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Abstract

In this paper we present a novel method for parsing

aerial images with a hierarchical and contextual model

learned in a statistical framework. We learn hierarchies

at the scene and object levels to handle the difficult task of

representing scene elements at different scales and add con-

textual constraints to resolve ambiguities in the scene inter-

pretation. This allows the model to rule out inconsistent

detections, like cars on trees, and to verify low probability

detections based on their local context, such as small cars in

parking lots. We also present a two-step algorithm for pars-

ing aerial images that first detects object-level elements like

trees and parking lots using color histograms and bag-of-

words models, and objects like roofs and roads using com-

positional boosting, a powerful method for finding image

structures. We then activate the top-down scene model to

prune false positives from the first stage. We learn this scene

model in a minimax entropy framework and show unique

samples from our prior model, which capture the layout of

scene objects. We present experiments showing that hierar-

chical and contextual information greatly reduces the num-

ber of false positives in our results.

1. Introduction and Related Work

Aerial image understanding is a widely studied topic of

great importance for military, navigational, and surveillance

tasks. Aerial images have two prominent features that dif-

ferentiate them from other natural images:

Long Range: Objects of interest in aerial images exist at

very different sizes, from large blocks of buildings to small,

individual cars. It is nearly impossible to model and detect

these objects successfully at a single scale.

Wide View: Unlike many images used for object detection

that have a few objects present in consistent configurations,

aerial images can have hundreds of objects present, creating

a countless number of potential spatial layouts.

Work in aerial image understanding has commonly ad-

dressed the problems above in one of two ways. One sim-
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Figure 1. Our three-level hierarchy. The scene decomposes into

sets of group nodes, which in turn decompose into sets of individ-

ual objects, which are represented either at that level or by further

hierarchical decomposition. The features at the bottom are used to

detect the objects during the inference stage.

plification of the problem is to work in a narrow depth

range and detect just one type of object, such as rooftops

[9, 15, 16] or cars [18]. In this domain, higher level cues,

such as context, are of little benefit, as researchers need only

concern themselves with intraclass context, such as whether

two of the same object overlap. This line of study has pro-

duced good results for single objects, but generally ignores

multi-category situations.

An improvement over the method above is to extend the

task to identifying multiple object types, but to code spatial

context using a hardcoded logic-based model [10, 12]. This
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work approaches the goal of image understanding much

more closely than the single-class case, but relies on hand-

coded models and relationships, which are non-scalable

and require human intervention should the model need to

change. The work in [13] proposes probabilistic relation-

ships between objects, but the hierarchical grouping and in-

stantiation of these relationships is still fixed.

The field of object recognition has recently begun focus-

ing on hierarchies and context information for object and

scene classification [3, 5, 7]. We adopt some of these ideas

to apply to aerial image understanding:

Multi-category hierarchy - We propose a novel two-layer

hierarchical model that represents the image from the scene

level down to the pixel level. Figure 1 shows a depiction

of this hierarchy, in which the scene level decomposes first

into groups of objects. Groups, like blocks of buildings or

rows of cars, are fairly unique to aerial images, as there are

few image domains in which multiple instances of the same

object exist in large groups. These groups decompose into

single objects, some of which, like roofs, decompose further

into parts and primitives.

Context learned from real data - We model context as

constraints on the attributes of objects in the scene. For ex-

ample, cars are associated with roads and appear contained

within them at the appropriate scale. This context also lets

us resolve ambiguities across different object scales, for ex-

ample ruling out vents on roofs that are often detected as

cars.

Our two-layer hierarchical model helps capture the long

range of object sizes by representing scene elements at

different scales, while the contextual part of the model

captures the interactions across the wide view of objects

present in the scene.

Our hierarchy also models the different characteristics of

the scene at varying scales. At the scene level we observe

loosely constrained groups of objects, easily modeled by

the soft, descriptive constraints of an MRF model [6, 11].

At the object level, however, we observe tightly constrained

parts, such as the edges forming the boundary of a roof.

