
LLNL-CONF-536171

A Hierarchical Approach for Load
Balancing on Parallel Multi-core
Systems

L. L. Pilla, C. P. Ribeiro, D. Cordeiro, C. Mei, A.
Bhatele, P. O. A. Navaux, F. Broquedis, J. F. Mehaut,
L. V. Kale

March 8, 2012

The 41st International Conference on Parallel Processing
Pittsburgh, PA, United States
September 10, 2012 through September 13, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Hierarchical Approach for Load Balancing on
Parallel Multi-core Systems

Laércio L. Pilla1,2, Christiane Pousa Ribeiro2, Daniel Cordeiro2, Chao Mei3, Abhinav Bhatele4,
Philippe O. A. Navaux1, François Broquedis2, Jean-François Méhaut2, Laxmikant V. Kale3

1Institute of Informatics – Federal University of Rio Grande do Sul – Porto Alegre, Brazil
{laercio.pilla, navaux}@inf.ufrgs.br

2LIG Laboratory – CEA / INRIA – Grenoble University – Grenoble, France
{christiane.pousa, daniel.cordeiro, francois.broquedis, jean-francois.mehaut}@imag.fr

3Department of Computer Science – University of Illinois at Urbana-Champaign – Urbana, IL, USA
{chaomei2, kale}@illinois.edu

4Center for Applied Scientific Computing – Lawrence Livermore National Laboratory – Livermore, CA, USA
bhatele@llnl.gov

Abstract—Multi-core compute nodes with non-uniform mem-
ory access (NUMA) are now a common architecture in the
assembly of large-scale parallel machines. On these machines, in
addition to the network communication costs, the memory access
costs within a compute node are also asymmetric. Ignoring this
can lead to an increase in the data movement costs. Therefore, to
fully exploit the potential of these nodes and reduce data access
costs, it becomes crucial to have a complete view of the machine
topology (i.e. the compute node topology and the interconnection
network among the nodes). Furthermore, the parallel application
behavior has an important role in determining how to utilize
the machine efficiently. In this paper, we propose a hierarchical
load balancing approach to improve the performance of applica-
tions on parallel multi-core systems. We introduce NUCOLB, a
topology-aware load balancer that focuses on redistributing work
while reducing communication costs among and within compute
nodes. NUCOLB takes the asymmetric memory access costs
present on NUMA multi-core compute nodes, the interconnection
network overheads, and the application communication patterns
into account in its balancing decisions. We have implemented
NUCOLB using the CHARM++ parallel runtime system and
evaluated its performance. Results show that our load balancer
improves performance up to 20% when compared to state-of-the-
art load balancers on three different NUMA parallel machines.

Keywords-load balancing, non-uniform memory access, mem-
ory affinity, multi-core, topology, cluster

I. INTRODUCTION

The importance of non-uniform memory access (NUMA)
architectures in the assembly of large-scale parallel machines
has been increasing. The NUMA architecture is a scalable
solution to alleviate the memory wall problem, and to provide
better scalability for multi-core compute nodes. A NUMA ar-
chitecture features distributed shared memory with asymmetric
memory access costs. This characteristic, together with com-
munication overheads of interconnection networks, can lead
to significant communication costs on parallel applications.
Therefore, to achieve high performance on such hierarchical
machines, it becomes necessary to take the machine topology
into account to avoid high communication costs.

In order to reduce communication costs among and within
NUMA compute nodes, different approaches such as efficient
memory allocation mechanisms, scheduling policies, and load
balancing strategies can be used. The first approach focuses on
distributing data, using the memory hierarchy of the NUMA
multi-core node efficiently, and bringing data closer to the
cores that will process it. This approach only reduces the com-
munication costs within a compute node. The second approach
reduces communication costs by dynamically mapping tasks
of an application to the processing elements of the parallel
machine. In this approach, some application characteristics are
generally used to improve the affinity between tasks and data.
The load balancing approach deals with this problem by doing
a better distribution of the work among cores in order to avoid
hot-spots and improve communication. The implementation of
these approaches is usually linked to the characteristics of the
target parallel programming environment [1], [2], [3], [4].

There are several options for programming applications on
multi-core machines where some kind of optimization has
been done, such as OPENMP [3], MPI [5], CHARM++ [6],
XKAAPI [7] and UPC [8]. Usually, these runtime systems
are responsible for some assignments like task orchestration,
communication management, and work distribution among
cores. However, most of these runtime systems provide a flat
view of the machine, lacking information about the compute
node topology and the interconnection network. They are not
aware of the physical distance between the hardware com-
ponents of the compute node or the interconnection network
between the compute nodes. As a consequence, they can
lead to sub-optimal application performance, since they may
lack necessary information to efficiently match application
communication patterns to the target machine topology.

In this paper, we propose a hierarchical load balancing ap-
proach to perform efficient distribution of the application load
on parallel NUMA machines. We introduce the NUCOLB load
balancer, which combines information about the NUMA multi-
core topology, the interconnection network latencies and statis-

tics of the application captured during execution. NUCOLB
aims to improve load balance while avoiding unnecessary
migrations and reducing intra- and inter-node communication.

In order to evaluate our load balancer, we have implemented
it using CHARM++ as a test bed. CHARM++ is a C++-based
parallel programming model and runtime system (RTS) that
includes a load balancing framework. In our experiments, we
use three benchmarks and a molecular dynamics application.
Results show that the proposed load balancer can achieve
performance improvements of up to 20% over existing load
balancers on three different multi-core NUMA machines.

This paper makes the following contributions:
• We propose a novel model to represent and compose:

(i) the way the memory system of a NUMA multi-core
machine is connected together and (ii) the interconnection
network overheads of parallel machines.

• We combine application and parallel machine character-
istics into a hierarchical approach for load balancing.

• We present an efficient load balancing algorithm for
parallel applications on NUMA multi-core machines.

This paper is organized as follows. In Section II, we
characterize the problem handled by this research. Section III
describes our approach and the proposed load balancer. Imple-
mentation details of the load balancing algorithm are presented
in Section IV. In Section V, we present our evaluation method-
ology. The evaluated performance is reported in Section VI. In
Section VII, we discuss some related work. Finally, we present
concluding remarks and future work in Section VIII.

