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ABSTRACT

A hidden Markov model (HMM) has been developed to
find protein coding genes in E.coli DNA using E.coli

genome DNA sequence from the EcoSeq6 database
maintained by Kenn Rudd. This HMM includes states
that model the codons and their frequencies in E.coli

genes, as well as the patterns found in the intergenic
region, including repetitive extragenic palindromic
sequences and the Shine - Delgarno motif. To account
for potential sequencing errors and or frameshifts in
raw genomic DNA sequence, it allows for the (very
unlikely) possiblity of insertions and deletions of
individual nucleotides within a codon. The parameters
of the HMM are estimated using approximately one
million nucleotides of annotated DNA in EcoSeq6 and
the model tested on a disjoint set of contigs containing
about 325,000 nucleotides. The HMM finds the exact
locations of about 80% of the known E.coli genes, and
approximate locations for about 10%. It also finds
several potentially new genes, and locates several
places were insertion or deletion errors/and or
frameshifts may be present in the contigs.

INTRODUCTION

Sequencing of the genomes of organisms and organelles has and
will continue to produce large quantities of complex map and
DNA sequence data. The development of algorithms, techniques,
software and databases is crucial in accumulating and interpreting
these data in a robust and 'automated' manner. Sequencing of
the E.coli genome is now about 50% complete [1,2] and as such,
it serves as an important testbed for both laboratory and computer
analysis techniques. Here we describe a new computer method
for locating the protein coding genes in unannotated E.coli contigs
and translating them into protein sequences.

There are two principal methods for finding genes, both of
which have been incorporated into systems that analyse eucaryotic
DNA [3]. The first locates signals in DNA like promoter
sequences and splice junctions using techniques such as neural
networks [4,5,6] or statistical methods [7,8,9]. The second
approach scores a certain window of DNA in various ways in
order to decide whether the window belongs to a coding or a

non-coding region (reviewed in [10]). Staden and McLachlan
[11,3] proposed deviation from average codon usage as a way
of determining the probability that the window is coding or not.
Later, Gribskov et al. [12] used a similar measure as a part of
their 'codon preference plot', but their measure did not require
the knowledge of an average codon usage from other sources.
Most other scoring methods are related to codon usage in some
way [13,3]. Recently, neural networks [4,14,15,16] and Markov
chains [17,18,19] have been used to analyze coding (and non-
coding) regions. In particular, the program GeneMark [20] finds
genes in E.coli DNA using a Markov model for the coding region
related to the one discussed here, and a very simple Markov
model for the non-coding regions. Whether looking for signals
in the DNA or using window scoring, there remains the problem
of combining all the scores and/or signals detected in a given
contig to produce a coherent 'parse' into genes separated by
intergenic regions. The output of this final parsing step could
be a list of genes, each represented by its begin and end position
within the contig. Snyder and Stormo have recently proposed
an elegant dynamic programming method to accomplish this final
step [21]. Other more linguistically motivated approaches to this
kind of sequence parsing problem are described in [22,23,24,25].

One aim of this paper is to combine all the aforementioned
methods for locating protein coding regions (the search for
initiation signals, the scoring of possible coding regions, and the
final dynamic programming to get the best parse) in a single
simple framework of Hidden Markov Models (HMMs). HMMs
have been used to analyse DNA [18], to model certain protein-
binding sites in DNA [8,9] and in protein analysis
[26,27,28,29,30,31,32]. The HMM we use to find genes in E.coli
is much larger and more complex than those used in the early
HMM work. Since only one strand is modelled, the HMM is
applied twice, once to the direct strand and then to the
complementary strand. The basic HMM architecture is identical
to our earlier work [29], but here it is organised into a series
of looping structures (Figure 3) containing explicit submodels
for each of the 64 codons and for gene overlaps. It allows for
the possiblity of insertions and deletions of individual nucleotides
within a codon because such errors may result in completely or
partially incorrect translated protein sequences (see [33,34,35]).
These sequence 'errors' are distinct from real frameshifts and
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other programmed recoding events i.e. alternative reading of the
genetic code (see [36,37]). In the HMM, if for example, a base
is omitted such that one of the 'codons' is only two bases long,
the model compensates by skipping one of the bases in the codon
model (similarly for insertions). To avoid modelling any DNA
sequence as a gene with many errors or frameshifts, the
probability of this behavior is small. Models for certain intergenic
features such as repetitive extragenic palindromic sequences
(REPs) [38,39], emerged from what were initially more generic
models during the HMM training procedure i.e. estimation of
the parameters of the HMM.

The HMM was trained on approximately one million
nucleotides from the EcoSeq6 database of labelled genes (Kenn
Rudd, personal communication; [40]) and tested on the remainder
(about 325,000 nucleotides). Since EcoSeq6 is not fiilly annotated
yet (K. Rudd, personal communication), our results should assist
in identifying the locations of new genes and highlighting errors
and or inconsistencies in the data. For each contig in this test
set we used the Viterbi algorithm [41,29], a standard dynamic
programming procedure for HMMs, to find its most likely path
through the hidden states of the HMM. Based on the stochastic
model represented by our HMM, this path was then used to define
a parse of the contig into genes separated by intergenic regions.
Of about 240 labelled genes in the test set, we found about 80%
of the sequences labeled as protein-coding genes in EcoSeq6
exactly, i.e. with precisely the same start and stop codons. [The
actual percentage of exactly correct predictions on the test set
is about (85%), but since performance on the training set (about
1000 genes) was only 78% exactly correct, we believe that 80%
is a more realistic performance estimate.] Approximately 5%
were found within 10 codons of the start codon, 5% overlap by
at least 60 bases or 50% and about 5 % were missed completely.
For each of genes predicted by the parser but not labelled in
EcoSeq6, we performed a database search using the program
BLASTP [42] and the predicted protein sequence. The results
indicate that many of these appear to encode known proteins.
In addition, there are several instances where the HMM suggests
insertion or deletion errors in the labelling of the contigs.

The most distinctive aspects of our work are the complexity
of the intergenic model and the simplicity of the overall HMM
framework for combining coding measures and specific sensors
to produce useful parses. The Viterbi algorithm replaces the
Snyder-Stormo style dynamic programming approach in this
combination of coding measures and specific sensors. To
demonstrate the advantages of explicitly modeling the structures
in the intergenic region, we also trained and tested a much simpler
HMM that did not include a sophisticated intergenic model, but
instead relied only on the statistics of the codon models (Figure
1). While this model performed quite well also (about 70%
exactly correct), our more complex HMM performed
significantly better.