These require explicit bindings. There is still variation at

the object level, modeled by the “Or” nodes in Figure 1. A

roof can take many different shapes, each of which can be

formed from many different combinations of subparts. The

Or nodes model the possibility for an object to be modeled

as one of many part compositions.

We implement a two step inference algorithm that takes

advantage of the hierarchy and context in our model. In the

first phase, we use compositional boosting [17] to detect

roofs and roads, while we use low-level features, like those

shown at the bottom of Figure 1 to detect the remaining

object categories, parking lots, trees, and cars. Composi-

tional boosting is a hierarchical process that groups edges

into larger structures based on weak classifers learned on

their geometric and photometric features. This grouping

process passes information up and down its hierarchy un-

til objects are finally confirmed. This is a powerful method

for object detection that has not yet been applied to aerial

image modeling.

The first inference phase is designed to ensure a very

high true positive rate, but at the cost of having many false

positives. In the second phase of our algorithm we activate

the top-down scene-level component of the model to prune

inconsistent false positives using local context, resulting in

a much improved interpretation of the scene.

Figure 2 shows an example of an aerial image parsed

using our model. Figure 2(b) shows the labeled objects

detected in the scene, while Figure 2(c) shows the hierar-

chical decomposition of the scene. In this decomposition,

edges have been grouped into buildings, which have been

grouped into city blocks. These objects are constrained by

contextual relationships, examples of which are shown in

Figure 2(d). This figure visualizes which relationships exist

between different objects in the parse. For example, Fig-

ure 2(d)(1) shows which objects are aligned. Figure 2(d)(2)

and Figure 2(d)(3) show which objects are related by the

overlap and relative position relationship, respectively. For

example, cars obey the constraint that they overlap the road.

These relationships have been learned from a training set of

parsed aerial images.

In this paper we first discuss the representation of our

contextual hierarchy in Section 2. We then discuss how

to learn its parameters and show samples from this learned

prior in Section 3. Next we describe a greedy inference

algorithm in Section 4, which combines bottom-up results

from our object model with our top-down scene model to

arrive at the most reasonable explanation of the scene. We

finally show results where the hierarchical and contextual

information greatly improve our pure bottom-up detection.

2. Contextual Hierarchical Model

Figure 1 shows a diagram of our two-layer hierarchical

representation consisting of the scene-level hierarchy and

the object-level hierarchy model.

2.1. Hierarchical Composition

Scene-Level Hierarchy We can express the decom-

position rules for the scene-level in a grammar format:

1. S → Roofs(n1) ⊕ Cars(n2) ⊕ Roads(n3) ⊕
Trees(n4) ⊕ Parking Lots(n5), ni ∼ p(ni)

2. Roofs → Roof(m1), m1 ∼ p(m1)

3. Cars → Car(m2), m2 ∼ p(m2)

4. Roads → Road(m3), m3 ∼ p(m3)

5. Trees → Tree(m4), m4 ∼ p(m4)

6. Parking Lots → Parking Lot(m5), m5 ∼ p(m5)
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Figure 2. A running example. (a) Original image (b) Detection results on image (c) Hierarchical parse graph g (d) Constraints between

objects (1) Aligned objects grouped together (2) Objects that overlap or contain one another (3) Objects related by relative position.

where ni and mi are integral values determining the

cardinality of each decomposed set.

This portion of the model is very similar to a hierarchi-

cal Dirichlet prior [14], in that the scene decomposes into

a number of groups, which in turn decompose into a num-

ber of single objects. We choose instead to represent these

decomposition rules as constraints to keep our formulation

unified, which we discuss in Section 3.

Object-Level Hierarchy Nodes in the object-level hier-

archy can terminate as implicit representations or decom-

pose into their own hierarchy. Cars, trees, and parking lots

are modeled using color histograms and bags of SIFTs, and

thus terminate at this level. Roofs and roads, however, are

defined by a hierarchy of grouped edge primitives.