II. PROBLEM CHARACTERIZATION

We focus on the problem of enabling high efficiency and
performance for dynamic parallel applications, such as molec-
ular dynamics simulations, on hierarchical machines. When
working with dynamic applications, an initial task mapping
may provide poor performance due to load imbalance. This
imbalance may come from different sources, such as input
data, making it difficult to predict an optimal work distribution.
An approach to solve this kind of problem involves the use of
an online load balancing algorithm, as it is able to dynamically
review the way tasks are distributed on the processing units.
However, we believe that to consider only the load of the
parallel application may result in performance losses due to
communication overheads of the hierarchical machine. Thus,
our objective for load balancing is to both maximize the use of
the cores (minimize idleness) and also minimize the communi-
cation costs experienced by the application (maximize locality
and affinity). We will elaborate on this problem in this section.

To develop a load balancing algorithm, one needs to
gather and keep statistics about the execution behavior of
the application, such as the execution time of tasks and
their communication patterns. This can be done directly in
the application code. This information may be sufficient to
optimize our first objective. Examples of this would be timing
the parallel sections of an OPENMP application, and keeping a
list of communicating processes on MPI. However, developing
a load balancing algorithm directly in the application may be

a time consuming task, and the solution may work only for
that particular application. A generic approach is to develop
load balancing algorithms at the runtime level. This, however,
requires the runtime to provide application information and
the ability to move tasks on the parallel machine.

The runtime system may provide and work with a flat view
of the parallel machine. This eases the development of applica-
tions for different systems. Nonetheless, this may also lead to
poor performance, as current machines are built with complex
compute nodes. These compute nodes may have asymmetric
memory latencies and network communication costs. Figure 1
illustrates two scenarios where the communication impacts the
application performance on NUMA multi-core machines. An
arrow is used to represent the communication between two
tasks. Although each scenario may have an equitable work
distribution, the disregard of communication costs may hurt
performance. For instance, in Figure 1(a), the communicating
tasks are not able to benefit from a nearby shared memory
bank and have to access data on a remote memory bank. This
memory access may take 1.53 times longer than a local access,
as measured in one of our test beds. This can be even worse,
as depicted in Figure 1(b). Here, the communication has to
go through a slower network connection, which presents a
3.4 times longer latency. These communications may play a
bigger role in the application’s performance with an increase
in the number of communicating tasks, and asymmetries of
the parallel machine.

 (a)

Multi-core with NUMA architecture Computing cluster based on
NUMA multi-core nodes

cache

Memory

corecore

Memory

corecore

cache
…cache

memory

cache

Memory

cache

memory

cache

Memory

cache

memory

cache

Memory

cache

memory

cache

Memory

(b)

Fig. 1. Communication on hierarchical parallel machines.

To avoid the aforementioned problems, one approach in-
volves providing the machine topology and communication
costs to the load balancing algorithm. This information com-
bined with the communication behavior of the application may
be used to minimize its communication costs. This data can be
measured and gathered by the programmer, who can add it to
the application or runtime. This leads to the same shortcoming
as before, since this may be time consuming and will only be
effective for a particular machine. A better approach would
be to provide information about the communication costs and
machine topology in an automatic way that works on any
machine and could be used by the load balancing algorithm.

To implement what we discussed above, we need to manage
the gathering and combining of information about the dynamic
application and the complex parallel machine in order to im-
prove application performance. This improvement is obtained
by minimizing the communication costs and maximizing the
work distribution. In addition, we have to deal with doing this

independently of the application and architecture. In the next
section, we describe our proposal to solve this problem.

III. HIERARCHICAL LOAD BALANCING APPROACH

Scheduling theory shows that the problem of finding the
optimal load balance for a parallel program is NP-hard [9]. On
clusters of NUMA machines, the problem becomes even more
challenging due to intra-node asymmetric memory access
costs and inter-node communication costs. On these systems,
an action taken by the load balancer to equalize the load
on the available processors may actually make the overall
performance worse by increasing the communication time.

In order to cope with the complexity introduced by these
new platforms, we have developed a new load balancing algo-
rithm that considers the specifics of NUMA parallel machines.
In this section, we present NUCOLB (Non-Uniform COm-
munication costs Load Balancer), a load balancing algorithm
developed for platforms composed of NUMA compute nodes.

A. Load Balancing Heuristic

Our load balancer relies on a heuristic that combines infor-
mation about the application and machine topology to reduce
the load imbalance of parallel applications. The heuristic
works like a classical list scheduling algorithm [9], where tasks
or jobs are rescheduled from a priority list and assigned to
less loaded processors in a greedy manner. The priority list
is dynamically computed at each load balancing step and is
based on the load of the tasks. List scheduling algorithms are
efficient, as they typically run in polynomial time, and provide
good results in practice.

The goal of the heuristic is to improve the application per-
formance by balancing the load on the nodes while reducing
the remote memory access costs perceived by the application.
The algorithm exploits information about the application data
and the machine topology. Application data comprises of all
information about the parallel application that can be probed
at runtime: task execution times, communication information,
and the current task mapping. The machine topology is all
information that can be gathered at runtime about the machine
hardware that is executing the application. A parallel machine
can be characterized in terms of the number of NUMA nodes,
cache memory sizes, sharing of cache among cores, and
grouping of nodes.

The main idea of this load balancing algorithm is to
iteratively map tasks — from the most to least CPU-intensive
ones — assigning each of them to the core that offers the
least overhead to its execution. In order to decide if a task
t should be scheduled on core c to rebalance the load, the
algorithm considers information about the execution of the
application, such as the current load on core c, the amount
of communication between task t and other tasks currently
assigned to the NUMA node of core c (and, likewise, the
communication between task t and tasks currently outside this
NUMA node), and information about the communication costs
related to the topology of the parallel machine. More formally,

the cost of placing a task t on a core c is estimated using the
following equation:

cost(c, t) = coreLoad(c) +
α× [rcomm(t, c)

× NUCO FACTOR(comm(t), node(c))
− lcomm(t, c)]

The equation presents a weighted linear sum of the costs
involved in the execution of task t on core c. In this equation,
coreLoad(c) represents the total load of all tasks currently
assigned to core c (in other words, it is the sum of execution
times, in seconds, of the tasks currently assigned to core c).

