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A Hidden Markov Random Field Model for

Genome-wide Association Studies

Hongzhe Li, Zhi Wei, and J M. Maris

Abstract

Genome-wide association studies (GWAS) are increasingly utilized for identify-

ing novel susceptible genetic variants for complex traits, but there is little con-

sensus on analysis methods for such data. Most commonly used methods include

single SNP analysis or haplotype analysis with Bonferroni correction for multiple

comparisons. Since the SNPs in typical GWAS are often in linkage disequilib-

rium (LD), at least locally, Bonferonni correction of multiple comparisons often

leads to conservative error control and therefore lower statistical power. In this pa-

per, we propose a hidden Markov random field model (HMRF) for GWAS anal-

ysis based on a weighted LD graph built from the prior LD information among

the SNPs and an efficient iterative conditional mode algorithm for estimating the

model parameters. This model effectively utilizes the LD information in calcu-

lating the posterior probability that a SNP is associated with the disease. These

posterior probabilities can then be used to define a false discovery controlling

procedure in order to select the disease-associated SNPs. Simulation studies

demonstrated the potential gain in power over single SNP analysis. The proposed

method is especially effective in identifying SNPs with borderline significance at

the single-marker level that nonetheless are in high LD with significant SNPs. In

addition, by simultaneously considering the SNPs in LD, the proposed method

can also help to reduce the number of false identifications of disease-associated

SNPs. We demonstrate the application of the proposed HMRF model using data

from a case-control genome-wide association study of neuroblastoma and identify

one new SNP that is potentially associated with neuroblastoma.
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ABSTRACT

Genome-wide association studies (GWAS) are increasingly utilized for identifying novel sus-

ceptible genetic variants for complex traits, but there is little consensus on analysis methods

for such data. Most commonly used methods include single SNP analysis or haplotype anal-

ysis with Bonferroni correction for multiple comparisons. Since the SNPs in typical GWAS

are often in linkage disequilibrium (LD), at least locally, Bonferonni correction of multiple

comparisons often leads to conservative error control and therefore lower statistical power.

In this paper, we propose a hidden Markov random field model (HMRF) for GWAS analysis

based on a weighted LD graph built from the prior LD information among the SNPs and

an efficient iterative conditional mode algorithm for estimating the model parameters. This

model effectively utilizes the LD information in calculating the posterior probability that

a SNP is associated with the disease. These posterior probabilities can then be used to

define a false discovery controlling procedure in order to select the disease-associated SNPs.

Simulation studies demonstrated the potential gain in power over single SNP analysis. The

proposed method is especially effective in identifying SNPs with borderline significance at

the single-marker level that nonetheless are in high LD with significant SNPs. In addition,

by simultaneously considering the SNPs in LD, the proposed method can also help to re-

duce the number of false identifications of disease-associated SNPs. We demonstrate the

application of the proposed HMRF model using data from a case-control genome-wide as-

sociation study of neuroblastoma and identify one new SNP that is potentially associated

with neuroblastoma.

1 Introduction

Genome-wide association studies (GWAS) are increasingly utilized for identifying novel sus-

ceptible genetic variants for complex traits, but there is little consensus on optimal study

design and analysis. GWAS are designed to scan the entire genome for the identification

of genetic variations associated with phenotypic traits, such as a disease condition, blood
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pressure, or body mass index. These studies usually examine several hundred thousand sin-

gle nucleotide polymorphisms (SNPs) that explain most of the genetic variation across the

genome as well as SNPs in a large array of candidate gene regions. Most GWAS involve

some form of multistage design, which includes an initial scan of hundreds of thousands of

SNPs on a sample of cases and controls, followed by testing a subset of the most promising

markers on independent samples. Additional markers may also be included at later stages

to better characterize the full spectrum of genetic variation in the targeted regions. GWAS

have been demonstrated to be a powerful approach for the detection of genetic variants

related to complex traits, such as age-related macular degenerative diseases (Klein et al.,

2005), prostate and breast cancers (Hunter et al., 2007), and type 2 diabetes (Scott et al.,

2007). The Welcome Trust Case-Control Consortium has recently published a GWAS of

seven diseases using 14, 000 cases and 3000 shared controls (Nature, 2007). The success of

these studies has provided solid evidence that GWAS represent a powerful approach to the

identification of genes involved in common human diseases.

