
A Hierarchical Approach to POMDP Planning and ExecutionJoelle Pineau jpineau@cs.cmu.eduNicholas Roy nickr@ri.cmu.eduSebastian Thrun thrun@cs.cmu.eduRobotics Institute, School of Computer Science, 5000 Forbes Ave, Pittsburgh, PA 15213 USAAbstractThis paper presents a hierarchical approachto POMDPs which takes advantage of struc-ture in the problem domain to �nd modu-lar policies for complex tasks. We use a de-composition based on partitioning the actionspace into specialized groups of related ac-tions. We illustrate the appropriateness ofthe approach by providing empirical resultsfor three contrasting domains.1. IntroductionThe vast majority of AI planning has focused on sit-uations where the state of the environment is fullyobservable (Russell & Norvig, 1995). In many real-world applications, however, this is far from true. Par-tially Observable Markov Decision Processes (POM-DPs) (Sondik, 1971) provide a general planning anddecision-making framework for acting optimally inpartially observable domains, and as such have gainedmuch attention (AAAI, 1998). However the computa-tional cost of �nding an optimal policy for the agentsigni�cantly limits the use of this approach, thus pre-venting the successful application of POMDPs to morecomplex problems.Many real-world domains have structure that canbe exploited to �nd good policies for complex prob-lems. The idea of leveraging structure to addresslarge problems has been explored in Markov DecisionProcesses (MDPs) to solve complex problems (Singh,1992; Dayan & Hinton, 1993; Dietterich, 2000). Unfor-tunately, none of these solutions is directly applicableto POMDPs, since they all assume that the state ofthe environment is observable; moreover, transition-ing between di�erent sub-modules is conditioned onthe state of the environment.The use of structure in POMDPs is more recent,and preliminary attempts (Castanon, 1997; Wiering &Schmidhuber, 1997) typically make strict assumptions

about prior knowledge of low-level tasks and order-ing, which are substantially restrictive. More recently,memory-based approaches to hierarchical POMDPshave been proposed (Hernandez-Gardiol & Mahade-van, 2001), however the amount of training data re-quired for these exceeds what is available in manyproblems, especially for the dialogue management do-mains we are most interested in.The single idea underlying our approach is to decom-pose the domain based on actions. In many task do-mains, the space of actions naturally decomposes intoa hierarchy of actions that characterizes the applica-bility of groups of actions in di�erent situations. Con-sider, for example, a mobile robotic assistant. Theactions involved with navigation (move, turn, stop,. . .) are fundamentally di�erent from actions con-cerned with people interaction (speak, honk horn, dis-play, . . .). Our approach di�ers from others that adopta state-based decomposition of problems.2. Review of POMDPsThis section establishes the basic terminology usedthroughout the paper, by providing a brief overviewof the essential concepts in POMDPs (see (Kaelblinget al., 1998) for a detailed discussion.)A POMDP consists of a set of states S = fs1; : : : ; sng,a set of actions A = fa1; : : : ; amg that the agent canexecute, and a set of observations O = fo1; : : : ; okgthat can be perceived by the agent. The dynamics ofthe model are described by the state transition prob-ability distribution p(s0ja; s)1, the observation proba-bility distribution p(ojs; a)2, and the reward functionR : S � A �! <, which maps states and actions intonumerical rewards.1The probability that the state at time t + 1 is s0, as-suming that the state at time t is s and the agent executedaction a.2The probability that the agent observes o when theworld is in state s after executing a.

At any given point in time, the system is assumed tobe in some state st. In general, it is not possible to de-termine the current state with complete certainty. In-stead, a belief3 distribution is maintained to succinctlyrepresent the history of the agent' interaction (bothapplied and perceived) with the domain:bt = Pr(stjot; at; ot�1; at�1; :::; o0; a0) (1)There exist two interesting problems in POMDPs: 1)state tracking, and 2) policy optimization.State Tracking. To operate in its domain and applya belief-conditioned policy, an agent must constantlyupdate its belief vector:b0(s0) = Pr(s0jo; a; b) = O(s0; a; o)Ps2S T (s; a; s0)b(s)Pr(oja; b) (2)where the denominator is simply a normalizing factor.For most domains, this problem is trivial compared tothat of computing a useful action selection policy.Computing a Policy. The goal of POMDP prob-lem solving is to select actions so as to maximize re-ward collection. The set of selected actions is com-monly referred to as the policy. The policy is a func-tion of the belief state b:� : B �! A (3)It can be computed using value iteration (Sondik,1971), which assigns a value V (b) to each combinationof belief state b: V : B �! < (4)After convergence, the value is the sum of all (possi-bly discounted) future payo�s R the agent expects toreceive up to time T , if the current belief is b. Theliterature provides a collection of algorithms for com-puting the exact value function|and thereby the op-timal policy|for �nite horizon POMDPs (Cassandraet al., 1997; Kaelbling et al., 1998). However exact al-gorithms are bounded by a double exponential compu-tational growth in the planning horizon, and in prac-tice can be exponential. This points to the need formore eÆcient algorithms.3. Hierarchical POMDPsThe fundamental idea behind our approach is the de-composition of a model-based POMDP problem basedon an action hierarchy. Assuming a given POMDPproblem, the model designer hierarchically partitions3The probability that, at time t, the agent is in statest, given the history fot; at; ot�1; at�1; :::; o0; a0g.

