All existing analytical approaches, including the one

presented here, focus primarily on light-level transitions

that occur around twilight, so these twilight periods have

to be extracted from the data in an automated [13] or

semi-automated [5, 16] way. Light-level data collected

with geolocators on birds are noisy because birds fre-

quently change their light environment by moving in and

out of nest boxes, natural cavities, or dense vegetation, so

a completely automated method of detection of twilight

events produces many false positives. For this reason we

consider a user-controlled, semi-automated process for

identifying twilight events in a dataset to be most effect-

ive. We used an online interface called TAGS (Totally

Awesome Geolocator Service; http://tags.animalmigra-

tion.org) to visually inspect data and generate a vector

of twilight event periods, both morning and evening, for

each day of the year.

Hidden Markov model

Hidden Markov models are currently the most widely

used framework for estimating animal positions and

behaviour through time [17, 18]. For solar geolocation

the application of hidden Markov models is intuitive as

animal movements result in unobserved positions that

must be estimated probabilistically (Fig. 1). We devel-

oped a model with two parts: the hidden process model

of animal movement and the observational model of

light measurements from the tag. For easy reference

we will refer to these models taken together as the

FLightR model.

Physical observation model

The observational model matches recorded light levels

to theoretical expectations at different locations on Earth.

During each twilight period i the tag records several

measurements j. Estimation of the theoretical expect-

ation consists of three steps. The first step transforms

the coordinates of potential twilight location αk at time

τij to angle of sun relative to horizon (solar angle, θij)

with standard astronomical equations [19].

θij ¼ l αk ; τij
� �

ð1Þ

This step is shared by previous analytical approaches –

the Trackit [13] and TripEstimation models [14, 16] and

the current contribution.

At the next step, the expected light measurements

(ELM) are calculated from solar angle. This step varies

significantly across analytical approaches, all of which

try to account for natural variation in the relationship

between solar angle and measured light levels. Sources

of this variation are scattering (which includes cloud

cover, shading of the tag by landforms and plant leaves;

see [9, 20]) and natural variation in refraction [7].

Nielsen and Siebert [13] assumed the function f relat-

ing solar angle to light measurements was unknown and

estimated it using cubic splines with autocorrelation of

spline parameters φ̃ between consecutive twilights

ELMij ¼ f
φ̃
θij

� �
þ εij; εij ∈ Norm 0; σ ið Þ ð2Þ

The potential problem of this approach is that errors

affecting light intensity are multiplicative, not additive

[12]. This means that if light intensity errors are signifi-

cantly larger than zero the result will be biased. Another

drawback is that many light level measurements in each

twilight period are required to fit the splines well, and for

the widely used BAS geolocators, transitions from the

maximum to minimum light-level values usually occur

in less than five time steps.

Sumner et al. [14] accounted for the multiplicative

error by taking the natural log of ELM and fitting the

following equation:

logELMij ¼ f 0
φ̃
θij

� �
þ K i þ εij; εij ∈ Norm 0; σ ið Þ ð3Þ

The function f ’ is nonlinear and is estimated for each

tag with penalized splines on a calibration dataset. The

variable Ki is attenuation (or cloudiness) and is also esti-

mated. This approach is less dependent on the shading bias

but still requires many light level measurements during each

twilight event.
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Ekstrom [12] derived the following deterministic relation-

ship (i.e. ‘template’) between light at surface (solar irradi-

ance at Earth surface, SL) and solar angle θ.

SL ¼

Cloudiness � e−u
2

1þ erf −uð Þ
; u≤0

Cloudiness � e−u
2

erfc uð Þ
; u > 0

; u ¼ 21:5� sin θð Þ

8
>>><
>>>:

ð4Þ

where erf is the error function and erfc is the comple-

mentary error function. This equation can be rewritten

as follows:

log SLð Þ ¼ log Cloudinessð Þ−u θð Þ2− log erfc u θð Þð Þð Þ;

u θð Þ ¼ 21:5� sin θð Þ

ð5Þ

Note that log (Cloudiness) plays the same role as the

parameter K in equation 3.

In the FLightR observational model, we define

f
00

θð Þ ¼ −u θð Þ2− log erfc u θð Þð Þð Þ

Thus

log SLij
� �

¼ f
00

θij

� �
þ K i þ εij; εij ∈ Norm 0; σ ið Þ ð6Þ

The function f ’’ is known, in contrast to the unknown

function f ’ in equation 3.

