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Abstract In this paper we assume that the observations are given by

In this paper, we describe and demonstrate a hierarchical recon- y(ti, P,) = g(t,, A) + n(ti, 9,) (2)
struction algorithm for use in noisy and limited-angle or sparse-
angle tomography. The algorithm estimates the object's mass, where the indices i E {1,...,nd} and j E {1,...,n,,} give a
center of mass, and convex hull from the available projections, point in the regular rectangular lattice in the domain [-T, T] x
and uses this information, along with fundamental mathematical [0, r). The noise samples n(ti, 98) are zero-mean white Gaussian
constraints, to estimate a full set of smoothed projections. The random variables, independent between lattice sites.
mass and center of mass estimates are made using a maximum Many methods have been proposed to address the problems
likelihood (ML) estimator derived from the principles of con- of noisy or missing data with varying degrees of success (see [4]
sistency of the Radon transform. The convex hull estimate is and references). In [21, we proposed a projection-space method
produced by first estimating the positions of support lines of that successfully deals with both problems simultaneously. A
the object from each available projection and then estimating the disadvantage of this algorithm, which is shared by othersiJ the
overall convex hull using ML techniques or maximum a posteri- literature, is that it requires particular prior knowledge in order
ori (MAP) techniques. Estimating the position of two support to produce its estimate. In this case, the algorithm requires
lines from a single projection is accomplished using either a knowledge of the object's mass, center of mass, and convex sup-
generalized likelihood ratio technique for estimating jumps in port. This paper describes a method to estimate this geometric
linear systems, or a support-width penalty method that uses information so that it is not required a priori. We also present
Akaike's model order estimation technique. We show results for results generated by the full hierarchical algorithm, which is a
a simulated object in a variety of measurement situations and for concatenation of these steps.
several model parameters and discuss several possible extensions
to the work. II. Mass and Center of Mass

I. Introduction The first stage in the processing estimates the mass and center
of mass of the object. Consistency conditions for the Radon

It has been demonstrated in the literature that prior geometric transform show that not all functions g(t, 9) are valid 2-D Radon
information about either the object or its 2-D Radon transform transforms [5]. In particular, the two lowest order constraints
can significantly improve reconstructions when the tomographic show that the mass m(8) of a projection must be equal to the
imaging system has both a restricted view and a low signal to mass m of the object, and the center of mass c(8) of a projection
noise ratio (see [1]). Often, however, it is not clear how this
information may be reliably determined, a priori. This paper
describes a hierarchical algorithm that first estimates the mass,
center of mass, and convex hull of the object, and then uses this X
information in a second stage, described in [2], which estimates DT
a complete image of the 2-D Radon transform of the object
- called a sinogram - using a fast primal-dual optimization hulk}
technique. The object estimate is produced using convolution
backprojection (CBP) applied to the estimated sinogram. \}

The 2-D Radon transform is given by X

9(t,) =f f(,)6(t - wTz)d, (1)

where w = [cos sin ]OT, 6(.) is the Dirac delta function, and T
f(x) is a real function defined on the plane and is assumed to / t+
be zero outside the disk of radius T centered at the origin (see 9(t,) 
Fig. 1). For a particular 9 the function g(t, ) is a function
of t, and is called a projection. When a large number of high
quality measurements of g(t, 8) for t E [-T, T] and 8 E [0, ir) are
available, then a high quality reconstruction may be obtained
using CBP or other methods (see [3]). However, in applications
where the measurements are noisy and may be available over a
limited range or sparse set of angles, the conventional methods
are not adequate. Fig. 1. Geometry of the 2-D Radon transform.
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must be equal to the projection of the center of mass c of the Knot-Location Method
object onto the w-axis. Therefore, the mass constraint is

This method, based on the theory presented in [7], models each

m(9) = f g(t, O)dt = m (3) projection as a linear spline as shown in Fig. 2. The knots of
-00o interest reside at t_ and t+, the support values of the projection.