All communication costs are normalized by a factor α
that controls the weight that they have over the execution
time. lcomm represents the local communication i.e. the number
of messages received by task t from tasks on other cores
of the same NUMA node as core c. In other words, it
represents the gains obtained by scheduling this task near other
communicating tasks already mapped to this NUMA node.
rcomm expresses the remote communications i.e. the number of
messages received by task t from tasks on other NUMA nodes.

The topology of the platform is considered to infer the
costs associated with non-uniform inter-node and intra-node
communication latencies. To model this topology, we combine
the hardware characteristics of the machine with its com-
munication costs represented by the NUCO FACTOR. The
communication cost of receiving a message on a NUMA node
i from a NUMA node j is defined as:

NUCO FACTOR (i, j) =
Read latency from i to j

Read latency on i
If i and j are on the same multi-core compute node, this

cost refers to the well-known NUMA FACTOR that measures
the cost of accessing a different memory bank inside the node.
If i and j are on different nodes, this cost relates to the cost
of using the network to communicate. Section IV refers to
the intra-node communication cost as NUMA FACTOR and
the inter-node communication cost as NETWORK FACTOR,
and presents details on how these costs can be measured.
For the purpose of the algorithm, it is enough to note that
this factor measures the latency caused by the communication
between nodes i and j and that it can be easily calculated at
runtime. In addition, it is important to notice that the value of
the NUCO FACTOR that multiplies remote communications
depends on the involved NUMA nodes, and that multiple
NUMA nodes may be the source of communication. The
NUCO FACTOR is calculated for the NUMA node of core c
(represented by node(c)) and all the NUMA nodes of remote
tasks communicating with task t (comm(t)).

The discussed heuristic considers the number of exchanged
messages because it represents the number of accesses to the
distributed shared memory. Since messaging time is related to
the memory access costs, it is multiplied by the NUCO FAC-
TOR when considering remote accesses. In addition, local
communications are subtracted from the overall cost to favor
their occurrence.

B. NUCOLB’s Algorithm

Combining application and topology information in the
heuristic presented in Section III-A, we have implemented a
new load balancer, named NUCOLB, which is better adapted
for platforms with NUMA parallel machines. It is a greedy
list scheduling algorithm that assigns the task with the largest
execution time to the core that presents the smallest cost. The
choice of a greedy algorithm is based on the idea of fast
convergence to a balanced situation by mapping the greatest
sources of imbalance first. The pseudocode for NUCOLB is
presented in Algorithm 1. Table I summarizes the parameters
considered by NUCOLB.

Algorithm 1: NUCOLB
Input: T set of tasks, C set of cores, M mapping of

tasks to cores
Output: M′ mapping of tasks to cores

1 M′ ←M
2 while T 6= ∅ do
3 t← k | k ∈ argmaxl∈T taskLoad(l)
4 T ← T \ {t}
5 c← p, p ∈ C ∧ {(t, p)} ∈ M
6 coreLoad(c)← coreLoad(c)− taskLoad(t)
7 M′ ←M′ \ {(t, c)}
8 c′ ← p | p ∈ argminq∈C cost(q, t)
9 coreLoad(c′)← coreLoad(c′) + taskLoad(t)

10 M′ ←M′ ∪ {(t, c′)}

The algorithm iteratively tries to map the task t with the
largest execution time that has not been evaluated yet. t is
initially mapped to core c. This information is obtained from
the initial mappingM. The load of this task is subtracted from
the load of c before evaluating the cost function (cost(c, t) is
explained in Section III-A). This subtraction is an important
characteristic of this algorithm, as it avoids unnecessary mi-
grations by reducing the load of c. This is important because
the overhead resulting from migrations cannot be estimated
without information about the size of the task in memory. After
this subtraction, the algorithm evaluates all possible mappings
for t and chooses the core c′ that presents the smallest cost.
Once this choice is made, the load of task t is added to the
load of c′. The algorithm continues by searching for a new
mapping for the next task.

TABLE I
SUMMARY OF THE MAIN PARAMETERS OF NUCOLB.

Parameter Definition

cost(c, t) Cost to map task t to core c.
taskLoad(t) Execution time (load) of task t.
coreLoad(c) Sum of the loads of tasks mapped to core c.
lcomm(t, c) Number of local messages received by task t.
rcomm(t, c) Number of remote messages received by task t.
comm(t) NUMA nodes of remote tasks communicating

with task t.
node(c) NUMA node of core c.
NUCO FACTOR(i, j) Latency factor between NUMA nodes i and j.

Considering n tasks and m cores, this algorithm presents
a complexity of O(n2m) in the worst-case scenario involv-
ing all-to-all communications. However, since this kind of
communication is usually avoided in parallel applications for
scalability, assuming a small, constant vertex degree of the
communication graph, NUCOLB has a complexity of O(nm).

IV. IMPLEMENTATION DETAILS

Designing an efficient load balancing policy for a target
hierarchical parallel machine can be a difficult and time-
consuming effort. Detailed information from both the parallel
application and the machine topology is required. This in-
cludes knowledge about how tasks are generated and executed,
how data is allocated and shared among tasks, how processing
units are organized, and the multiple levels of distributed
memory over the machine. In this section, we present the
implementation details of NUCOLB, as well as information
about obtaining the inputs for this load balancer.

To implement NUCOLB, we use the CHARM++ parallel
runtime system (RTS) as the underlying framework. It provides
an object oriented parallel programming language with the
goal of improving programmer productivity. It abstracts archi-
tectural characteristics from the developer and provides porta-
bility over platforms based on shared and distributed memory.
Parallel CHARM++ applications are written in C++ using an
interface description language to describe their objects [10].

Computation in CHARM++ applications is decomposed into
objects called chares. The programmer describes the computa-
tion and communication in terms of how these chares interact
and the CHARM++ RTS manages all messages generated from
these interactions. Chares communicate through asynchronous
messages. Furthermore, the CHARM++ RTS is responsible for
physical resource management on the target machine. Chares
represent the tasks considered by NUCOLB.

