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Abstract In this paper we present a hierarchical and contex-

tual model for aerial image understanding. Our model orga-

nizes objects (cars, roofs, roads, trees, parking lots) in aer-

ial scenes into hierarchical groups whose appearances and

configurations are determined by statistical constraints (e.g.

relative position, relative scale, etc.). Our hierarchy is a non-

recursive grammar for objects in aerial images comprised

of layers of nodes that can each decompose into a num-

ber of different configurations. This allows us to generate

and recognize a vast number of scenes with relatively few

rules. We present a minimax entropy framework for learn-

ing the statistical constraints between objects and show that

this learned context allows us to rule out unlikely scene con-

figurations and hallucinate undetected objects during infer-

ence. A similar algorithm was proposed for texture synthe-

sis (Zhu et al. in Int. J. Comput. Vis. 2:107–126, 1998) but

didn’t incorporate hierarchical information. We use a range

of different bottom-up detectors (AdaBoost, TextonBoost,

Compositional Boosting (Freund and Schapire in J. Com-

put. Syst. Sci. 55, 1997; Shotton et al. in Proceedings of the

European Conference on Computer Vision, pp. 1–15, 2006;

Wu et al. in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 1–8, 2007)) to pro-

pose locations of objects in new aerial images and employ

a cluster sampling algorithm (C4 (Porway and Zhu, 2009))

to choose the subset of detections that best explains the im-
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age according to our learned prior model. The C4 algorithm

can quickly and efficiently switch between alternate com-

peting sub-solutions, for example whether an image patch

is better explained by a parking lot with cars or by a build-

ing with vents. We also show that our model can predict

the locations of objects our detectors missed. We conclude

by presenting parsed aerial images and experimental results

showing that our cluster sampling and top-down prediction

algorithms use the learned contextual cues from our model

to improve detection results over traditional bottom-up de-

tectors alone.
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1 Introduction

1.1 Objectives and Motivation

Aerial image understanding is an important field of research

for tackling the problems of automated navigation, large

scale 3D scene construction, and object tracking for use in

event detection. Most of the tasks using aerial images need

or would benefit from a full explanation of the scene, con-

sisting of the locations and scales of detected objects and

their relationships to one another. Being able to identify ob-

jects of many different types and understand their relation-

ships to one another gives a deeper understanding of the data

and allows subsequent algorithms to make smarter decisions

faster.

There are difficulties in aerial image parsing that do not

arise in more restricted recognition tasks. Three major ob-

stacles to modeling aerial images are,
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Fig. 1 An example of a hierarchically parsed aerial image. (a) The original image. (b) A flat configuration of objects in the scene. (c) A hierarchical

parse graph of the scene. (d) Three typical contextual relationships and the objects related by them

1. Highly Variant Configurations: Objects in aerial im-

ages can appear at many different locations, scales, and ori-

entations in the image, creating a vast number of possi-

ble configurations. There may also be hundreds of objects

present, making it infeasible to create a rigid model that can

enumerate every possible spatial layout.

2. Multi-resolution: Objects in aerial images appear at a

number of resolutions, from small cars about 10 pixels wide

to massive roofs more than 800 pixels long. There is no sin-

gle feature or detector that is likely to perform well across

all categories and all sizes of object.

3. Coupling Constraints: Certain objects frequently ap-

pear together under certain constraints, for example cars of-

ten appear in parking lots. When performing inference to

find the best explanation of the scene, one must make sure

the explanation adheres to this strong coupling. If an image

patch is explained by a roof with vents on top of it, chang-

ing that explanation to a parking lot with cars in it requires

updating all of the objects involved at once. Single site sam-

pling methods are insufficient for this task, as they would

add/subtract single objects to and from the current expla-

nation one at a time, each of which would be a very low-

probability state on its own. We need some way to switch

all the involved objects at once, removing the roof from the

explanation while at the same time adding the cars and park-

ing lot to the explanation together.

To motivate our solution to the problems above, let us

look at an example of parsing an aerial image. Our goal is to

simultaneously detect objects in images and organize them

into a hierarchical contextual representation for the scene,

i.e. which objects are grouped together and how they’re re-

lated to one another. Figure 1 shows an example of what a

parsed scene looks like. Figure 1(b) shows a flat configura-

tion of detected objects in a typical aerial image. In Fig. 1(c)

these objects have been grouped hierarchically - nearby cars

are aligned in rows, trees form treelines, and proximal build-

ings form city blocks, for example. This hierarchical rep-

resentation explains the image at many resolutions and ab-

stracts the objects into loosely related groups. It also models

the number of groups we see in each image and the num-

ber of objects we observe in each group. Figure 2 shows a

visualization of this representation.

Even though objects in groups don’t appear in rigid for-

mations the way the parts of a single object might, we recog-

nize certain spatial and appearance constraints that they

must obey. For example, we would never expect to see two

cars on top of one another or a building smaller than a

tree. These constraints between objects and groups are rep-

resented as horizontal lines between nodes in Fig. 1(c). Fig-

ure 1(d) shows examples of which objects could be related

by certain constraints. The first panel shows which cars and

trees are aligned in a straight line. The second panel shows

which objects contain other objects, and the last panel shows

that almost all objects in this example are related by their

relative position. We want our model to automatically learn

which constraints between which objects are sufficient to
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Fig. 2 The 3-level contextual

hierarchy. The scene is broken

down into groups of objects of

one of five categories, which are

in turn broken down into

individual objects of the same

type. The thick vertical arrows

between the scene and groups

and between the groups and

objects indicate that these nodes

can decompose into a variable

number of children. Objects are

represented by detectors, some

of which (roofs, roads) are

hierarchical themselves. The

horizontal lines between nodes

at the same level represent

statistical constraints on the

nodes’ appearance

represent the scene. If objects in a scene violate constraints

that we expect to see or don’t meet enough of them, then that

interpretation of the scene will have a low probability. Such

constraints would also rule out invalid object detections (e.g.

cars on top of trees).

1.2 Major Contributions

We present a 3-layer hierarchy with embedded contextual

constraints along with a 3-stage inference algorithm to solve

the problems above and capture the natural hierarchical and

contextual nature of aerial images.

1. Hierarchical and Contextual Model: To handle the

large structural variations of aerial images we model scenes

as groups of like objects, such as cars aligned in rows or

roofs clustered into city blocks (see Fig. 2). This abstracts

the scene into loosely related neighborhoods. We then add

statistical constraints within and between these groups to

constrain their relative appearances, such as how close to-

gether they are or what size they are. We achieve this by em-

bedding Markov random fields (MRFs) into a hierarchical

grammar model. Our grammar model begins at a root scene

node that then probabilistically decomposes into a number

of group nodes, such as n groups of cars or m groups of

roofs. Each of these groups can in turn decompose into a

number of single nodes, such as j cars in one group, k cars

in another. Alone this hierarchy only captures the frequency

of objects, however, so we add contextual relationships via

MRFs on the neighborhoods within each group and between

groups. In this way we create a statistical model that uses a

small set of decomposition rules to generate variable number

of objects whose appearances are constrained by statistical

relationships.

2. Automatic Learning of Context by Relationship Selec-

tion: Creating the constraints for our model by hand is in-

feasible due to the huge number of potential constraints that

could exist, so we present an algorithm to automatically add

statistical constraints to the hierarchy in a minimax entropy
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framework. This minimax entropy technique was used pre-

viously in texture modeling (Zhu et al. 1998) and on more

general graphical models (Wainwright and Jordan 2008) but

we are now applying it to a hierarchical model. We seek

to model the true distribution of aerial images, f , with our

learned distribution, p, by iteratively matching feature sta-

tistics between f and p. This matching entails extracting

features from a set of observed data (which follows f ) and

adjusting our model p such that it reproduces the statistics

of these features. This learning method automatically selects

the most important feature statistics to match and ignores

low-information features. This allows us to add only relevant

relationships from a large dictionary of potential constraints.

By the end of this process, samples from p appear similar to

true samples from f along the learned dimensions.

3. Flexible Detectors for Multiple Object Categories: The

3-level hierarchy terminates at object nodes, below which

we may plug in any detectors that we like for each object

type. Large textured regions, such as grass, trees, parking

lots, water, and dirt, are detected using a Bag-of-Textons

classifier. In this work, small patch-like objects, like cars,

are detected using Haar features and AdaBoost. Roofs and

roads, which have many different colors and shapes, are de-

tected using edges as features and a compositional algo-

rithm called Compositional Boosting (Wu et al. 2007) for

detection. Compositional Boosting is itself a hierarchical

detector and groups edges into larger and larger structures

if they meet certain appearance constraints. In our work,

edges detected in the image are grouped into corners, T-

junctions, long lines, etc. that are then grouped into poly-

gons. These polygonal boundaries are stronger indicators of

a roof’s presence than color or texture are and can model

many different roof shapes.

4. Top-Down Bayesian Inference with Cluster Sampling

and Prediction: To handle the coupling constraints that ap-

pear in aerial images we use a sampling algorithm in-

spired by Swendsen-Wang clustering (Barbu and Zhu 2005;

Swendsen and Wang 1987). Swendsen-Wang cluster sam-

pling was introduced to sample the Potts model more effec-

tively by updating a cluster of sites at once instead of just

a single site. Our variant of this algorithm, named Cluster-

ing via Cooperative and Competitive Constraints (C4)

(Porway and Zhu 2009), updates multiple clusters at once,

allowing us to move very rapidly in the solution space. The

clusters represent competing explanations of the scene. For

example, a patch explained by a parking lot with cars may

be better explained by a single roof. To swap these explana-

tions, we couple the cars with the parking lot and switch the

whole cluster with the roof in a single step. This process re-

sults in an explanation of the scene with very few false pos-

itives. We also use the hierarchical nature of our top-down

model to propose new objects our object detectors may have

missed, thus increasing the number of true positives in our

final result.

It bears noting that our training process uses hand-labeled

images as input. This requires having a human identify ob-

jects of interest in images and label their boundaries. Thank-

fully only the boundaries of the objects need to be labeled,

regardless of the number of contextual relationships being

learned by the algorithm.

1.3 Related Work

Our work is related to two subfields of computer vision: aer-

ial image parsing and hierarchical object recognition. In the

aerial image parsing literature it is very rare to find work

that detects multiple types of objects simultaneously. Most

work focuses on detecting just one type of object, rarely us-

ing context or hierarchy to model the whole scene. In the

object recognition category we often see complex hierarchi-

cal and contextual models. However, these models are often

designed for rigid objects where appearance constraints are

fairly constant between instances of the object.