Equations 4–6 deal with the relationship between the

solar angle and light reaching surface of Earth but not to

the light measured by a tag. To do that, we need to ac-

count for the properties of the tag. Assuming linearity

(on a log scale) of the tag measurements we define

log ELMij

� �
¼ I þ Z � log SLij

� �
ð7Þ

Where tag intercept I and tag slope Z are tag specific

and do not depend on position or time.

The complete equations for the ELM are then:

log ELMij

� �
¼ Z � f

00

θij

� �
þ I þ K 0

i þ ε
0
ij;

ε
0
ij ∈ Norm 0; σ ið Þ

ð8Þ

Here, the attenuation and noise terms as K’j and ε’ij

apply directly to log (ELMij) are not the same as the attenu-

ation and noise terms in eqn. 6. The observed light measure-

ment (OLM) depends on the attenuation K’i and slope Z that

both vary from day to day. The dependency of K’i on the an-

imal’s behaviour and habitat led us to focus only on Z for es-

timating the likelihood that the observed light measurements

were produced at location αk. We assumed the observations

come from a model with tag slope Zi that is a random vari-

able independent of the animals’ behaviour. This allows us

to estimate the distribution of Zi from the calibration

dataset. In all the analysed calibration datasets Zi had a

lognormal distribution:

Zi ∈ logNorm Zcalib; σZcalib

� �
ð9Þ

Parameters Zcalib and σZcalib
are assumed to be constant

and are estimated from the calibration at the known true

sites, where model 8 was fitted.

The complete equations for the observed light meas-

urement are then

log OLMij

� �
¼ Zi � f

00

θijð Þ þ I þ K 0
i þ ε

0
ij;

εij ∈ Norm 0; σerrð Þ

ð10Þ

In fact, for given location αk and twilight i, eqn.10 is

standard linear model of the form

log OLMij

� �
¼ ai þ Zi � bij þ cj; cj ∈ Norm 0; σcð Þ

ð11Þ

with known bij, unknown ai, unknown Zi, and random

error cj assumed to be normally distributed with a mean

of zero. Thus, for any location αk we can apply a stand-

ard least squares procedure to estimate the mean Ẑi and

standard deviation σZi
of the unknown Zi and then use

the following probability density as a surrogate for the

hypothesis that the data were observed at location αk:

Zi ∈ Norm Zi
^ ; σZi

� �
ð12Þ

Thus we can integrate product of density from eqn. 9

and eqn. 12 over all Z and estimate the required prob-

ability density and the likelihood of data at αk.

Parameters Zcalib and σcalib must be estimated for every

tag from twilights recorded at a known position. This

means that the tag has to be calibrated in a known pos-

ition for at least 5 days before the animal leaves the area

or after it arrives back. The calibration does not need to

be a clear-sky calibration and preferably should be done

on the bird. The casing around the light sensor may dis-

colour as the tag ages, such that the calibration generated

when the tag is deployed will not match the calibration

when the tag is recovered. If known locations are available

for the beginning and end of the tag use, it is possible to

account for ageing by assuming a linear change in the cali-

brated slope throughout the deployment period.

Movement model

Previous movement models for solar geolocation were de-

veloped for marine animals that are assumed to travel at a

relatively constant velocity. For birds, we know that there

are long periods (up to 6 months) when birds are primar-

ily sedentary (moving less than several km a day), punctu-

ated by short periods (1–2 weeks) when birds migrate
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rapidly between breeding and non-breeding locations, but

during these periods may spend several days at a single site

to refuel before migrating again [21]. For these highly vari-

able movement patterns we needed a more flexible move-

ment model. We used a simplified “Double” model [22, 23]

with just two behavioural states: “Sedentary” and “Migrat-

ing”. In the context of these two states, we defined the pos-

ition at the twilight αi+1 as:

α0 ¼ initial released locationð Þ; vector of coordinates x; yð Þ

ð13Þ

αiþ1 ¼
αi þ di; with probability pi

αi; with probability 1−pi

�
ð14Þ

Where an offset di follows an uncorrelated random

walk with a distribution reflecting bird behaviour and

described by a set of parameters:

di ¼
Si � cos Φið Þ
Si � sin Φið Þ

� �
ð15Þ

At each moment i, di is distributed as a mixture of a

zero increment (no movement) with probability pi, and

non-zero increment in direction Φi and step length Si.