Figure 1 shows the object-level decomposition. Roofs

can take on one of many shapes, each of which can be

formed from simpler edge groups, which in turn can be

formed from collections of edges. For example, a rectangle

can be formed from two L-junctions, or from two perpen-

dicular sets of parallel lines. The uncertainty in decompo-

sition is modeled by the Or nodes in Figure 1, indicating

that a roof can decompose into one of many shapes. Each

Or node takes on an integral value during the parse phase

that determines which child it decomposes into: ω(vOr) =
i; i = 1, 2, . . . , m.

Decomposing the scene node down into objects and then

into parts creates a “parse graph” g from our model, consist-

ing of a set of nodes V and relations between them. Every

node instance vi ∈ V can be represented by the following

attributes, derived from the boundary points defining it:

A(vi) = {Xi, θi, σi} (1)

where Xi is the center of mass, θi the orienation, and σi the

scale. A(vi) serves as a general set of features for constraint

formulation in the next section.

2.2. Contextual Relations

The true power of our model comes from adding con-

text to the existing hierarchy through contextual constraints,

which determine the relative appearance of related parts.

Contextual constraints model the distributions of certain re-

lationships between objects, for example relative scale. Fig-

ure 1 shows these constraints as dashed horizontal lines.

Scene-Level Context A contextual relationship ri is

simply a function of the geometric attributes of one or more

nodes V = {v1, v2, . . . , vk}, φ = ri( ~A(V )).

We define a dictionary of relationship functions, ∆R.

For a relationship ri ∈ ∆R, we can compute its value φij

for every realization Vj ⊆ V of a set of nodes in a dataset.

For example, to compute the position relationship between

the “car” and “road” nodes, we obtain every pair of cars

and roads nodes in a set of training data and return the dis-

tance between them. We can then model the distribution

of these values using a histogram, H(ri( ~A(Vj))), for each

constraint. These loose distributions are similar in spirit to

the MRF models proposed in [6] and [11].

Adjacencies We only want to measure relationships

across node instances that influence each other. For exam-

ple, Vj may be {Roofs, T rees}, but the instances of roofs

and trees in each Vj may be so far away as to not influence

one another. Thus we add an indicator function for each re-

lationship ri to determine if a set of nodes is adjacent, and



thus valid to be operated on.

Ii( ~A(Vj)) =

{

1 if fi( ~A(Vj)) < ti,

0 else

where fi is a function over the node instances in Vj and ti
is its corresponding threshold. Note that “adjacent” here is

defined differently for each ri, and is not necessarily solely

a function of distance.

Object-Level Context At the object-level our con-

straints change slightly. We are now more interested in low-

level Gestalt features, such as parallelism, perpendicularity,

collinearity, but these can still be modeled as above.

3. Learning

We now learn a probability distribution, p(g; Θ), on both

levels of our hierarchical representation together. p(g; Θ) is

the probability of a parse g and is learned in two steps. We

first define the hierarchical component of the whole model

p0(g; Θ0), then iteratively add contextual relations to get

our final constrained model, p(g; Θ).

p0(g; Θ0)
r1⇒ p1(g; Θ1)

r2⇒ . . .
rk⇒ pk(g; Θk) (2)

where Θ is the parameter vector for the model.

3.1. Probability Model

Given a set of annotated parse graphs of aerial images

gobs = {gobs
1 , gobs

2 , . . . , gobs
n }, we would like our model,

p(g; Θ), to approximate the true underlying distribution,

f(g; Θ), of these parses. This model needs to match:

1. The distribution of the number of parts the scene and

group nodes decompose into.

2. The frequency with which Or nodes decompose into their

children.

3. The distribution of the relationships between nodes.

We can use these constraints to derive our probability

model using minimax entropy, resulting in a standard Gibbs

distribution [19, 20] where Θ = {λα, λβ , λw, λi} are La-

grange parameters to be estimated:

p(g; Θ) =
1

Z(Θ)
exp−(E0(g)+E1(g)) (3)

E0(g) =

5
∑

i=1

λα(|vG
i |) +

5
∑

i=1

|vG
i |

∑

j=1

λβ(|vO
j |))+ (4)

∑

vi∈V Or(g)

λw(ω(vi))

E1(g) =

k
∑

i=1

∑

Vj∈V

λi(ri( ~A(Vj)))Ii( ~A(Vj)) (5)

Here E0(g) is the energy associated with the hierarchical

component of our model, including terms for the number

of group nodes vG and object nodes vO present, as well

as for the decomposition of each Or node V Or. E1(g) is

the energy of the k contextual constraints selected for this

model. The indicator Ii ensures that only instances that are

adjacent are counted towards the energy. We can first learn

the hierarchical parameters {λα, λβ , λw} using MLE [1],

then iteratively add relations to the hierarchy following a

minimax entropy framework [20].