METHODS

A parser with a simple intergenic model

An HMM for DNA patterns generates sequences of A, C, T and
Gs according to a random process. The simplest HMM used in
this research is illustrated in Figure 1 and consists of a collection
of rings, all connected to a central state. Each ring possesses one
or more HMMs whose structure is essentially the same as that
used in our work on modelling protein families [29]. There is

one codon HMM for each of the 61 DNA triplets that code for
amino acids as well as a ring which generates the intergenic region
and its flanking stop and start codons.

The random process used by the HMM to generate a sequence
of nucleotides is a random walk starting in the middle of any
of the HMMs. Assume we begin at the central state and enter
any of the rings by traversing one of the arrows shown in Figure
1. Each such state transition has an associated probability and
transitions out of the central state are chosen at random according
to these probabilities (they sum to one). For example, a transition
leading to the AAC codon model HMM generates the three
nucleotides AAC with very high probability and then, with
probability 1, makes the transition back to the central state.
Subsequently, a new transition out of the central state is selected
randomly and independently of the previous transition. Choosing
one of the 61 codon models repeatedly results in a 'random gene'.
The gene eventually terminates upon entry into one of the rings
below the central state. The probability of such a transition is
fairly small. (This probability is roughly determined by the
number of intergenic regions divided by the number of codons
in a typical contig of E.coli DNA.) One stop codon HMM
generates both TAA and TGA, each according to its frequency
of occurrence in E.coli, and the other TAG. In the simple HMM,
a sequence of nucleotides representing an intergenic region are
produced independently and at random by looping in the state
labelled 'Intergene model'. Next, the start codon HMM generates
either ATG, GTG or TTG, each with the appropriate probability
(TTG is very rare in E.coli). A transition is made back to the
central state and the whole process repeated i.e. generation of
several random codons followed by another intergenic region and
so on. This entire procedure produces a sequence of nucleotides
that is statistically similar to a contig of E. coli DNA consisting
of a collection of genes interspersed with intergenic regions.

Each random walk has a well-defined probability determined
by the probability parameters of the HMM. This probability is
inverted and employed to locate the beginning and ends of genes.
For a given contig of E.coli DNA, the most likely random walk
through the HMM that generates this sequence is calculated with
a dynamic programming method known as the Viterbi algorithm
[described in (41); see also (29)]. The Viterbi algorithm generates
a parse of the contig, i.e. labels genes in the DNA by identifying
portions of the path that begin with the start codon at the end
of the intergenic ring, pass through several amino acid codon
HMMs, and return to one of the stop codons at the beginning
of the intergenic ring. The model parses a gene in one direction
only and thus finds all genes on the direct strand. To locate genes
on the opposite strand, the reverse complement (A and T
interchanged, G and C interchanged, and the sequence reversed)
is parsed as just described.

The gene model

The role of the codon HMMs in Figures 1 and 3 is similar to
the role played by codon usage statistics in many other gene
finding methods [3]. Codon usage statistics are far from what
would be expected if they were based on randomly chosen
nucleotides (see Table 1). In our model, the codons in a gene
are considered random and independent. Therefore, the
probability that a region is coding is simply the product of the
probabilities of the individual codons. The probability of an open
reading frame (ORF) consisting of codons c,, c2,...ck and
excluding start and stop codons is
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Prob(c,,...c t) = (1)
i=\

where p(c,) is the probability of codon c,- given in Table 1 for
E.coli. We define the gene index of an ORF to be the negative
logarithm of this divided by the length of the contig,

1
l{cv...ck)

' k-

(2)

1=1

The average value for a typical E. coli gene is equal to the entropy
of the E.coli codon probability distribution. (Since logarithm base
64 is used, the entropy of any codon distribution will be at most
1. Therefore, typical genes will have an index less than 1.) Using
an estimate of this distribution obtained from our training set
(Table 1) yields

average (I) = 0.935. (3)

For genes in the training set, relatively few have a large gene
index: roughly 16% have an index greater than 0.96, 7% greater
than 0.98, and only about 2.5% have a gene index larger than
1.0, see Figure 2. This gene index will be used to rank predictions
and resolve ambiguities of the predictions by the HMM.

The gene model uses the codon probability as the probability
of making a transition into the corresponding codon model.
Assume mat a particular path through the HMM starts in the
intergenic model and goes through the start codon model before
looping in the gene model k times (producing k codons), and then
enters one of the stop codon models before ending in the
intergenic model. This corresponds to an ORF of length k (not
counting start and stop codons) flanked by intergenic regions.
The probability of that path will contain the probability for the
ORF as given in Equation 1. Thus, using the Viterbi algorithm
with such a model gives an overall parser similar to Staden and
McLachlan's codon-usage method of locating genes [11], or the
related method of Gribskov et al. [12], and then following this
by a simple dynamic programming method like that of [21].

The 61 codon models are designed to generate one nucleotide
triplet each. In the main states (squares), the probability of
generating the letters of the codons is set to one and the others
to zero. To allow for the possiblity of frameshifts and sequencing
errors, insertions or deletions are modelled in the same manner
that insertions and deletions are modelled in our HMMs built
for protein families [29] (see Figure 1). For each of the three
nucleotides in the codon independently, there is a very small
probability, Pindei>

 m a t m a t
 nucleotide is deleted (i.e. missing in

the sequence). Similarly, independently between each pair of
consecutive nucleotides, before the first nucleotide, and after the
last nucleotide, a randomly chosen nucleotide is inserted with
probability /'jndei- Experiments (data not shown) indicated that
'zero-th order' codon statistics were almost as good as higher
order models, for example, those incorporating statistics on which
codons are likely to follow other codons. Thus, we focus on
constructing good models of the intergenic regions whDe keeping
the gene model simple. This contrasts with the work of others
such as Borodovsky and Mclninch [17,20].

A parser with a complex intergenic model

The more complex HMM (Figure 3), intergenic model consists
of several parts in addition to the start and stop codon models
described earlier. After generating the stop codon, the model
chooses either the transition to the long intergenic HMM or the
short intergenic HMM, with appropriate probabilities. The short
intergenic HMM tends to generate intergenic regions of lengths
from 1 to 14 or so, with statistics determined from examples of
such short intergenic regions in actual E.coli contigs. Similarly,
the parameters of the long intergenic model are adjusted to capture
the statistics of longer intergenic regions. The parameters of the
two intergenic models were estimated from a set of known
intergenic regions by a learning procedure known as the forward-
backward algorithm. As a result of the training process, the long
intergenic region develops patterns, without having to explicitly
encode them. For example, it discovers a structure about 5 to
10 nucleotides before the start codon that corresponds to the well
known Shine-Delgarno sequence [43] (positions marked 36-40
in Figure 4). The strong nucleotide preferences imediately

Table 1. The relative frequencies of the 64 codons (in percent) in the E.coli DNA training data used in this study ('Usage')