CHARM++ also has a mature load balancing framework.
It provides detailed information about the application, as
required by NUCOLB. Examples are the load of each chare,
the load on each core, the number of messages and the amount
of bytes exchanged among chares, and the current mapping of
chares to cores. The load of each chare includes the time spent
on computation and communication. The load on each core
is the sum of the loads of all its chares and other runtime
overheads. All this information comes from previous time
steps, as load balancing in CHARM++ is measurement-based.
This implies that this is useful for applications with persistent
load patterns or those with abrupt but infrequent changes.

NUCOLB has been implemented on top of the CHARM++
load balancing framework, as it provides an interface to
plug-in new algorithms. It also enables the allocation of
dynamic structures and the gathering of information during
CHARM++’s startup. We believe that NUCOLB could also be
used with other environments. However, it would require that
they provide the necessary information about the tasks and the
ability to choose a new scheduling.

Although CHARM++ provides the necessary information
about the parallel application, it does not provide any infor-

mation about the intra-node topology. In order to create our
topology model, we need the parallel machine characteristics,
such as the number of NUMA nodes, cache memory sizes,
sharing of caches among cores, grouping of NUMA nodes,
and the interconnection network topology. Several libraries can
provide this information about the machine topology. For in-
stance, the HWLOC [11] library generates a generic view of any
compute node, in which processing units and memory caches
are organized in a tree-based fashion. However, HWLOC does
not provide information about the way NUMA nodes are con-
nected together and how compute nodes are interconnected.
This information is critical in the context of hierarchical load
balancing. The load balancer needs to know how far from
each other the tasks are mapped, so that it can reduce the
communication costs. To get this information, we extended
the HWLOC architecture model with our topology model of
NUCO FACTOR. This is done by adding NUMA factors and
NETWORK factors to represent the way NUMA nodes and
compute nodes are connected together.

The NUMA factor is obtained for all NUMA nodes of
the target multi-core compute node through benchmarking,
resulting in a square matrix of NUMA factors. Each NUMA
factor is computed using the LMbench benchmark [12] that
obtains the access latency on a memory bank. LMbench is a set
of synthetic benchmarks that measures the scalability of multi-
processor platforms and the characteristics of the processor
micro-architecture [12].

We use a ping-pong benchmark from the OpenMPI distribu-
tion to obtain the NETWORK factor. This benchmark allows
us to get the latency to access data on remote compute nodes.
The LMbench benchmark is used to get the access time to a
memory bank on the local compute node. Then, these latencies
are used to compute the NETWORK factor, resulting in a
square matrix of factors that represents how compute nodes
are connected together.

Both factors needs to be computed and stored only once
for a target parallel machine. During the installation of
CHARM++, we run a script that executes LMbench and ping-
pong benchmarks on the machine to obtain the factors. During
the initialization of NUCOLB, they are loaded into dynamic
structures used later by its algorithm.

V. EXPERIMENTAL SETUP

In this section, we describe the NUMA platforms, bench-
marks and load balancers used for conducting the experiments.

A. Description of NUMA Machines

We have conducted tests on three representative multi-core
platforms with different NUMA characteristics:
• NUMA32: A single node with four eight-core Intel Xeon

X7560 processors. Each core has private L1 (32 KB) and
L2 (256 KB) caches and all cores on the same socket
share a L3 cache (24 MB).

• NUMA48: A single node with four twelve-core AMD
Opteron processors. The cores have private L1 (64 KB)

and L2 (512 KB) caches, and an L3 cache (10 MB) shared
among six cores.

• 20xNUMA4: This cluster has 20 compute nodes, each
composed of two dual-core AMD Opteron 2218 proces-
sors. The cores have private L1 (64 KB) and L2 (2 MB)
caches. The compute nodes are interconnected by Gigabit
Ethernet using a bus topology.

All machines run the Linux kernel 2.6.32 and have
the GNU Compiler Collection. 20xNUMA4 is part of
Grid’5000 [13]. We used the CHARM++ release 6.3.0 with
the optimized multi-core build [6]. The MPI library used on
the parallel machine 20xNUMA4 is OpenMPI.

In Table II, we summarize the hardware characteristics
of these machines. Memory bandwidth obtained from the
Stream-Triad operation [14] is also reported. For each ma-
chine, NUMA factor is also reported in intervals, meaning the
minimum and maximum costs to access remote memory in
comparison to local memory.

TABLE II
OVERVIEW OF THE NUMA MULTI-CORE PLATFORMS.

Characteristic NUMA32 NUMA48 20xNUMA4

Number of nodes 1 1 20
Number of cores 32 48 4
Number of sockets 4 4 2
NUMA nodes 4 8 2
Clock (GHz) 2.27 2.2 2.6
Highest level cache (MB) 24 (L3) 10 (L3) 2 (L2)
DRAM capacity (GB) 64 256 4
Memory bandwidth (GB/s) 35.54 75.19 6.6
NUMA factor (Min;Max) [1.36; 3.6] [1.10; 2.8] [1.52;1.53]

B. Charm++ Benchmarks and Mini-apps

To investigate the performance of our load balancer, we
selected three benchmarks from the CHARM++ distribution
and one mini-app from the molecular dynamics field. These
were selected due to their varied range of communication and
computation characteristics (see Table III).

TABLE III
BENCHMARKS AND MINI-APP CHARACTERISTICS.

Number of Number of Communication Type LB
Chares Iterations Topology Frequency

lb test 200 50 random compute-bound 10
kNeighbor 400 50 ring comm-bound 10
stencil4D 256 50 4D mesh compute-bound 10
LeanMD 1875 300 irregular compute-bound 60

The selected benchmarks are: (i) lb test, a synthetic imbal-
anced benchmark that can choose from different communica-
tion patterns; (ii) kNeighbor, a synthetic iterative benchmark
where a task communicates with k other tasks at each step
(k = 7 for this paper); and (iii) stencil4D an imbalanced
four-dimensional stencil computation. Each benchmark has
a different communication topology. For instance, kNeighbor
uses a ring whereas the lb test benchmark has a random com-
munication graph. stencil4D communicates with neighbors on
a four dimensional grid.

