
A HIERARCHICAL APPROACH FOR POWER
MANAGEMENT ON MOBILE EMBEDDED
SYSTEMS*

Arliones Stevert Hoeller Junior, Lucas Francisco Wanner
and Antonio Augusto Frohlich
Laboratory for Software and Hardware Integration
Federal University of Santa Catarina
PO Box 476 - 88049-900 - Florianopolis, SC, Brazil
{arliones.lucas.guto } @lisha.ufsc.br

Abstract Mobile Embedded Systems usually are simple, battery-powered systems with
resource limitations. In some situations, their batteries lifetime becomes a pri
mordial factor for reliability. Because of this, it is very important to handle
power consumption of such devices in a non-restrictive and low-overhead way.
This power management cannot restrict the wide variety of different low-power
modes such devices often feature, thus allowing a wider system configurabili
ty. However, once in such devices processing and memory are often scarce, the
power management strategy cannot compromise large amounts of system re
sources. In this paper we propose a simplified interface for power management
of software and hardware components. The approach is based on the hierar
chical organization of such components in a component-based operating system
and allows power management of system components without the need for costly
techniques or strategies. A case study including real implementations of system
and application is presented to evaluate the technique and shows energy saves of
almost 40% by just allowing applications to express when certain components
are not being used.

Keywords: Power management, energy consumption management, embedded systems, mo
bile computing, low-power computing, embedded operating systems.

!• INTRODUCTION
In a mobile, battery-powered embedded system, battery lifetime is a pri

mordial factor for reliability, thus making power management a very important

*This work was partially supported by FINEP (Financiadora de Estudos e Projetos) grant no. 01.04.0903.00.

Please use the following format when citing this chapter:

Hoeller, A.S., Jr., Wanner, L.F., Frohlich, A.A., 2006, in IFIP International Federation for Information Processing, Volume

225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjoharm,

Kleinjoharm L., Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 265-274.

266 From Model-Driven Design to Resource Management for Distributed Embedded Systems

issue for those systems. Embedded systems hardware usually provides some
level of support for low-power operating modes. However, current software
methodologies, techniques and standards for power management often focus
on general purpose systems, where processing and memory overheads are
mostly insignificant. Although these techniques have shown good results [1]
[2] [3], they impose extra processing costs or require advanced hardware re
sources, thus making them unusable in restricted embedded systems where
processing and memory are very scarce.

Power management standards such as APM and ACPI were created focusing
personal computers. These standards require either BIOS support or enough
memory and processing capabilities for running a power management virtual
machine. These requirements restrict their use to powerful embedded sys
tems, which usually feature fast processors and large amounts of memory and
make use of interactive operating systems such as LiNUX and WINDOWS. The
Advanced Power Management (APM) design assumed that the BIOS might
make decisions regarding power consumption solely on monitoring the hard
ware. The lack of control of the operating system over the power management
features of the BIOS, e. g., when the system will change power states, and
the missing information on the BIOS level about the characteristics and re
quirements of the applications have been identified as the main drawbacks of
APM [4].

The most important and established power management interface for gen
eral purpose computing systems is Advanced Configuration and Power Inter
face (ACPl), released in 1996 as a replacement of the previous industry stan
dard for power management. Advanced Power Management (APM). ACPI

identifies the operating system as the entity which has comprehensive knowl
edge about the hardware components and their usage and about the characteris
tics and behavior of the applications which access these hardware components.
In contrast to APM, the operating system has full control over the operating
modes and power management features of the hardware. ACPI is designed to
not rely on the firmware and the exact implementation of the routines to ac
cess the hardware. The key to achieve this goal is the use of the ACPI source
language (ASL), which is compiled to the machine language AML, similar to
JAVA bytecode. Execution of the AML code is done by an interpreter in the op
erating system, inside a sandbox. This approach has several advantages: The
interpretation of AML code prevents erroneous or malicious code to harm the
system. AML code abstracts from the operating system as well as the platform
or architecture it is executed on, so the burden of supporting drivers for sev
eral different operating systems or architectures is released from the hardware
manufacturers [5]. However, ACPI abstracts the operating modes of the hard
ware in a way which may be too restrictive for embedded systems. The four
device power modes defined by ACPI (DO - D3) may be too coarse grained for

From Model-Driven Design to Resource Management for Distributed Embedded Systems 267

embedded applications, once most components used in such systems usually
feature several low-power operating modes. Furthermore, the use of an in
terpreted language to access hardware components, though having substantial
advantages, poses requirements on the system which by far exceed the limited
resources of most embedded devices.