Codon

AAA

AAG
AAC
AAT

AGA

AGG

AGC
AGT

ACA

ACG
ACC

ACT

ATA

ATG
ATC
ATT

Aa

Lys
Lys
Asn

Asn

Arg

Arg

Ser
Ser

Thr

Thr
Thr

Thr

He

Met
De

He

Usage

3.5
1.1
2.4

1.4

0.1

0.1

1.6
0.7

0.5

1.4
2.5
0.9

0.3

2.5
2.7

2.8

Random

.3

.6

.4

.3

.6

.8

.7

.5

.4

.7

.5

.4

.3

.5

.4

.3

Codon

GAA

GAG
GAC

GAT

GGA

GGG

GGC
GGT

GCA
GCG

GCC
GCT

GTA

GTG
GTC
GTT

Aa

Glu
Glu

Asp

Asp

Gly

Gly

Gly
Gly

Ala
Ala
Ala

Ala

Val
Val
Val

Val

Usage

4.3

1.8
2.2

3.2

0.6
1.0

3.2
2.8

2.0

3.6
2.5
1.6

1.1
2.7

1.5
1.9

Random

1.6

1.8
1.7

1.5

1.8

2.2

2.0
1.8

1.7
2.0

1.8
1.6

1.5
1.8
1.6
1.5

Codon

CAA

CAG
CAC
CAT

CGA
CGG

CGC
CGT

CCA

CCG
CCC
CCT

CTA

CTG
CTC
CTT

Aa

Gin
Gin

His
His

Arg
Arg

Arg
Arg

Pro
Pro

Pro
Pro

Leu

Leu
Leu
Leu

Usage

1.3

3.0

1.1
1.2

0.3

0.4 :

2.4
2.5

0.8

2.6
0.4

0.6

0.3

5.7

1.0
0.9

landom

1.4

.7

1.5
1.4

1.7
>.O

.8

.6

.5

.8

.6

.5

.4

.6

.5

.4

Codon

TAA
TAG

TAC
TAT

TGA
TGG

TGC
TGT

TCA

TCG
TCC
TCT

TTA

TTG
TTC
TTT

Aa

#

*

Tyr

Tyr

*

Trp

Cys
Cys

Ser
Ser
Ser

Ser

Leu
Leu

Phe
Phe

Usage

*

*

1.4

1.5

*

1.4

0.7
0.5

0.6

0.8
0.9
0.9

1.1
1.2

1.8
1.9

Random

*

*

1.4

1.3

*

1.8

1.6
1.5

1.4

1.6
1.5
1.4

1.3
1.5
1.4
1.2

'Random' gives the corresponding values if codon usage was simply a result of the relative frequencies of the four nucleotides (A, 23.66, G, 27.89, C, 25.30,
and T, 23.15). 'Aa' and '*' denote amino acid and stop codon respectively.
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following the stop codon (positions 5-18) resemble a repetitive
extragenic palindrome or REP sequence [38,39]. All of these
features are considered by the Viterbi method when matching
a segment of the sequence to one of the intergenic models and
thus provide statistical information not used in other gene-finding
methods.

Models for overlapping genes

The possibility of overlapping genes are dealt with by two overlap
HMMs. In Figure 3, the box labelled 'Overlap models' represents
separate HMMs for handling overlaps of 1 or 4 nucleotides, each
forming its own ring with the central state. The HMM for
overlaps of 1 generates the sequences TAATG or TGATG with
high probability and other sequences with very small probability.
Each time this overlap model is encountered in a parse, TAA
or TGA is taken to be the stop codon for one gene and ATG
is the start codon for another gene (the middle nucleotide A is
shared). With high probability, the HMM for overlaps of length
4 produces sequences that match the regular expression NN[A-
G]TGANN, where N stands for any of the four nucleotides, and
[AG] means either A or G. TGA is assumed to be the stop codon
of a gene extending to the left, and the triplet ATG (or GTG)
the start codon of a gene extending to the right. The two Ns on
either side are needed to keep the overall HMM in the correct
reading frame both before and after the overlap. In the E.coli
training data, about 75% of the overlaps were of lengths 1 or
4. Instead of modeling the remaining overlaps (greater than 4
bases) explicitly, we find them in a special post-processing step
before the final parse of the contig is produced (described below).

Training data

We used the EcoSeq6 database [40,44] maintained and provided
to us by Kenn Rudd (personal communication). It contains about
460 contigs of E.coli DNA but is not fully annotated yet because
a significant amount of gene discovery remains to be done
(K.Rudd, personal communication). All contigs containing genes
not coding for proteins were omitted leaving 429 contigs which
were then split at random into a training set of 300 contigs and
a test set of 129 contigs. Because of extenstive stretches of bases
of unknown identity i.e. those labelled 'N', 5 of the contigs in
the training set were subsequently modified as follows. Runs of
Ns were excised leaving one contig shortened at one end
(adhEeco), three split into 2 fragments (bolAeco, entDeco,
fimBeco) and one split into 3 pieces (pyrGeco). Statistics for the
two sets are shown in Table 2.

To train models for the intergenic regions, all regions between
two genes in the direct strand (including stop and start codons)
were excised from the training sequences. Intergenic regions at
the beginning or end of a contig and those with non-standard
start or stop codons were removed, leaving a total of 424 for
training. By standard start codons we mean ATG, GTG, and
TTG, and by standard stop codons TAA, TGA, and TAG. For
each contig, the complementary sequence was generated and
intergenic regions between these genes generated in the same
way. Note that intergenic regions often contain genes in the
opposite direction.

Codon usage statistics were then calculated for the genes in
the training set (Table 1). Only genes that did not begin or end
a contig and had a length divisible by 3 were used. All codons
that did not contain the letter 'N', representing an unknown
nucleotide, were counted. The relative frequencies of the 61
codons that are not stop codons were then used to set the transition

probabilities in the codon models. Statistics were collected for
the usage of start and stop codons in the same manner.

Parameter estimation

Although the model contains many parameters (probabilities),
all but one (Pindei) are determined automatically from the
training contigs. Because of the problem of overfitting with such
a large number of parameters, the test contigs provide
independent cross validation of the results. The parameters of
the short and long intergenic models were established by a
learning procedure known as tint forward-backward algorithm,
a special case of the more general EM method [45]. A detailed
description of the forward-backward algorithm can be found
elsewhere [41]. In our implementation [29], we use the algorithm
to find a maximum a posteriori setting of the parameters given
the training sequences. The prior probabilities are exactly like
those used in [29], but rather than estimating this prior from other
sources, we use a uniform prior on the four possible nucleotides
in each HMM state that generates a nucleotide. The only
significant difference is that the distributions on the four
nucleotides in what are called 'insert states' in [29] are estimated
from the training sequences here, rather than being 'hardwired'
to the uniform distribution.