Much work has been done on identifying single ob-

jects in aerial images, such as rooftops (Maloof et al. 2003;

Vestri and Devernay 2001; Wei and Prinet 2005), cars (Li et

al. 2005; Zhao and Nevatia 2001), or roads (Nicolas et al.

2000). In these cases context plays little role, as single ob-

jects are detected without taking the support of surrounding

objects into consideration. These works use similar object

detectors to those we use, though they almost exclusively

use one detector without considering the support from mul-

tiple detectors. These detectors include AdaBoost (Freund

and Schapire 1997; Viola and Jones 2001), Bag of Words

(Berg et al. 2007; Sivic et al. 2005) and TextonBoost (Shot-

ton et al. 2006).

Some aerial imaging works incorporate context and/or

multiple object category detection into the same framework.

SIGMA (Matsuyama and Hang 1990), a knowledge-based

“expert system” for aerial images, was an attempt to model

rule-based spatial relationships between objects. Unfortu-

nately, as in much of the computer science based AI work of

that time, relationships were often hardcoded and thus not

generally extensible. On a smaller scale, Moissinac identi-

fied roads and city blocks in urban scenes using local context

rules to decide how roads connect and how blocks should

appear (Moissinac et al. 1994). Hinz used positional rela-

tions to determine the likely positions of roads in aerial im-

ages (Hinz and Baumgartner 2000). A recent approach for

parsing images of outdoor scenes by Berg et al. (2007) also

seeks to model images as collections of regions that obey po-

sitional and relational constraints. As far as we know, how-

ever, these models require a good deal of hand-tuning and

hardcoded logic in order to encode the relevant constraints.

SIGMA relied on experts to identify relationships of inter-

est to model, Moissinac knew exactly the domain he was

working with (handdrawn maps) and designed relationships
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accordingly, and Berg et al. used domain knowledge of the

objects they wanted to identify to design contextual cues.

Our model improves upon this shortcoming by employing

a minimax entropy learning framework to automatically se-

lect significant relationships from a bank of potential rela-

tionships that can be designed to work on many domains of

data without constant user input.

Our model borrows concepts from grammars in natural

language, so we would be remiss not to credit the large

and growing field of object recognition using hierarchies

and context in non-aerial image recognition. Growing out

of the early grammar work by Fu and Ohta (1981, 1985)

on grammars for line drawings, much recent work has at-

tended to the process of learning compositional object struc-

tures that employ local context to resolve ambiguities. The

constellation model (Weber et al. 2000), pictorial struc-

tures (Felzenszwalb and Huttenlocher 2005; Fischler and

Elschlager 1973), and patch hierarchies (Ullman et al. 2001)

all use learned statistical constraints to model the relative po-

sition of object parts to some reference frame. Higher level

compositional structures for object categories (Li and Per-

ona 2005; Todorovic and Ahuja 2006) have shown great per-

formance on object detection and localization tasks and can

even be learned from unlabeled images, while work on rule-

based models of shape have shown the power of statistical

composition (Keselman and Dickinson 2001; Siddiqi et al.

1999). Some of these models can express the general rela-

tionships present between shared object parts of the same

category, a very useful trait for generalization.

In later sections we define our model as an exponential

model over a graphical structure. We employ minimax en-

tropy techniques seen in Zhu et al. (1998) to learn the para-

meters of this model and pursue its contextual relationships.

However, we must acknowledge the huge number of contri-

butions made in modeling graphical models as exponential

families from all walks of machine learning and computer

vision. We refer to the tutorial by Jordan and Wainwright on

this topic (Wainwright and Jordan 2008) on similar uses of

maximum entropy for modeling distributions on graphical

models.

More general grammars for full scene modeling have

developed recently (Chen et al. 2006; Han and Zhu 2005;

Jin and Geman 2006; Tu and Zhu 2002; Zhu et al. 2008;

Zhu and Mumford 2006). The work in Han and Zhu (2005),

Tu and Zhu (2002) seek to explain an entire image by pars-

ing it hierarchically into constituent regions and objects,

while Chen et al. (2006), Jin and Geman (2006), Zhu et

al. (2008), Zhu and Mumford (2006) focus more on single

objects. These models borrow closely from models used in

natural language processing, and express structural and ap-

pearance variation as the result of production rules. Hierar-

chical models for objects that include scene-level constraints

have been presented in Singhal et al. (2003), Sudderth et al.

(2005), which are very similar in spirit to our model. The

contextual constraints, however, tend to strictly be relative

position constraints. Moreover, while this entire corpus of

work is hugely important for object recognition, many of the

contributions here rely on the fairly constant arrangement of

a relatively fixed number of parts in objects. The variation

in part appearance, frequency, and location for a motorcycle

is far lower than that of the arrangement of cars and roofs in

a city scene.

In the field of natural language processing, much progress

has also been made on Unification-Based Grammars (UBG),

which seek to model sentences by augmenting a tree struc-

ture with additional features, such as pairwise frequencies of

words or attributes of the sentence as a whole (e.g. number

of direct objects) (Johnson et al. 1999). This work is very

related to ours in that the researchers seek to extend a tree

structure to include relationship constraints. While much

successful work has been done using UBG’s, the authors of

this article have yet to encounter a straightforward way for

automatically adding constraints to these models, much less

adding constraints proportional to their importance. UBG’s

are mostly seen in the field of natural language processing,

where the input data types are much more constrained than

in vision and can thus be labeled and tagged more easily by

hand. Our method provides a technique for automatically se-

lecting the most representative pairwise features to be added

to the model using minimax entropy.

We present an overview of our contextual hierarchy,

learning algorithm, and Bayesian inference process in

Sect. 2. This is followed by the formulation of our hierar-

chical and contextual model in Sect. 3 and by a description

of the learning process in Sect. 4. We show that sampled aer-

ial images drawn from our model are composed similarly to

aerial images that we trained from in Sects. 5 and 6. We

finally present a Bayesian framework for a three-stage infer-

ence algorithm in Sect. 7 before closing with experiments in

Sect. 8 and conclusions in Sect. 9.

2 Overview

In this section we give an overview of our 3-layer hierarchy

and the learning algorithm for adding context to our rep-

resentation. We also describe our Bayesian inference algo-

rithm, a 3-step process that first detects objects using dif-

ferent detectors, then uses cluster sampling to remove false

positives from our explanation before using top-down pre-

diction to detect any objects our explanation is missing.

2.1 Hierarchical and Contextual Representation

Figure 2 shows our 3-level hierarchy. It consists of nodes di-

vided into a root scene node, group nodes, and object nodes.
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Group nodes are collections of the same type of object, such

as blocks of roofs or lines of cars, while object nodes are the

single objects within each group. Below this level is the ob-

ject representation level, which may be hierarchical in and

of itself, as in the case of roofs and roads in our example, or

may terminate at a one-layer representation for the object.

The top 3-levels are representation agnostic, however, so we

will put off a discussion of object detection and representa-

tion until Sect. 7.1. The thick arrow edges between the scene

node and group nodes and between the group nodes and the

object nodes indicate that a varying number of each group

node may be present, and the number of object nodes they

are comprised of can vary as well. The hierarchy is similar

to a grammar, where the scene node decomposes into a vari-

able number of object groups, which in turn decompose into

a variable number of objects. This captures the loose, vari-

able nature of aerial images with just a few compact rules. If

we were to write these expansions in a grammar format, we

would write

Scene → (Roads∗) ∪ (Roofs∗) ∪ (Trees∗) ∪ (Parking Lots∗)

∪ (Cars∗)

Roads → Road∗

Roofs → Roof ∗ (1)

Trees → Trees∗

Parking Lots → Parking Lot∗

Cars → Car∗.

Here we’re using “∗” in the regular expression sense, mean-

ing 0 or more of an object. One could rewrite the “∗” opera-

tor by enumerating all cases, as in

Roads

→ ∅|Road|(Road)(Road)|(Road)(Road)(Road)| . . . (2)

On its own the hierarchy simply captures the number of

object groups and objects in the scene. We also add sta-

tistical constraints between objects to ensure that their ap-

pearance and configuration obey certain statistical proper-

ties, such as relative scale, relative position, etc. These sta-

tistical constraints are represented as dotted horizontal lines

in Fig. 2 and can be any measurable statistic between some

non-empty set of object nodes.

2.2 Minimax Entropy Learning

We use a minimax entropy learning framework for automat-

ically adding the horizontal constraints to the model during

learning. The algorithm first gathers feature statistics Mf

across a set of aerial images. For clarity we will use the

term “relationship statistic” to mean feature statistic for the

remainder of the paper. For example, a relationship statis-

tic could be the distribution of the relative scale between

every pair of cars in every image in our training set. The

responses for each relationship statistic (e.g. relative scale

between cars, relative position between roofs, etc.) are then

modeled by a continuous parameterized distribution or just

as 1-D histograms. We assume we can draw samples from

our current model, which begins as just the hierarchy of ob-

ject groups with no constraints. These samples will be aer-

ial images themselves. We can gather the same relationship

statistics Mp across our sampled images, again using the

example of measuring the relative scale between every pair

of cars in every image we sampled. We find the statistic ri
that differs the most between Mf and Mp , thus indicating

its importance. We add this constraint to our model and then

repeat the procedure until no more relationship statistics dif-

fer significantly. By the end of this process, the most impor-

tant relationship statistics over samples from our model will

match the most important relationship statistics over true

aerial images. Figure 3 visualizes this process, and the re-

sults of learning the model are presented in Sect. 6.

2.3 Top-Down and Bottom-Up Bayesian Inference with

the 3-Level Hierarchy

In this section we give an overview of the 3-stage algorithm

for parsing new aerial images. In the first stage we detect ob-

jects in the image using bottom-up detectors. The next stage

then prunes false positives using cluster sampling, followed

by the third stage, which predicts missing objects based on

our current explanation of the scene.

1. Bottom-Up Detection: In the first phase we collect

bottom-up proposals for each object category of interest.

The detectors used to find each of these objects can be any

off-the-shelf detector and may detect many false positives in

the scene. We use Bags of textons and edges, along with a

number of boosting methods, to detect objects from multiple

categories at multiple scales. Textured objects, like parking

lots and trees, are detected at the pixel-level, while struc-

tured objects, like roofs and roads, are composed from edges

in the image. By using different detectors for each object cat-

egory, we ensure that we detect each category as well as we

can, though we allow for false positives and false negatives,

which will be handled in the next stages.

2. Top-Down Pruning of Inconsistent Detections: In the

second phase we use the context relations that we learned

in our model to prune out nodes that support unlikely in-

terpretations of the scene. We use a cluster-sampling al-

gorithm (C4) (Porway and Zhu 2009) for this phase. This

algorithm helps us overcome the strong coupling between

objects when we sample our different interpretations of the

scene. For example, Fig. 4 shows a case where we can ex-

plain a portion of the image as either a roof or a parking lot
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Fig. 3 A visualization of the learning process. Feature statistics Mf

and Mp are computed over a set of aerial images and a set of aerial

images sampled from our current model p, respectively. The most dif-

ferent of these, in this case r2, is selected to be added to our model.

