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Abstract: The purpose of this paper is to present a new hierarchic method based on swarm intelligence algorithms

for solving the well-known traveling salesman problem. The swarm intelligence algorithms implemented in this study

are divided into 2 types: path construction-based and path improvement-based methods. The path construction-based

method (ant colony optimization (ACO)) produces good solutions but takes more time to achieve a good solution, while

the path improvement-based technique (artificial bee colony (ABC)) quickly produces results but does not achieve a good

solution in a reasonable time. Therefore, a new hierarchic method, which consists of both ACO and ABC, is proposed

to achieve a good solution in a reasonable time. ACO is used to provide a better initial solution for the ABC, which uses

the path improvement technique in order to achieve an optimal or near optimal solution. Computational experiments are

conducted on 10 instances of well-known data sets available in the literature. The results show that ACO-ABC produces

better quality solutions than individual approaches of ACO and ABC with better central processing unit time.

Key words: Ant colony optimization, artificial bee colony, path construction, path improvement, hierarchic approach,

traveling salesman problem

1. Introduction

The traveling salesman problem (TSP) is a classical benchmark NP-hard problem for discrete optimization

techniques. The main objective of the TSP is to find the shortest Hamiltonian cycle that includes whole nodes

[1]. Heuristic algorithms that try to find relatively good solutions in a reasonable time for this problem have been

proposed, because there is no exact technique that finds the optimal solution in polynomial time [2]. Despite

the fact that the TSP is very hard to solve, there are many applications of the TSP in real-world applications

such as scheduling, assignment, and manufacturing problems [3].

Although a huge number of approaches by exact and heuristic techniques have been proposed by re-

searchers for solving the TSP, some literature surveys by Langevin et al. [4], Laporte [5], Punnen [6], Bektaş

[7], Rego et al. [8], Lawler et al. [9], Gutin and Punnen [10], and Applegate et al. [11] are presented for

the readers. Branch and bound [12,13], cutting plane [14], branch and cut [15,16], and dynamic programming

[17,18] techniques were developed for solving small instances of the TSP as exact methods. On the other hand,

to yield acceptable solutions within a reasonable time, the genetic algorithm by Grefenstette et al. [19], Jog et

al. [20], Qu and Sun [21], Larranaga et al. [22], Ray et al. [23], Liu et al. [24], Yang et al. [25], and Majumdar
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and Bhunia [26]; tabu search by Knox [27] and Gendreau et al. [28]; simulated annealing by Allwright and

Carpenter [29], and Geng et al. [30]; neural networks by Ghaziri and Osman [31] and Leung et al. [32]; particle

swarm optimization by Pang et al. [33,34], Wang et al. [35], Shi et al. [36], and Zhong et al. [1]; ant colony

optimization (ACO) by Dorigo and Gambardella [37], Tsai et al. [38], Puris et al. [39], Bontoux and Feillet [40],

and Puris et al. [41]; bee colony optimization by Wong et al. [42] and Marinakis et al. [43]; and artificial bee

colony (ABC) optimization by Karaboğa and Görkemli [44] and Li et al. [45] have been applied. Aside from

the above studies, several hybrid approaches have also been applied to TSPs. Particle swarm optimization and

simulated annealing hybridization by Fang et al. [46], ACO and genetic algorithm hybridization by Takahashi

[47], particle swarm optimization and ACO hybridizations by Gomez-Cabrero et al. [48] and Feng et al. [49],

and genetic simulated annealing ant colony system with particle swarm optimization techniques by Chen and

Chien [50] were developed so as to solve TSPs in a reasonable time. Table 1 summarizes the methods applied

to TSPs.

Table 1. Methods applied to the TSP.