To date, the analytical methods of GWAS have largely been limited to the single SNP or

SNP-SNP pair analysis, coupled with statistical techniques such as the Bonferroni procedure

for controlling multiple comparisons. However, since SNPs in typical GWAS are in LD

locally, simple Bonferonni correction can potentially be conservative and therefore lead to a

loss of statistical power. In addition, if multiple SNPs are all in LD with the true disease

variants, effectively utilizing the information from multiple SNPs in LD can potentially

increase the power of detecting the SNPs associated with the disease. Local LD information

has been mainly utilized in haplotype analysis based on sliding windows (Huang et al., 2007).

However, such haplotype analysis may lead to loss of power due to high degrees of freedom.

In addition, it is often arbitrary to decide how many SNPs to consider in typical haplotype

analysis. Browning and Browning (2007) developed an efficient multilocus association test

for whole genome association studies using localized haplotype clustering, effectively using

the local LD information, and demonstrated its application to the Wellcome Trust Case-

Control Consortium data (Browning and Browning, 2008). Eskin (2008) proposed a data-
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adaptive multiple comparison procedure to incorporate prior information of LD structure

and molecular function in GWAS in order to increase power.

In this paper, we propose to formally incorporate LD information among the SNPs derived

from the dataset itself or from the HapMap data (Altshuler et al., 2005) into identifying the

disease-associated SNPs. In particular, we will first build a weighted LD graph based on pair-

wise LD measures among the SNPs. Such measures can either be derived from the HapMap

project (Altshuler et al., 2005) or from the dataset itself. We then propose a hidden Markov

random field model on such an LD graph in order to compute the posterior probability that a

SNP is associated with the disease. The key is that the posterior probability that a given SNP

is associated with disease depends not only on the genotype data observed at this SNP, but

also on the genotypes of the SNPs that are in strong LD with this particular SNP. In addition,

we propose a simple empirical Bayes method to borrow information across all the markers

in estimating the model parameters. We provide an efficient iterative conditional mode

(ICM) algorithm (Besag, 1986) to estimate the parameters and Gibbs sampling approach

for estimating the posterior probabilities. These posterior probabilities can be used to define

a false discovery rate (FDR) controlling procedure in order to select the relevant SNPs.

Different from the standard FDR control procedure of Benjamini and Hochberg (1995),

this posterior probability-based FDR control accounts for SNP dependency explicitly and

is expected to gain power in detecting the disease-associated SNPs. The proposed HMRF

model for accounting for the LD dependency of the SNPs is somewhat similar to some

recently developed HMRF models for the analysis of microarray gene expression data in

order to account for known regulatory network information (Wei and Li, 2007; Wei and Li,

2008; Wei and Pan, 2007).

The rest of the paper is organized as follows: in Methods, we present our proposed HMRF

model for SNPs data and the ICM algorithm for estimating the parameters. We also present

a Gibbs sampling approach to estimate the posterior probabilities and use these probabilities

to define the false discovery rate. In Results, we present results from the analysis of a case-

control neuroblastoma dataset and simulation results to demonstrate the methods and to
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compare the power with single-marker analysis. Finally, we present a brief summary and

discussion of our methods and results.

2 A Hidden Markov Random Field Model for GWAS

2.1 Weighted LD graph and a Markov random field model

Suppose we have m cases and n controls that are genotyped over a set of p SNPs. Let