During the next iteration r2 will now match between Mf and Mp for

newly sampled images from p. This process continues until no feature

statistics differ significantly between the two sets of images

Fig. 4 The problem with dealing with strong coupling in aerial im-

ages. Here we show an image patch that can be explained either by a

roof or by a parking lot with cars (often time the vents on roofs are

detected as cars). Traditional sampling methods fail because the in-

termediate steps to get from explaining the scene as a parking lot to

explaining the scene as a roof have very low probability. (a) Removing

cars one at a time just leaves an empty parking lot, which is a low prob-

ability state. (b) Adding the roof on top of the parking lot is a low prob-

ability state (we don’t often see parking lots on roofs). (c) Switching

the parking lot and cars for the roof in one move is a high probability

move

with cars in it. If we switch from one explanation to the other

by adding or removing single objects to and from our current

explanation, it will take an exponentially long time to move

from one explanation to the other because the intermediate

steps are so unlikely.

Alternatively, adding the roof in Fig. 4(b) creates a very

unlikely configuration (let’s assume we never see parking

lots on top of buildings in the training data), so it will be re-

jected. C4 clustering solves this problem by finding strongly

coupled groups, like the parking lot and cars, and swapping

them simultaneously with alternative explanations, as shown

in Fig. 4(c).

3. Top-Down Prediction and Verification of Missing De-

tections: The third phase of our inference algorithm uses

the top-down model to predict any missing objects based

on the learned prior model and detections from Stage 2. For

example, if we detected 4 cars in a row with a gap in be-

tween them, it might be reasonable to predict that another
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Fig. 5 (Color online) Top-down hallucinations of missing objects. Solid rectangles indicate the detections from Stage 2, while the dashed rectan-

gles indicate hypotheses for missing objects proposed by the top-down part of our model

car should be present there. Figure 5 shows an example of

predicted roofs, cars, and roads based on our results from

stage two and our prior model. The hallucinated objects are

shown in green dashed rectangles, while the accepted de-

tections from C4 are shown in black solid rectangles. These

top-down predictions will then be pruned or accepted using

a final round of C4.

3 Formulation

In this section we present the probabilistic formulation for

our representation from Sect. 2.1.

3.1 Contextual Hierarchy Representation

Our representation G is a 3-tuple

G = 〈V,R,P 〉, (3)

where V are the nodes in the top 3 layers of Fig. 2. R is a

set of contextual relations and P is our probability model.

The hierarchical component formed from V consists of 3

types of nodes,

V = S ∪ V Group ∪ V Object. (4)

S: The root Scene node.

V Group: Groups of the same type of object, such as rows of

cars or blocks of roofs.

V Object: Individual objects in the image.

The Scene and group nodes may decompose into one of a

variable number of children nodes. This makes these nodes

similar to “Or” nodes, because node V
Group

i can decompose

into 1 OR 2 OR 3 OR . . . OR k objects. We define a variable

ω(v) on v ∈ V that takes an integer value for each number

of children a node v decomposes into,

ω(v) ∈ {0,1,2, . . . , n(v)}. (5)

Each node vi ∈ V has a set of attributes φ(vi) that de-

scribes its position, scale, and orientation,

φ(vi) = {Xi, σi, θi}. (6)

In Sect. 5 we present our implementation of these attributes

for our experiments.

R = {r1, r2, . . . , rN(R)} is the set of relationships that ex-

ist between nodes at the same level of the hierarchy. A rela-

tionship ri consists of a set of k nodes Vk ∈ V that it acts on,

a univariate function f () over their attributes, and a model

of the responses of f (), p:

ri = {Vk, fi(φ(Vk)), pi}. (7)

For example, the relative position between cars and build-

ings could be expressed as

f (φ(Cars),φ(Buildings)) = XCars − XBuildings. (8)

If we believe relative position between cars and buildings is

normally distributed with mean 5 and standard deviation 1,

then the whole relationship is packaged as

ri = {(Cars,Buildings), fi = XCars − XBuildings, fi() ∼ pi

= N (5,1)}. (9)

We will discuss the relationship functions f () and their

distributions pi in our implementation in Sect. 5. At this

point it is enough to know that each relationship represents

the distribution of a function response over a set of nodes.

These distributions act as our statistical constraints. Figure 6

shows some examples of possible relationships.
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Fig. 6 Examples of

relationships/statistical

constraints. A relationship can

technically be any function over

the attributes of some

non-empty set of nodes

P is our probability model, including the probability that

nodes decompose into a certain number of child nodes, as

well as the probability encoded in our statistical constraints.

We will define this probability model in Sect. 3.3.

3.2 Parse Graphs

A parse graph, pg, is one instance drawn from the language

of aerial images G . This is like a sentence drawn from nat-

ural language and corresponds to a single aerial image. An

example of a parse graph is shown in Fig. 1(c). In a parse

graph the production variables w(v) have been decided for

every node—we’ve selected some number of n groups from

which to form the scene and selected mi objects to exist

within each group. In addition, every group of objects in pg

that were constrained in G has inherited those appearance

constraints. For example, if G contains a constraint on the

relative distance between pairs of cars, every pair of cars in

pg ∼ G will have an edge between them constraining their

relative distances.

Let us define some terminology on parse graphs, similar

to that of G :

1. Vpg ⊆ V : The nodes present in pg, which are a subset of

the nodes possible in G .

2. �pg = {ω(v);v ∈ Vpg}: The values of the production

rules selected to form pg. For example, if group node

vi consists of 6 cars, ω(vi) = 6

3. Rpg ⊆ R: The constraints, or edges, between nodes

in Vpg . These edges are inherited from the relationships

R present in G .

We should note here that parse graphs can be formed

either deterministically or probabilistically. During train-

ing, we will define some grouping rules to deterministically

combine labeled objects into hierarchical groups. Once la-

beled objects are deterministically grouped, we can measure

any relationships of interest across nodes at the same level.

During inference, however, the algorithm stochastically de-

termines the most likely groupings of objects into a parse

tree based on their relative appearances. The deterministic

grouping function used in training is up to the user, but of

course any inference methods will try to maximize the prob-

ability of a scene interpretation based on the grouping func-

tion used in learning. We describe the implementation de-

tails we use for this process in Sect. 5.2.

3.3 Probability Model

We begin with a set of aerial images I obs = {I obs
i : i =

1,2, . . . ,Nobs} that have corresponding parse graph rep-

resentations PGobs = {pgobs
i : i = 1,2, . . . ,Nobs}. These

parse graphs describe the hierarchy of labeled objects in

the image and are deterministically constructed from labeled

images as in Sect. 5.2. Each parse graph pg follows some

true, unknown distribution f (pg). We would like the sta-

tistics of our learned model p(pg) to match the statistics of

f (pg) as closely as possible. The statistics of f (pg) consist

of

1. The distribution of ω(v(α)), the number of children each

node v(α) ∈ V decomposes into.

2. The distribution of responses of f(β)() for each statistical

relation r(β) ∈ R in G .

Note that we are switching our indexing subscripts from i’s

to α’s and β’s for clarity. α subscripts will be used when

we are referring to the distributions of node decompositions,

and β subscripts will be used when we are referring to the

distributions of relationship constraints.

We will model both node decomposition and relation-

ship distributions as histograms for the remainder of the

paper. Specific parametric models may fit the distributions

of ω(v(α)) and f(β)() more closely, but we use histograms

so that we can focus the discussion on learning the model

without additional parameters. Also, histograms measure

the true continuous distributions of f (pg) and p(pg) in

the limit. We approximate the continuous distribution by the

piecewise-continuous representation of histograms for each

node v(α) ∈ V and each f(β) ∈ R. Our observed statistics for

each bin z of the histograms for ω(v(α)) and f(β)() are then

H(α)(pg, z) =

∑Nobs

i=1 #(ω(v(α)) = z)
∑Nobs

i=1

∑n(v(α))

j=0 #(ω(v(α)) = j)
,

α = 1,2, . . . , n(V ) (10)

H(β)(pg, z) =

Nobs
∑

i=1

∑

V(β)⊆Vpg(i)
#(f(β)() = z)

∑

V(β)⊆Vpg(i)
#(f(β)())

,

β = 1,2, . . . , n(R) (11)

where # is a counting function representing the number of

times that something occurs, and #(f(β)()) is the number of
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times f(β) takes any value. Each bin z in H(α)(pg) is the

number of times that node v(α) decomposes into z children

divided by the number of times we observe v(α) decompos-

ing any of its n(v(α)) values. Each bin z in H(β)(pg) is the

number of times that relationship function f(β) returns z di-

vided by the number of times f(β) returns anything.

We seek a distribution p(pg) that matches the relation-

ship statistics (H(α)(pg), H(β)(pg)) as closely as possible

with f (pg), while remaining as random as possible (un-

prejudiced) along all other dimensions. This is equivalent to

making sure that the expectation of the number of objects in

each group, Ep[ω(v(α))], and the expectation of each rela-

tionship function, Ep[f(β)(φ(V(β)))], matches between our

model and the true distribution. By maximum entropy this

becomes the following constraint satisfaction problem,

p(pg)∗ = arg max

{

−
∑

p(pg) logp(pg)

}

(12)

subject to

Ep[ω(v(α))] = Ef [ω(v(α))], α = 1,2, . . . , n(V ) (13)

Ep[f(β)(φ(V(β)))] = Ef [f(β)(φ(V(β)))],

β = 1,2, . . . , n(R) (14)

Ef [ω(v(α)] ≈ H(α)(PGobs) (15)

Ef [f(β)(φ(V(β)))] ≈ H(β)(PGobs) (16)

In other words, we want the histograms formed from sam-

pled aerial images from our model to match the true distrib-

utions observed in the training data. The probability model

that satisfies these constraints is the familiar Gibbs model

p(pg;	,R) =
1

Z[	]
exp−ξ(pg) (17)

ξ(pg) =

n(V )
∑

α=1

〈λ(α),H(α)(pg)〉 +

n(R)
∑

β=1

〈λ(β),H(β)(pg)〉 (18)

Z[	] =
∑

pg∈L(G)

exp−ξ(pg), (19)

where 	 = {λ(α), λ(β)}. The first term in ξ(pg) is the energy

of the decomposition rules and the second is the energy of

the relationship constraints. If we have an unlikely number

of objects in an image (say 0 objects), then the first term

will have high energy and the interpretation will have low

probability. If we have objects that do not obey the statisti-

cal constraints we learned during training, for example we

observe a car on top of a tree, then the second term will have

high energy and the interpretation will have low probability.