Methods Authors
Branch and bound Radharamanan and Choi [12], Singh and Oudheusden [13]
Cutting plane Fleischmann [14]
Branch and cut Padberg and Rinaldi [15], Perez and Gonzalez [16]
Dynamic programming Chentsov and Korotayeva [17], Ergan and Orlin [18]
Genetic algorithm Grefenstette et al. [19], Jog et al. [20], Qu and Sun [21],

Larranaga et al. [22], Ray et al. [23], Liu et al. [24],
Yang et al. [25], Majumdar and Bhunia [26]

Tabu search Knox [27], Gendreau et al. [28]
Simulated annealing Allwright and Carpenter [29], Geng et al. [30]
Artificial neural networks Ghaziri and Osman [31], Leung et al. [32]
Particle swarm optimization Pang et al. [33,34], Wang et al. [35], Shi et al. [36],

Zhong et al. [1]
ACO Dorigo and Gambardella [37], Tsai et al. [38], Puris et al. [39],

Bontoux and Feillet [40], Puris et al. [41]
Bee colony optimization Wong et al. [42], Marinakis et al. [43]
ABC Karaboğa and Görkemli [44], Li et al. [45]
Particle swarm optimization and
simulated annealing

Fang et al. [46]

ACO and genetic algorithm Takahashi [47]
Particle swarm optimization and
ACO

Gomez-Cabrero et al. [48], Feng et al. [49]

Genetic algorithm, simulating
annealing, ant colony, and par-
ticle swarm optimization

Chen and Chien [50]

Most of these aforementioned heuristics fall into 1 of 2 categories: path construction heuristics and path

improvement heuristics. A typical path construction method starts with a subset of points linked in a cycle and

adds the others one by one until the cycle is complete. In this case, although the solution time is prolonged, the

obtained solution is effectively acceptable. In contrast, path improvement heuristics work by taking a complete

tour and repeatedly improving it. At each iteration, a number of possible changes are considered, and the

best change found is made. The process continues until no change considered produces an improvement [2].

In this case, acceptable solutions could be quickly provided by the path improvement heuristic. In brief, path

construction-based methods that produce good solutions take more time to achieve a good solution and path
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improvement-based techniques that quickly produce results do not achieve a good solution in a reasonable time.

For that reason, the initial solutions of path improvement heuristics can be generated through a more efficient

construction heuristic. Herein lies the motivation of this study.

In this study, a new hierarchic method that consists of both ACO and ABC is proposed to achieve a

better solution than the individual ABC and ACO algorithms in a reasonable time. In the hierarchic method,

ACO is used as the path construction heuristic to obtain an acceptable feasible initial solution for the ABC,

which is used as the path improvement heuristic. This study is separated from the existing studies by the

following contributions: 1) describing a new hierarchic approach (ACO-ABC) that uses patch construction

and improvement heuristics to solve TSPs, 2) comparing the obtained results with single patch construction

(ACO) and improvement (ABC) heuristic applications, and 3) showing the superiority of ACO-ABC in all of the

considered heuristic methods. The remainder of the paper is structured as follows. Following Section 1, which

gives an introduction and literature survey on the TSP, Section 2 provides a formal description of the ACO and

ABC algorithms and the proposed hierarchic approach is presented. Computational results and comparisons

are presented in Section 3, and the results are discussed in Section 4. Finally, the conclusion and future works

are given in Section 5.

2. Materials and methods

By combining the abilities of the path improvement and construction methods, a hierarchic optimization

technique is proposed in order to obtain better quality results within a certain time. ACO is used as the path

constructor and the results obtained by ACO are improved using the ABC. ACO and ABC are iterative methods;

ABC only uses information in the population and ACO uses information in both the population (pheromone

mechanism) and the problem (visibility) to achieve the global optimum for the optimization problems. In the

hierarchic method, ACO is used for producing the initial solution and this solution is improved using ABC.

2.1. Ant colony optimization

Individual agents (called artificial ants) of ACO construct the self-solutions at each iteration. First, all of the

artificial ants are randomly distributed to solution parts. In order to complete the self-solutions of the ants,

each ant decides which part of the solution is selected in the next step using Eq. (1) [51].

pki,j(t) =


τα
i,j(t)×ηβ

i,j∑
s∈N τα

i,s(t)×ηβ
i,s

if(s ∈ N)

0 otherwise

(1)

Here, pki,j(t) is the selection probability of the j th solution part by the k th ant on the ith solution part, τi,j(t)

is the quantity of the pheromone between the ith and j th solution parts at time t, ηi,j is the visibility value

between the ith and j th solution parts and is calculated using Eq. (2), α and β are significant factors used

for tuning the weight of the pheromone and visibility, and N is a set of unused solution parts.