LeanMD is a molecular dynamics (MD) mini-app written
in CHARM++ and based on the popular MD application
NAMD [15]. It simulates the behavior of atoms based on the
Lennard-Jones potential, which is an effective potential that
describes the interaction between two uncharged molecules
or atoms. In LeanMD, the computation is parallelized using
a hybrid scheme of spatial and force decomposition. In each
iteration, force calculations are done for all pairs of atoms
that are within the cutoff distance. The force calculation for
a pair of cells is assigned to a different set of objects called
computes. Based on the forces sent by the computes, the cells
perform the force integration and update various properties
of their atoms – acceleration, velocity and positions. The
communication pattern of LeanMD is more complex than the
other benchmarks. In this application, there are two arrays
of tasks that communicate with each other. In the first step
of communication, tasks of the three dimensional (3D) array
communicate using a multicast operation with tasks in the six
dimensional (6D) array. Then, in the second step, tasks of the
6D array communicate with one or two tasks of the 3D array.

C. Load Balancers

To evaluate the performance of the proposed load balancer,
we compare the results obtained using it to the baseline
(without any load balancing algorithm) and to three load
balancers available in CHARM++. These load balancers are:
GREEDYCOMMLB, SCOTCHLB and TREEMATCHLB.

GREEDYCOMMLB reassigns tasks in a greedy fashion. The
algorithm iteratively maps the heaviest task to the least loaded
core while considering the communications among tasks.
SCOTCHLB is based on the graph partitioning algorithms
of SCOTCH [16]. This strategy considers both the execution
time and communication graph to improve load balance.
TREEMATCHLB is based on a match of the communication
graph of the application with the machine topology [5]. In
order to reduce communication overhead, the load balancer
assigns tasks to cores of the machine depending on the amount
of data they exchange.

Similar to NUCOLB, these load balancers consider the
execution time and communication graph of the application.
However, these algorithms (with the exception of SCOTCHLB)
do not consider the original mapping of objects nor measure
the communication costs of the machine.

As mentioned before, a CHARM++ application calls the load
balancing framework at pre-determined steps. For LeanMD, a
load balancing call is made every 60 iterations. For the other
benchmarks, this is done at every 10 iterations. The results in
the next section show an average of a minimum of 20 runs
for each benchmark. They present a statistical confidence of
95% by Students t-distribution and a 5% relative error. The
value of α (see Section III-A) used in the experiments is 10−5.

VI. RESULTS

The performance impact of balancing the load in CHARM++
programs depends on several different parameters, such as
the iteration time of the application, the number of chares,

the load balancing frequency, the load balancing algorithm’s
execution time, etc. Our main metric to evaluate the impact of
load balancing is the total execution time of the application,
or makespan. We also consider the average iteration time
after load balancing and the average load balancing algorithm
execution time. The iteration time does not consider the
iterations before load balancing, nor overheads related to load
balancing. The load balancing time is comprised of the time
spent executing the algorithm and migrating the objects. In the
following subsections, we first present results on NUMA48
and NUMA32, and then we explain the results obtained with
LeanMD on the 20xNUMA4 cluster.

A. Performance Improvements on NUMA Compute Nodes

The lb test benchmark presents a large variation in object
loads, from 50 ms to 200 ms, and a small number of objects
per core. It starts in an imbalanced state. Figure 2 illustrates
the initial imbalanced iterations of lb test and the balanced
state after applying NUCOLB’s algorithm, as presented by the
Projections performance analysis tool [17].

Fig. 2. Execution of lb test on cores 4 to 7 of NUMA32, as captured by
Projections. Each bar represents a core. The blue areas represent the execution
of objects, and the white areas represent idleness. The period between 2
and 9.4 seconds illustrates the initial imbalanced state of the benchmark.
PE 7 is the most loaded core. The period between 9.4 and 14.5 seconds
represents the 10 iterations after calling NUCOLB and before calling it again.
The period after 14.5 seconds shows the beginning of remaining iterations.

Table IV summarizes the execution times obtained for
lb test. Most load balancers obtain speedups between 1.25
and 1.39 when compared to the baseline. The baseline repre-
sents the execution time of the application without using a load
balancer. The performance improvements come from similar
speedups in iteration time. The best results are obtained by
using NUCOLB. It achieves speedups of 1.39 over the baseline
on NUMA48 and of 1.30 on NUMA32. This represents keep-
ing the idleness of NUMA48 and NUMA32 cores as low as
5% and 4%, respectively. NUCOLB migrates an average of 14
objects per load balancing call, while other load balancers
migrate 195 objects on the average. This, however, has a small
impact on the total execution time, as these objects do not use
much memory. For instance, NUCOLB’s load balancing time
is 9 ms on NUMA32, while that of SCOTCHLB is 12 ms.
The small amount of communication, which adds to a total
of 1 MB per iteration, reduces the impact of considering the
communication costs of the machines. Nonetheless, the posi-
tive results with this computation-bound benchmark emphasize
the advantages of a list scheduling approach.

The execution times measured for the kNeighbor benchmark
are presented in Figure 3. kNeighbor is a communication-
bound benchmark. In this experiment, objects communicate

TABLE IV
TOTAL EXECUTION TIME IN SECONDS AND SPEEDUP FOR THE LB TEST

BENCHMARK FOR DIFFERENT LOAD BALANCERS.

Load balancers NUMA32 NUMA48
Time Speedup Time Speedup

Baseline 36.19 — 27.93 —
NUCOLB 27.95 1.30 20.09 1.39
GREEDYCOMMLB 28.57 1.27 20.27 1.39
SCOTCHLB 28.91 1.25 21.53 1.30
TREEMATCHLB 38.40 0.94 29.56 0.94

approximately 9 GB per iteration. Unlike lb test, this bench-
mark starts in a balanced state. CHARM++ distributes objects
in a round-robin fashion through the cores. kNeighbor has
twice as many objects as lb test, and these objects have
a regular and similar behavior. This explains the original
balanced state of the application. NUCOLB is able to reduce
the average iteration time of kNeighbor on NUMA32 by
30 ms. This reduction is less noticeable in the total execution
time due to the load balancing overhead of 150 ms per load
balancing call. This cost comes from migrating an average
of 116 objects. On the same machine, other load balancers
migrate an average of 388 objects, which results in a migration
time of more than 700 ms per load balancing call. This
helps to explain why other load balancers end up increasing
the total execution time. In particular, GREEDYCOMMLB
tries too hard to keep communicating objects on the same
core. This leads to overloaded cores, which increases the
iteration time by 50%. On NUMA48, NUCOLB is the only
load balancer that improves performance over the baseline
(a speedup of 1.14). This was possible because NUCOLB
has a small load balancing overhead, and benefits from the
knowledge of the machine topology. By using it, NUCOLB
is able to keep communicating objects on the same NUMA
node and reduce communication costs. This results in a 6%
reduction in the average load of each core, or 80 CPU-seconds.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

NUMA32 NUMA48

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

kNeighbor

Baseline
NucoLB
GreedyCommLB
ScotchLB
TreeMatchLB

Fig. 3. Comparison of different load balancers for the kNeighbor benchmark.