In addition to these standards, several techniques were developed to allow
an accurate control of power consumption for individual subsystems such as
CPU, memory and I/O devices. These techniques use several strategies to de
fine the best trade-off between performance and power consumption in each
situation. For example, Dynamic Voltage and Frequency Scaling (DVFS) [6]
is a strategy to slow down the CPU frequency or reduce its voltage supply and,
consequently, save energy. Other strategies use event counter registers avali-
able in some architectures to identify which parts of the hardware are in use
and how these parts must behave to satisfy the system needs in terms of power
consumption [1]. Although good results have been achieved, heuristics used to
dynamicly guide the application of such techniques also impose extra process
ing costs or require extra hardware resources, thus becoming mostly unusable
in deeply embedded systems.

In order to enable power management in embedded systems without incur
ring excessive overhead, we propose a simple and uniform interface for power
management of software and hardware components. The mechanism behind
this interface is based on the hierarchical organization of software and hard
ware components, and allows consistent power state migration of individual
components, subsystems or the whole system. A case study is presented to
demonstrate the use of the technique on a real implementation of this strategy
in our component-based embedded operating system, EPOS.

This paper is organized as follows. Section 2 introduces the system power
management interface for software and hardware components. Section 3 pre
sents an application to exemplify the use of the power management interface.
Section 4 gives an overview of related work. Section 5 finalizes.

2. POWER MANAGEMENT INTERFACE FOR
SOFTWARE AND HARDWARE COMPONENTS

Power management policies in operating systems such as LINUX and WIN

DOWS dynamically analyze the behavior of applications and the system in
order to determine when a hardware component should change its operating
mode through an ACPl-compliant interface. However, most embedded sys
tems cannot afford the overhead of such dynamic power management strate
gies. Furthermore, considering that a deeply embedded system is usually com
prised by a single application, the best place to determine a power management
strategy is in the application itself

268 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Embedded Parallel Operating System (E P O S) is a component-based, appli
cation-oriented operating system. In EPOS, high-level system abstractions,
such as F i l e , T h r e a d , S c h e d u l e r and Communica tor , are exported to
applications through a component interface, and interact with the underlying
hardware through hardware mediators. Through the system component hier
archy, each system abstraction and hardware mediator knows the state of its
resources.

Through the definition of an uniform power management interface for sys
tem components, we allow the application programmer to change the power
consumption status of each component individually. The interface is com
prised by two methods: one to verify the component power state (power ())
and other to change it (power (u s e r _ d e s i r e d _ s t a t u s)) . The mecha
nism behind this interface makes use of the hierarchical organization of soft
ware and hardware components in EPOS to allow consistent state migration
among system operating modes.

Low-power hardware typically used in embedded systems often present a
large set of operating modes. Enabling the use of all available operating modes
is likely to enhance the system configurability, but might also increase the ap
plication complexity when managing the system power consumption. In order
to solve this issue, we established a set of high-level definitions for the power
consumption states, which will ease the application programmer from having
to understand every hardware component in the system. As in ACPI [5], four
universal modes were defined: FULL, LIGHT, STANDBY and OFF. These may
be extended by system components whenever needed. When the device is fiilly
operational, it is in the FULL state. The LIGHT state will consume less energy,
but will grant the proper behavior of the device, it will probably incur in per
formance loss. In STANDBY, the device will have its behavior changed. This
state will probably be a sleep mode. When OFF the device is switched off or
switched to its smallest energy consumption state.

As embedded applications grow in complexity they make use of a large
number of individual system components. As such, it may be impracticable
for application programmers to take care of the power consumption of each
component individually. To solve this problem we allow applications to man
age individual subsystems or the system as a whole.