An observed projection may be treated as a time series and, in
and the center of mass constraint is the range where t goes from -T to the second knot, may be

1(G)= r00 tg(t,9)dt=.. modeled by the following state and observation equations
c(@) =-f tg(t,9)dt = c-@. (4)

These constraints may be used, together with the observed z(i+ 2T x(i + a 6(i + I - k) (8)
projections, to estimate the mass and center of mass of the .
object. We assume that the integral in (3) may be accurately Y(i) z(i) + v(i) (9)
approximated by a summation, so that the observed mass for

the jth observed projection is given by where 6(.) is the discrete impulse function, a is the height of
2T nd 2T nd the discontinuity, k is the position of the first knot, and v(i)

mj =- y(ti,,j) = m+- n(ti,8). (5) is a sequence of independent zero-mean white Gaussian noise
nd ni= samples with variance a2.

Therefore, the observed masses are independent observations of The knot-location algorithm starts a Kalman filter at t
the true mass m, observed in additive zero-mean white Gaussian -T, assuming the above state-space description, and at each
noise. The ML estimate m% of the true mass (which is also time instant it looks over a trailing window to estimate a at each
the minimum mean square error (MMSE) estimate) is just the point k in the window, assuming that the knot occurred at that
average of the observed masses. point. When the generalized likelihood, calculated using the

To estimate the center of mass, we use mh in place of the true estimated &, is larger than a given threshold, a knot is deemed to
mass and approximate the integral of (4) by a summation. The have taken place and this value is declared as one support value
observed center of mass is given by of the projection. The other support value is found by running

1 2T "n
c -= Z tiy(ti, Oj) - ci + ny (6)m nd knots

g(t)
where c; is the true center of mass of the jth observed projection.
Then the system of equations ci = c * wi may be solved for the
object's mass c using least squares, yielding an approximate ML
or MMSE estimate a. 

Using the center of mass estimate, the projections may ber spline T t
shifted so that the center of mass of the object is centered. The
new projections are given by

P(t, 9) = y(t - a * W, 9). (7) Fig. 2. Projection modeled as linear spline.

This processing is required so that subsequent stages may as-
sume the object to be centered at the origin. the knot-location algorithm backwards from t = T. More details

of this algorithm may be found in [8].
III. Convex Support

The second stage in the hierarchical algorithm estimates the Support-Width Penalty Method
convex support of the object from the available projections. The support-width penalty method uses the mass and center of
Fig. 1 shows that two support lines of the object determine a mass of each projection as additional prior information as shown
range of support for a projection, given by two support values in Fig. 3. For every possible set of hypothesized support values,

t_ and t+. If, on the other hand, one knows t_ and t+ for t- and t+, the ML estimate §(t) of a complete projection is
all projections, this defines the convex support of the object. determined. Because of the mass and center of mass constraints
Unfortunately, this information is not readily available for two and because of the assumed support values, the mass and center
reasons: 1) we observe only a finite number of projections, and of mass of each projection is always correct, and the value of
2) the projections are observed in noise. A consequence of the §(t) is zero outside the support values.
first problem is that we may require additional prior information
about the shape of expected objects in order to estimate the y(t)
missing support values. A consequence of the second problem is
that estimates of the lateral positions of any set of support lines
may not be consistent with any object in the plane [6]. : >

We approach convex support estimation in two stages. The -T I0 T t
first stage estimates the support positions within each projection 
and the second stage estimates a set of consistent support values 9
for all observed and unobserved projections. In this section, we i 

discuss two methods to accomplish the first stage; approaches
to the second second step have been presented elsewhere [6]. 

-T t _ 0 T+ , T t

Fig. 3. Noisy projection and constrained estimate.



(3)

The goal is to choose the best support values given g(t) for all for the knot-location method and is described in [8]. The Support
L_ and t+. Choosing the support values that maximize the like- Vector block takes the estimated support values and and pro-
lihood is not adequate, since this procedure will nearly always duces a full estimate of the convex hull of the object as described
pick L = -T and i+ = T. A support-width penalty is required, in [6].
and the model order selection method due to Akaike [91 provides The Sinogram MAP block calculates the maximum a poste-
an information theoretic way to introduce this requirement. riori estimate of the full sinogram, incorporating convex support

Each half-projection is treated independently (see Fig. 3), information and smoothness of the 2-D Radon transform, and
and each left-hand half-projection is time-reversed for the cal- assuming that the observed sinogram has been shift-corrected
culation. Assuming that there are N samples in a half- and normalized to unit mass. It solves a partial differential equa-
projection and that the hypothesized support value is at in- tion with constraints using an iterative primal-dual relaxation
dex k, the ML estimate of the true half-projection is a vector algorithm as describe in [2] and [8].