We assigned distributions Φi and Si as follows:

Φi e vonMises φ; kð Þ ð16Þ

Si e truncNorm μ; σ; a; bð Þ ð17Þ

For all runs in our models, we assumed that the trun-

cation points were a = 45 and b = 1000 km. That is, when

birds initiated a movement, they could not fly less than

45 km or more than 1500 km in a single between-twilight

interval. Parameters φ and k in the von Mises distribution

reflect direction of migration and its concentration, and

the parameters of the truncated normal distribution for

distance shape the distribution of inter-twilight flight

distances. R packages ‘circular’ [24] and ‘CircStats’ [25]

were used to obtain random draws from von Mises distri-

butions given the parameters and ‘truncnorm’ [26] for the

truncated normal distribution. All movement was mod-

elled as being uncorrelated in time, assuming that distance

flown, direction and behavioural switches during bird mi-

gration may be highly independent one day to the next.

Finally, to allow for migration across water bodies, we

introduced a spatial behavioural mask that prevents birds

from entering a sedentary state in locations corresponding

with large water bodies. Hence, birds may fly over water,

but cannot switch to sedentary mode in this habitat.

Bayesian analysis

Many techniques may be used to estimate a hidden

Markov model. Our uncorrelated random walk model has

five unobserved variables at each of many time steps.

Bayesian methods are particularly useful for computing

posterior distribution over these variables. The Kalman

filter [27] or unscented Kalman filter [28] are other ap-

proaches that can be applied to the problem of infer-

ence in a long state space model [13], but these do not

apply to highly nonlinear posterior distribution patterns

caused by non-Gaussian light error distribution with

spatially explicit masks. To accommodate these aspects

Table 2 Average bias and SD estimated by GeoLight and FLightR for simulated stationary tags at 5° N and 55° N. GeoLight calibration

was done by July twilights

Month 5 55

Latitude Longitude Latitude Longitude

GeoLight FLightR GeoLight FLightR GeoLight FLightR GeoLight FLightR

Mean
bias

SD Mean
bias

SD Mean
bias

SD Mean
bias

SD Mean
bias

SD Mean
bias

SD Mean
bias

SD Mean
bias

SD

1 0.13 2.52 −0.03 0.33 −1.05 0.97 0 0.13 0.91 1.63 −0.09 0.26 −0.65 1.74 0.05 0.29

2 0.65 3.57 −0.04 0.28 −1.15 0.83 0 0.13 0.54 3.40 −0.10 0.23 −0.94 1.64 0.04 0.27

3 2.23 10.86 −0.03 0.33 −0.99 0.82 0 0.13 0.85 10.96 −0.09 0.26 −0.93 1.50 0.05 0.29

4 −0.01 6.03 −0.04 0.31 −1.04 0.77 0 0.13 −0.22 2.25 −0.09 0.25 −1.23 1.72 0.04 0.28

5 −0.13 2.46 −0.03 0.33 −0.95 0.83 0 0.13 −0.55 1.68 −0.09 0.27 −1.29 2.47 0.05 0.30

6 −0.64 1.76 −0.04 0.31 −1.15 0.91 0 0.13 −0.90 1.02 −0.09 0.25 −0.63 2.02 0.04 0.28

7 −0.60 2.42 −0.03 0.33 −1.10 0.94 0 0.13 −0.56 1.19 −0.09 0.26 −0.90 1.97 0.05 0.29

8 −0.08 4.74 −0.03 0.33 −1.12 0.99 0 0.13 −0.90 1.62 −0.09 0.26 −1.11 1.43 0.05 0.29

9 3.63 7.88 −0.04 0.31 −1.05 1.02 0 0.13 −2.41 3.59 −0.09 0.25 −0.69 1.46 0.04 0.28

10 0.82 6.45 −0.03 0.33 −1.11 0.67 0 0.13 2.75 8.07 −0.09 0.26 −1.10 1.34 0.05 0.29