The long intergenic model (Figure 4) was trained on regions
with 10 or more bases between the stop and start codons, roughly
the minimum length of an intergenic region with a Shine-Delgarno
pattern. Because of the importance of this pattern, it was trained
in two steps. First, a model was trained on the 20 (or fewer)
nucleotides just before the start codon from intergenic regions
longer than 10. This model, of length 15, was incorporated into
a longer model and fixed while training the rest of the long
intergenic model. The final intergenic model had a length of 44.
This length was determined automatically during training by the
'model surgery' method described in [29]. The short model was
trained on sequences of length 1 to 14. (Note that some sequences
were used to train both.) This model had a length of 9.

Since there is an insufficient number of examples of frameshifts
and indel errors to estimate /^dei. the probability that a
nucleotide is inserted in a codon, this manually-tunable parameter
was fixed at 10"8 after a few experiments (this avoided
modelling any DNA as a gene with many errors or frameshifts).
The remaining parameters are all associated with transitions from
the central state to one of the HMMs or transitions between sub
HMMs. The probability of entering each codon model is set
proportional to the codon usage shown in Table 1. The constant
of proportionality, i.e., the overall probability of making a
transition from the central state to one of the codon models, is
called Pgene. Using the data, one can estimate Pgene by Pgent =
1 - lWcodon, where Ncotion is the average number of codons in
a gene. The other parameters are estimated empirically in a
similar fashion.

Post processing

The parser does make some mistakes. For instance, it sometimes
predicts a frame shift very near to a region of two overlapping
genes, instead of actually predicting overlap between two genes
(particularly long overlaps often lead to a 'frameshift'). Another
common mistake is to predict short genes entirely overlapping
with a long gene in the opposite direction. Predicted genes often
compete with a 'gene' on the opposite strand that is in the
complementary reading frame. These so-called 'shadow genes'
[20] arise because coding regions have an excess of self-
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complementary RNY (R:purine, Y: pyrimidine) type codons [46].
The codons that correspond to stop codons on the other strand
(TTA, TCA, and CTA) are uncommon codons which enhance
the probability of long ORFs opposite from real genes. If the
possibility of stop codons is ignored, the average gene index of
the complementary region is - £ p = , p(c,-) \ogM(p(Cj)), where
c, is the codon complementary to c,. The sum is only over 58
codons that do not have a stop codon as complementary codon.
The result is:

Average gene index for complementary region = 0.964 (4)

which is less than one and similar to the average index of a real
gene (0.936).

We have devised three simple rules to minimise these errors.
The parameters in these rules are rather ad hoc, but post-
processing appears fairly robust to small changes (the last rule
is the most sensitive). After genes have been predicted in both
directions of a contig of DNA the predictions are post-processed
as follows:

Each predicted frameshift is checked to see if there is a possible
stop/start pair near by. The first stop codon up to 200 bases
downstream from the frameshift that is in the reading frame used
prior to the frameshift is located. If such a stop codon is found,
then the nearest start codon is located (if any) up to 40 bases
before or after the stop codon in the reading frame used after
the frameshift. If both a stop and start codon are found the
predicted gene is split into two.

Genes predicted at either end of a contig that are less than 100
bases long and those in the middle which are less than 20 are
disregarded.

If two predicted genes in opposite directions overlap by more
than 15 bases, one of them is suppressed. If they are both long
(more than 400 bases), or if they have comparable lengths (ratio
of short to long > 0.5), the prediction with the lower gene index
(as given in Equation (2)) is retained. Otherwise, the shorter of
the two is suppressed (unless the longer one has already been
suppressed by an even longer one). (In principle, this can lead
to odd situations where genes suppress each other in a cascade,

Total of
61 triplet
models

A

G
C

A

G

c
-

G l
C

G

C

-

-

A • •
G

C
T

A

C

T

A M

G l
C

•

A

G
C
i ^ ^

^ ^ ^ ^

A

cT

Start codons

Stop codons
Intergene

model

Figure 1. HMM architecture for a parser for E.coli DNA with a simple intergenic model. The central state (shaded circle), generates no nucleotides and is used
to connect all the models. The 61 triplet or codon models above the central state all have identical structures, shown in detail for the codon AAC. Squares represent
main states; diamonds denote a state where a nucleotide can be inserted between consecutive codon nucleotides whereas circles generate no nucleotide and can be
used to delete one of the three nucleotides. The thickness of the arrows indicate the fraction of sequences making the given transistion. The insert state in the middle
of the intergenic model (diamond) produces random sequences from a base distribution estimated from the actual distribution of bases in the intergenic regions of
the training set. The four bases have almost the same frequency.
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but this is very unlikely in practice.) Merely comparing the gene
indices of the two opposite predictions is ineffective because a
very short spurious prediction often has a very low gene index.

1000

BOO

600

400

200

# 8 5 0.9 0.95 1 1.05 1.1
Gene index

0.9 0.95 1
Gene index

1.05

Figure 2. Distribution of gene index for 920 genes in the training set (lower dark
histogram). Any genes with a length not divisable by 3 or with unusual start codons
(not ATG, GTG and TTG) or stop codons (not TAA, TAG, and TGA) are not
counted. The inset shows the cumulative distribution, i.e. the fraction of genes
with a gene index below a certain value; the vertical line denotes the average
gene index. For comparison the larger histogram shows the gene index for orfs
(open reading frames) in the training data. The following criteria were used for
selecting orfs: 1) they do not have the same stop codon as a labeled gene, 2)
the length is more than 100 base pairs, 3) if several orfs had the same stop codon,
only the one with the lowest gene index was included.

One simple rule that works almost as well as is simply to always
suppress the shorter of the two.

RESULTS

The performances of the simple parser (Figure 1) and parser with
the more complex intergenic region model (Figure 3) were
evaluated by counting the number of whole genes correctly
predicted before and after post-processing in both the training
and test sets (Table 3). Parser mistakes on gene fragments at the
ends of contigs that were less than 100 bases long were not
counted, because such short end fragments generally contain too
little information for reliable recognition. The table does not
include a number of cases we discarded during testing. These
are 19 genes which had either a stop or start codon different from
the standard ones, a stop codon in the reading frame of the gene
or genes with many unknown bases. Also 17 predictions
subsequently identified as tRNA genes were disregarded. In order
to make a fair comparison the simple parser was augmented with
the two overlap models. Thus, the only difference between the
simple and the more complex parsers is the model of the
intergenic region.