S = {1, · · · , p} denote the SNP index. We want to determine which SNPs in S are associated

with disease. Let Y = (Y1, ..., Ys, · · · , Yp) be the observed genotype data for the p SNPs,

where Ys itself is a vector Ys = (ys1, ..., ysm; ys(m+1), ..., ys(m+n)), where ysi is the observed

genotype for the ith individual at the sth SNP. The typical single SNP analysis often ignores

the LD among these SNPs. Here we propose to develop a HMRF model to take into account

the LD information in identifying the disease-associated SNPs. We first construct a weighted

undirected LD graph G based on pair-wise LD information derived from the data or from

the HapMap project. Specifically, an edge between SNPs s and s′ is drawn with weight

wss′ = I(r2
ss′ > τ)r2

ss′ ,

if wss′ 6= 0, where I(.) is the indicator function, r2
ss′ is the r2 measurement of LD between

SNPs s and s′ and τ is a pre-determined cutoff value. We use τ = 0.4 in our simulations

and analysis. An example of such a LD graph is given in Figure 1 for the 998 SNPs we use

for simulation in Section 3.2.

For a given SNP s, we then define a random indicator variable as

Xs =







1 if SNP s is associated with the disease

0 if SNP s is not associated with the disease.

For two SNPs s and s′ that are linked on the LD graph, i.e., if the r2 between these two

SNPs are greater than τ , we expect that Xs and Xs′ are dependent. We propose to model

such dependency using a simple discrete Markov random field model (Besag, 1974; Besag,

4
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1986) with the following joint probability function for X = (X1, · · · , Xp),

p(X; Φ) ∝ exp(γ

p
∑

s=1

Xs + β
∑

s∼s′

ws,s′I(Xs = Xs′)), (1)

where γ and β ≥ 0 are the two model parameters, and β measures dependencies of Xs for

SNPs in LD. In this model, the parameter β > 0 encourages the SNPs that are in LD to

have similar values of Xs. We assume that the true association state X is a realization of a

locally dependent discrete MRF with a specified distribution {p(X)}. This is in contrast to

the hidden Markov model where some time or spatial order of the SNPs has to be assumed.

The conditional association state for SNP s, given the states of all neighboring SNPs is

p(Xs|XNs
; Φ) ∝ exp(γXs + β

∑

s′∈Ns

ws,s′I(Xs = Xs′)),

where Ns represents the neighbors of the SNP s on the LD graph.

2.2 An empirical Bayes model for genotype data

In order to relate the latent vector X to the observed genotypes, we further assume that

given any particular realization of X, the random variables Y = (Y1, ..., Yp) are conditionally

independent with the following conditional density,

l(Y |X) =

p
∏

s=1

P (Ys|Xs), (2)

where P (Ys|Xs) is the joint probability of the observed genotypes over m + n individuals at

the SNP s given the latent state Xs.

In order to specify f(Ys|Xs), let θs = (θs1, θs2, θs3) be the genotype frequencies at the sth

SNP in the case population, and ρs = (ρs1, ρs2, ρs3) be the genotype frequencies at the sth

SNP in the control population, for genotype values of 0, 1 and 2, respectively. We assume

that both of these frequencies across all the SNPs have a Dirichlet prior with parameter

α = (α1, α2, α3),

f(θs) = f(θs1, θs2, θs3) =
Γ(

∑3
j=1 αj)

∏3
j=1 Γ(αj)

3
∏

j=1

θ
αj−1
sj .
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The same prior is also assumed for ρs. For SNP s, let ys+ = (ys+,1, ys+,2, ys+,3) denote

observed genotype counts data in the m cases and ys− = (ys−,1, ys−,2, ys−,3) denote the

observed genotype counts data in n controls. So if SNP s is not associated with the disease,

cases should have the same genotype frequencies as the controls. The combined genotype

counts data ys0 = ys+ + ys− are generated from a trinomial distribution with the genotype

frequencies of θs = (θs1, θs2, θs3). Thus, given Xs = 0 the probability of the combined

genotype count data is

P (Ys|Xs = 0) = P (ysi; i = 1, ..., m + n|Xs = 0) =

∫

(ysi; i = 1, ..., m + n|Xs = 0, θs)f(θs)dθs

=

∫ 3
∏

i=1

θ
ys0i
i ×

Γ(
∑3

j=1 αi)
∏3

i=1 Γ(αi)

3
∏

i=1

θαi−1
i dθs

=
Γ(

∑3
j=1 αi)