11 −0.74 2.82 −0.04 0.31 −0.69 0.86 0 0.13 1.01 2.02 −0.09 0.25 −1.28 1.60 0.04 0.28

12 0.70 2.01 −0.03 0.32 −1.15 0.81 0 0.13 0.76 1.53 −0.09 0.26 −1.15 1.95 0.05 0.29
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of geolocator data analysis we decided to (1) discretize

space and (2) use the particle filter [29] for approximat-

ing the posterior distribution. Spatial discretization

with creation of a regular grid accelerates computa-

tional workflow by minimizing amount of possible be-

tween node transitions and also puts no constrains on

the spatial error distribution [18, 30, 31]. We used the

function regularCoordinates() from the geosphere R

package [32] to discretize a state-space into a regular grid

with a distance of 50 km between nodes. Choice of the

distance of 50 km between grid nodes was arbitrary, and

followed the idea that it should be small enough to have

posterior probabilities distributed at several grid cells at

any time, but at the same time not too small as it will

make grid larger and estimation slower. All the move-

ments were estimated between these nodes and the ob-

servational model was estimated at these nodes. The

approach allows us to “obtain a numerical non-

parametric representation of the probability distribution

of the animal’s position. This probability distribution illus-

trates the uncertainty of the estimated movement with a

high degree of detail. Finally, we can draw inference

about parameters in a likelihood framework, compute

the most probable track of the animal, and sample ran-

dom tracks that the animal may have traveled” [31].

Following Patterson et al. [17], we used a particle filter

(PF) or ‘sequential importance resampling’. Our implemen-

tation of the PF was based on the algorithm from Doucet

et al. [33] as expanded by Andersen et al. [34]. The logic of

the PF is as follows. At the initialisation phase, our PF cre-

ates a sample of 106 particles (points with positions) at the

actual release point. Then, for each particle, it generates a

new position at i + 1 from the process model. All new

particle locations are then resampled proportionally to

their weight (product of the previous likelihoods and the

current likelihood, estimated by the observational model

and a priori constraints as explained below). The

resampled set of particles proceeds to the next step and

the process repeats. In other words, PF creates 106 pos-

sible paths that develop from the release point according

to the rules for the movement model. At every twilight all

106 particles are compared to data passed through the ob-

servation model. After each check all unlikely particles are

replaced by likely ones with the probability of their relative

likelihood. Once all iterations are completed, the histories

of the remaining particles render a distribution that ap-

proximates the spatial probability distribution for the bird

at each twilight.

Because of the degeneracy problem common for long

PF runs (see e.g. [35]), we used block sampling [36] in

our PF. assuming that at n steps before current step i the

particles have reached their global optimum. We selected

n = 90 and then estimated the current weight of the par-

ticle as the mean of the logarithms of particle weights at

steps [i-n]:n.

To include information on where the bird was

recaptured when the geolocator was removed, we

used the approach described by Andersen et al. [34].

Here the last n states of particle histories were

resampled with weights proportional to their probabil-

ity density function from a normal distribution with a

mean of the recapture point coordinates and standard

deviation (SD) equal to some measure of precision

(because we had 50 km between grid points, we used

a SD of 25 km).

Fig. 2 Estimated position of simulated stationary tag by classic approach

(GeoLight, points) and FLightR (median estimated latitude with 50 and

95 % credible intervals)

Rakhimberdiev et al. Movement Ecology  (2015) 3:25 Page 7 of 15



Fig. 3 (See legend on next page.)
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A priori constraints in the model can be defined accord-

ing to any biological assumptions. These constraints are

used at the resampling stage as weights, and they are not

optimised. Here, we present the model with two con-

straints: a general spatial mask and a behavioural spatial

mask. The general spatial mask works through exclusion

of selected grid nodes and is binary. Excluding land, for ex-

ample, may be useful for modelling fish, marine mammal,

or pelagic bird movements. The behavioural mask is de-

scribed above and lowers probability for animals to adopt a

stationary state in particular nodes. Value of zero for this

mask will completely prevent sedentary mode at the node.