The Lagrange multipliers {λ(α), λ(β)} are vectors of the

same dimension as H(α) or H(β), respectively, and 〈. . .〉 in-

dicates an inner product. For example, if relationship r(β)’s

function f(β) evaluates to z on parse graph pg, then the en-

ergy from that relationship is λz
(β) ∗H(β)(pg, z). The λ’s are

the natural parameter set of the model and serve to weight

histogram bins so that dependent relationship interactions

are weighted correctly. These λ’s will be learned in the fol-

lowing section.

4 Learning the Hierarchical Contextual Model

We begin with a set of Nobs aerial images I obs = {I obs
i :

i = 1,2, . . . ,Nobs} and their corresponding parse graphs

PGobs = {pgobs
i : i = 1,2, . . . ,Nobs}. The parse graphs

PGobs follow the real-world, unknown target distribution,

f (pg), by definition,

pgobs ∼ f (pg). (20)

Matching our distribution p(pg) to f (pg) is equivalent to

finding the values for 	 that minimize the KL divergence

between the two distributions

	∗ = arg min
	

KL(f (pg)||p(pg;	,R)) (21)

= arg min
	

∑

pg

f (pg) log
f (pg)

p(pg;	,R)
, (22)

which is equivalent to finding the maximum likelihood es-

timates for 	 and a set of relationships R constraining the

model. Letting L(	) be the log-likelihood function for our

parameters,

L(	) =
∑

pg∈PGobs

logp(pg;	,R) (23)

(	,R)∗ = arg max
(	,R)

L(	). (24)

Learning our parameters can then be broken down into

two distinct stages:

1. Given a set of relationships R in the model, estimate

(λ(α), λ(β)).

2. Pursue a set of relationships R one-by-one to constrain

the model.

This may seem backwards, but it is easier to understand the

process if we first show the process for parameter estimation

given a set of relationships R followed by the process for

pursuing R.

4.1 Learning (λ(α), λ(β))

We solve for 	 = (λ(α), λ(β)) using straightforward maxi-

mum likelihood estimation (MLE). Setting ∂L
∂	

= 0, we can

solve for both sets of λ’s:
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1. λ(α): We make the assumption that node decomposi-

tions are independent of each other and of their appearance

constraints. We can therefore model H(α)(pg) as a multino-

mial and count the frequency with which each node decom-

poses into a number of children, as in (10). This makes our

estimate for each λ(α)

λ(α) = − logH(α)(PGobs). (25)

This is the MLE estimate for a multinomial and can be used

to estimate production rule probabilities in grammars given

that they are independent of any cross-link relations, i.e.

context-free (Chi and Geman 1998).

2. λ(β): Setting ∂L
∂	

= 0 for λ(β) yields

Ep[f(β)(φ(V(β)))] = H(β)(PGobs) (26)

which are exactly the Lagrange constraints that resulted

from deriving our maximum entropy model. This equation

can also be written as

∂L

∂λ(β)

=
1

Nobs

∑

pg∈PGobs

H(β)(pg) − Ep[H(β)(PGobs)] (27)

which can be approximated by

∂L

∂λ(β)

≈ H(β)(PGsyn) − H(β)(PGobs). (28)

H(β)(PGsyn) is the histogram formed from a set of parse

graphs PGsyn = {pg
syn

i : i = 1,2, . . . ,N syn} that are synthe-

sized from our current model p(pg). The synthesized parse

graphs are drawn by first sampling the number of children

each node decomposes into according to the learned λ(α)

parameters. The appearances of the objects in the resulting

parse tree are then Gibbs sampled according to the current

λ(β) weights and the constraints in the model. These images

will also be aerial images, so we can compute histograms for

the same relationship function f(β)() over these parse graphs

as we did over PGobs.

Solving for the λ(β)’s such that H(β)(PGsyn) =

H(β)(PGobs) can then be done using gradient descent. We

initialize the λ(β) weights to 0

λ(β) = 0, β = 1,2, . . . , n(R). (29)

In the first stage when λ(β) = 0, H(β)(PGsyn) will be close

to uniform. Gradient descent is then used to update the

λ(β)’s,

λt+1
(β) = λt

(β) − η(H(β)(PGsyn) − H(β)(PGobs)), (30)

where η is a step factor that can depend on the iteration t .

This update reweights the λ(β)’s for each histogram based

on how much H(β)(PGsyn) differs from H(β)(PGobs). It re-

duces the energy for choosing underrepresented bins and in-

creases the energy for choosing overrepresented bins dur-

ing the next iteration of Gibbs sampling. After a number

of iterations the λ(β)’s will be weighted such that the syn-

thesized distributions match the observed distributions, and

thus p(pg) will match f (pg) along these dimensions. In

other words,

|H(β)(PGsyn) − H(β)(PGobs)| < ε2, β = 1,2, . . . , n(R).

(31)

Figure 7 shows a toy example of the λ(β) learning

process. We begin with one observed histogram H obs for rel-

ative car size and its corresponding λ weight vector, which

begins as a vector of all 0’s. Because this weight is uniform,

the images we sample in Step (2) look fairly random. In

Step (3) we compute H syn, the distribution of relative car

sizes across these sampled images. This, unsurprisingly, is

fairly uniform as well because λ was uniform. The figure

shows these H syn and H obs superimposed below to em-

phasize the difference in their bin counts. In Step (4) we

Fig. 7 Examples of learning the

relationship parameters, λ(β).

(1) We begin with an observed

histogram H obs, in this case the

relative size between cars. λ

begins uniform. (2) Sampled

images PGsyn are drawn from

the model. (3) H syn is computed

for relative car size over the

sampled images. (4) λ is

reweighted according to the

difference between H obs and

H syn. (5) Newly sampled

images appear scaled correctly
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update the λ weights according to how much each bin dif-

fers. Step (5) shows the sampled images resulting from the

updated λ weighting, which have much more appropriate

relative car sizes. This process is carried out simultaneously

for each λ(β).

4.2 Relationship Pursuit

The λ(β)’s above were learned given that we already knew

which relationships R existed in the model. We now show

how to select the relationship constraints for the model. Be-

cause our dictionary of potential relationships �R could

be combinatorially huge, we will iteratively add relation-

ships according to their importance instead of fitting the full

model. Fitting the full model would require later attempts to

sample from the model or perform inference with the model

to check redundant relationships, making the model overly

complex and slower to compute with.

We pursue the relationship set R by beginning with just

an empty hierarchy,

p0(pg;	0,R0); R0 = {∅}. (32)

This is the model with no parameters learned at all. We then

learn the λ(α)’s, or tree parameters, allowing us to sample

images with the correct distributions of objects, but without

spatial or appearance constraints. Sampling the model at this

stage would produce parse graphs with the correct number

of objects, but without horizontal constraints, causing the

resulting image to look more like an “alphabet soup” of ob-

jects that are big, small, overlapping, etc. We then iteratively

add a new relationship r+ from a dictionary of potential re-

lationships �R at each iteration to get a new distribution

p+(pg;	+,R+), R+ = R ∪ {r+}. We choose r+ such that

we minimize KL(f (pg)||p+(pg;	+,R+)) at each step:

p0(pg;	0,R0) → p1(pg;	1,R1) → ·· ·

→ pk(pg;	k,Rk). (33)

At each iteration we want to select the relation r+ that

brings our new model p+ closest to f , thereby reduc-

ing the KL divergence between the two distributions. This

is equivalent to finding the new p+ that is maximally

KL divergent from our current p, as visualized in Fig. 3.

Because we are guaranteed to monotonically decrease

KL(f (pg)||p+(pg;	,R+)) with every added relation (Zhu

et al. 1998), the r+ that is maximally far away from p must

be maximally close to f and thus represents the largest de-

crease in KL divergence:

r+ = argmax
r

KL(f (pg)||p(pg;	,R))

− KL(f (pg)||p+(pg;	+,R+)) (34)

= argmax
r

KL(p+(pg;	+,R+)||p(pg;	,R)). (35)

We can approximate this decrease in KL divergence, oth-

erwise knows as the information gain, δ(r+), using the Ma-

halanobis distance between the synthesized and observed

histograms for the new potential relation r+

δ(r+) = KL(p+(pg;	+,R+)||p(pg;	,R))

≈ dmahn(H
r+
(β)(PGobs),H

r+
(β)(PGsyn)). (36)

This holds due to a Taylor expansion around the relationship

we’re interested in adding, as shown in the Appendix of Zhu

et al. (1998). We measure H(β)(PGobs) and H(β)(PGsyn) for

all relations r(β) ∈ �R and compare their Mahalanobis dis-

tances. The r(β) with the largest Mahalanobis between the

synthesized and observed histograms above some threshold

is added to the model in the next iteration and its λ(β) para-

meters are learned as in the previous section.

4.3 Summary of Parameter Learning and Relationship

Pursuit Algorithms

The algorithm for learning the parameters of the model pro-

ceeds in two steps. We first learn the λ(α)’s by MLE, which

are just the sample frequencies of the decompositions of

each node. We then iteratively add spatial and appearance

relations one-by-one until no relation remaining in �R has

Mahalanobis distance greater than ε1. After each relation is

added, we iteratively update the λ(β)’s for the current rela-

tion set to match H(β)(PGsyn) to H(β)(PGobs), ∀r(β) ∈ R.

The algorithms are outlined below:

Algorithm 1 Relationship pursuit

1. Begin with an empty model p0 and observed parse

graphs PGobs = {pgobs
i : i = 1,2, . . . ,Nobs}.

2. Compute observed histograms H(β)(PGobs) and

H(α)(PGobs) for all relationships in �R and all node

frequencies, respectively.

3. Approximate the λ(α)’s for the tree component using

MLE, yielding pt .

4. Repeat

(a) Sample N syn parse graphs from the current model,

PGsyn = {pg
syn

i : i = 1,2, . . . ,N syn}.

(b) Calculate H(β)(PGsyn), β = 1,2, . . . , |�R|.

(c) Select the r(β) for which

dmanh(H(β)(PGsyn),H(β)(PGobs)) is maximal as

r+. Add r+ to R.

(d) Relearn the λ(β)’s for the new set R ∪ {r+} using

Algorithm 2.

until dmanh(H(β)(PGsyn),H(β)(PGobs)) < ε1, β =

1,2, . . . , |�R|.
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Algorithm 2 Parameter estimation algorithm

1. Given a set of relations R and current model

p(pg;	,R),

2. Repeat

(a) Sample n parse trees from the model, PGsyn =

{pg
syn

i : i = 1,2, . . . ,N syn}.