3.2. Relationship Pursuit

Scene-Level Relationship Pursuit We begin with a

model p0(g; Θ0) containing only our hierarchical parame-

ters, then augment that model to p+(g; Θ+) one constraint

at a time. Keeping with a minimax entropy framework,

we select the relationship r∗+ at each step that maximizes

the distance between our current model and the augmented

model, giving p∗+(g; Θ∗
+). Like texture synthesis, we use

the squared distance between our current model and the ob-

served histogram for ri as our metric. Unlike texture syn-

thesis, however, not all constraints may be present between

the same sets of nodes in every image, so we must weight

this distance metric by the frequency of each relationship,

f(ri).

r∗+(g) = argmax
r+

{KL(f(g)|p+(g)) − KL(f(g)|p(g))}

= argmax
r+

D(p+(g)|p(g)) (6)

D(p+(g)|p(g)) ∼= f(ri)|H(ri)
obs − H(ri)

syn| (7)

H(ri)
obs is the observed histogram for this relationship,

while H(ri)
syn is the histogram created by samples drawn

from our current model. The bigger |H(ri)
obs − H(ri)

syn|
is, the more information adding this relation would con-

tribute to this model. In this way, we add constraints that

produce the most information gain, i.e. bring our new model

p+ maximally far away from our old model p.

BuildingsRoads

Cars

Trees

Parking 
lots

Figure 4. Relationship constraints between groups modeled as a

directed acyclic graph. This adjustment is made to the model for

sampling.

It bears noting that the relationships at the group level

can exist between any pair of objects, but can be rewritten

in a partial ordering as a directed acyclic graph where each

object’s appearance depends only on a set of the other ob-

jects. An example is shown in Figure 4. This is necessary



Figure 3. Samples drawn from the scene prior. This analysis-by-synthesis shows the traits our model captures, similar to texture modeling.

for sampling, in which it is intractable, without adapting

something like Swendsen-Wang cuts, to arrange all of the

parts at once. We can first sample roads, then sample cars

given roads, then sample roofs given roads and cars, and so

on.

Figure 3 shows samples drawn from our learned scene-

level model. Here we model four categories of objects and

model the relationships of relative scale, relative position,

relative orientation, percentage overlap, aspect ratio, and

alignment. The boundaries are sampled from the training

data. We can see that the scenes are similar to urban aerial

images, marked by roads of consistent size, cars contained

within roads, no overlaps, and clustering of objects.

Object-Level Relationship Pursuit Relationships at the

object level are not pursued, but instead are all present.

We learn thresholds on these energy functions, or “explicit

tests”, to determine if nodes should be combined during in-

ference. In addition to these explicit tests for nodes, we

learn “implicit tests” for single nodes, which are simply

strong classifiers learned from Adaboost [2].

4. Inference

Our inference algorithm proceeds in two phases. We

first identify single object nodes in the image using specific

bottom-up detectors for each object class. We then activate

the top-down object/scene level of the model to prune in-

compatible proposals and arrive at the most likely descrip-

tion of the scene.

A

Multiple channels of evidence

β

γ

γα

a1 a2 a3

Figure 5. Information about the presence of a node may come from

a bottom-up detector, detected children, or a detected parent.

4.1. Bottomup ObjectLevel Detection

We first detect single objects in the scene using detectors

suited to their representations.

Cars: Cars are represented by Haar filter responses, and are

detected using Adaboost [2].