ηi,j =
1

ϕi,j
(2)
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Here, ϕi,j is the cost of the (i, j) part. After all of the artificial ants complete the self-solutions using Eq. (1),

the pheromone between the solution parts is evaporated and then laid using Eq. (3) [51].

τi,j(t+ 1) = τi,j(t)× (1− p) +

n∑
k=1

∆τki,j(t) (3)

Here, p is the evaporation rate between (0,1], n is the number of artificial ants, and ∆τki,j(t) is the pheromone

quantity to be laid for the (i, j) solution part at time t and is calculated as follows [51]:

∆τki,j(t) =


Q
dk

if(kthant used (i, j) solution part in self solution)

0 otherwise
, (4)

where dk is the cost of the k th ant solution and Q is a constant number. ACO is an iterative algorithm and

the maximum cycle number, minimum error rate, etc. can be given as a termination condition to ACO. Based

on the explanations given above, the ACO algorithmic framework is displayed in Table 2.

Table 2. Algorithmic framework of the ACO.

Step 1. Algorithm initialization 

 Determine number of artificial ants. 

 Create pheromone matrix. 

 Load solution space of the problem. 

Step 2. Solution initialization 

 Distribute all the ants randomly. 

Step 3. Solution construction 

 For all ants  

  While (Solution is not completed) 

   Select next solution part using Eq. (1). 

  End while 

 End for 

Step 4. Pheromone mechanism 

 Evaporate and lay pheromone using Eq. (3). 

Step 5. Termination condition 

 If a termination condition is not meet, return to Step 2. 

Step 6. Finalization 

 Report the best results obtained.  

2.2. Artificial bee colony algorithm

The ABC was first proposed to solve numerical optimization problems by Karaboğa [52]. Some discrete versions

of the algorithm were developed and applied to different discrete optimization problems [53–55]. Kıran et al.

[55] showed its performance and accuracy for TSPs and for identifying which neighborhood operator (swapping,

insertion, etc.) is better than others.
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We use a discrete version of the ABC algorithm to solve the TSP and the neighborhood operator by

Kıran et al. [55] produces the best results in the hierarchic approach.

In the basic ABC, there are 3 kinds of bees: employed, onlooker, and scout bees. The number of employed

bees is equal to the number of onlooker bees and only one scout bee can occur at each iteration. Employed

bees have a self-solution and try to improve the self-solution and move information about food source positions

to the hive. Onlooker bees do not have a self-solution, but they use the solutions of the employed bees for

improving the solution by taking advantage of information in the hive. The scout bee occurrence is controlled

by a peculiar parameter called the limit, and if a solution of the employed bee cannot improve within a certain

time (limit), the employed bee of this solution becomes a scout bee. In the ABC, positions of food sources

represent the feasible solution for the optimization problems.

First, all of the employed bees are distributed to the solution space of the optimization problem using

Eq. (5) [52] and their abandonment counters are reset.

xj
i = xj

min + rand[0, 1] ∗ (xj
max − xj

min), for allj = 1, 2, . . . , D (5)

Here, xj
i is a parameter to be optimized for the ith employed bee on dimension j of the D-dimensional solution

space, and xj
max and xj

min are the upper and lower bounds for xj
i , respectively.

Next, new food sources are produced for all of the employed bees using Eq. (6) [52].

vi,j = xi,j +Φ× (xi,j − xk,j) j ∈ {1, 2, ..., D}, k ∈ {1, 2, ..., n} and i ̸= k (6)

Here xi is the ith employed bee, vi is the candidate solution for xi , xk is an employed neighbor bee of xi , Φ is

a number randomly selected in the range of [–1,1], n is the number of employed bees, D is the dimensionality

of the problem, and j ∈ {1, 2, ..., D} and k ∈ {1, 2, ..., n} are randomly selected from the dimensionality of the

problem and the employed bee population, respectively. In addition, only one parameter of the employed bee

is updated at the each iteration.

After a new solution is produced, the new and old solutions are compared using the fitness values of the

solutions, calculated as follows [52]:

fiti =


1

1+fi
if(fi ≥ 0)

1 + abs(fi) if(fi < 0)
, (7)

where fi is the specific object function value for the problem. If the fitness value of the new solution is better

than that of the old one, it is replaced and the abandonment counter of the new solution is reset; otherwise,

the abandonment counter of the employed bee is increased by 1.