The PF offers a relatively fast optimization tech-

nique, but it is unstable to outliers [37]. Outliers in

twilight data can happen if an animal stays inside a

cavity or nest box during twilight and emerges later,

resulting in what would appear to be a late and atypic-

ally fast twilight. Ideally such points should be re-

moved during visual inspection of the twilights, but in

order to make the PF stable to occasional undetected

outliers we have developed two outlier detection ap-

proaches. The first approach is used after tag calibration

but before the particle filter run. The main idea of the

approach is to estimate likely longitude of crossing with

the equator for each twilight and then use time series

outlier detection software to identify outliers [38, 39].

The other approach is an ‘on the go’ outlier detection

technique. This filtering step is implemented at twilight

i when new particle positions were generated but before

the resampling for the next step occurs. At this point,

the average distance from i − 1→ i is compared with

i→ i + 1, and if the latter is smaller and mean turning

angle at i is less the 100°, then twilight i is considered to

be outlier and its likelihood surface is not used in the

particle resampling.

Application

Example 1: simulated stationary tags

We have simulated year-long light data for stationary tags

using eqns 9 and 10. The following parameters for the

simulations were estimated from real data collected by a

tag attached to a Tree Swallow while it had been in a

known location for ten days, so they contain a realistic

distribution of shading and of slopes.

I þ K þ Z ∈ Norm 6:14; 1:01ð Þ; Zcalib ¼ 0:23;
σZcalib

¼ 0:01; σerr ¼ 0:32

We began by estimating locations with the threshold

method implemented in GeoLight. For this analysis, we

used the month of July as the calibration period. Then,

using the same calibration period, we estimated the loca-

tions in FLightR. We did not use any behaviour or

spatial masks and confined our analysis to a reasonably

large area with radius of 1000 km around the tag loca-

tion for the potential spatial extent required for the

FLightR runs. For all the simulation and real tag runs we

used the same priors of 0.1 for probability of migratory

behaviour and 300 ± 150 km for distance covered between

twilights. We consider these settings to be suitable for

most of the animals except ones that move longer dis-

tances between twilights. In our experience with different

tags, distance priors do not affect results of the model run,

if they are generally correct and wide enough. The prob-

ability of migration prior does have an effect, and if se-

lected too high, the resulting track can become noisy. A

value of 0.1 was selected as a prior on the basis of good

results with simulated data and real tracks; we do not

recommend changing it without a specific reason.

To compare the performances of GeoLight and

FLightR, we estimated monthly biases (known minus es-

timated location) and SD associated with each analysis

type for both latitude and longitude (Table 2). Monthly

estimates of latitude were not biased when estimated by

FLightR (bias ranged from −0.1° to 0.03° due to some

rounding error from estimation on a grid) whereas Geo-

Light biases in latitude estimation ranged from −2.41° to

3.63°. Moreover the FLightR errors on latitude are al-

most uniform across the year, with SD ranging from

0.23° to 0.33°, whereas the Geolight SD of monthly er-

rors ranged from 1.02° to 10.96° (Fig. 2). Note that the

GeoLight method does not provide estimates for latitude

(See figure on previous page.)

Fig. 3 The track of a tree swallow as estimated from 2-min fixing interval data by classic approach (GeoLight, grey line and dots) and FLightR.

Inset shows Tree Swallow range in North America. The medians of twilight positions estimated by FLightR are coloured by the month of a year

(colours for each month are illustrated with pie chart). In June a bird was tagged on the breeding grounds at the Long Point Bird Observatory in

Ontario, Canada. July 19 it left breeding ground and moved to the stopover site in Virginia (segment A). At 1or 2 August it moved to coastal area

on the border of North Carolina and Virginia (segment B), where remained stationary until end of October. 23–24 October the bird departed towards a

stopover site in South Carolina (segment C), where it stayed for a week and then continued south to Cuba (segment D). The bird remained in Cuba till

the end of March, with one exception for flight to the vicinity of the Bimini Islands (segment E). On 28 of March bird left wintering grounds

and migrated to the North Carolina/Virginia site (segment F) and after a short stopover there moved straight to the breeding grounds (segment G).

Note that no spatial or behavioural masks were used for the FLightR run, so positions were allowed to be everywhere. Raw GeoLight estimates shown

on the figure should not be interpreted as a positions and inference can be made only for most likely location during stationary periods, new functions

in GeoLight 2.0.1 are available now for the estimation of these most likely stationary locations (Lisovski & Liechti, pers. comm). Tree swallow

range image is courtesy of Birds of North America: Cornell Lab of Ornithology
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at the time around equinox without assumption of sta-

tionarity. The results in Table 2 show that estimates

from the threshold method are biased while FLightR

produces unbiased and consistent estimates.