(b) Calculate H(β)(PGsyn), β = 1,2, . . . , n(R).

(c) Update λt+1
(β) = λt

(β) − (η(H(β)(PGsyn) −

H(β)(PGobs))).

until |H(β)(PGsyn) − H(β)(PGobs)| < ε2, β =

1,2, . . . , n(R).

5 Implementation

The learning algorithm above is independent of our choice

of models for the relationship statistics and the object repre-

sentations. In this section we present implementation details

used to learn the model above in our experiments.

5.1 Object Representation

We represent our five object categories, (roads, trees, roofs,

cars, parking lots), by their enclosing boundaries. Each ob-

ject of interest is described by a boundary b that is defined

as a graph,

bi = 〈νi, ζi〉, (37)

where ν is a set of boundary points and ζ is a set of edges,

along with a label li indicating what type of object it is. The

boundaries and labels are hand-labeled in every observed

image I obs. These objects form the bottom layer of the hi-

erarchy. We create a node vi in the 3-layer hierarchy for

each boundary bi so that every boundary is represented by

a bottom-level node in the hierarchy and every bottom-level

node in the hierarchy has a corresponding boundary repre-

sentation.

From these boundaries we can derive the appearance at-

tributes φ(vi) = φ(bi) = {Xi, θi, σi} of each boundary bi for

each bottom-level node vi in the hierarchy. The smallest en-

closing bounding box, boxi , was computed for each bi . The

position of each object is its center of mass, its orientation is

the major axis of boxi , and its scale is the length and width

of boxi , treating the major axis as our measure of length

and the minor axis our measure of width. If boundary bi for

node vi consists of n vertices ν = {ν1, ν2, . . . , νn} and (lefti ,

righti , topi , bottomi ) describe the center points of the edges

of bi ’s bounding box boxi , we can compute each object’s

appearance attributes as,

Xi =

(

∑n
j=1 x(νj )

n
,

∑n
j=1 y(νj )

n

)

(38)

Fig. 8 An example of the features computed for a single object. The

boundary graph and smallest enclosing bounding box are used to com-

pute position, scale, and orientation

Maxis = max((righti − lefti), (topi − bottomi)) (39)

maxis = min((righti − lefti), (topi − bottomi)) (40)

θ = cos−1(Maxis, (1,0)) (41)

σ = (|Maxis|, |maxis|). (42)

Figure 8 shows an example of the representation of a build-

ing based on these features.

5.2 Deterministically Forming Parse Graphs

Each I obs has a corresponding parse graph pgobs describ-

ing the hierarchical arrangement of its objects. We are given

the boundaries of every object as described in Sect. 5.1.

We touched briefly on the deterministic formation of parse

graphs in Sect. 3.2, but now go into more details of our

implementation for deterministically converting labeled ob-

jects into parse graphs.

To form parse graphs from a collection of labeled objects

(the leaf nodes) we make the following stipulation:

Proposition 1 Boundaries within distance ̺ of each other

that are of the same object label will be considered members

of the same group.

In other words, objects are deterministically assigned to

groups according to their distance between one another. This

provides two benefits:

(1) We can deterministically form a hierarchy from a flat set

of objects.

(2) We only measure relationship statistics within and be-

tween groups of objects, so limiting the distance at

which two objects are related prevents us from calcu-

lating and learning statistics of objects that are very far

away.

In our experiments we set ̺ to be label-dependent. If

we let s be bi ’s aspect ratio, we can define a set of dis-

tance thresholds as in Table 1. For example, a tree would
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need to be within 1.2 of its aspect ratio of another tree to be

considered in the same group. Because some objects within

the same label may vary significantly in size, one may also

choose to consider two objects proximal only if they are

within c∗min(s1, s2) of each other, where (s1, s2) are the as-

pect ratios of the two objects in question. This is particularly

useful when determining which groups of objects should be

associated, as their sizes can vary significantly more than

those of single objects.

Figure 9 shows an example of deterministically forming

a parse graph from a set of labeled objects. In this exam-

ple, cars that are nearby one another are grouped together,

as shown in (a). The same goes for roofs labeled in (a). Fig-

ure 9(b) shows the resulting groups from this first step and

their distance-based relationships as well.

Table 1 Category-dependent distance thresholds ̺ for deterministic

grouping based on an object’s aspect ratio s

Object label ̺

Roof(s) s

Car(s) 0.5 ∗ s

Tree(s) 1.2 ∗ s

Road(s) 0.5 ∗ s

Parking Lot(s) s

An important point to note here is that, though we form

parse graphs deterministically for our observed images, we

do not form them deterministically when inferring the best

explanation of a new image. In our training images I obs

we are making the assumption that proximal objects are

grouped and that this grouping defines the number of objects

that the group consists of (decomposes into). There may,

however, be proximal groups in our testing images that have,

for example, a different number of objects than we expect to

see based on our training data. In this case, it may make

more sense to split the group into subgroups that match our

learned decomposition frequencies than grouping them all

under a hard-coded proximity condition. In a world where

we’ve only seen sets of three cars, a row of six cars is more

consistently explained as two sets of three by our model.

5.3 Relationship Functions

The functions fi for each relationship are defined over the

attributes of sets of nodes, φ(Vi). We implemented the rela-

tionship functions listed in Table 2. The relationship func-

tions should be fairly explanatory, with the exception of

the position functions. Relative position returns the vector

between the centers of the two objects, which is relative

to the coordinate frame of the image. This is not particu-

larly useful as aerial images rarely have a well-defined “top”

Fig. 9 An example of

deterministically forming the

neighborhood structure for a

parse graph from labeled

objects. (a) Cars and roofs that

are within a certain distance of

each other are grouped together.

(b) Groups that are within a

certain distance of each other

have group-level constraints

applied
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Table 2 Relationship function

definitions Relationship n Nodes Function fi()

Aspect ratio 1 σy/σx

Relative position (in image coordinate frame) 2 (X2 − X1)/s1

Radial position (in object coordinate frame) 2 {|X2 − X1|, θ(|X2 − X1|) − θ1}

Relative scale 2 s1/s2

Relative orientation 2 θ2 − θ1

Percentage overlap 2 Areaoverlap/Area1

Alignment n SSE of least squares fit

or “bottom”. Radial position attempts to deal with this by

measuring relative distance in polar coordinates. These two-

dimensional features can also be decoupled and collected as

if they were independent, e.g. a relationship of just relative

X or Y positions or of distance and relative angle. The re-

sponses of these functions form the histograms H(β) that we

match in the learning stage.

5.4 Histograms

We have chosen to represent our relationship statistic distri-

butions as histograms. This is intended to save us the trouble

of fitting specific distributions to each new relationship. In

order to use histograms, we made the following design de-

cisions:

1. The range of the histograms are determined by the maxi-

mum and minimum values observed in the training data.

We model values outside of this range by a decreas-

ing gradient function. Define the maximum probability

value allowed for this gradient function as p and the

width of the histogram bin as w. Then a point that is dis-

tance k bin widths beyond the edge of the histogram (i.e.

k ∗ w distance from the edge) can be assigned probabil-

ity p − (k/n) ∗ p, where n is as many extra bins as we’d

like to add to either side of our histogram. Thus, values

that are beyond the histogram edge are assigned a prob-

ability that is a fraction of the maximum probability p,

depending on how far away they are. n is usually set to

be something large, e.g. 10000, and p is usually set to

be the edge bin probability, which prevents the tail from

being greater probability than the probability in the edge-

most bins. Values greater than n are assigned probability

0 (or some minimum probability). These tails allow us to

model values outside of the histogram range while guar-

anteeing that their probability is never greater than the

probability for the edge closest to that side.

2. We divide our histograms into 10 bins each. We were

surprised to find that, empirically, any number of bins

above 6–7 were sufficient to produce samples from the

model that are perceptually similar to real aerial images.

Obviously we will never perfectly match the distributions

with this discretization until we approach the limit, but

we find suitable results with even as few as 10 bins.

3. Our training set is intentionally small, so that little human

intervention is needed. At first it may appear that we are

therefore reducing the size of our training set and will

not have sufficient data to model the distributions. How-

ever, as most of our images are large images containing

hundreds of the objects, one image often provides a large

number of data points.

6 Experiments on Learning and Sampling

We selected 120 aerial images from the Lotus Hill Data-

base (Yao et al. 2007), which included labeled boundaries

of roofs, roads, parking lots, tree regions, and cars to use as

our training data.1 As mentioned in Sect. 1, these boundaries

are hand-labeled. The images ranged in size from 640× 480

pixels to 1000 × 1000 pixels. We set ε1 = 4 and ε2 = 0.2 for

Algorithms 1 and 2 and then learned a hierarchical contex-

tual model of objects in aerial images.

Figure 10 shows H(β)(PGobs) and H(β)(PGsyn) for four

typical relations at three iterations of the parameter learn-

ing algorithm. In the first iteration, the histograms from our

synthesized images are so far away from the true histograms

that most of their data is out of bounds. Halfway through

the learning, however, the histograms start to look coarsely

similar. By the final iteration, the histograms have matched

nearly perfectly. This assures us that the λ(β)’s are reweight-

ing the histogram bins correctly such that, over time, the

images we synthesize using our model match the statistics

of true aerial images.

We used 5 object categories in our model (car, roof,

road, parking lot, tree) and their 5 corresponding group cat-

egories. We used 7 relationship functions in our model, re-

sulting in a relationship dictionary �R consisted of 360 pos-

sible relationships (10 aspect ratio relations + (5 objects) ∗

(5 objects) ∗ (7 relationships) + (5 groups) ∗ (5 groups) ∗

1Dataset available from http://www.imageparsing.com. More data will

be released after the publication of this paper, but sample data is avail-

able free for downloading now.

http://www.imageparsing.com
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Fig. 10 (Color online) Histograms for four typical relations over the

course of the learning algorithm. The black lines are the histograms of

the observed data, H(β)(PGobs), and the red lines are the histograms of

the synthesized data, H(β)(PGsyn), at each iteration. At first the statis-

tics of the synthesized data are so far off from the truth that most values

are out of bounds. Halfway through the learning process the histograms

look close to matching and by the final iteration the histograms match

nearly perfectly

Fig. 11 (Color online) Samples from our learned model (blue = roofs,

red = cars, black = roads, green = trees). These are not images di-

rectly sampled from the training data, but collections of objects obey-

ing the statistics of our learned model. We can create a vast amount of

unique object configurations even though we’ve never observed them

directly

(7 relationships)). Of those 360 possible relationships our

model selected 27, consisting mostly of overlap relations

(car/car overlap, building/tree overlap, car/parking lot over-

lap), relative scale relations (car/car relative scale, roof/road

relative scale), and alignment relations (car/car alignment).