∏3
i=1 Γ(αi + ys+,i + ys−,i)

∏3
i=1 Γ(αi)Γ(

∑3
j=1(αi + ys+,i + ys−,i))

. (3)

On the other hand, if SNP s is associated with the disease, i.e., when Xs = 1, cases and

controls should have different genotype frequencies, in which case we have

P (Ys|Xs = 1) = P (ysi; i = 1, ...m, m + 1...,m + 1|Xs = 1)

=

∫

(ysi; i = 1, ..., m|Xs = 1, θs)f(θs)dθs

×

∫

(ysi; i = m + 1, ..., m + n|Xs = 1, ρs)f(ρs)dρs

=
Γ(

∑3
j=1 αi)

∏3
i=1 Γ(αi + ys+,i)

∏3
i=1 Γ(αi)Γ(

∑3
j=1(αi + ys+,i))

×
Γ(

∑3
j=1 αi)

∏3
i=1 Γ(αi + ys−,i)

∏3
i=1 Γ(αi)Γ(

∑3
j=1(αi + ys−,i))

. (4)

Together the probability models (1), (3) and (4) define a hidden Markov random field model,

where X is the vector of the hidden states that follows a discrete Markov random field (1)

and (3) and (4) define the emission probabilities.

2.3 Parameter estimation using the ICM algorithm and a FDR

controlling procedure

In order to estimate the model parameters Φ = (γ, β) in the MRF model and α = (α1, α2, α3)

in the emission probabilities, we propose to use the following ICM algorithm, which was
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originally proposed by Besag (1986) for statistical image analysis. The algorithm involves

iterative updates of model parameters and latent states and has the following steps:

1. Obtain an initial estimate X̂ based on the single marker trend test using a p-value of

0.0001.

2. Estimate α with the value of α̂ by maximizing the probability of the observed data

given by equation (2), l(Y |X̂).

3. Estimate Φ with the value of φ̂ by maximizing the following pseudo-likelihood function,

l(X̂; Φ) =

p
∏

s

ps(X̂s|X̂Ns
; Φ)

=

p
∏

s

exp(γX̂s + β
∑

s′∈Ns
ws,s′I(X̂s = X̂s′))

exp(γ + β
∑

s′∈Ns
ws,s′)I(X̂s′ = 1) + exp(β

∑

s′∈Ns
ws,s′)I(X̂s′ = 0)

.

The reason for using the pseudo-likelihood function here is that it is computationally difficult

to compute the full likelihood function due to an unknown normalizing constant in the MRF

model (1).

4. Carry out a single cycle of ICM based on the current X̂, α̂ and φ̂, to obtain a new X̂.

Specifically, for s = 1 to p, update Xs based on

P (Xs|Y, X̂S/s) ∝ f(Ys|Xs; α̂)ps(Xs|X̂Ns
; Φ̂). (5)

5. Go to step 2 until maxθ∈(α,Φ)
|θ(k+1)−θ(k)|

|θ(k+1)|
< 0.001.

After the convergence of the algorithm, we propose to sample the latent vector X M times

using Gibbs sampling based on the conditional probability (5). Based on these samples, we

can estimate the posterior probability of qs = Pr(Xs = 0|Y ). Let q(s) be the sorted values

of qs in descending order. For SNP s, the null hypothesis of interest is

Hs0 : SNP s is not associated with the disease,

Hs1 : SNP s is associated with the disease.

Based on these posterior probabilities, let k = max{t : 1
t

∑t
s=1 q(s) ≤ α}, then reject all

H(s), s = 1, · · · , k. This posterior probability-based definition of FDR has been widely used
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in the analysis of microarray gene expression data (Newton et al., 2001) and has been shown

to control the FDR at the appropriate level α and to obtain optimal false non-discovery rates

in the setting of hidden Markov models (Sun and Cai, 2008).

Note that if we fix β = 0 in the MRF model (1), i.e., if we do not consider the LD

dependency of the SNPs, the procedure reduces to a simple empirical Bayes (EB) procedure

for the analysis of genetic association data in order to borrow information across all the

SNPs.