In order to exemplify how an entire subsystem may change its operating
mode, we present a brief description of the EPOS communication subsystem.
This subsystem is shown in Figure 1 and is basically comprised by four fam
ilies of components: Communica tor , C h a n n e l , Ne twork and NIC. NIC
is a family of hardware mediators, which abstracts the hardware device to the
Ne twork family. Ne twork is responsible for abstracting the network (e. g.,
Ethernet, CAN, ATM, etc). C h a n n e l is responsible for inter-process commu
nication and uses Ne twork to build a logical communication channel through

From Model-Driven Design to Resource Management for Distributed Embedded Systems 269

which messages are exchanged. Finally, a Communica to r is an end-point
for communications.

1
Commu
nicator

power(..)

' power(..)

Application

1
Channel

power(..)
->

1
Network

1 power(

NIC

Figure 1. EPOS communication subsystem.

To grant portability of application code, the application programmer is sug
gested to use higher level abstractions, such as members of the Communica
t o r family in the communication subsystem. In this context, our power man
agement strategy must provide ways for the application programmer to change
the power state of a communicator and this component must consistently prop
agate power state migrations to all software and hardware components in its
hierarchy. For example, an implementation of a Communica to r will use
a C h a n n e l and probably an A la rm component to handle time-outs in the
communication protocol. When the application executes a command asking
the Communica to r component to switch the operating mode to OFF, the
Communica to r will finish all started communications by flushing its buffers
and waiting for all acknowledgment signals before shutting down other com
ponents in its hierarchy.

System-wide power management actions are handled by the S y s t e m com
ponent in EPOS. The S y s t e m component contains references to all subsys
tems used by the application. Thus, if an application wants to switch the whole
system to a different operating mode, it may use the interface on the S y s t e m
component, which will propagate this request to all subsystems.

Figure 2 illustrates the system-wide power management interface may be
accessed. It shows the components instantiated for a hypothetical sensing sys
tem. In this instance, the system is comprised by four components: the CPU, a
Communica tor , a S e n s o r and the S y s t e m component. Each component
has its own interface, which may be called by the application at anytime, and a
set of power consumption levels. If the application wants to switch a specific
subsystem to another power consumption level, it can access its components
directly. If it wants to modify the whole system power consumption level, it
may access the S y s t e m component, which will propagate the modification
through the system.

The main challenge identified on the development of power-aware compo
nents was the need for consistent operating mode propagation. This propa-

270 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Application

1 CC1000 RF Status
i powef():Status 0 = FULL
1 power(Status) 1

1 3 = LIGHT

i ^
i 5
i 6
i 7 = STANDBY
i 8 = OfF

AVR CPU
poweft);Status
powertStatus)

Status
0 = FULL

3 = LIGHT

5 = STANDBY
6 = OFF

ERT-J1VR103J
power():SUtus
power(Status)

Status 1
0 = FULL 1
1 = OFF 1

Operating System
Abstractions

Intermediate Components
(Other abstractions or
hardware mediators)

> Some hardware mediators

Figure 2. Accessing the power management interface.

gation must guarantee that no data will be lost and no unfinished actions will
be interrupted. By letting each component handle its responsibilities (e. g., a
Communicator flushing all its buffers and waiting for all acknowledgment
signals) before propagating the power state propagation (e. g. shutting down
Alarm and Channel), it is possible to guarantee consistent operating mode
propagation of an entire subsystem.

In this strategy, the application programmer is expected to specify in the
application when certain components aren't being used. It is done by issuing
"power" commands to individual components, subsystems or the system. In
order to free the application programmer from having to wake-up these com
ponents, such components are implemented to automatically switch on when
a call is done to any of their methods. When this happens, components are
switched to the their previous states or to the less energy spendable power state
in which is possible to perform the required actions.

3. CASE STUDY: THERMOMETER
In order to demonstrate the usability of the defined interface, a thermometer

was implemented using a simple prototype with a 10 kilo ohm thermistor con
nected to an analog-to-digital converter channel of an Atmel ATMegal6 [7]
microcontroller. The embedded application is presented in Figure 3. This ap
plication uses four system components: System, Alarm, Thermometer
(member of the S e n t i e n t family [8]) and UART. The EPOS hierarchical or-

From Model-Driven Design to Resource Management for Distributed Embedded Systems 271

ganization binds, for example, the Thermometer abstraction with the micro
controller's analog-to-digital converter hardware mediator.