The onlooker bees produce a new solution by taking advantage of the position information about food

sources shared by the employed bees in the hive. An onlooker bee selects an employed bee in order to improve

its solution using Eq. (8) [52] and a roulette wheel selection. Next, the new food source position is produced

using Eq. (6). If the fitness value of the onlookers’ solution is better than the fitness value of the employed bee,

it is replaced and the employed bees’ abandonment counter is reset; otherwise, the counter is increased by 1.

pi =
fiti

n∑
j=1

fitj

(8)
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Here pi is the probability to be selected for the ith employed bee or food source.

The scout bee of the algorithm is used for the global search and for getting rid of local minima. If the

solution of the employed bee cannot improve until the abandonment counter of employed bee achieves the limit,

the employed bee becomes a scout bee and a new solution is produced using Eq. (5), and the abandonment

counter of the employed bee is reset. There is an important point in the occurrence of scout bees. At each

iteration, only one employed bee that has the highest content of abandonment counters of the employed bees

can be a scout bee. The algorithmic framework of the ABC is given in Table 3.

After some modifications, discrete optimization problems can be solved using the ABC. The first modifi-

Table 3. Algorithmic framework of the ABC.

Step 1. Algorithm initialization 

    Determine number of artificial bees (half of the population is employed, and the other half are 

onlookers). 

    Generate initial solutions for the employed bees using Eq. (5). 

    Reset the abandonment counters of the employed bees. 

    Determine the limit value. 

Step 2. Employed bee phase 

    For all employed bees 

 Generate new food source using Eq. (6). 

 Calculate fitness value of the new solution using Eq. (7). 

 If new fitness value is better than the old, replace it; else increase abandonment counter 

by 1. 

    End for 

Step 3. Onlooker bee phase 

    Calculate the probabilities to be selected of the employed bees using Eq. (8). 

    For all onlooker bees  

 Select an employed bee using Eq. (8) and roulette wheel. 

 Generate new food source using Eq. (6). 

 Calculate fitness value of new solution using Eq. (7). 

 If new fitness value is better than the old, replace it; else increase abandonment counter by 

1. 

    End for 

Step 4. Scout bee phase 

    Fix the abandonment counter H with the highest content. 

    IF the content of counter H is higher than the predefined limit THEN generate new solution 

for the employed bee to which counter H belongs using Eq. (5) and reset the abandonment 

counter of the employed bee; ELSE continue. 

Step 5. Termination condition 

    If a termination condition is not meet return to Step 2. 

Step 6. Finalization 

    Report the best results obtained. 
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cation is to change Eq. (6), which is used for obtaining new candidate solutions. In the discrete version of the

ABC, Eq. (6) is replaced with neighborhood operators. Which neighborhood operator is better than the other

was shown in [55]. According to the mentioned study, we use a combined operator (random insertion, random

insertion of subsequence, and random reversing insertion of subsequence) in order to obtain a new candidate

solution in the employed and onlooker bee phases of the ABC. The second modification is the initialization of

the algorithm, and random permutations are given to the employed bees as initial solutions instead of using Eq.

(5). The third important point in the discrete ABC is to select a high value for the limit due to the fact that

scout bees prevent achieving saturation of the population for discrete optimization problems [55]. For the TSP,

the object function is a tour length of the solution, and we try to find the global minimum for this problem.

2.3. ACO-ABC hierarchic approach

Stigmergy can be defined as the guidance of work in a progress or indirect communication among workers for

cooperation and coordination among social insects [56]. In ACO, the pheromone mechanism helps to find tours

with quality, but the distance between the nodes can cause stagnation for the agents because a larger pheromone

trail will be between the close nodes. In the ABC, if a food source position cannot be improved by employed

or onlooker bees within a certain time, this food source is abandoned. Therefore, the food source (work) guides

the artificial agents (workers) in performing the labor. In order to overcome stagnation of the artificial ants

in ACO, we propose a hierarchic approach based on ACO and ABC. Though ACO stagnates after a certain

number of iterations, the ABC can improve the solution obtained by ACO. The ACO algorithm constructs the

solution step by step and the number of artificial agents in ACO generally equals the number of nodes in the

TSP. In practice, we show that ACO cannot improve the solution after a number of iterations, and this situation

(stagnation behavior) is shown Figure 1. Therefore, we give the best solution obtained by ACO to the employed

bees of the ABC as the initial solution after a certain number of iterations. We try to improve the best solution

taken from ACO using a discrete ABC in order to increase the quality of the solution. By doing this, we obtain

slightly better solutions than those of ACO in less time and much better solutions than those of the ABC.
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Figure 1. Stagnation behavior of the ACO on Berlin52 TSP.