3 Results

3.1 Application to a Neuroblastoma Case-Control Data Set

Neuroblastoma (NB) is a common and lethal pediatric malignancy, but despite significant

effort the genetic events that initiate tumorigenesis were until recently unknown (Mosse et al.,

2008). We had hypothesized that NB is a complex disease that results from the interaction

of mutant alleles with relatively low to moderate effect on tumor initiation. To identify these

genetic variants, Maris et al. (2008) reported a GWAS of NB where 1032 neuroblastoma

cases and 2043 controls of European descent were genotyped using the Illumina 550K SNP

chips and they observed a significant association between NB and the common minor alleles

of three consecutive SNPs at chromosome band 6p22 and containing the predicted genes

FLJ22536 and FLJ44180 (p-value = 1.71×10−9 to 7.01×10−10; allelic odds ratio, 1.39 to 1.40)

using single SNP trend tests. Homozygosity for the at-risk G allele of the most significantly

associated SNP, rs6939340, resulted in an increased likelihood of NB development (odds

ratio, 1.97; 95% confidence interval, 1.58 to 2.45).

To demonstrate our proposed HMRF modeling approach, we reanalyzed the 30,216 SNPs

on chromosome 6 that passed the standard quality controls (see Maris et al. 2008 for de-

tails). We grouped these SNPs into groups of 1000 SNPs along the genome and fitted our

proposed HMRF for each of these groups in order to facilitate the computation. We ran

10,000 Gibbs samples to obtain the posterior probability of a SNP being associated with the

8

Hosted by The Berkeley Electronic Press



Table 1: Results of analysis of NB data set for top nine SNPs with single SNP χ2-test

p-value less than 10−5. Also shown are the the estimated posterior probability of being

associated with NB based on the HMRF model (Post.prob) and the single SNP p-value for

the replication data set (rep-p-value).

SNP Location χ2 p-value Post.Prob rep-p-value

rs6939340 22247983 5.78e-09 1.00 0.0031

rs9295536 22239908 8.55e-09 1.00 0.012

rs4712653 22233943 9.23e-09 1.00 0.0048

rs12189640 27582636 2.57e-06 0.0046 0.28

rs4487594 133438173 2.73e-06 0.74 0.054

rs6929659 17773336 4.88e-06 0.014 0.43

rs2256175 31488428 5.45e-06 0.0025 0.73

rs10456051 27571415 8.56e-06 0.0041 0.29

rs858985 27286007 9.57e-06 0.0046 0.57

disease. Figure 2 shows the results from both single SNP analysis based on the chi-square

tests and our proposed HMRF model. We observed that many SNPs have almost zero es-

timated probability of being associated with NB. We show in Table 1 the results for nine

SNPs with chi-square test p-value less than 10−5. In general, the results agree with each

other well, where the three SNPs in gene FLJ22536 on chromosome 6, rs6939340, rs4712653

and rs9295536, showed both the most significant association and also the highest poste-

rior probabilities (close to 1.00) of being associated with NB. However, two other SNPs,

rs11759745 and rs9466269, with chi-square test p-values of 3.33×10−5 and 8.37×10−5, have

a posterior probability of being associated with NB of 0.9933 and 0.9881, clearly indicating

that both are also associated with NB. These two SNPs are in high LD with the three SNPs

that have a very strong association with NB, with r2 values ranging from 0.42 to 0.69. This

demonstrated that the proposed method is effective in identifying the SNPs with borderline
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significance at the single marker level that nonetheless is in high LD with significant SNPs.

If we chose these top five SNPs based on their estimated posterior probabilities, we expected

a FDR of 0.0037.