System sys;
Thermometer therm;
UART uar t ;

void alarm_handler 0 {
uar t . put (therm . get ()) ;

}

int main() {
Hand I er_Fu notion handler(&alarm_handler);
Alarm alarm(1000000, &handler) ;

whlle(1) {
sys . power (STANDBY);

}
}

Figure 3. The Thermometer application.

When the application starts, all used components are initialized by their
constructors and a periodical event is registered with the Alarm component.
The power state of the whole system is then switched to STANDBY through a
power command issued to System. When this happens, the System com
ponent switches all system components, except for the Alarm, to sleeping
modes. The Alarm component uses a timer to generate interrupts at a given
frequency. Each time an interrupt occurs, the CPU wakes-up and the Alarm
component handles all registered events currently due for execution. In this
example, every two seconds the Thermometer and UART components are
automatically switched on when accessed and a temperature reading is for
warded through the serial port. When all registered events are handled, the ap
plication continues normal execution on a loop which puts the System back
in the STANDBY mode.

The graphics presented in Figure 4 show energy measurements for this
application with and without system power management capabilities. Both
graphics show the results of a mean between ten measurements. Each mea
surement was ten seconds long. In graphic (a) is noticed that system power
consumption oscillates between 2.5 and 4 Watts. In graphic (b), the oscillation
stays between 2 and 2.7 Watts. By calculating the integral of these graphics
is possible to obtain energy consumption for these system instances during the
time it was running. The results were 3.96 Joules for (a) and 2.45 Joules for (b),
i.e., the system saved 38.1% of energy without compromising its functionality.

272 From Model-Driven Design to Resource Management for Distributed Embedded Systems

I

0 2 4 r> 8 JO

Figure 4. Power consumption for the Thermometer application without (a) with (b) power
management.

4. RELATED WORK
TINYOS and MANTIS are embedded operating systems focused on wire

less sensor networks. In these systems energy-awareness is mostly based on
low-power MACs [9, 10] and multi-hop routing power scheduling [11, 12].
This makes sense in the context of wireless sensor networks, for a significant
amount of energy is spent on the communication mechanism. Although this
approach shows expressive results, it often focuses on the development of low-
power components instead of power-aware ones. Another drawback in these
systems is the lack of configurability and standardization of a configuration
interface.

SPEU (System Properties Estimation with UML) [13] is an optimization tool
which takes into account performance, system footprint and energy constraints
to generate either a performance-efficient, size-efficient or energy-efficient sys
tem. These informations are extracted from an UML model of the embedded
application. This model must include class and sequence diagrams, so the tool
can estimate performance, code-size and energy consumption of each appli
cation. The generated system is a Java software and is intended to run over
the FEMTOJAVA [14] soft-core processor. Once SPEU only takes into account
the UML diagrams, its estimations show errors as big as 85%, making it only
useful to compare different design decisions. It also lacks configurability, once
the optimization process is only guided by one variable, i. e., if the applica
tion programmer's design choice is performance, the system will never enter
power-aware states, even if it is not using certain devices. This certainly limits
its use in real-world applications.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 273

IMPACCT (which stands for Integrated Management of Power-Aware Com
puting and Communication Technologies) [15] is a system-level tool for ex
ploring power/performance tradeoffs by means of power-aware scheduling and
architectural configuration. The idea behind the IMPACCT system is the em
bedded application analysis through a timing simulation to define the widest
possible dynamic range of power/performance tradeoffs and the power mode
in which each component should operate over time. This tool chain also in
cludes a power-aware scheduler implementation for hard real-time systems.
IMPACCT tools deliver a very interesting way to configure the power-aware
scheduler and the power-modes of an embedded system, but is far from deliv
ering a fast prototyping environment.

5. CONCLUSION
In this paper we presented an strategy to enable application-driven power

management in deeply embedded systems. In order to achieve this goal we
allowed application programmers to express when certain components are not
being used. This is expressed through a simple power management interface
which allows power mode switching of system components, subsystems or the
system as a whole, making all combinations of components operating modes
feasible. By using the hierarchical architecture by which system components
are organized in our system, effective power management was achieved for
deeply embedded systems without the need for costly techniques or strategies,
thus incurring in no unnecessary processing or memory overheads.

A case study using a 8-bit microcontroller to monitor temperature in an
indoor ambient showed that almost 40% of energy could be saved when using
this strategy.