There were also a few orientation relations added, though

they were only slightly better than noise (roof/road orienta-

tion) and could probably be weeded out by adjusting ǫ1.

Figure 11 shows samples from our final model

p(pg;	,R). The resulting images appear similar to true

aerial images, with objects obeying many of the same spatial

and appearance constraints that we observe in the real data.

We see cars appearing on roads, roofs arranged in blocks,

and few or no spurious overlaps. Note that these samples

are not representative of a specific aerial image from the

training data or elsewhere. These are simply object bound-

aries that have been scaled, positioned, and oriented such

that they minimize the energy in our prior. Nevertheless, we

see that the relationship histograms match between the two

models and the sampled images are perceptually similar to

true aerial images. This shows that our learned model is in

fact capturing the relationship statistics present in true aerial

images and can thus recreate believable aerial image config-

urations.

7 Bottom-Up/Top-Down Bayesian Inference

In this section we present the Bayesian formulation for find-

ing the highest probability explanation of an aerial image.
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We first run bottom-up detectors for each of the object cat-

egories. After this first stage of object detection, we use

a cluster sampling algorithm inspired by Swendsen-Wang

sampling called C4 to prune out false positives and incon-

sistent detections. In the third stage of the algorithm we pro-

pose locations of objects that may have been missed by the

bottom-up detectors or incorrectly pruned in the first stage.

7.1 Bottom-Up Detections

We use different bottom-up detectors for each type of object:

Cars We trained a discriminative AdaBoost classifier (Fre-

und and Schapire 1997) to detect cars. We collected 3000

positive examples of cars, selected by hand as patches con-

taining a single car from aerial images, as well as 3000 neg-

ative images for training, comprised of patches of training

images in which no car is present. Figure 12(a) shows car

detections using the learned classifier. Unfortunately, we do

find that this method results in many false positives, which

we will address later. AdaBoost is a commonly cited and

described algorithm, so we refer the reader to Freund and

Schapire (1997) for further details.

Parking lots and Trees Parking lots and trees are charac-

terized by their textures. Color information is highly vari-

able from one parking lot or grove of trees to the next, so

color histograms are too simple to capture an appearance

model for these classes. We resolve this problem by using

TextonBoost (Shotton et al. 2006), an algorithm for combin-

ing texture and shape cues in a boosting framework to cre-

ate a discriminative classifier. TextonBoost extracts textons

(collections of filter responses) for each category and clus-

ters them into a texton dictionary. These textons are then

boosted using to arrive at a combined discriminative clas-

sifier. We provided TextonBoost with about 100 images in

which the images are labeled (0/1) according to whether

or not a pixel belongs to background or the category we’re

learning (parking lots and trees are learned separately). The

pure bottom-up results are shown in Figs. 12(b) and 12(c).

Roofs and Roads Roofs and roads present quite a different

problem from the categories we’ve represented up until now.

They are neither defined by a constant shape nor a constant

texture. The most informative cues are the edges that de-

fine their boundaries. We use a recently developed algorithm

called Compositional Boosting (Wu et al. 2007) that hier-

archically combines low-level cues into higher-level struc-

tures. A more detailed explanation of Compositional Boost-

ing is given in Wu et al. (2007), but we will describe it at a

high level here.

High-level Description of Compositional Boosting Com-

positional Boosting learns a model by first defining a dictio-

nary of low-level features (such as edges) along with some

spatial rules of interest (e.g. parallelism, relative length,

collinearity). These low-level features are first labeled in a

number of training images and labeled as belonging to the

Fig. 12 Single object detections using our bottom-up detectors
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structure of interest or not. For example, in this experiment,

we labeled edges in the training data as belonging to a roof,

a road, or neither. Compositional Boosting begins building

a hierarchy from these labeled edges by testing the mutual

information of edges under certain spatial constraints. For

example, in the roof class we will see lines at right angles

more frequently than in random noise. Any composition

rules with mutual information greater than some threshold

are added to the hierarchy (e.g. two lines nearly 90 degrees

from one another should form a higher-level component).

This process then repeats at the next highest level until some

percentage of the labeled lines are modeled by the final com-

position. Figure 2 shows the Compositional Boosting hierar-

chies below the roof and road nodes. A roof can decompose

into a number of different shapes, each of which is formed

from lower-level components.

To detect structures in images, we first define detectors

for Compositional Boosting. We begin with an edge detec-

tor for edges, since they are the lowest level nodes in our

hierarchy. However, we may also define higher level detec-

tors to find higher-level nodes (e.g. corner detectors). Let us

define a possible set of detectors T = {ti : i = 1,2, . . . , k}

at each node designed to detect that part directly from the

image. We also add auxiliary data structures to each node,

called “Open” and “Closed” lists. The open lists will store

any current potential detections for that node. The closed list

will store any accepted detections of the node the list resides

at. Each proposal in an open list is weighted by a posterior

probability ratio.

Compositional Boosting first creates proposals for the

open lists for an image I in one of two ways:

(1) Proposals for A are formed from local detectors T .

The weight of each detection is the log-ratio of the local

marginal posterior probability on an image patch �i using

some features of the image F(),

ω̂i
A ≈ log

p(Ai |F(I�i ))

p(Āi |F(I�i ))
, (43)

where Ā is an alternative hypothesis.

(2) Proposals for A are formed by combining proposals

for A’s children from their Open and Closed lists. Proposals

from each list are compared based on their compatibility,

and highly compatible proposals are combined to propose

the higher level node A. The weight on these hypotheses is

the local conditional posterior probability ratio. Suppose a

proposal Ai is formed from three of its child proposals Ai
1,

Ai
2, and Ai

3, then the weight will be

ω̂i
A ≈ log

p(Ai
1,A

i
2,A

i
3|A

i)p(Ai)

p(Ai
1,A

i
2,A

i
3|Ā

i)p(Āi)
(44)

where Ā represents a competing hypothesis. In other words,

we are measuring the probability that these proposals ap-

peared as a result of A existing as opposed to some other

node. The top-down process then greedily adds proposals

from the Open lists to the Closed lists and updates the Open

list weights until no weights are above a certain threshold.

Figure 13 shows a toy example of this process. Here we

see that A can be formed from either its detections T , or by

combining proposals from its children. This is where Com-

positional Boosting is particularly powerful, because weak

detections of compatible children may be enough for us to

propose the parent node.

Figure 14 shows an example of roof detection using

Compositional Boosting. We begin with a probabilistic edge

map formed from our source image. From this map we first

extract edge segments using an edge detector. We next com-

bine edges that are compatible according to the rules that

Fig. 13 (Color online) A conceptualization of inference with Com-

positional Boosting. The left hand side shows an example of a node

in a Compositional Boosting tree with parent node A and children

nodes (A1,A2,A3). (t1, . . . , tn) indicate proposals for A detected di-

rectly from the image, while A = A1 · A2 · A3 indicates proposals for

A detected as a product of child proposals. In the inference process,

we store proposals at node A in open and closed lists, where particles

in the open list are pending proposals and particles in the closed list

have been accepted. The up and down arrows in the figure indicate that

there is evidence for each particle coming from both bottom-up and

top-down channels
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Fig. 14 An example of detecting roofs with Compositional Boosting. We run a probabilistic edge detector to get image (b), after which the

algorithm detects object parts, such as parallel lines and corners in (c) and (d). These act as evidence for the final roof proposals in (e)

we’ve learned from labeled roofs. Figure 14(c) shows paral-

lel lines detected in the image, while Fig. 14(d) shows cor-

ners detected in the image. Figure 14(e) shows the final roof

detections inferred from the composition of these low-level

features. We can see that the rectangular structures of roofs

are detected, but there are also many false positives present.

7.2 Top-Down Bayesian Formulation

Using the approach above, we arrive at a set of N candidate

proposals, C0 = {ci : i = 1,2, . . . ,N}. Each candidate pro-

posal consists of a boundary of an object that was detected

using bottom-up detectors. We also use each detector’s out-

put as a measure of the object likelihood, Li = p(I |bi, li).

The computation of this likelihood varies from detector to

detector, but in our experiments, for example, we computed

color histograms for classes like trees, parking lots, and

roads and used those to compute the likelihood of a bounded

region based on its color distribution. Other methods like

Compositional Boosting return a probability for the detected

object, which we used as its likelihood score. For our Ada-

Boost candidates we used the number of overlapping pro-

posals for each object as a measure of the likelihood of the

object. Note that each likelihood is independent of the other

classes, i.e. Li measures the probability that a patch belongs

to class A versus that it doesn’t, not the probability that it

belongs to class A versus class B . Ideally we would find

a multiclass model that accounted for the probability that

a patch belonged to class A over class B or class C, but

for now we use a simple two-class approximation to mea-

sure the strength of each proposal. Each proposal is then

ci = {bi, li,Li}.

Our goal is to find the parse graph pg that best describes

the image. pg will consist of a set of candidates C ⊆ C0

and grouping decisions such that the likelihood of the can-

didates and probability of their configuration is maximized.

The Bayesian formulation is

pg∗ = argmax
pg

p(pg|I ) = argmax
pg

p(pg;	,R)p(I |pg)

(45)

Fig. 15 An example of two choices a greedy inference algorithm

could make for interpretations of the scene. Because cars cannot ap-

pear on top of roofs (let us assume the data supports this) selecting the

roof in decision 1 eliminates the car nodes while selecting the cars in

decision 2 does the opposite. The algorithm is stuck with this decision

no matter what later evidence it may find

7.2.1 Previous Approach and Motivation

The conference version of this work (Porway et al. 2008)

used a greedy algorithm to maximize this posterior. In that

work, the authors used an iterative approach that first as-

signed a weight ω(ci) to each of the currently unselected

proposals based on how well it maximized the posterior. The

object with the highest weight was selected to be added to

the running parse of the scene, pg, thus forming pg+. The

objects were then reweighted according to how much the re-

maining objects would improve the overall explanation of

the scene and this process iterated until no objects above a

certain weight remained.

The problem with this approach is shown in Fig. 15. Be-

cause the algorithm described in Porway et al. (2008) is

greedy, it cannot backtrack from a poor decision. By select-

ing the car node to be in the final parse of the scene in the

second case, the algorithm will now give an exceedingly low

weight to the enclosing roof, as we virtually never see cars

on top of roofs. However, had the roof been selected first,

as in scenario 1, the car would have been given a very low

weight and we would have arrived at the correct interpreta-

tion. We would like our new algorithm to be able to back-

track from these mistakes.
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7.2.2 Motivation: Swendsen-Wang Clustering

One solution to this problem is to use Swendsen-Wang clus-

tering (SWC). SWC was designed to sample the Ising model

by updating the labels of many sites at once instead of us-

ing Gibbs sampling to update one at a time (Barbu and Zhu

2005; Swendsen and Wang 1987). This is similar to our task

of switching many objects in or out of the explanation at

once. We’ll look at SWC at a high level to motivate our so-

lution to the problems in our specific task.