As seen from Figure 1, none of the runs provide improvements until the maximum cycle number is reached.

After the 250th cycle, the global best solution does not generally show any alteration in ACO, although a good

solution is obtained for the problem. Hence, we stop the ACO at half of the maximum number of cycles and
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transfer the global best solution obtained by ACO to the ABC as the initial solution. The scheme and the

working diagram of the hierarchic approach are shown in Figures 2 and 3, respectively.

Figure 2. Interaction among the bees and ants of the hierarchic approach (the bees use the best solution obtained by

the ants in order to improve it).

ACO  ABC  

Parameter values 
for ACO 

Parameter values 
for ABC 

Distance matrix of 
the TSP the TSP

"e best solution 

obtained by ACO 

output: the best 
solution 
output: the bes

Figure 3. Working diagram of the hierarchic approach.

3. Computational experiments

For all of the experiments, the maximum number of iterations is considered to be 500. For the hierarchic

approach, the ACO algorithm is run in the first half of the maximum number of iterations and the ABC is run

in the other half. The population size of the algorithms is equal to the number of nodes in the TSP. If the

number of nodes of the problem is an odd number, the population size of the ABC is increased by 1, because half

of the population is employed bees and the other half is onlooker bees. The optimum tour lengths for the test

problems that were obtained from TSPLIB [57] and the parameter settings of the ACO, ABC, and hierarchic

approach are given in Tables 4 and 5, respectively. TSPLIB was published in 1991 and is a collection of TSP

benchmark instances of varying difficulty; it has been used by many research groups for comparing results. The

other TSP instances that are not considered in this study can be found in the TSPLIB.

For the Oliver30, Eil51, Berlin52, St70, Pr76, Eil76, Kroa100, Ch150, and Tsp225 TSPs, ACO, ABC,

and the hierarchic approach are conducted 20 times, independently for each problem, and the obtained results

are reported as the best, worst, and mean. The relative error (RE) is calculated using Eq. (9) and is displayed

in the result tables.

RE =
B −O

O
× 100 (9)
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Here O is the optimum tour length of the problem and B is the tour length obtained by the algorithms. For

each problem, the results are given in Table 6 in order to clearly compare the methods, and the solutions with

the lowest RE obtained by the methods for the problems are given in bold.

Table 4. Number of nodes and optimum tour lengths of the problems.

Problem Number of nodes Optimum tour length
1 Oliver 30 423.74
2 Eil 51 428.87
3 Berlin 52 7544.37
4 St 70 677.11
5 Eil 76 545.39
6 Pr 76 108,159.44
7 Kroa 100 21,285.44
8 Eil 101 642.31
9 Ch 150 6532.28
10 Tsp 225 3859.00

Table 5. Parameter settings of the ABC, ACO, and hierarchic approaches.

Parameters ABC ACO
Hierarchic approach
ABC ACO

Population size (P) D* D* D* D*
Maximum cycle Number 500 500 250 250
Alpha (α) N/A 1.0 N/A 1
Beta (β) N/A 5.0 N/A 5.0
Rho (ρ) N/A 0.65 N/A 0.65
Q N/A 100 N/A 100
Limit (P/2)×D × 1000 N/A (P/2)×D × 1000 N/A
*D: Number of nodes in the TSP.

As seen from the results, the hierarchic approach produces better quality solutions than the other methods

for all of the test problems and the optimum solutions are also obtained for the Oliver30 and Berlin52 TSPs. In

terms of time, the ABC has a shorter running time than ACO and the hierarchic approach, and the proposed

approach has a running time of about half that of ACO.