The importance of modelling the intergenic region can be seen
by comparing the results from the complex and simple parsers
both with and without post-processing. In all cases, the rate of
false negatives ('Not found') is approximately 5—6%, i.e., the
two parsers discover roughly the same number of genes.
However, the complex parser has a better accuracy; more of the
discovered genes are perfect or almost perfect. Thus, better
modeling of sequence elements prior to the start of a gene ensures
selection of the correct start of the gene in situations with many
possible start codons.

The surprisingly good performance of the simple parser in
terms of identifying labelled genes is accomplished at the cost
of a much greater number of (possible) false positives (about 50%
more than the actual number of genes, which is around 1000
for the training set and 250 for the test set). However, post-

Model Of
Coding
region

AH
Gl

A
G
C r

A

C

Long intergenic regions

Short
Start codons

Stop codons Intergene models

Figure 3. HMM architecture for a parser for E.coli DNA with a complex intergenic model. The gene model above the central state that contains the 61 triplet

models is identical to the gene model of the simple parser shown in Figure 1. The detailed structure of the long intergenic model is shown in Figure 4.
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processing reduces this number to less than half without degrading
the number of correctly predicted genes significantly. It seems
like the post-processing is doing most of the work, choosing
between ORFs in opposite directions. This provides good
evidence that the post-processing rules work.

For the more complex parser, post-processing moves about
4% of the predictions from 'partly' found to 'perfect' (for the
training set), because it resolves overlapping genes. The raw
parser often predicts two overlapping genes as one long gene
with a 'frame shift' close to the region of the overlap (before
the stop codon of the first gene). Provided the predicted frame
shift is within 200 bases of the downstream stop codon, post-
processing will resolve this situation. Particularly long overlaps
that are not modelled explicitly are found this way. Note that
the start of the second gene is just chosen as the start codon closest
to the stop codon of the other gene (40 bases upstream or
downstream from the stop codon), which might not be the optimal
one. As with the simple parser, the post-processing also reduces
the number of possible false positives quite considerably.

The parser performs better on the test set than on the training
set, which is the opposite of what one would expect if overfitting
the training data was of concern. We believe that this is simply
fortuitous. For instance, the test set contains only one instance
of a gene overlap of more than 4 bases, whereas the training
set contains 34 such instances. Note that each such instance
influences the prediction of two genes, meaning that about 7%
of the training genes are influenced and less than 1 % of the test
genes.

Partly discovered genes and false negatives

Table 4 gives more details on genes in Table 3 that were either
'partly' found or 'not found' (genes 1 —101). Since EcoSeq6 is

Table 2. Statistics on the 429 contigs of E.coli DNA used in our experiments.

Training set Test set

Total number of contigs
Total number of characters

Number of genes
Average length (internal genes)

Overlaping genes, length 1

Overlaping genes, length 4

Overlaping genes, length > 4

300
1,271,528

1007

1008

50

40

34

129
324,684

251

1015

7

12

1

not fully annotated (K.Rudd, personal communication), some of
the errors made by the parser may be incorrect labelings in the
database or genuine errors in the sequences. We suspect the errors
for genes 102 -107 and 109 -118 fall into this category because,
for example, the lengths of genes 113 and 115 as given in
EcoSeq6 are each not divisible by 3. The parser often makes
predictions that start a few codons before or after the actual start
codons. Those less than 10 codons off, 'Almost perfect', were
not investigated any further. In the training set, 28 predictions
(2.8%) have a start codon between 10 and 20 codons from the
correct one and 49 (4.9%) have a larger deviation (genes 1 - 8 4
in Table 4a that are not marked with ' ~ ' ) . Most of the predictions
that differ by more than 20 codons occur in genes with a large
gene index (those denoted with ' #').

There are 13 cases of genes with inframe stop codons or
stop/start codons that differ from those given in EcoSeq6
(103-107, 109-113, 115-118). The two genes ygiB (number
6 in Table 4a) and ygiA (listed as undiscovered in Table 4b) have
a very large overlap of 146 bases and the parser has concatenated
them into one. In four cases a gene was predicted as being two
genes (108-111). There are 10 instances (86-95) of the parser
predicting a 'frameshift' or error, 8 of these occur in genes with
a high gene index.

In Table 4b, the 13 false negatives (EcoSeq6 labelled genes
that are not identified by the parser) consist of correctly predicted
genes that are suppressed by shadow genes (96-101, 112-118),
genes with different start/stop codons or inframe stop codons and
very short genes. It is unclear why genes 98 and 99 are not found.
The majority of false negatives are listed separately in Table 4c,
because they have unusual codon statistics giving them an
abnormally large gene index. Of the 53 false negatives in the
training set, 32 had a gene index of more than 1.0, 17 had a
gene index between 0.98 and 1.0, and 4 had a gene index between
0.96 and 0.98. These numbers are all fairly high compared to
the average of 0.935.

Possible new genes or 'false positives'

Some of the predictions considered as possible false positives
may be real genes which have not been labelled yet whilst others
might be spurious. We examined genes predicted by the complex
parser (after post-processing) in more detail by translating each
into the protein sequence and performing a database search using
BLAST [42] and a non-redundant database composed of Swiss-

Table 3. Performance of the parsers with simple and complex intergenic models in terms of prediction of whole genes

Type of
intergenic
model

Complex

Simple

Post-
processing

None

After

None

After

Data set

Training
Test
Training
Test

Training
Test
Training
Test

EcoSeq6 genes found

Perfect

731 (74.7)
203 (86.0)
767 (78.7)
201 (85.2)

692 (70.8)
179 (75.8)
694 (71.3)
174 (72.5)

by parser

Almost
perfect

57 (5.8)
12 (5.1)
62 (6.4)
13 (5.5)

81 (8.3)
23 (9.7)
81 (8.3)
22 (9.3)

Partly

141 (14.4)
11 (4.7)
88 (9.0)

8 (3.4)

163 (16.7)
25 (10.6)

143 (14.7)
23 (9.7)

Not

found

50(5.1)
10 (4.2)
57 (5.9)
14 (5.9)

42 (4.3)
9 (3.8)

55 (5.7)
17 (7.2)

Possible
false
positive

665
191
310

82

1524
412
331
98

'Perfect' indicates cases where the starts and ends of the predicted genes are the same as diose given in EcoSeq6; 'Almost perfect', the start codon of the prediction
is within 10 codons of that specified in EcoSeq6 (and in the same reading frame); 'Partly', the prediction overlaps the labelled gene by at least 60 bases or 50%;
'Not found', EcoSeq6 genes that are not predicted by the parser (false negatives); and 'Possible false positive', genes that are predicted but not labelled as such
in EcoSeq6. Numbers in parenthesis are in percent.
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Prot 27.0, PIR 38.0 and translated GenBank 79.0. Of 286
predicted genes, 95 matched a known protein. Some of these
are known E. coli genes which have been not labeled in EcoSeq6
but will be in EcoSeq7 (Kenn Rudd, personal communications).
Of the rest, 63 had a significant similarity to a known protein
(Poisson Probability P < 0.05) and the rest (128) did not have
any significant similarity. At the same time we became aware
of similar work by Mark Borodovsky, Eugine Koonin and Kenn
Rudd (personal comunications) carried out with a different
method, but with strongly correlated results. Details of their
results are given in their forthcoming paper. Based on further
examination and analysis of the results from the parser, we found
a new putative S-adenosyl-L-methionine methyltransferase
domain that appears to be present in proteins from a variety of
phylogenetically diverse organisms and organelles. These results
are described in [47].