its original action set such that it spans a collectionof hierarchically-related smaller POMDPs, which werefer to as subtasks (we use notation Pi for a givenPOMDP subtask). Each action is assigned to oneor more subtasks, where each subtask independentlylearns a policy over its subset of actions using exist-ing POMDP solving algorithms. High-level subtasksgenerally learn policies over the selection of lower-levelsubtasks; and low-level subtasks are responsible for theselection of primitive actions.3.1 Action HierarchyThe de�ning element of our approach is the actionhierarchy. Figure 1 illustrates the basic concept ofan action hierarchy. Formally, an action hierarchy isa tree, where each leaf is labeled by an action a 2A. Each action a 2 A (henceforth called primitiveactions) must be attached to at least one leaf. Theinternal leaves are called abstract actions (we use abar, as in �ai, to indicate that an action is abstract.)Each �ai is in fact an abstraction of the actions in thenodes directly below it in the hierarchy (e.g. �a2 is anabstraction of a1; a2; a3.)
a

a

a a a1 2 3

6

1

3a

5a4a

a2Figure 1. General Form Action Hierarchy3.2 Task DecompositionA key step towards hierarchical problem solving isto translate the action hierarchy into a collection ofPOMDPs that individually are smaller than the origi-nal POMDP, yet collectively de�ne a complete policy.In our approach, each internal node in the action hi-erarchy together with its immediate children de�nes asubtask (shown as a triangle in Figure 1.) Each sub-task Pi constitutes a separate POMDP, de�ned overthe full state space S and observation space O, butwhere its set of applicable actions is limited to its im-mediate children in the action hierarchy. Policy opti-mization for that subtask is limited to this action sub-set. Figure 1 shows a problem that has been dividedinto three subtasks: P1;P2;P3, with respective actionsets: P1 : f �a2; a6; �a3g, P2 : fa1; a2; a3g, P3 : fa4; a5g.

3.3 Computing Local PoliciesOur approach independently optimizes a local actionpolicy4 for each subtask. We note that only thesubtasks with exclusively primitive actions (e.g. P2,P3) contain well-de�ned POMDPs 5, whereas subtaskscontaining abstract actions are so far ill-de�ned sincethe original (
at) POMDP does not provide meaning-ful parameters conditioned on these abstract actions.Our hierarchical approach recursively makes use of thepolicies of lower-level subtasks to parameterize the ab-stract actions, and therefore we proceed in a bottom-up manner to �nd a local policy for each subtask, fromthe leaves of the hierarchy, to the root.Subtasks with only primitive actions are solved �rst,using any of the existing algorithms (we currently usethe algorithm described in (Cassandra et al., 1997)).To solve subtasks with abstract actions (e.g. P1), weneed to infer model parameters p(s0js; �a), p(ojs; �a) andR(s; �a) for all abstract actions. Let �ai be such an ab-stract action. Since we are traversing the hierarchyin a bottom-up fashion, we already have calculated aPOMDP solution for the subtask spanned by �ai (i.e.Pi). Let �Pi be the policy calculated for subtask Pi.Then we de�ne:p(s0js; �ai) := p(s0js; �Pi(s)) (5)p(ojs; �ai) := p(ojs; �Pi(s)) (6)R(s; �ai) := R(s; �Pi(s)) (7)where all the right-hand side terms are de�ned in theoriginal model, and all the left-hand side terms arethose needed to model the abstract action. In otherwords, we model �ai on a state-by-state basis, using theaction chosen by the policy of subtask Pi. These def-initions lead to a fully parameterized subtask, whichcan then be solved using any POMDP algorithm (weuse incremental pruning). Clearly, this de�nition ofparameters constitutes an approximation. Considerfor example subtask P1, which assumes parametersinferred for abstract actions �a2, without having accessto the full parameterization of actions fa1; a2; a3g.One important assumption of this approach is thateach subtask contains some local reward information,without which local policies cannot be meaningfullyoptimized. This is inconsistent with some single-goalproblems where partial progress is not rewarded, how-ever the variety of problems presented in the experi-mental sections suggests that many complex POMDPproblems meet this assumption.4A local action policy is a policy which is de�ned overa given action subset.5A well-de�ned POMDP is one for which all parameters(e.g. T (s0js; a); O(ojs; a); R(s; a)) are de�ned