In addition, the proposed method is compared with the RABNET-TSP [58] and oRABNET-TSP [59]

solvers. oRABNET-TSP is the original version of the RABNET-TSP solver. The results of RABNET-TSP

and oRABNET-TSP for Eil51, Berlin52, Eil76, Eil101, Kroa100, and Ch150 are directly taken from [58]. The

comparison of the methods is shown in Table 7.

As seen from Table 7, similar results for the Eil51 and Eil76 problems are obtained by the methods.

RABNET-TSP is better than oRABNET-TSP and the hierarchic approach for the Eil101 and Kroa100 test

instances. The hierarchic approach is better than RABNET-TSP and oRABNET-TSP for the Berlin52 and

Ch150 benchmark problems. Table 7 also shows that the hierarchic approach is an alternative TSP solver and

a competitive algorithm.

4. Results and discussion

As seen from the computational experiments (Table 6), the running time of the solution construction-based

method (ACO) is long and the running time of the solution improvement-based method (ABC) is short, but the
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GÜNDÜZ et al./Turk J Elec Eng & Comp Sci

quality of the solutions obtained by ACO is much better than the solution obtained by ABC, because ACO uses

both problem information (distances between nodes) and information of the swarm (pheromone mechanism),

and ABC uses only information of the swarm (sharing information in the hive). Figures 4 and 5 give the

comparisons of the central processing unit (CPU) time and objective function values of each approach based on

the obtained minimum values. As an example, the ABC approach solves all of the problems with minimum CPU

times according to the ACO and hierarchic approaches, and for Oliver30, while ACO takes 27.94 times longer

to solve it than the ABC, the hierarchic approach takes 15.58 times longer than the ABC. Finally, while ACO

consumes maximum CPU times in all of the test problems, the hierarchic and ABC approaches respectively

follow it. Figure 5 shows the objective function value comparisons between 3 different approaches based on the

optimal values. As seen from Figure 5, the ABC provides the worst objective values, whereas the ACO and

hierarchic approaches provide similar and better values. For Tsp225, the ACO, ABC, and hierarchic approaches
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Figure 4. CPU time comparison of the ACO, ABC, and hierarchic approaches.

1.00

1.02

1.04

1.06

1.08

1.10
Oliver30

Eil51

Berlin52

St70

Eil76

Pr76

Kroa100

Eil101

Ch150

Tsp225

ACO Hierarchic Approach

0.0

1.0

2.0

3.0

4.0

5.0
Oliver30

Eil51

Berlin52

St70

Eil76

Pr76

Kroa100

Eil101

Ch150

Tsp225

ABC

Figure 5. Objective function comparisons of the ACO, ABC, and hierarchic approaches based on optimal values.
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Table 6. Results obtained by the ACO, ABC, and hierarchic approaches for the test problems.

Problem Method Best Worst Mean Std. dev. *REM (%) Time (s)

Oliver30

ACO 423.74 429.36 424.68 1.41 0.22 35.20
ABC 439.49 484.83 462.55 12.47 9.16 1.26
HA** 423.74 423.74 423.74 0.0 0.00 19.63

Eil51

ACO 450.59 463.55 457.86 4.07 6.76 112.11
ABC 563.75 619.44 590.49 15.79 37.68 2.16
HA 431.74 454.97 443.39 5.25 3.39 58.33

Berlin52

ACO 7548.99 7681.75 7659.31 38.7 1.52 116.67
ABC 9479.11 11,021.99 10,390.26 439.69 37.72 2.17
HA 7544.37 7544.37 7544.37 0.0 0.00 60.64

St70

ACO 696.05 725.26 709.16 8.27 4.73 226.06
ABC 1162.12 1339.24 1230.49 41.79 81.73 3.15
HA 687.24 716.52 700.58 7.51 3.47 115.65

Eil76

ACO 554.46 568.62 561.98 3.5 3.04 271.98
ABC 877.28 971.36 931.44 24.86 70.78 3.49
HA 551.07 565.51 557.98 4.1 2.31 138.82

Pr76

ACO 115,166.66 118,227.41 116,321.22 885.79 7.55 272.41
ABC 195,198.9 219,173.64 205,119.61 7379.16 89.65 3.50
HA 113,798.56 116,353.01 115,072.29 742.9 6.39 138.92