DISCUSSION

Here we have described a completely automated HMM based
method that makes predictions about the locations of genes in
E.coli DNA. The predictive power of the method was tested in
terms of finding whole genes in EcoSeq6, a database of labelled
E.coli DNA contigs. The HMM parser predicts about 80% of
the genes correctly i.e. same stop/start codons as that given in

EcoSeq6 and another 4.5—6% almost correctly (about 6% better
than a model with a very simple treatment of the intergenic
region). About 5% the genes are missed completely, almost
entirely due to those genes having unusual codon statistics. Of
the remaining roughly 10% of the genes, the parser makes fairly
good predictions in about half of these instances. This gives a
total rate of useful predictions of about 90%. The results from
our parser should aid in the process of identifying the location
of new genes and highlighting errors and inconsistencies in the
data. Indeed, we find that many of the genes predicted by the
parser but not identified in EcoSeq6 do correspond to existing
sequences in the protein databases. Examination of the results
from performing database searches on these false positives
suggests the possible function of some of these and revealed a
novel putative methyltransferase domain present in a
phylogenetically diverse group of organisms [47].

With the current approach the parser is not very likely to
perform better than 90%. Firstly, there is no reason to believe
that the 5 % of the genes that the parser missed because of unusual
codon usage can be found with the kind of model we use for
the coding region since it only looks at codon usage. Similarly,
many of the roughly 5 % serious errors the parser makes occur
in genes with unusual codon usage. To locate these genes
correctly would require a more sophisticated gene model. One
significant improvement in the model of codon usage would be

Figure 4. The model for long intergenic regions shown in Figure 3. This model was trained by the forward-backward algorithm on 424 intergenic regions of lengths

larger than 10.
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Table 4. Details on the 'partly' and 'not found' genes of Table 3 and labelled EcoSeq6 genes with possible errors (incorrect predictions of 102-118 were not counted)
_

Labelled
EcoSeq6

Gene

1 glpG

2 rnpA t

3 hemB

4 secD

5 yfhC

6 ygiB

7 fruF' •
8 rpoS *

9 rbsD

10 bioD *
11 srlQ

12 ygdB t

13 galE

14 hypE

15 yjeC *

16 ygjC

17 fepB

18 dnaE
19 sdaA
20 yhbD' "
21 hisF

Len.

831
360

1008
1848
537

705

313
1089
420
660
672

366
1053
969
258

441

957
3483
1347
397

777

1

Start I
of 1

33 1

33 I

33 1

33 1

33 1

33 1

34 1

36 1

36 1

39 I

39 I

42 I

42 1

42 I

42 I

42 1

48 I

48 1

48 1

49 I

51 1

1 Labelled

1 EcoSeq6

1 Gene

1 22 cysM

1 23 pcnB

1 24 phnJ

1 25 trxA

1 26 deoD

1 27 gcpE

1 28 ycaG t

I 29 yebD

1 30 cyoA

1 31 araE

1 32 speC

1 33 recO

1 34 rho

1 35 fes t

1 36 yfhB

1 37 yggD

1 38 pcm

1 39 prs

1 40 bisC

1 41 rfaq f

1 42 dnaA

Len.

912
1407

846
384

720
1119

294
453
948
1419

2196
729
1260
1125
573
402
627
948
2181
969

1404

1
Start I
of 1

54 I

54 1

54 I

54 I

57 I
57 I

57 I

57 I

60 I

60 I

60 I

60 1

60 I

63 1

63 1

66 I

66 1

66 1

66 I

66 1

69 1

1 Labelled

1 EcoSeq6

1 Gene

1 43 yacA t

1 44 yjeB *

1 45 mvrA

1 46 glgP

1 47 xseA

1 48 phnA

1 49 araJ t

1 50 aroX "*

1 51 dmsA

1 52 yjjB t

1 53 tdk *

1 54 cirA

1 55 lacA #

1 56 ychE t

1 57 carA

1 58 cdsA «

1 59 ybeB

1 60 fabA " •
1 61 glpR *

1 62 cysB *

1 63 yhdG #

Len.

444
426
807
2430

1371

336

1185
435
2358
387
618

1992
612
549
1149

750
210
516

900
975

966

1
Start 1
of 1

69 1

72 I

73 1

75 1

78 1

78 1

84 1

84 I

87 I

90 I

90 I

96 I

96 1

99 I

105 1

108 I

108 1

108 1
111 I
114 1
120 1

1 Labelled

1 EcoSeq6

1 Gene

1 64 fhuE

1 65 leuS

1 66 lipA

1 67 xylE

1 68 ycaE

1 69 sohA *

1 70 yicD »

1 71 menD »

1 72 trg -

1 73 yggC #

1 74 nirC

1 75 bar' -*

1 76 celB

1 77 cynT #

1 78 rfe

1 79 malS

1 80 mcrB #

1 81 ydbD' ""*

1 82 cadC #

1 83 hsdS «
1 84 hsdR

Len.

2190
2583
846
1476

675
336

825
1389

1608
474
555

478
1254
348
774
2031
1398
1050
1539
1395
3273

Start
of 1

129 1

147 I

152 I

180 I

183 1

195 1

198 1

204 I

228 I

240 I

252 I

252 I

279 I

309 I

330 1
477 I
501 1

534 1

558 1

1038 1
2097 I

b)

85
86
87

88
89

90
91

92
93
94

95
96
97
98

99
100
101
102
103
104
105

106
107

108
109
110
111
112

113
114
115
116
117

118

fiame

thdF

ygjA

-ybjB'

~rhsE'

rhsD

"rhsB

rhsA

"rhsC

yjdA

"ydiB'

*mukB

"nadR1

~pheH
rpmJ
ybdD

trpL

~uxaB'

"fepE

dacB

--ydbA'
yadB'

holC

"infC

-ycaF'

fdnG

barA

"fdhF

TerC

-ydbB'

rpsG

prfB

~holA'
ssrA

micF

Labelled EcoSeq6

Len.