Trees: Trees are represented by color histograms. For every

7x7 window in each image, we compare the window’s his-

togram to a learned category histogram and accept the pixel

as belonging to a tree if the product between the two is be-

low some threshold.

Parking Lots: Parking lots are represented using a his-

togram of SIFT features. Like trees, we move 80x80 win-

dows across the image to find matching parking lot regions.

Compositional Boosting For the more complex cases

of roads and roofs we use compositional boosting [17], ex-

ploiting the implicit and explicit tests we learned in Section

3. Figure 5 shows the way compositional boosting intro-

duces context during inference. A node A may receive ev-

idence of its existence from one of three channels, named

the α, β, and γ channels. The α channel comes directly

from pixel-level evidence, such as Adaboost detection re-

sults for that node. The β channel submits evidence for A

from the existence of its children. The γ channel provides

evidence for A due to the existence of its parent. For ex-

ample, a roof may be detected directly from the pixel-level

results of Adaboost, or it may be proposed because two op-

posing L-junctions exist under certain constraints. Thanks

to the γ channel, we can also detect mid and low-level nodes

that were previously undetected due to the existence of their

parent.

Compositional boosting operates on a primal sketch of

an image, which is similar to an edge map [17]. The algo-

rithm strives to encode this sketch with as many composite

edge features as possible. In our case, we are trying to find

the best “roof encoding” of a sketch of our image. This is

done by first searching the input sketch for every possible

node in the hierarchy using its implicit representation, the

strong classifier learned for that node. Each particle is then

weighted by a local posterior probability ratio of how well

it encodes a patch relative to other particles. The algortihm

then proposes new candidates by binding or decomposing

the implicitly detected nodes into higher and lower level

structures. These proposals are similarly weighted.

At each iteration we greedily select the candidate from

our proposal set with the highest weight. We then reweight

the remaining candidates according to whether or not the

newly selected particle overlaps their domain or alters the

evidence that they exist. For example, if we select a low
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Figure 6. ROC curves for line structures with and without compositional boosting. The blue curve shows results using just one-pass of

Adaboost, while the red curve shows the improvement from using top-down information from compositional boosting.

level node, it would increase the weight on the proposal that

its parent existed. We refer the reader to [17] for more de-

tails on this formulation. Suffice it to say that, given an

edge image, we first propose nodes using implicit and ex-

plicit tests, then iteratively select and reweight particles that

best explain the image. By the end we have a hierarchical

decomposition of the sketch of the image, yielding roof and

road candidates.

4.2. Topdown Pruning

The previous step produces a huge number of candidate

particles for each object category. We now want to pur-

sue the g∗ that maximizes our posterior distribution for the

scene level:

g∗ = argmax
g

p(I|g; Θ)p(g; Θ) (8)

We optimize this value by pursuing candidates found in the

bottom-up phase, similar to [8]. We greedily add nodes to

a running parse, g, initially empty. At every iteration, we

reweight each particle ci from a set of detected candidate

particles, C = {c1, c2, . . . , ck} by the change in energy its

addition produces, where g+ = g ∪ {ci}.

w(ci) = log
p(I|g+; Θ+)

p(I|g; Θ)
+ log

p(g+; Θ+)

p(g; Θ)
(9)

We model the likelihood for each object ci based on how

well it matches a color histogram for its object type,

Hi(I(x,y)), relative to the previous explanation of that area,

Hj(I(x,y)), which may be uniform if g doesn’t yet explain

those pixels, or may belong to whatever object is currently

covering that region. We also measure the energy of the

prior on g+, which is simply the energy of the relationships

created due to the addition of ci.

log
p(I|g+; Θ+)

p(I|g; Θ)
=

∑

(x,y)∈Λi
log Hi(I(x,y))

∑

(x,y)∈Λi
log Hj(I(x,y))

(10)

log
p(g+; Θ+)

p(g; Θ)
= −

k
∑

i=1

∑

Vj∋ci

λi(ri( ~A(Vj))) (11)

This proceeds until no candidates remain with w(ci) > 0.