ACKNOWLEDGMENTS
Authors would like to thank Augusto Bom de Oliveira, Hugo Marcondes

and Rafael Cancian from LISHA for very helpful discussion. We also would
like to thank the Department of Computer Sciences 4 at Friedrich-Alexander
Universitat (Germany), its head Prof Schroder-Preikschat and Andreas Weis-
sel for providing equipment and some advise for this work.

REFERENCES

[1] Bellosa, Frank, Weissel, Andreas, Waitz, Martin, and Kellner, Simon (2003). Event-driven
energy accounting for dynamic thermal management. In Proceedings of the Workshop
on Compilers and Operating Systems for Low Power, pages 04-1 - 04-10, New Orleans,
USA.

[2] Sorber, Jacob, Banerjee, Nilanjan, Comer, Mark D., and Rollins, Sami (2005). Turducken:
hierarchical power management for mobile devices. In MobiSys '05: Proceedings of the

274 From Model-Driven Design to Resource Management for Distributed Embedded Systems

3rd international conference on Mobile systems, applications, and services, pages 2 6 1 -
274, New York, NY, USA. ACM Press.

[3] Pering, T. and Broderson, R. (1998). Dynamic voltage scaling and the design of a low-
power microprocessor system. In Proceedings of the International Symposium on Com
puter Architecture ISC A '98.

[4] Intel Corp. and Microsoft Corp. (1996). Advanced Power Management (APM) BIOS In
terface Specification, 1.2 edition.

[5] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Technologies Ltd., and
Toshiba Corp. (2004). Advanced Configuration and Power Interface Specification, 3.0
edition.

[6] Benini, Luca, Bogliolo, Alessandro, and Micheli, Giovanni De (1998). Dynamic power
management of electronic systems. In ICC AD '98: Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, pages 696-702, New York, NY, USA.
ACM Press.

[7] Atmel Corp. (2004). ATMegal6L Datasheet. San Jose, CA, 2466j edition.

[8] Wanner, Lucas Francisco, Junior, Arliones Stevert Hoeller, Polpeta, Fauze Valerio, and
Frohlich, Antonio Augusto (2005). Operating system support for handling heterogeneity
in wireless sensor networks. In Proceedings of the 10th IEEE International Conference on
Emerging Technologies and Factory Automation, Catania, Italy. IEEE.

[9] Polastre, Joseph, Szewczyk, Robert, Sharp, Cory, and Culler, David (2004). The mote
revolution: Low power wireless sensor network devices. In Proceedings of Hot Chips 16:
A Symposium on High Performance Chips.

[10] Sheth, Anmol and Han, Richard (2004). Shush: A mac protocol for transmit power con
trolled wireless networks. Technical Report CU-CS-986-04, Department of Computer Sci
ence, University of Colorado, Boulder.

[11] Hohlt, Barbara, Doherty, Lance, and Brewer, Eric (2004). Flexible power scheduling for
sensor networks. In Proceedings of The Third International Symposium on Information
Processing in Sensor Networks, pages 205-214, Berkley, USA. IEEE.

[12] Sheth, Anmol and Han, Richard (2003). Adaptive power control and selective radio ac
tivation for low-power infrastructure-mode 802.11 lans. In Proceedings of the 23rd In
ternational Conference on Distributed Computing Systems Workshops, pages 797-802,
Providence, USA. IEEE.

[13] da S. Oliveira, Marcion F., de Brisolara, Lisiane B., Carro, Luigi, and Wagner, Flavio R.
(2005). An embedded sw design exploration approach based on xml estimation tools. In
Rettberg, Achim, mauro C. Zanella, and Rammig, Franz J., editors, From Specification to
Embedded Systems Application, pages 45-54, Manaus, Brazil. IFIP, Springer.

[14] Ito, S.A., Carro, L., and Jacobi, R.P. (2001). Making Java work for microcontroller appli
cations. IEEE Design and Test of Computers, 18(5): 100-110.

[15] Chou, Pai H., Liu, Jinfeng, Li, Dexin, and Bagherzadeh, Nader (2002). Impacct: Method
ology and tools for power-aware embedded systems. DESIGN AUTOMATION FOR EM
BEDDED SYSTEMS, Special Issue on Design Methodologies and Tools for Real-Time
Embedded Systems, 7(3):205-232.