Figure 4 illustrates the total execution time for the stencil4D
benchmark. stencil4D has a similar number of objects as
lb test, and it also starts in an imbalanced state. Imbalance
comes from an original mapping that underloads some cores,

and from objects with different computational loads. Its objects
send boundary information using messages of approximately
260 KB each, which adds to a total communication of 460 MB
per iteration. stencil4D occupies 5.5 GB in memory, which
means that it has large objects. For both machines, NUCOLB
shows the best performance. It obtains a speedup of 1.18
over the second best load balancer, GREEDYCOMMLB, on
NUMA32. When considering only the iteration time after
load balancing, the speedup is 1.21. The difference in these
speedups comes from the initial iterations of the benchmark,
which happen before any load balancer can fix the imbalance.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

NUMA32 NUMA48

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

stencil4D

Baseline
NucoLB
GreedyCommLB
ScotchLB
TreeMatchLB

Fig. 4. Comparison of different load balancers for the stencil4D benchmark.

NUCOLB migrates an average of 47 objects per load
balancing call on NUMA32, which translates to 100 ms spent
migrating objects. NUCOLB is able to avoid unnecessary
migrations because it considers the original mapping of the
application and knows the machine topology. Exploiting the
machine topology, it minimizes migrations that can worsen
performance by increasing communication costs. On the other
hand, other load balancers migrate 5.3 times more objects.
This results in an overhead 11 times greater than that of
NUCOLB. This is related to the cost of migrating stencil4D’s
large objects. Table V summarizes the load balancing costs of
stencil4D. The large number of migrations leads to an increase
in the memory footprint of the benchmark, which ends up
affecting the performance of some objects. For instance, other
load balancers increase last level cache misses by 32% and
page faults by 19% on NUMA48 when compared to the
baseline, while NUCOLB shows an average reduction of 1%
on both parameters. Meanwhile, NUCOLB achieves a speedup
of 1.58 over the baseline by reducing the average iteration time
from 1.84 s to 0.78 s.

NUCOLB also balances the communication between cores,
as can be seen in Figure 5. Before load balancing, core 22
receives the largest amount of messages, 4.5 times more than
the smallest number of messages received by any core. This
difference is reduced to 2.6 times after load balancing with
NUCOLB.

The performance of the LeanMD application can be seen in
Figure 6. This application is comprised of many small objects.
Each occupies a small amount of memory and communicates

(a) Messages received per core before load balancing (first 10 iterations). (b) Messages received per core after load balancing with NUCOLB (remaining
40 iterations).

Fig. 5. Distribution of messages received from other cores for stencil4D on NUMA48, as captured by Projections. The horizontal axis identifies each core.
The vertical axis represents the number of messages received from other cores. These figures show how NUCOLB balances communications, as the difference
in the most and the least number of messages received by any core is reduced.

TABLE V
LOAD BALANCING TIMES IN SECONDS FOR THE STENCIL4D BENCHMARK

FOR DIFFERENT NUMA MACHINES.

Load balancers NUMA32 NUMA48

Baseline — —
NUCOLB 0.11 0.27
GREEDYCOMMLB 1.17 0.84
SCOTCHLB 1.13 1.02
TREEMATCHLB 1.14 1.04

through small messages of approximately 100 bytes. This
application starts in a balanced state. For instance, its original
object mapping presents an efficiency of 95% on NUMA32,
meaning an idleness of only 5%. This helps to explain why no
load balancer was able to significantly improve performance
on this machine. This is related to the large amount of objects
per core in this experiment. We have an average of 58 objects
per core, and the difference between the cores with the greatest
and the smallest number of objects is only 3. Although this
brings an initial balanced state to the application, this incurs
a higher processor overhead, as many objects have to be
scheduled on each core. We have a different situation on
NUMA48, with its larger number of cores. There, NUCOLB is
able to reduce the iteration time by 12%, resulting in a speedup
of 1.12 over the baseline total execution time. Other load
balancers show similar performances as, in this case, migration
costs are negligible and communication plays a minor part in
the overall performance. However, this does not hold true in
a cluster, as we will see in the next section.

B. Performance Improvements on a NUMA Cluster

In this section, we focus on the performance of LeanMD
on 20xNUMA4, a cluster composed of 20 computes nodes
and a total of 80 cores. The total execution times for LeanMD
running on 80 cores can be seen in Figure 6 with the label
20xNUMA4. The number of objects and the size of their
messages is the same as mentioned before. As the number
of available cores increases, the number of objects per core
decreases. In the case of 20xNUMA4, we have an average of
23 objects per core.

NUCOLB was able to obtain speedups of 1.19 over the

 0

 10

 20

 30

 40

 50

 60

NUMA32 NUMA48 20xNUMA4

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

leanMD

Baseline
NucoLB
GreedyCommLB
ScotchLB
TreeMatchLB

Fig. 6. Comparison of different load balancers for the LeanMD benchmark.

baseline and 1.18 over GREEDYCOMMLB, the load balancer
with the second best performance. NUCOLB’s hierarchical
algorithm is able to balance the load over the available cores
while reducing the communication costs. The iteration time
reduces by 21% — from 115 ms to 91 ms, as can be seen
in Table VI. This table presents the average iteration time
and load balancing time for the different load balancers. The
load balancing time includes the time spent executing the load
balancing algorithm and migrating the objects.

TABLE VI
AVERAGE ITERATION TIME AND LOAD BALANCING TIME (MS) FOR

LeanMD WITH DIFFERENT LOAD BALANCERS ON 20XNUMA4.