As this is a greedy algorithm, it is not guaranteed to

converge to a global minimum. However, we have found

that in practice, with good initial conditions, the algorithm

achieves sensible parses. Our detectors are reliable enough

that we are virtually ensured that the first particles picked

are in fact correct objects.

5. Experiments

Training We learned our prior model and bottom-up pa-

rameters from 196 hand-labeled, multiresolution training

images taken from Google Earth. This dataset included

10477 cars, 973 roofs, 202 roads, 584 parking lots, and 555

tree regions. We implemented relationships for aspect ratio,

relative position, relative scale, relative orientation, percent-

age overlap, and grid alignment. We imposed grouping con-

straints dictating that single objects be grouped if their rela-

tive orientation varied less than 15 degrees from one another

and were a distance less than or equal to twice the scale of

the object along each axis away from one another. With this

information, we were able to reconstruct the parses for each

of the labeled images.

Our testing set was comprised of three large Google

Earth images that were mosaicked together from many

smaller high-resolution images. This allowed us to run our

object detectors at multiple scales for each image.

Compositional Boosting Figure 6 shows ROC curves

for our compositional boosting results on a subset of the

training set. The blue curve shows just the initial implicit

testing results of four types of edge structures. This curve is

not very peaked, so Adaboost alone is not very effective for

detecting these structures. By using compositional boost-

ing to propose higher-level structures and then to re-verify

originally missed edge structures, we see a huge improve-

ment. The red curves show the improved detections using

the multi-layer evidence from compositional boosting in-

stead of just a single pass. This guarantees that we will have

a higher detection rate for roofs and roads using full com-

positional boosting than simply using implicit detectors.

Top-down + Bottom-up Figure 7 shows results of the

different stages of our algorithm on a series of aerial im-

ages. The first panel visualizes the compositional boosting
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results for 3 typical images. Panel (3) shows close-up comparisons between bottom-up alone vs. bottom-up + top-down information.



results for the four part types on an area of the image. Panel

2 shows typical bottom-up detection results for an area of

the image. Note the abundance of false positives. The cen-

ter panel shows the final detection results for 3 images, us-

ing our top-down model to prune unlikely bottom-up can-

didates. We see that the majority of the objects are detected

correctly and that we have very few inconsistencies. Panel

3 shows a close up of the results before and after top-down

pruning. We can see that, beforehand, we have many over-

lapping inconsistent representations. After top-down infor-

mation is introduced, these are pruned away.

We do see incorrect labelings as well, however. For ex-

ample, the rightmost image has decided that the straight

lines of buildings are in fact roads, thus ruling out the build-

ings there. Also, our training data included trees on the

medians of roads. Thus, our model learned that trees can

overlap roads, so we see proposals where trees block the en-

tire road. These problems can be solved by weighting our

likelihood term differently and by including more complex

relations in our model.

Table 1 shows the improvement achieved using our top-

down model. We compare the number of true positives and

false positives in our testing set before and after top-down

pruning. Though we lose some true positives during the top-

down phase, we see that the false positives are drastically

reduced. Looking at the images in Figure 7, these seem

to correspond to instances that are fairly difficult even as a

human to label. The top-down pruning has then in effect

eliminated the majority of the false positives.

Bottom-Up Top-Down

Ground Truth TP FP TP FP

Roofs 59 56 117 48 24

Roads 9 9 8 9 6

Cars 806 768 415 651 31

Parking Lots 6 3 15 3 3

Trees 55 53 60 53 11
Table 1. Comparison of results between bottom-up and bottom-up

with top-down pruning.

6. Conclusions and Future Work

We have shown a contextual hierarchical model that in-

corporates bottom-up and top-down information to parse a

scene containing multiple object categories. The dual hier-

archies succeed in capturing the relations at the object and

scene levels and compositional boosting greatly improves

our bottom-up detection rate. The top-down scene model

is able to prune inconsistent candidates using scene con-

text, producing far better precision than bottom-up detec-

tion alone. We hope in the future to improve this model

by extending it to handle arbitrary object types and to im-

plement top-down prediction in the scene-level hierarcy to

help detect missing objects.
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