1320
876
369

2047

4281
4236
4134

4194
2229
520

4605
366

45
117

198
45
137
267

1434

1129
600

443

543

293
3051
2757

2148
22

3497 ft
537

1099 *
230

362
174

Gene
Index

1.030 <
0.989 (
0.986 1

0.975 1
0.972 i
0.962 X
0.962 *

0.961 1 '•

0.958
0.957

0.922
0.958
0.957
0.957

0.948
0.938
0.932

!
!

!
0.958

0.939
0.936
1.054 f

!

!

!
1.124 #

0.951
!
!
>

!

!

Gene

begin-end

in contig

11894-10575
334-1209

1-369

1-2047
460-4740

101-4336
759-4892
101-4294

13444-15672
1-520

459-5063
3403-3768

7131-7087

3198-3082

12848-13045
12670-12626

150-286
10230-10496

? 993-2426 ?

1-1129 ?
? 2295-1696 ?

3595-3153 ?
? 8498-7956

1-293
451-3501
114-2870 ?

2223-76

? 270-249 ?

? 3739-7235
3984-3448
2712-1614
230-1

? 147-508 ?

? 1477-1650 ?

(25)

(15)

( 1)
(10)

( 1)

(24)
( 3)
( 5)

( 1)

1
1 _1

1
1
1

1 1
1 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
I

1
1

Predicted EcoSeq6 Gene I

begin-end

11317-11141
331-1240

1-323

47-1532
460-4168
101-3879
759-4590

101-4109
13444-15916

5-672

459-4909
» +
*

*

*
*
* +

10359-x
992-2425

1-1170
2043-1693
3595-3137
8390-x

8-115 * 112-318
1451-1038 * 1087-x

1114-821 t 815-2869

12223-1804 t 1755-x

1
1
1
1
1
1
1

*

* +
* +

* +
*

*
*

Frameshift I

or error I

at base H 1

984 I

160 I

1525 I

4160 |

3858 I

4510 I

3868 I

15664,15915 I

318 I

4621 I

1

1

1
1
1
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c)

Gene Index

> 1.0

> 0.98

> 0.96

Undiscovered labelled EcoSeq6

ydcA

-ydcB>

-yzzA

mcrA

relF

yibA

xylU

ygiA

bicB

cysX

"glnD3'

gigs

PgpA

"div>

dsdC

fimB

yidD

fimB

hisL

ycfA

rem

yiaB

ygdA

hycA

avtA

mcrC

sulA

phnQ

"sufl'

yjfA

pyrL

fimE

tnaL

-glnD5'

"yeiA'

yhhA

Gene

yebB

selC

yjjc

fruL

leuL

rfaL

yibB

pinO

ivbL

rfaJ

rfal

rfaY

rfaK

rfaZ

rfaS

radC

rfaB

"priB

-*fucT'

"rmf j

"ycdA 1

'trkG I

"appY I

"lit I

""yahA' 1

'ompT 1

-pheL 1

"rcsA 1

"fecE 1

(a) Genes predicted with the start codon more than 10 codons from the correct location. Last column shows how far the predicted start is from the correct start.
(b) Other mistakes made by the parser and possible errors in the database labeling, 'begin-end' gives the nucleotide positions for the beginnings and ends of the
labelled genes as given in EcoSeq6 and for the genes predicted by the parser; 'x' signifies that the stop codon is in correct location, (c) Genes undiscovered by
the parser. All have high gene indices. The symbols are as follows: ".': gene located at the beginning or end of contig; ' - ' : genes from the test set; ' # ' : gene
has a large gene index (> 0.96); '&': genes whose length is not divisible by 3 (note genes 107 and 111 are very short); '!': gene index not calculated because
of in frame stop codon(s) or many codons with unknown bases (for example, genes 85 and 113 have 71% and 33% dirty codons respectively); '*': labelled gene
that was not predicted; ' + ': predicted gene is suppressed by a shadow gene; '? ': potentially mislabelled start (left hand side) and stop (right hand side) codons.
The number in parenthesis is the number of stop codons in the reading frame of the gene.

to take into account the non-stationary character of the G+C vs
A+T content. It has been shown that there is a significant drift
in the average G + C content in the E.coli genome over periods
of several kilobases that cannot be accounted for solely by the
change from coding to noncoding regions [48]. A new class of
'Walking Markov' models has been proposed to model this
phenomenon. The results of some preliminary calculations to see
if extreme variations in G+C content could account for some
of our erroneous predictions show that this indeed may account
for some of the problems, but that it does not account for all
of it. At this point, it is still unclear as to the best means to
combine the walking Markov idea with the kind of hidden
Markov model that we use. However, we suspect that other
nonstationary aspects of the time series represented by the E.coli
genome will also have to be taken into account.

The modularity of HMM design, exploited in modeling proteins
[49], is a great advantage in building complex models to capture
the structure of biological sequences. In future work, we plan
to incorporate more explicit models of intergenic regulatory
regions and of structural RNA coding regions. We also intend
to try to integrate our protein models with HMMs at the level
of DNA by having a subHMM for each of the widely occurring
protein motifs and domains, so that a DNA parser could pick
out proteins in a particular family at the DNA level as well. There
is a dual advantage in this, because the more precise the model
(e.g., modeling all the motifs instead of just the triplets in a gene,
and explicitly modeling regulatory regions), the more accurate
the parse. This arises because consideration of higher-level
patterns constrains the parse much better than low level statistical
information alone.

Post script

An electronic mail server has been set up with the program
described in this paper. It is possible to mail an E.coli DNA
sequence to the server, and it will reply with a parse. Send a
mail message to ECOPARSE@cse.ucsc.edu containing the single
word 'help' to obtain information on how to use the parser.

ACKNOWLEDGEMENTS

We would like to thank Ken Rudd, Mark Borodovsky, Flemming
Hansen, Jacob Engelbrecht, Soren Brunak, Richard Durbin, and
Harry Noller, for valuable comments on this work. Special thanks
to Kenn Rudd for supplying the labeled E.coli sequences used
in these experiments. This work was supported by NSF grants
CDA-9115268 and IRI-9123692, ONR grant N00014-91-J-1162,
NIH grant GM17129, and a grant from the Novo Nordisk
Foundation.

REFERENCES

1. Kroger, M., Wahl, R., and Rice, P. (1993) Nucleic Acids Res. 21,
2973-3000.

2. Rudd, K. (1993) ASM News 59, 335-341.

3. Staden, R. (1990) Meth. Enzymol. 183, 163-180.
4. Lapedes, A., Barnes, C , Burks, C , Farber, R., and Sirotkin, K. (1989)

In G. Bell and T. Marr, (ed.), Computers and DNA, SFI Studies in the
Sciences of Complexity, volume VII, pp. 157-182 Addison-Wesley.