Example 2: tree swallow - 2 min fixes

To demonstrate the application of the FLightR functions

to a real-world geolocator dataset, we analysed the track

from a single tree swallow that was fitted with an Mk12S

geolocation logger on 23 June 2011 at the Long Point Bird

Observatory in Ontario, Canada (80.46° W 42.62° N). It

was recaptured at the same location and the tag was re-

moved on 7 June 2012. Geolocator was developed by the

British Antarctic Survey (Cambridge, United Kingdom)

and had 15-mm-long stalk positioned at a 30° angle. The

tag recorded maximum light levels at 2 min intervals.

This single track is a small part of a much larger study

with many individuals tracked with geolocators at over

ten sites across North America (Bradley et al. in prep.).

We provide raw geolocator data and code to estimate po-

sitions for both of the packages online at https://github.-

com/eldarrak/FLightR/blob/master/examples/tree_swal-

low_BAS_tag_example/tree_swallow_analysis.Rmd.

Note that during the GeoLight run no filters or outlier de-

tection tools were used, and FLightR detected as outliers

and excluded data from ~30 twilights. We present four

different ways of looking at the path to better reconstruct

its details and implications. The reconstructed path from

FLightR (coloured symbols in Fig. 3) has the bird staying

in the region of Long Point through early July. The bird

appears to have stayed at the same longitude and latitude

(Fig. 4), and this is backed up with the highest confidence

in the reconstructed path (Fig. 5). On the morning of 13

July, the bird departed Long Point (a diurnal departure in-

dicated by the orange dot in Fig. 6a) and made a single

flight of over 500 km (Fig. 6b, line segment A in Fig. 3) to

a stopover site in Virginia (yellow dots in Fig. 3). It stayed

in the same general area until 1 or 2 August, when it de-

parted (segment B Fig. 3) and flew over 200 km to a site

near the coastal border of North Carolina and Virginia

(Fig. 3). This movement is less certain in its particulars,

having interquartile ranges of 1–2 degrees (Fig. 5). The

interquartile ranges of position estimates for the following

weeks are near the equinox (and thus very unreliable for

latitude measures) and vary from low (<1 degree) to very

high (>5 degrees; Fig. 5). The bird departed the region on

23 or 24 October, heading south and inland (segment C),

and very likely not stopping until reaching coastal

South Carolina, where it remained until about 2 No-

vember. It then departed for Cuba (segment D), spend-

ing most of the rest of the winter there. The one

exception to this Cuba winter residency may have been a

departure (segment E) to the vicinity of the Bimini Islands

on or about 28 February, returning to Cuba about 5

March, but uncertainties at this time of year, nearing the

equinox, are very high (Fig. 5). Much more certain is that

the winter residency ended on 28 March, when the bird

flew from Florida to the coast of North Carolina/Virginia

(segment F). It did not stay there for long, if at all, and

continued migrating until it reached Long Point on 6

April. The interpretation of the locations during this last

northward leg are complicated by the large latitudinal

Fig. 4 Longitudes (upper panel) and latitudes (lower panel) of a

track of a tree swallow as estimated from 2-min fixing interval data

by classic approach (GeoLight, dots) and FLightR. The medians of

twilight positions estimated by FLightR are shown with accompanying

quartile ranges and 95 % credible intervals. Note absence of the

latitudinal positions from GeoLight during the equinoxes (shown

by red vertical lines)
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uncertainties associated with the vernal equinox (Fig. 5).

The customary approach using thresholds with Geo-

Light generally agreed with the FLightR estimates.

Example 3: golden-crowned sparrow - 10 min fixes

Our sample dataset for golden-crowned sparrow was col-

lected from a bird that was tagged on its wintering

grounds in coastal California and tracked to the breeding

grounds on the coast of Alaska [40]. The bird was cap-

tured and tagged on 2 February 2010 at the Palomarin

Field Station in coastal California, United States (37.93° N,

122.74° W). It was recaptured at the same location and

the tag was removed on 19 October 2010. The tag was an

Mk10S geolocators developed by the British Antarctic

Survey (Cambridge, United Kingdom) with a 15-mm-long

stalk positioned at a 30° angle. The tag recorded max-

imum light levels at 10 min intervals. Note that during the

GeoLight runs no filters or outliers detection tools were

used, and FLightR detected as outliers and excluded about

40 twilights out of 600.