In classic Swendsen-Wang we have a number of sites

with class labels,

X = {x1, x2, . . . , xn}, l(Xi) = {l1, l2, . . . , lk}, (46)

that have a neighborhood structure of edges E connect-

ing them. The goal of the algorithm is to assign the labels

such that some energy term ξ(X) is minimized. In the Ising

model, this is simply a constraint that neighboring sites have

the same label

p(X) =
1

Z
exp−ξ(X);

(47)
ξ(X) = β

∑

〈s,t〉∈E

δ(l(xs) = l(xt )), β > 0.

In our model, p(X) would be our learned prior p(pg;	,R).

SWC updates portions of X quickly by clustering neighbor-

ing nodes that have the same color and updating their labels

simultaneously. It does this by first introducing an auxiliary

variable into the Ising model, U , indicating whether an edge

is “on” or “off” between two nodes,

U = {ust : 〈s, t〉 ∈ E}, ust ∈ {0,1}. (48)

Edges are turned on with probability ρ if the nodes they

connect have the same value, and are turned off otherwise.

These edges will be used to join nodes with the same labels

into connected components.

The benefit of adding U to the formulation to get

π(X,U) was that Swendsen and Wang could now take large

steps in the solution space. It was shown in Swendsen and

Wang (1987) that sampling from π(X|U) and π(U |X) it-

eratively produced samples from π(X,U). If this distribu-

tion was defined such that we can marginalize over U to get

p(X) back, then we can generate samples from p(X), which

is difficult and slow, by instead sampling from π(X,U),

which is easy and fast.

Without delving too deeply into the technical details,

Swendsen and Wang’s algorithm did just that in the follow-

ing algorithm:

1. Sample from π(U |X) to turn edges on and off. Edges

between nodes with different labels are turned off w.p. 1.

Edges between nodes with the same label are turned off

w.p. 1 − ρ, where ρ = 1 − e−β for the Ising model.

2. Form connected components CCP based on the edges

that are left on at this iteration. All nodes within each

CCP have the same label by the definition of π(X|U).

3. Select a connected component CCPi at random.

4. Sample from π(X|U) to relabel the nodes in CCPi ac-

cording to the state of neighboring nodes. This quantity

is often computed by Gibbs sampling the probabilities of

every possible labeling.

It can be shown that, because p(X) can be derived from

π(X,U) by summing over U , we can sample from p(X).

Figure 16 shows an example of running Swendsen-

Wang clustering on the Ising model. In Fig. 16(a) edges

are probabilistically turned on or off based on the labels of

the nodes they connect to. This is equivalent to sampling

from π(U |X). A connected component is then formed in

Fig. 16(b) based on the edges currently on and its labels are

Fig. 16 An example of Swendsen-Wang clustering on the Ising model.

(a) The current state. (b) Nodes with different labels have their edges

turned off, while nodes with the same label are connected w.p. e−β .

The dashed lines show edges that were probabilistically cut between

nodes with the same label. The remaining edges form connected com-

ponents. (c) Simultaneously relabel all nodes in a randomly selected

connected component. This process updates large portions of the solu-

tion space quickly
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reassigned in Fig. 16(c). This last step is equivalent to sam-

pling from π(X|U). The end result from this process are

samples from π(X,U), and thus p(X).

This approach will not work for our task, however, for

two main reasons:

1. Alternative explanations: In our task, each object

proposal ci can take a label li ∈ {0,1}, indicating if it is in

the current explanation or not. If we label a cluster using

traditional SWC, we can remove a cluster of proposals from

our explanation without adding any nodes back in. This may

cause our posterior probability to decrease, as we have now

explained less of the image. With no alternative explanation

to replace these removed proposals we simply decrease the

probability of our current system, which means this move is

accepted with a very low probability.

2. Conflicting nodes: If we add an object to the solution

set that conflicts with other objects, say a car on top of a

tree, this will give the explanation such high energy that this

move will never be accepted. This is the opposite problem

from problem 1, in that we now need to remove parts of the

current explanation simultaneously with adding the new ex-

planation, otherwise the combined explanation might have a

very low probability.

An example of this problem is shown in Fig. 4. We need

an algorithm that can exchange alternative explanations si-

multaneously without introducing conflicting objects to the

explanation.

7.3 C4: Clustering via Cooperative and Competitive

Constraints

We use an algorithm called Clustering via Cooperative and

Competitive Constraints (C4) (Porway and Zhu 2009) to

deal with these problems. It differs from Swendsen-Wang

clustering in two major ways:

1. Negative edges: In addition to the “positive” edges

in Swendsen-Wang clustering, in which nodes were encour-

aged to have the same label, C4 incorporates negative edges,

dictating that neighboring sites should not be labeled simi-

larly. We use them here to indicate that two explanations of

the scene can’t both exist at once. For example, we could

have negative edges between two overlapping cars to indi-

cate that they cannot both be in the same explanation at the

same time.

2. Composite Flips: Traditional Swendsen-Wang up-

dates the label of a single cluster in one step. In our model

the new labels for one cluster may cause it to violate con-

straints with neighboring clusters, so we may need to update

the labels of many clusters simultaneously. We thus form

composite components consisting of conflicting clusters that

all need their labels reassigned at once to remain consistent.

This is like the switch shown in Fig. 4(c), where an entire

parking lot and cars are not only taken out of the candidate

set, but are replaced with a roof simultaneously.

Figure 17 shows C4’s results on a toy model. In this ex-

ample, we have introduced a backbone of negative edges

down the middle of the lattice, requiring that nodes on one

side have the same color, but each side has a different color.

Traditional Gibbs sampling attempts to update one site at a

time, which creates a low probability state. SWC updates

an entire side at one time, but only updates one cluster and

ignores negative edges, thus creating another low probability

state. C4 clusters the entire system and relabels the individ-

ual clusters subject to both positive and negative constraints,

creating a high probability state.

We can extend the example in Fig. 17 to our actual prob-

lem. Figure 18 shows a number of object proposals, which

are like the nodes in Fig. 17. Objects that have a high prior

probability of being on together are grouped together with

Fig. 17 A toy example of C4 on the Ising model. Here we’ve added

negative edges, indicated by jagged lines, that encourage nodes to have

opposite labels. In (b), we probabilistically turn edges on and off based

on whether they satisfy their current constraints (node labels same or

different). The remaining edges form connected components (CCPs).

(c) A connected component V0, which consists of sub-components

CCPi of the same label connected by negative edges, is relabeled ac-

cording to its constraints. Further details are provided in Porway and

Zhu (2009)
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Fig. 18 An application of C4 to a toy aerial image. (a) Compatible

object proposals (cars in the parking lot, the tree next to the building)

are connected by positive edges while non-compatible proposals (tree

with parking lot, building with parking lot) are connected by negative

edges. (b, c) C4 groups objects based on these connections and updates

the state of the system to swap between alternate explanations

“positive” edges (e.g. the neighboring cars and the park-

ing lot, the tree with the building), while objects that have

low prior probability of being on together are grouped by

“negative” edges (e.g. the building with the parking lot or

tree with parking lot). Here we’ve added positive and neg-

ative edges based on pairwise energies from the exponent

in p(pg;	,R). If the energy between two nodes is above

a certain threshold, a negative edge is added between them.

Otherwise, a positive edge is added.

The probability assigned to each edge is determined by

using a squashing function of the energy between the two

nodes. This is used to map the pairwise energy to the range

[0,1]. In our experiments we used an inverted logistic func-

tion F(x) = 1
1+e−(x−u)/s where first F(x) = 1 − F(x), x < 0

and then we scale to [0,1] via F(x)′ = 2 ∗ F(x) − 1. This

creates a symmetric function where energies that are much

greater or much less than the center of the distribution u ap-

proach probability 1, while values near u approach 0, as they

are just barely positive or negative. The parameters u and s

can be adjusted to translate and scale the function, respec-

tively. In this way we create data-driven probabilistic edges

between proposals based on their pairwise energies.

In the same way that it does in Fig. 17, C4 probabilisti-

cally turns positive and negative edges on and off, then pro-

poses to relabel the selected cluster based on its constraints,

giving a label of 0 to objects that shouldn’t be in the cur-

rent interpretation and a label of 1 to objects that should be

in the current interpretation. Here C4 flips between the two

possible explanations of the scene in Figs. 18(b) and (c).

The decision to flip the interpretation or not is reached by

Gibbs sampling the possible component values (here 0 or 1),

meaning that each interpretation is selected to be turned on

proportionally to the value of p(X) it results in. In the case

of two equally likely interpretations, there is a 50% chance

that the interpretation will swap at each step. At the conclu-

sion of this process (which is sampling from π(U |X) and

π(X|U) as in SWC) our samples from p(pg|I ) are sets of

proposals for interpreting the scene. Further derivations and

results can be found in Porway and Zhu (2009).

7.4 Top-Down Prediction

In addition to reducing false positives using C4, we can also

predict new instances of objects that may have gone unde-

tected using the hierarchical aspect of our model.

Given our final parse pg∗ from C4, we can Gibbs sam-

ple the group nodes to create new objects per group node or

new group nodes in the scene. We can then Gibbs sample

the appearance relationships for newly added nodes to form

new proposals. As many objects are loosely constrained in

the scene it is difficult to predict where objects should be ex-

actly. We remedy this by just predicting additional aligned

objects wherever we already have some aligned objects.

This allows us to find new true positives in addition to prun-

ing false positives. Figure 5 shows examples of hallucinated

objects using the results from the C4 pruning. These final

proposals will be added to a final round of C4 clustering to

arrive at the final parse.

8 Experiments

We ran our algorithm on 5 large (4000 × 4000) images col-

lected from Google Earth. We learned a top-down model as

in Sect. 4 and implemented detectors for each of the objects

as described in Sect. 7.1. Figure 19 shows the process of

our algorithm on one of these images. The first panel shows

the original image, while the second panel shows an overlay

of the initial bottom-up detections, which contains a huge
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Fig. 19 The bottom-up to top-down pipeline. (a) The original image.

(b) The bottom-up detections. There are a huge number of overlap-

ping and inconsistent detections. (c) The top-down pruning results us-

ing C4. Many false positives are removed. (d) The results given newly

proposed nodes from the hierarchical prior
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Fig. 20 ROC curves for detecting U junctions, L junctions, parallel lines, and opposing L junctions using Compositional Boosting. We see that

CompBoost helps us identify weakly detected junctions, which helps us propose better high-level detections

Fig. 21 Close up views of our

improvement during pruning.