Another SNP, rs4487594 on the 6q23.2 band of the chromosome 6, has a p-value of

2.73 × 10−6, but with a relatively high posterior probability of 0.74 to be associated with

NB. There are in fact no other SNPs that are in high LD with this SNP, and therefore the

posterior probability was only determined by the observed genotypes at this SNP. This is in

contrast to some other SNPs with similar single SNP p-values but low posterior probabilities;

these SNPs all have neighboring SNPs that are in high LD with them but do not show any

association with NB. If we also chose the SNP rs4487594 to be NB associated, the estimated

FDR became 0.046. However, if we chose the top 10 SNPs, the FDR increased dramatically

to 0.29. So at the FDR level of 0.046, we concluded that the SNP rs4487594 is also associated

with NB risk. We tested the association between this SNP and NB in a replication set of 401

cases and 1178 controls and obtained a p-value of 0.054. This further indicated the possible

association between the SNP rs4487594 and NB. In contrast, none of the five SNPs with

similar single SNP p-values but with lower posterior posterior probabilities was significant

in the replication set (see Table 1).

3.2 Simulation Studies

To demonstrate the proposed methods, we conducted a simulation study. In order to obtain

more realistic LD patterns among the SNPs, our simulation was based on sampling from the

3075 individuals in the case-control study of neuroblastoma analyzed in the previous section.

Particularly, we consider a region of 998 SNPs around the chromosome band 6p22 and select

20 SNPs as the true SNPs with relative risk of -1.5 for 10 such SNPs and 2.0 for another 10

SNPs. These disease-associated SNPs have 6 to 9 neighboring SNPs with r2 ≥ 0.4. Figure

1 shows the constructed LD graph for 857 SNPs with at least one neighbor based on the

data from 3075 samples from the NB GWAS study. Based on the true genotypes of these

3075 individuals, we simulated the disease probability using the following logistic regression
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model to give a disease rate of 0.10,

Pr(Y = 1|X) =
exp(β0 +

∑20
k=1 βkXk)

1 + exp(β0 +
∑20

k=1 βkXk)
,

where β0 = −4.2, βk = − log(1.5) for k = 1, · · · , 10 and βk = log(2.0) for k = 11, · · · , 20.

Based on this model, we repeatedly generated the disease status for the 3075 individuals until

we obtained 1000 cases and 1000 controls. The 20 true disease variants were then removed

from our analysis. In order to assess the performance of selecting the relevant SNPs, the

117 SNPs that are in LD with the true variants with r2 ≥ 0.4 are defined as true positives

and this definition of true positives is used in defining the sensitivities (SEN), specificities

(SPE).

We repeated the simulation 100 times. For each simulation, we can calculate the SENs,

SPEs and FDRs using different cutoff values of the posterior probabilities. Figure 3 shows

the ROC curves for three different analysis methods, including the single SNP analysis,

analysis based on an empirical Bayes method without utilizing the LD information and the

proposed HMRF method using the LD information, averaged over 100 simulations. Due to

the fact that the estimated posterior probability of being associated with disease for some

SNPs can be 1, the ROC curve for the HMRF model does not start from the origin (0,0).

It is clear that the methods without accounting for the LD resulted in lower sensitivity in

identifying the disease-associated SNPs compared to our proposed HMRF method with LD

information. However, we observed that the EB approach did not improve sensitivities over

the single SNP analysis, resulting almost identical ROC curves. Similar results were also

observed when SNPs that are in LD with the true variants with r2 ≥ 0.6 or r2 ≥ 0.8 are

defined as true positives (results not shown).

4 Discussion

Since many SNPs in GWAS are in LD, it is important to efficiently utilize such LD infor-

mation in order to increase the power of detecting disease-associated SNPs. In this paper,

we introduce a hidden Markov random field model to account for LD in analysis of the

11

http://biostats.bepress.com/upennbiostat/art31



SNP data from GWAS, where the pair-wise LD measurements are used to define a weighted

LD graph and a Markov random field model based on the constructed LD graph is used

to model the dependency among the SNPs. In addition, a simple empirical Bayes model

is proposed in order to borrow information across all the SNPs. Our simulation indicates

that the proposed method can lead to an increase in sensitivity in identifying the SNPs

that are associated with the disease. We used the GWAS of neuroblastoma to demonstrate

the computational feasibility of the methods and the advantage that one can gain over the

simple commonly used single SNP analysis. The proposed method is especially effective in

identifying the SNPs with borderline significance at the single-marker level that nonetheless

are in high LD with significant SNPs, as demonstrated by our analysis of the neuroblastoma

dataset. In addition, by simultaneously considering the SNPs in LD, the proposed method

can also help to reduce the number of false identifications of disease-associated SNPs.