[a = [8
k
, 8s,..., AJ]

T that solves the quadratic program As shown in Fig. 4, the hierarchical algorithm requires three
.mnimize (y - sk)T(y- k ) user inputs: r, 7, and fl. These variables represent prior infor-

kminimize ( = 8 k) - , (10) mation about the shape of the convex hull of the object, the sino-
subject to 8

k+ l = 8
k+2 = = s = 0, (Support) gram horizontal smoothness, and the sinogram vertical smooth-

8> > 0 Vi, (Positivity) ness, respectively. They are coefficients of prior probabilities
_T 2T used in the various estimation stages, and may be empirically
T-80 + TE- =2 (Mass) adjusted for different object classes or imaging geometries.
nd i=1 2nd

Akaike's method [9] adds a penalty term (based on the num- V. Experimental Results
ber of free parameters) to the likelihood function, specifying Fig. 5a shows the 81 by 81 pixel M I T ellipse object used in the
the Akaike Information Criterion (AIC). The Akaike estimate experiments of this section. An 81 by 60 noise-free sinogram,
maximizes the AIC, yielding [8] derived from an approximate strip-integration of an analytic

1=argmin )Trepresentation of the M I T, is shown in Fig. 5b. The M I T
?(yk = argmin T2 (y - 8 ikT g - ) + 2k * (11) ellipse object was chosen for experimentation because the loss of

O<k<N U
data over different angular regions affects the reconstructions in

This support estimate requires a line-search in k, with a different ways. For example, the absence of line integrals parallel
quadratic program solved at each k. As k gets larger, the to the long axis of the ellipse causes a lack of information related
penalty term 2k begins to dominate so that the best support to the narrow dimension of the ellipse, but retains information
value estimate is not always N.

The support-width penalty method is of a quite different
character than the knot-location method. In particular, the
knot-location method uses derivative information to locate the
change in slope in the projection over a local region. In contrast,
the support-width penalty method uses the more global mass
and center of mass information and, in fact, is very insensitive
to small perturbations near the support value.

IV. Hierarchical Algorithm

A block diagram of the full hierarchical algorithm is shown in (a) (b)
Fig. 4. The mass and center of mass estimation steps were dis-
cussed in Section II and support value estimation was discussed
in Section III. The block labeled Thresholds derives thresholds about the letters inside the ellipse. In contrast, the absence of

line integrals parallel to the short axis of the ellipse obscures the
letters, but reveals the narrowness of the ellipse.

Fig. 6 shows results from two limited-angle experiments.
Coorrection i Figs. 6a-c are derived from an experiment that observes the

leftmost 40 projections depicted in Fig. 5b with independent
Center samples of zero-mean Gaussian noise added to each sample.

of Ma-- The resulting data, having a signal to noise ratio (SNR) of
10dB, yields the image shown in Fig. 6a when reconstructed
using convolution backprojection (CBP). A full sinogram MAP
estimate, derived from the hierarchical algorithm, is shown in

Support '--- Support Fig. 6b with the estimated support values superposed on the

image. Fig. 6c shows the reconstruction (using CBP) of Fig. 6b.
v lol I i 1 Figs. 6d-f show an analogous sequence of images derived from an
hresholg CEP I experiment that observes the rightmost 40 projections in noise,

i^~~~ ~ ~with SNR = 10dB as before.
nM These experiments use prior convex support information that
PA .assumes that objects tend to be circular. The use of this type of

information is what allows interpolation of support information
to the angles that are not observed. In the case of Figs. 6b and
6c, this information tends to cause the resulting object to be too
circular, but the contrast between the object and its background
and the clarity of the internal letters is clearly better than that
in Fig. 6a. The support value interpolation of the convex hull is

Fig. 4. Block diagram of hierarchical algorithm. excellent in Figs. 6e and 6f and there is a dramatic improvement
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(a) (d) a) (d)

(b) (e) (b) (e)

(c) (f) (c) (f)

Fig. 6. Limited-angle experiments. Fig. 7. Sparse-angle experiments.

in the object contrast. However, the lettering in the interior is tion under grant ECS-87-00903 and the U.S. Army Research
only slightly more readable since this information is lost along Office under grant DAAL03-86-K-0171.
with the 20 leftmost missing projections.
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