Kroa100

ACO 22,455.89 23,365.46 22,880.12 235.18 7.49 615.06
ABC 49,519.51 57,566.05 53,840.03 2198.36 152.94 5.17
HA 22,122.75 23,050.81 22,435.31 231.34 5.40 311.12

Eil101

ACO 678.04 705.65 693.42 6.8 7.96 527.42
ABC 1237.31 1392.64 1315.95 35.28 104.88 5.17
HA 672.71 696.04 683.39 6.56 6.39 267.08

Ch150

ACO 6648.51 6726.27 6702.87 20.73 2.61 1387.65
ABC 20,908.89 22,574.99 21,617.48 453.71 230.93 8.95
HA 6641.69 6707.86 6677.12 19.3 2.21 698.61

Tsp225

ACO 4112.35 4236.85 4176.08 28.34 8.22 4038.75
ABC 16,998.41 18,682.56 17,955.12 387.35 365.2792 16.68
HA 4090.54 4212.08 4157.85 26.27 7.74 2037.33

*: RE relative error of the mean results obtained by 20 runs.

**: Hierarchic approach (HA).
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find objective values of 1.066, 4.41, and 1.06 times greater than the optimal value. This ranking is the same for

each test problem. The hierarchic approach finds optimal values for Oliver30 and Berlin52; however, the ABC

does not find the optimal value for any of the test problems.

Table 7. The comparison of the hierarchic method, RABNET-TSP, and oRABNET-TSP.

RABNET-TSP [58] oRABNET-TSP [58] Hierarchic approach

Problem Best Mean Std. dev. Best Mean Std. dev. Best Mean Std. dev.

Eil51 427 437.47 4.20 429 438.7 3.52 431.74 443.39 5.25

Berlin52 7542 7932.50 277.25 7716 8073.97 270.14 7544.37 7544.37 0

Eil76 541 556.33 5.30 542 556.1 8.03 551.07 557.98 4.1

Eil101 638 648.63 3.85 641 654.83 6.57 672.71 683.39 6.56

Kroa100 21,333 21,522.73 93.34 21369 21,868.47 245.76 22,122.75 22,435.31 231.34

Ch150 6602 6738.37 76.14 6629 6753.2 83.01 6641.69 6677.12 19.3

We use the methods by combining the advantages of ACO and ABC in order to obtain a better solution

in a reasonable time. The results produced by the hierarchic method are better than ACO in terms of time and

quality, because ACO shows the stagnation behavior (there is more pheromone on short edges than long edges,

and the artificial agents chose short edges with more pheromone) and does not obtain a better solution after

a while. Our proposed approach does not show stagnation behavior due to the passing improvement strategy

(solution transferring to the ABC). When the hierarchic method is compared with the ABC, the ABC produces

a solution in a shorter time, but the solution quality of the hierarchic method is much better than that of the

ABC, because the ABC starts to solve the problem randomly but the hierarchic method uses the solution of the

ACO at first. Finally, as seen from Figure 6, the obtained REs of the mean values of the hierarchic approach

are better than those of ACO and ABC for all of the problems. While the results of the ABC are very far from

the optimal values, ACO is better than the ABC; however, it is worse than the proposed hierarchic approach.

5. Conclusion and future works

We propose an effective hierarchic method based on swarm intelligence for solving the problem (ACO) and fast

(ABC) algorithms in this study. The numerical tests show that the hierarchic method is an alternative tool for

solving the TSP. In future works, we will try to make an alternative pheromone mechanism for ACO, and the

better quality solution obtained by ACO will be transferred to methods such as the genetic algorithm, particle

swarm optimization, etc., which use the path improvement technique for finding the best solution. Moreover, we

will use the proposed method in this paper for solving different optimization problems, such as vehicle routing,

supply chain optimization, etc.
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[55] M.S. Kıran, H. İşcan, M. Gündüz, “The analysis of discrete artificial bee colony algorithm with neighborhood

operator on traveling salesman problem”, Neural Computing and Applications, Vol. 23, pp. 9–21, 2013.

[56] D. Aydın, “Adaptation of swarm intelligence approaches into color image segmentation and their implementations

on recognition systems”, PhD, Ege University, İzmir, Turkey, 2011.
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