The reconstructed track for the golden-crowned spar-

row indicates a movement from the wintering grounds

in California, north along the west coast of North

America to the breeding grounds in Alaska (Fig. 7). After

it was tagged in early February, the bird was sedentary

until 18 April, and clear migration activity was initiated

May 13 and ceased in early June (Fig. 8). This is consistent

with post-tagging observations of the bird that confirmed

that it was present (and likely sedentary) at the tagging

sight until at least March 31. During the migration both

latitude and longitude have high uncertainty (Fig. 9), dur-

ing the breeding season at Alaska uncertainty in longitude

remains high. During spring migration, daily movements

were primarily between 500 and 700 km, with some as

long as 800 km (Fig. 10). Fall migration occurred between

13 September and 14 October (Fig. 10). During both

spring and fall migrations, movements were both diurnal

and nocturnal.

Fig. 5 Precision of the estimates of positions by longitude (orange)

and latitude (blue) of a track of a tree swallow shown by the

interquartile ranges

Fig. 6 Medians of probability of migration (upper panel) and migration

distance with corresponding quartiles (lower panel) for a tree swallow

estimated by FLightR. Nocturnal migration is shown in grey and

diurnal migration in orange. The circles show transitions which

were characterized by shift of the median latitude and/or median

longitude. Vertical red lines mark equinoxes
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Uncertainty in both longitude and latitude increased

during both migrations. Notably, uncertainty in longitude

also increased around summer solstice in the end of June

(Fig. 9). This may be because both twilight lines become

almost horizontal and parallel to each other in summer at

high latitudes, thus limiting inference on the longitudinal

position. The extreme case of this happens at the Arctic

Circle (66° N) at solstice. This situation reflects one of the

two major limitations in solar geolocation – (1) determin-

ation of latitude near equinoxes at any longitude and (2)

determination of longitude near solstice at high latitudes.

The FLightR model was able to cope with these limita-

tions and provided meaningful positioning results.

Discussion
Current model performance

We have presented a new model for the analysis of geo-

locator data. By analyzing both simulated data and real

tracks, we demonstrated that this approach has greater

precision than the threshold method (Table 2), which is

by far the most commonly applied analysis technique in

the literature [41]. The positions obtained for a simulated

stationary tag did not have a systematic bias and were rea-

sonably good even near the equinox. For two birds that

migrated along the coasts of North America, our ap-

proach, without any geographic masks, reconstructed a

path that closely matched the coastline. In addition to

providing more precise locations, this method provides

data on the probability of movement behaviour that can

be used to test behavioural hypotheses.

Our method offers several improvements over existing

methods for estimating locations from light-level data. To

our knowledge, this is the first non-proprietary application

that extends template-fitting method all the way from a

physical/astronomical model to reconstructing tag loca-

tions using timed light-level data. Our method works well

on tags that record a relatively narrow band of light inten-

sity data, something that has been problematic with other

alternatives to the threshold method [16]. Furthermore,

this method applies a movement model that replaces the

assumption of constant movement throughout the annual

life cycle with a model that allows staying or moving at

variable distances at each daily step in the annual path.

However, there are still limits to location estimation from

light-level data. For actively moving real birds, the esti-

mated latitudes near equinoxes are very imprecise, as there

is virtually no latitudinal information in the data at that

time. Conclusions about the latitudes of locations during or

near the equinoxes must still be made with great caution.

Optimization with current implementation of the par-

ticle filter is not fast. One run of the FLightR model takes

about 1 h on a four core laptop, which is slower than the

Kalman filter approach used in trackit (less than 1 h, [13])

but faster than MCMC in tripEstimation (about 4 h, [16]).

The main benefit of the particle filter though is that it not

only saves the posterior distribution of particles at each

step but also a posterior distribution of all transitions. All

of these products are valuable for assessing the confidence

and reliability of each of the inferred locations and shifts

in behaviour produced by FLightR.