Load balancers Average iteration time Load balancing time

Baseline 114.94 0.00
NUCOLB 90.64 104.45
GREEDYCOMMLB 111.94 96.05
SCOTCHLB 123.76 144.08
TREEMATCHLB 116.50 355.64

The load balancing decisions of NUCOLB are able to
achieve an efficiency of 93% in this configuration, implying an
idleness of 7%. The algorithm chooses to keep up to 30% more
objects than the average on some cores. This leads to a better
performance than spreading these objects, as spreading incurs
increased communication among NUMA nodes and compute

nodes. However, this is only helpful when considering the
whole machine hierarchy. For instance, other load balancing
algorithms that do not consider the communication costs
(as measured by NUCOLB) end up increasing the processor
overhead by 50%. This overhead is related to the time spent
by the CHARM++ RTS in managing network communications.

NUCOLB migrates approximately 300 objects when it is
first called by the application. These migrations quickly con-
verge to a more balanced state. Subsequent calls result in the
migration of 100 objects. On this machine, the application’s
performance does not improve much after the second or
third load balancing call. Nevertheless, NUCOLB’s total load
balancing time is equivalent to one iteration of LeanMD, as
can be seen in Table VI. With a load balancing call after every
60 iterations, NUCOLB’s overhead is easily compensated by
the performance improvements that it brings.

VII. RELATED WORK

The complexity of current parallel machines and appli-
cations demands efficient techniques to place tasks on pro-
cessors. Significant research has been done in developing
schedulers and load balancers that improve the overall system
performance [1], [4], [7], [8], [18], [19].

Bhatele et al. [18] study the impact of topology-aware load
balancing algorithms on a molecular dynamics application
running on large parallel machines. The study focuses on static
and dynamic topology-aware mappings on 3D mesh and torus
architectures. Results show that these techniques can improve
the performance of NAMD by up to 10%. The metric used
to evaluate the load balancing algorithms is hop-bytes, which
is based on the total number of bytes exchanged between the
processors weighted by the distance between them. However,
the techniques used in this paper do not consider the NUMA
and multi-core design of large parallel platforms.

Rodrigues et al. [19] discuss a strategy to reduce load
imbalance in weather forecast models. They try to preserve
the spatial proximity between neighbor tasks (and, by conse-
quence, reduce communication overheads) by traversing them
with a Hilbert curve and recursively bisecting it according
to the load of the threads. Using this strategy, they obtain
a small performance improvement over METISLB. However,
this strategy can only be mapped to applications with regular
communication patterns such as structured grids.

Tchiboukdjian et al. [7] propose an adaptive work-stealing
algorithm for applications based on parallel loops on XKAAPI.
The objective of their algorithm is to ensure that multi-core
machines sharing the same cache, work on data that are close
in memory. This is done to reduce the total number of cache
misses. The proposed work stealing algorithm presents perfor-
mance improvements of up to 30%, although its utilization is
restricted to applications based on parallel loops.

On NUMA platforms, Mercier and Clet-Ortega [1] try
to improve the placement of MPI processes by combining
hardware’s hierarchy information from the PM2 runtime sys-
tem, application’s communication information from traces and
the SCOTCH library [16]. Similarly, Jeannot and Mercier [5]

presented a hierarchical algorithm that uses information about
the NUMA machine gathered by HWLOC [11]. Chen et al. [20]
also try to reduce communication costs of MPI applications
on SMP clusters and multi-clusters. Their proposal maps
the communication graph of the application to the topology
graph of the machine. The communication is profiled during
a previous execution, and the machine topology is obtained
by running a parallel ping-pong benchmark. This approach
focuses only on improving communication latencies among
processes, ignoring application load imbalance.

Hofmeyr et al. [8] propose a pro-active load balancer for
multi-core machines, named JUGGLE. It works as a user-level
scheduler on Linux and tries to reduce the execution time of
SPMD applications written using UPC or OPENMP. Their
approach considers some of the memory costs of NUMA
machines by forbidding migrations between NUMA nodes.
They show performance improvements of up to 80% over
static scheduling. However, JUGGLE works only on imbal-
ances coming from a number of cores m that is a not a factor
of the number of threads n. In other words, this algorithm
does not focus on load balancing problems coming from the
application’s dynamism nor communication behavior.

Majo and Gross [4] have developed scheduling algorithms
for NUMA architectures that try to improve data locality and
cache contention. They obtain performance improvements of
up to 32% over the default Linux scheduler. Their algorithms
consider the NUMA penalty of the application, which is a
factor between the CPI (cycles per instruction) of a program
executing on the same NUMA node of its data and its CPI
executing on a different NUMA node. This approach requires
previous executions of the application with different data
and process mappings. Also, they do not consider parallel
applications and their communication schemes in their work.

VIII. CONCLUSION AND FUTURE WORK

The complexity of the memory subsystem of multi-core
compute nodes with NUMA design introduces new challenges
to the problem of load balancing. In order to efficiently utilize
a parallel machine, a load balancing algorithm must consider
not only the computational load of the application, but also
the existing asymmetries in memory latencies and bandwidth,
and network communication costs.

We designed NUCOLB, a topology-aware load balancer
that combines application statistics and information about the
NUMA compute nodes topology. The memory access costs
and network communication costs were synthesized as the
NUMA and NETWORK factors, respectively. The combina-
tion of these two factors results in our view of the machine
topology as the NUCO FACTOR. This approach models the
machine topology in a generic fashion, as it works on both
NUMA compute nodes and clusters of NUMA machines. The
chosen approach does not make any assumptions about the
application nor requires prior executions.

Our experimental results showed that the proposed load
balancer enhances the performance of CHARM++ applications.
We obtained speedups of up to 1.19 over state-of-the-art

load balancers on different NUMA platforms. In addition,
NUCOLB obtained this performance while migrating a max-
imum of 30% of the tasks on average, which results in a
migration overhead up to 11 times smaller than other load
balancers. NUCOLB fulfilled its objectives, as it is able to
reduce idleness down to 4%, and to reduce the communication
costs experienced by the application (a 6% reduction in the
average load of each core for kNeighbor). These results were
obtained by distributing the load over the cores while main-
taining proximity of the communicating chares with regard to
the machine topology.