Notice that overlapping

proposals and inconsistent

explanations (cars in trees) have

been removed

number of false positives (3 false positive roads, 71 false

positive buildings, 623 false positive cars, 10 false positive

trees). The third panel shows the results of using C4 cluster-

ing to find a high probability set of bottom-up detections to

explain the scene. The fourth panel shows the final explana-

tion of the image after some new proposals have been sug-

gested and verified. The first step of the C4 algorithm shows

the most dramatic improvement, with vast numbers of in-

consistent detections (cars on roofs, trees on roads, overlap-

ping roofs) being removed, leaving just single object bound-

aries for the important objects (we now have 0 false positive

roads, 5 false positive buildings, 57 false positive cars and 0

false positive trees). The second step gives a slight improve-

ment, though primarily just in finding missing cars, which

are difficult to see at this resolution. Note that there are still

some missed detections, either because our initial detectors

did not detect the object or because the context may have

inadvertently ruled out a valid explanation (e.g. accidentally

favoring the shadow of a roof instead of the roof itself, thus

suppressing the true roof).

The inference stage, given bottom-up proposals, takes

about 10 seconds to run on a dual core 1.6 GHz machine.

The bottleneck in our pipeline is the detection phase, how-

ever. For example, our AdaBoost results take a mere couple

of seconds to compute. The edge detector we used, on the

other hand, can take upwards of a minute to process each

image. Therefore, the speed of our approach is highly depen-

dent upon the speed required to compute the initial bottom-

up detections.

Because of the newness of Compositional Boosting, we

first examined how much improvement we achieved in de-

tecting low-level roof parts using Compositional Boosting.

Figure 20 shows ROC curves for detecting U junctions, L

junctions, parallel lines, and opposing L junctions. Using

specific bottom-up detectors alone (the blue curves) causes

us to miss a lot of the junctions present. By using Compo-

sitional Boosting, we are again able to leverage context and

hierarchy to identify missing junctions to help us propose

more roofs, as shown by the red curves.

Figure 21 shows a zoomed in view of our test images

before and after pruning. Figure 21 shows that, at first, we

have many conflicting proposals for the object boundaries,

notably that a parking lot could be on top of the roof. Af-

ter we enforce the contextual constraints we learned, how-

ever, we return to a sensible explanation of the scene, one in

which there are no longer cars on top of roofs or overlapping

proposals. Figure 22 shows a zoomed in view after we pro-

pose new cars. Initially we missed some cars in the rows of

the parking lots. Because our model recognizes that cars ap-

pear in rows, however, it proposes cars of roughly the same

shape and sizes of the neighboring cars around them, using a

line grammar. Cars matching above a certain likelihood are

accepted and the conflicting nodes are removed.

Table 3 shows the detection rate and false positives per

image of each category using just that category’s detector

(shown in parentheses) vs. using the full hierarchical con-

textual model. We can see that the hierarchical contextual

model greatly reduces the false positive rate from single-

object bottom-up detectors because it can leverage context
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to remove false positives. Our detection rate is about the

same, however, as the pruning phase in the second stage

serves mostly to rule out inconsistent detections. In the third

stage we were able to identify a few extra cars (as shown in

Table 3 False positives per image and detection rates for bottom-up

detectors versus our method

Detection method False positives Detection rate

per image

Cars (AdaBoost) 242.33 88.1%

Cars (Ours) 71.83 84.2%

Parking Lots (TextonBoost) 1.17 84.3%

Parking Lots (Ours) 0.16 84.3%

Trees (TextonBoost) 14.5 88.8%

Trees (Ours) 9.33 88.8%

Roofs (CompBoost) 73.5 70.3%

Roofs (Ours) 1.67 70.3%

Roads (CompBoost) 5.67 95%

Roads (Ours) 0.05 88.3%

Combined (All Detectors) 337.17 93.1%

Combined (Ours) 83.04 87.5%

Fig. 22), but the amount of extra detections was not enough

to account for the inadvertent pruning of true positives from

stage 2. Overall, our context allows us to achieve compa-

rable detection rates to single-object detectors, but with far

fewer false positives.

Figure 23 shows two different precision-recall curves for

the bottom-up and top-down stages of our process. We show

precision-recall as opposed to ROC curves because it is dif-

ficult to decide how to compute the number of true nega-

tives for multi-category classification tasks, a decision that

can drastically alter the appearance of the algorithm’s per-

formance. In Fig. 23(a), we measure our accuracy at the

pixel level. In this experiment, we labeled each pixel in the

image as belonging to an object category or not and then

converted our inferred boundaries to a similar labeling. In

Fig. 23(b) we measure our performance using object-level

accuracy. In this case we considered an object to be detected

if it had a boundary around it within some threshold of its

true scale and position. In both cases we can see that the top-

down improvements over the initial detections are substan-

tial. While the initial detections give average performance,

it is the introduction of the top-down pruning and prediction

that flattens our curve, enabling us to keep a very high level

Fig. 22 Close up views of our

improvement during top-down

prediction. Additional cars are

added to the rows due to the

presence of other collinear cars

Fig. 23 Precision-Recall curves for the bottom-up and top-down in-

ference algorithm. In both cases we see a huge improvement by using

CSW to prune out false positives and using our model to predict miss-

ing objects. F1 and F2 are the best F-measures for the bottom-up and

for the full algorithm, respectively. (a) Precision-Recall curve using

pixel-level accuracy, i.e. each pixel in the image is assigned a cate-

gory label. (b) Precision-Recall curve using object-level accuracy, i.e.

each object is considered detected if we infer an object of appropriate

dimensions over it
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Fig. 24 An example of

swapping alternative solutions

using C4. (a) Vents are

incorrectly labeled as cars on

top of the roof. (b) The cars are

correctly swapped out for the

roof simultaneously to arrive at

the correct solution

Fig. 25 A comparison of inference results for the model learned with

a very high ε1 versus a rather low ε1 (i.e. fewer relationships are added

to the first model). The partially learned model is missing a lot of over-

lap constraints (e.g. cars on trees, cars on buildings), and so makes very

poor decisions when parsing the scene. Many of the buildings have cars

on top of them and cars readily overlap each other

of precision as the recall increases. Notice, however, that in

Fig. 23(b) the second stage actually degrades performance

slightly for low values of recall, likely because it has pruned

too many true positives, reducing our precision slightly. This

could likely be improved by adjusting the likelihoods of our

initial candidates so that we don’t overprune them. Over-

all though the top-down performance far eclipses the initial

bottom-up detection results on their own.

We also looked at the benefits of using C4 to find solu-

tions. Figure 24 shows an example of a patch where C4 is

extremely useful during inference. In the first panel, the al-

gorithm has mistakenly interpreted the vents on top of the

building as cars. This has thus ruled out the true explanation

that there is a building there. Thanks to C4’s ability to swap

out all of the related cars while simultaneously adding the

roof, we are able to arrive at the correct solution in panel (b).

This solution is maintained because it has a higher probabil-

ity than the previous explanation.

In Sect. 4.2 we mentioned that we choose to add rela-

tionships iteratively instead of fitting the full model, as this

allows us to keep our model simple for sampling and per-

forming inference. The question remains, however, about

whether we need to learn as many relationships as we do.

Figure 25 shows the inference results for an aerial image

using a model with a high ε1 (10) and a model with a stan-

dard ε1 (4). We can see that the partially learned model is

lacking contextual relationships for cars and buildings, as

many cars appear on roofs, and cars appear on top of one
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Fig. 26 Flat configurations of parsed images
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Fig. 27 Flat configurations of parsed images
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another. The fully learned model does not make these mis-

takes. While ε1 is definitely variable, we strive to select a

value that produces good results while still minimizing the

size of our relation set R.

Figures 26 and 27 show the final results of our algo-

rithm on a number of other urban aerial images. We used

our algorithm to find the best parse graph representations

for each object and here just display the flattened configura-

tions of the highest probability parse graph for each scene.

We can see that the majority of objects are detected accu-

rately, though there are still a few false positives.

We would like to compare our methods to other works in

the field, but, as mentioned in Sect. 1, we are hard-pressed to

find competing algorithms that identify multiple categories

of objects. Similarly it was quite difficult to find benchmarks

on consistent datasets in the aerial imaging community, so

we would like to offer these results as a benchmark on the

aerial images we used from the Lotus Hill Database. These

images will be available from the Lotus Hill Institute’s web-

site (http://www.imageparsing.com) and can be used freely

by anyone else interested in testing on them.

9 Discussion and Future Work

In this paper we presented a 3-level contextual hierarchy for

modeling aerial images that automatically augments a hier-

archical model with relational constraints using a minimax

entropy framework. The learning algorithm was able to it-

eratively add relationships from even large dictionaries of

potential relationships in order to model the statistics of the

aerial images. We found that this learning process was im-

peded only by the time needed to sample new images, which

can be made tractable through a number of optimizations. In

the end our model selected only a small subset of the dictio-

nary of relationships, yet was still able to accurately recreate

aerial images. The current work relied on hand-labeled data,

but we would like to relax this assumption to first do un-

supervised recognition of object types before learning the

scene structure in future work.

The bottom-up methods we used along with our three-

phase Bayesian inference algorithm were instrumental in

obtaining the results that we did. Using C4 to swap inter-

pretations of the scene was extremely helpful, and at times

critical, in finding a good subset of detections to represent

the scene. Our top-down prediction did not, however, sig-

nificantly improve results much, as our algorithm only pro-

posed objects that met the line grammar relationship rules

(e.g. cars). As was seen in Fig. 21, very few cars are actually

added to the representation. This work served as a proof of

concept that some combined bottom-up/top-down inference

can definitely improve performance, but in this case there

were so many objects in each scene that an improvement

by 10–20 newly detected objects didn’t significantly impact

our classification rate. For specific tasks, for example one in

which finding every car is important, this technique will be

very useful.

In our experiments we hand-defined our 3-level hierar-

chy and added the context automatically. When learning the

hierarchy automatically, however, the question remains as

to when one uses hierarchy to group objects and when one

simply uses context. We found that grouping objects made

our representation simpler and allowed us to avoid the com-

putational inefficiency of computing a fully pairwise graph

between all objects. However, we certainly could have cre-

ated a flat model and added constraints to that. The question

of when to use hierarchy and when context on a flat model

suffices is an interesting and unresolved one.

Overall we found that our method was able to learn rela-

tionships flexibly and out-performs commonly-used single-

object detectors. We hope in the future to find a combination

of initial detectors, improved bottom-down inference, and

adjustments to C4 that will improve our results even further.
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