5. Brunak, S., Engelbrecht, J., and Knudsen, S. (1991) J. Mol. Biol. 220,
49-65.

6. O'Neill, M. (1992) Nucleic Acids Res. 20, 3471-3477.

7. Stormo, G. and Hartzell, G. W. (1989) Proc. Nail. Acad. Sd. U.S.A. 86,
1183-7.

8. Lawrence, C. E. and Reilly, A. A. (1990) Proteins 7, 41 -51 .
9. Cardon, L. R. and Stormo, G. D. (1992) / Mol. Biol. 223, 159-170.

10. Fickett, J. and Tung, C. (1992) Nucleic Acids Res. 20, 6441-6450.

11. Staden, R. and McLachlan, A. D. (1982) Nucleic Acids Res. 10, 141 -156.
12. Gribskov, M., Devereux, J., and Burgess, R. (1984) Nucleic Acids Res.

12, 539-549.

13. Fickett, J. (1982) Nucleic Acids Res. 17, 5303-5318.
14. Uberbacher, E. and Mural, R. (1991) Proc. Nail. Acad. Sci. U.S.A. 88,

11261-11265.

15. Farber, R., Lapedes, A., and Sirotkin, K. (1992)/ Mol. Biol. 226,471-479.
16. Craven, M. and Shavlik, J. (1993) In Proc. of the Hawaii Int. Conf. on

System Sciences, Los Alamitos. CA: IEEE Computer Society Press, pp.
773-782.

17. Borodovsky, M., Sprizhitsky, Y., Golovanov, E., and Alexandrov, A. (1986)
Molecular Biology 20, 1145 -1150.

18. Churchill, G. A. (1989) Bull. Math. Biol. 51, 79-94.

19. Tavare, S. and Song, B. (1989) Bull. Math. Biol. 51, 95-115.

 at U
n
iv

ersity
 C

o
lleg

e L
o
n
d
o
n
 o

n
 F

eb
ru

ary
 5

, 2
0
1
4

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


4778 Nucleic Acids Research, 1994, Vol. 22, No. 22

20. Borodovsky, M. and Mclninch, J. (1993) Computers and Chemistry 17,
123-133.

21. Snyder, E. and Stormo, G. (1992) Nucleic Acids Res. 21, 607-613.

22. Searls, D. B. (1992) American Scientist 80, 579-591.
23. Searls, D. B. (1994) GenLang Manual, Dept. of Genetics, U. Penn. PA

19104.

24. Searls, D. B. and Dong, S. (1993) In H. A. Lim, J. Fickett, C. R. Cantor,
and R. J. Robbins, (ed.), Proc. 2nd Int. Conf. on Bioinformatics,
Supercomputing, and Complex Genome Analysis, World Scientific: pp.
89-101.

25. Collado-Vides, J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 9405-9409.

26. Asai, K., Hayamizu, S., and Onizuka, K. (1993) In Proc. of the Hawaii
Int. Conf. on System Sciences, Los Alamitos, CA: IEEE Computer Society
Press, pp. 783-791.

27. Stultz, C. M., White, J. V., and Smith, T. F. (1993) Protein Science 2,
305-315.

28. Baldi, P., Chauvin, Y., Hunkapillar, T., and McClure, M. (1994) Prnc.

Natl. Acad. Sci. U.S.A. 91, 1059-1063.

29. Krogh, A., Brown, M., Mian, I. S., Sj'olander, K., and Haussler, D. (1994)
J. Mol. Biol. 235, 1501-1531.

30. Brown, M. P., Hughey, R., Krogh, A., Mian, I. S., Sjolander, K., and
Haussler, D. (1993) In L. Hunter, D. Searls, and J. Shavlik,(ed.), Proc.
of First Int. Conf. on Intelligent Systems for Molecular Biology, Menlo Park,
CA: AAAI/MIT Press, pp. 47-55.

31. Hughey, R. (1993) Technical Report UCSC-CRL-93 -14 University of
California Santa Cruz, CA.

32. Tanaka, H., Ishikawa, M., Asai, K., and Konagaya, A. (1993) hi First Int.
Conf. on Intelligent Systems for Molecular Biology, Menlo Park: AAAI
Press, pp. 395-401.

33. States, D. J. and Botstein, D. (1991) Proc. Natl. Acad. Sci. U.S.A. 88,
5518-5522.

34. Koop, B. F., Rowan, L., Chen, W. Q., Deshpande, P., Lee, H., and Hood,
L. (1993) Biotechniques 14, 442-447.

35. Churchill, G. A. and Waterman, M. S. (1992) Genomics 14, 89-98.
36. Gesteland, R. F., Weiss, R. B., and Atkins, J. F. (1992) Science 257,

1640-1641.

37. Farabaugh, P. J. (1993) Cell 74, 591 -596.
38. F. C. Neidhardt, J. L. Ingraham, K. Brooks Low, B. Magasanik, M.

Schaechter, and H. E. Umbarger, (ed.) (1987) Escherichia coli and Salmonella
typhimurium. Cellular and molecular biology, volume 1, American Society
for Microbiology, Washington, D.C.

39. Stern, M. J., Ames, G. F., Smith, N. H., Robinson, E. C , and Higgins,
C. F. (1984) Cell 37, 1015-1026.

40. Rudd, K., Miller, W., Werner, C , Ostell, J., Tolstoshev, C , and Satterfield,
S. (1991) Nucleic Acids Res. 19, 637-647.

41. Rabiner, L. R. (1989) Proc. IEEE 77, 257-286.
42. Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. (1990) J.

Mol. Biol. 215, 403-410.

43. Shine, J. and Delgamo, L. (1974) Proc. Natl. Acad. Sci. U.S.A. 71,
1342-1346.

44. Rudd, K. and Miller, W. (1992) In Jeffrey Miller, (ed.), A Short Course
in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia
coli and Related Bacteria., pp. 2.3—2.43 Cold Spring Harbor Laboratory
Press Cold Spring Harbor, New York.

45. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) J. Roy. Statist.
Soc. B39 , 1-38.

46. Shepard, J. C. W. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 1596-1600.
47. Krogh, A., Mian, I. S., and Haussler, D. (1993) Technical Report UCSC-

CRL-93 —33 University of California at Santa Cruz Computer and Information
Sciences Dept., Santa Cruz, CA 95064.

48. Fickett, J., Torney, D., and Wolf, D. R. (1992) Genomics 13, 1056-1064.

49. White, J., Stultz, C , and Smith, T. (1994)Math. Biosciences 119, 35-75.

 at U
n
iv

ersity
 C

o
lleg

e L
o
n
d
o
n
 o

n
 F

eb
ru

ary
 5

, 2
0
1
4

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/