Future work includes the extension of the load balancing
algorithm to include the cache hierarchy in its decisions.
This requires the measurement of the different communication
latencies among cores. As a baseline, we plan to use the rep-
resentation of the cache hierarchy provided by HWLOC [11].
We also plan to use the machine representation of HWLOC to
store communication latencies. By gathering and organizing
this information, we can also provide it to other libraries and
algorithms to improve the quality of their scheduling decisions.

ACKNOWLEDGMENT

This research has been partially supported by CAPES-
BRAZIL under grants 5854/11-3 and 4874/06-4. This work
was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344 (LLNL-CONF-536171).
Some of the experiments presented in this paper were carried
out on the Grid’5000 experimental test bed, being developed
under the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well
as other funding bodies (see https://www.grid5000.fr). This
research was accomplished in the context of the International
Joint Laboratory LICIA. This work was also supported by
INRIA-Illinois Joint Laboratory for Petascale Computing and
the ANR RESCUE and G8 ECS (Toward Exascale Climate
Simulations) projects. We thank Harshitha Menon of the
Parallel Programming Laboratory (Illinois) for helping with
CHARM++ benchmarks and applications.

REFERENCES

[1] G. Mercier and J. Clet-Ortega, “Towards an Efficient Process Placement
Policy for MPI Applications in Multicore Environments,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
ser. Lecture Notes in Computer Science, M. Ropo, J. Westerholm, and
J. Dongarra, Eds. Springer Berlin / Heidelberg, 2009, vol. 5759, pp.
104–115.

[2] C. P. Ribeiro, J.-F. Mehaut, A. Carissimi, M. Castro, and
L. G. Fernandes, “Memory Affinity for Hierarchical Shared
Memory Multiprocessors,” in 21st International Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD 2009), 2009, pp. 59–66. [Online]. Available:
http://dx.doi.org/10.1109/SBAC-PAD.2009.16

[3] F. Broquedis, O. Aumage, B. Goglin, S. Thibault, P. A. Wacrenier,
and R. Namyst, “Structuring the execution of OpenMP applications
for multicore architectures,” in Proceedings of the IEEE International
Symposium on Parallel & Distributed Processing (IPDPS 2010). IEEE
Computer Society, 2010, pp. 1–10.

[4] Z. Majo and T. R. Gross, “Memory management in NUMA multicore
systems: trapped between cache contention and interconnect overhead,”
in Proceedings of the International Symposium on Memory Management,
ser. ISMM ’11. New York, NY, USA: ACM, 2011, pp. 11–20.

[5] E. Jeannot and G. Mercier, “Near-Optimal Placement of MPI Processes
on Hierarchical NUMA Architectures,” in Euro-Par 2010 - Parallel
Processing, ser. Lecture Notes in Computer Science, P. D’Ambra,
M. Guarracino, and D. Talia, Eds. Springer Berlin / Heidelberg, 2010,
vol. 6272, pp. 199–210.

[6] C. Mei, G. Zheng, F. Gioachin, and L. V. Kale, “Optimizing a parallel
runtime system for multicore clusters: a case study,” in Proceedings of
the 2010 TeraGrid Conference (TG 2010). New York, NY, USA: ACM,
2010.

[7] M. Tchiboukdjian, V. Danjean, T. Gautier, F. Le Mentec, and B. Raffin,
“A Work Stealing Algorithm for Parallel Loops on Shared Cache
Multicores,” in 4th Workshop on Highly Parallel Processing on a Chip
(HPPC), aug 2010.

[8] S. Hofmeyr, J. A. Colmenares, C. Iancu, and J. Kubiatowicz, “Juggle:
proactive load balancing on multicore computers,” in Proceedings of
the 20th international symposium on High performance distributed
computing, ser. HPDC ’11. New York, NY, USA: ACM, 2011, pp.
3–14.

[9] J. Y.-T. Leung, Handbook of scheduling: algorithms, models, and per-
formance analysis, ser. Chapman & Hall/CRC computer and information
science series. Chapman & Hall/CRC, 2004.

[10] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on C++,” in Proceedings of the Eighth Annual
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 1993). ACM, 1993, pp. 91–108.

[11] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A generic framework
for managing hardware affinities in hpc applications,” 18th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2010), vol. 0, pp. 180–186, 2010.

[12] LMbench, “LMbench benchmark,” 2010. [Online]. Available: http:
//www.gelato.unsw.edu.au/IA64wiki/lmbench3

[13] R. Bolze, F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot,
Y. Jegou, S. Lanteri, J. Leduc, N. Melab, and E. Al, “Grid’5000: A
Large Scale And Highly Reconfigurable Experimental Grid Testbed,”
International Journal of High Performance Computing Applications,
vol. 20, no. 4, pp. 481–494, 2006.

[14] J. D. Mccalpin, “STREAM: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Tech. Rep., 1995.
[Online]. Available: http://www.cs.virginia.edu/stream/

[15] A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kale,
“Overcoming scaling challenges in biomolecular simulations across mul-
tiple platforms,” in IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2008), April 2008, pp. 1–12.

[16] F. Pellegrini and J. Roman, “Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture
graphs,” in International Conference on High-Performance Computing
and Networking (HPCN 1996). Springer, 1996, pp. 493–498.

[17] L. Kalé and A. Sinha, “Projections: A preliminary performance tool
for charm,” in Parallel Systems Fair, International Parallel Processing
Symposium, Newport Beach, CA, April 1993, pp. 108–114.

[18] A. Bhatele, L. V. Kale, and S. Kumar, “Dynamic topology aware
load balancing algorithms for molecular dynamics applications,” in
Proceedings of the 23rd international Conference on Supercomputing
(ICS 2009). New York, NY, USA: ACM, 2009, pp. 110–116.

[19] E. R. Rodrigues, P. O. A. Navaux, J. Panetta, A. Fazenda, C. L. Mendes,
and L. V. Kale, “A Comparative Analysis of Load Balancing Algorithms
Applied to a Weather Forecast Model,” Computer Architecture and High
Performance Computing, Symposium on, vol. 0, pp. 71–78, 2010.

[20] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “MPIPP: an
automatic profile-guided parallel process placement toolset for SMP
clusters and multiclusters,” in Proceedings of the 20th annual inter-
national conference on Supercomputing, ser. ICS ’06. New York, NY,
USA: ACM, 2006, pp. 353–360.