Although Bonferonni correction has been widely applied in GWAS, analytical and sim-

ulation studies by Sabatti et al. (2003) have shown the the FDR procedure of Benjamini

and Hochberg (1995) can effectively control the FDR for the dependent tests encountered in

case-control association studies and increase power over more traditional methods. However,

the direct application of the FDR procedure can lead to loss of power due to the dependency

among tests, although the FDR can still be controlled (Benjamini and Yekutieli, 2001). The

most effective way of correcting this problem relies on developing a precise model for the

dependency among the SNPs and incorporating it in the definition of a FDR controlling

procedure (Sabatti et al., 2003). The HMRF model proposed provides one such model and

we expect some gain in power over the standard FDR controlling procedure ignoring the

dependency. For the hidden Markov model, Sun and Cai (2008) proved the optimal power of

a posterior probability-based FDR procedure while controlling the FDR. It is easy to show

that if the model we used is the true model and the true parameters are known, our proposed

posterior probability-based FDR controlling procedure can indeed control the FDR with a

minimal false non-discovery rate and therefore the optimal power. However, it is not clear

that such a result holds when the parameters are estimated using the ICM algorithm. This

12
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deserves further investigation.

The method in this paper was developed for case-control GWAS data; however, it can

be easily extended to continuous quantitative traits where one only needs to redefine the

emission probabilities. One such probability can be based on the empirical Bayes linear

models as in the Limma method for microarray gene expression data analysis (Smyth, 2004;

Li et al., 2008). The method in this paper can also be extended to incorporate the prior

genetic network such as the protein-protein interaction network information into the analysis

of GWAS data, where one can create a weighted LD graph for the SNPs within a given gene.

The LD-graphs are then linked based on the a priori gene or protein-protein interaction

network to form a large SNP-network. A HMRF model can then be defined on this combined

network that can help to identify the subnetworks of SNPs that might be related to disease

risk. This network-based analysis of genomic data has shown some promise in the analysis of

microarray gene expression data (Wei and Li, 2007; Wei and Li, 2008; Wei and Pan, 2007).

We would also expect some potential gain in sensitivity in identifying the disease-associated

genetic variants in the analysis of GWAS data. It would be interesting to investigate more

on how much one can gain in analysis of GWAS data when the prior biological information

is effectively utilized in the analysis.
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Figure Legends

Figure 1: Example of a LD graph, which is used for the simulation study, where each node

represents a SNP and a link between two SNPs indicates that r2 is greater than 0.40 between

them.

Figure 2: Results of analysis on 30,216 SNPs on chromosome 6 based on 1251 neurob-

lastoma cases and 2236 controls. Legend on the left-margin (-log of the p-values) and the

circles are results from single SNP analysis and the legend on the right-margin (posterior

probability of being associated with the neuroblastoma) and the triangles are results from

the proposed HMRF model.

Figure 3: The ROC curves (sensitivity versus 1-specificity) for the proposed hidden MRF

model (MRF), empirical Bayes method (EB) and the single SNP Cochran-Armitage trend

test (Logistic). Simulation results based on 100 replications.
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Figure 1: Example of a LD graph, which is used for the simulation study, where each node

represents a SNP and a link between two SNPs indicates that r2 is greater than 0.40 between

them.
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Figure 2: Results of analysis on 30,216 SNPs on chromosome 6 based on 1251 neuroblastoma

cases and 2236 controls. Legend on the left-margin (-log of the p-values) and the circles are

results from single SNP analysis and the legend on the right-margin (posterior probability

of being associated with the neuroblastoma) and the triangles are results from the proposed

HMRF model.
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Figure 3: The ROC curves (sensitivity versus 1-specificity) for the proposed hidden MRF

model (MRF), empirical Bayes method (EB) and the single SNP Cochran-Armitage trend

test (Logistic). Simulation results based on 100 replications.
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