Drawbacks and directions for further development

The present version of FLightR is very general and could

be improved in several ways. The movement part could be

improved by introduction of scale-free continuous power-

law distance distributions and discrete power-law dura-

tions of stopover distributions [42]. The observational

model would also be very much improved if we could

Fig. 7 The track of a golden-crowned sparrow as estimated from

10-min fixing interval data by the classic approach (GeoLight, grey

line and dots) and by FLightR. Inset shows golden-crowned sparrow

range in North America. The medians of twilight positions estimated

by FLightR are coloured by the month of a year (colours for each

month are illustrated with pie chart). Bird was tagged in 2 February on

the wintering grounds in California. It remained close to the capture

site till 13 May and then started northward migration. After two weeks

of migration it arrived on the breeding grounds (~1 June), and

remained there until at least 5 July. It may have moved about 200 km

westward after breeding, though the uncertainty here is high. 10

September bird started migration to the wintering grounds, where it

arrived at in the end of October. Note that no spatial or behavioural

masks were used for the FLightR run, so positions were allowed to be

everywhere. Raw GeoLight estimates shown on the figure should not

be interpreted as a positions and inference can be made only for most

likely location during stationary periods, new functions in GeoLight

2.0.1 are available now for the estimation of these most likely stationary

locations (Lisovski & Liechti, pers. comm). Golden-crowned sparrow

range image is courtesy of Birds of North America: Cornell Lab

of Ornithology
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derive a single general closed-form likelihood equation.

The particle filter is not the fastest optimization method,

and some other approaches should eventually be tried,

such as unscented Kalman filter [28] and the Forward-

Backward algorithm [43]. We hope that all these and other

potential developments improvements will be facilitated

by the current publication and in a few years will bring the

field of solar geolocation path reconstruction from its in-

fancy to adulthood.

Another potential area of improvement would be to

work with hardware developers to increase the quality of

data stored on geolocator tags. Many current tags have

variable, and often unmeasured, problems in their lack of

calibration, clock drift and change in tag opacity and

colour throughout the year. Clock drift is likely to affect

the estimated longitudes, while changes in opacity are still

not very well understood. Simple calibration procedures

and studies of aging effects could help alleviate these

problems.

It is perhaps surprising that most geolocators measure

only a few points at twilight, which is the most crucial

measurement period. The introduction of ‘smart’ record-

ing modes that would allow intense sampling at twilight

while skipping uninformative midnight and noon mea-

surements would dramatically improve the precision of

location estimation.

A reflection on the general ‘infancy’ of a burgeoning

research field

Solar geolocation publications on migratory birds are

booming now in the peer reviewed journals, with rather

little attention to the statistical methods necessary to im-

prove the objectivity and precision of path reconstruc-

tions. Although some conclusions may be made warranted

without statistical approaches (e.g. longitude of breeding or

wintering grounds), we argue that path-reconstruction of

moving animals from noisy light and time data should be

done within a statistical framework. Statistical models do

not provide exact positions of the bird, and biological inter-

pretations should always be cognizant of estimates of the

Fig. 8 Longitudes (upper panel) and latitudes (lower panel) of a

track of a golden-crowned sparrow as estimated from 10-min fixing

interval data by classic approach (GeoLight, dots) and FLightR. The

medians of twilight positions estimated by FLightR are shown with

accompanying quartile ranges and 95 % credible intervals. Note

absence of the latitudinal positions from GeoLight during the

equinoxes (shown by red vertical lines)

Fig. 9 Precision of the estimates of positions by longitude (orange)

and latitude (blue) of a track of golden-crowned sparrow shown by

the interquartile ranges
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position and/or timing uncertainty provided by FLightR or

any other analysis package. For example, interpretation of

the estimated time spent inside a key habitat is much

more appropriate than estimating a single fix within that

habitat [14].

Conclusions
Here we introduced a template fitting observational model

for solar geolocation as a part of a hidden Markov model.

With this approach we estimated positions and migratory

schedules of animals accompanied by precision estimates.

We believe that the present approach will establish a new

benchmark for geolocator analysis that meets the stan-

dards applied to most other subfields of research with re-

gard to analytical vigor, objectivity and repeatability.

Availability of supporting data
Tree Swallow geolocator data, FLightR package and the

example of the analysis can be found at GitHub page of

the package: https://github.com/eldarrak/FLightR.
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