3.4 Calculating the PolicyWe are left with the task of constructing a global pol-icy using the set of local policies produced for the sub-tasks. We �rst notice that all policies in the hierarchyare de�ned over the entire belief space, and assumethat no abstraction is applied during belief tracking.Thus the agent is in possession of the full belief space.In practice, the global policy is generated only at ex-ecution time. To generate an action, the agent tra-verses the tree from the top to a leaf. At each level,the agent queries the local policy based on the currentbelief, and the action proposed by the policy is eitherprimitive or abstract. If the action is a primitive ac-tion, it is directly executed by the agent. If the actionis an abstract action, the agent queries the policy ofthe subtask spanned by this action. It is trivial toshow that this recursive algorithm always generates aprimitive action.The recursive action selection (and hierarchy traversal)is repeated at each time step. This di�ers from manyhierarchical MDP algorithms where an agent `remains'in a subtask until a so-called terminal state is reached.The di�erence is a consequence of the partial state ob-servability in POMDPs, which suggests that we cannotguarantee detectability of terminal states.3.5 State and Observation AbstractionsIn general, the number of linear pieces representing anexact POMDP value function is recursively given by:j�tj = O(jAjj�t�1jjOj) (with �0 = jAj), which can beenumerated in time: O(jSj2jAjj�t�1jjOj). The hierar-chical algorithm, as described so far, reduces the com-putational complexity of computing POMDP policies,speci�cally for large planning horizons. Each subtaskpossesses a reduced action set, which factors in as anexponential factor in the overall complexity. Thesesavings are partially o�set by the fact that we nowhave to compute many policies, not just one.Fortunately in many applications (including the onesdiscussed below), there is an opportunity to further re-duce computational costs. We consider domains wherethe di�erence between certain states is only relevant ifa speci�c action is available (e.g. robot location maybe irrelevant for subtasks that do not involve naviga-tion.) In this case, some state features may be safelyignore within certain subtasks (e.g. robot location indialogue subtasks). Consequently the state set can bereduced to include only relevant state features, andrelated observations 6. This is done on a subtask ba-sis, where each can ignore those state features that6Currently done by hand, but soon to be automatic.

are irrelevant to its small action subset. Subtaskscan therefore be de�ned over smaller state and ob-servation spaces without in
uencing the policy opti-mization. The resulting computational savings can betremendous (several orders of magnitude).4. Experimental EvaluationTo demonstrate our approach in practice, we evaluatedour algorithm on three di�erent domains. We gener-ated policies for all problems using three approaches:a conventional POMDP algorithm, our hierarchicalPOMDP algorithm (referred to as H-POMDP) and anMDP-solution, which solves the problem as an MDPand during execution uses the most likely state heuris-tic to map belief states to states. Policy computationswere performed using the incremental pruning algo-rithm for POMDPs, and value iteration for MDPs (allcomputations were performed on a 400MHz PentiumII). All tasks were evaluated using 5000 runs to showperformance over time.7The �rst task considered is the parts manufacturingproblem introduced in Sondik's thesis (Sondik, 1971).We selected this problem speci�cally because it wasnot constructed to exhibit structure and can thereforeillustrate the generality of the approach. Furthermore,we considered seven di�erent hierarchical decomposi-tions of this problem, to better study whether the al-gorithm is highly susceptible to a good design of theaction hierarchy. Figure 2a shows one of the actionhierarchy considered for this domain.
a32a

1a

Manufacture ReplaceInspectExamine

Root

ReadMap GetReward(t)

Navigate(t)Read Open

Right Up DownLeft

t=s5

t={s1,s3}

Figure 2. Action hierarchies for (a) Manufacturing taskand (b) Taxi navigation taskFigure 3 illustrates the average reward for each of theseven decompositions (in decreasing order of perfor-mance). There is a clear grouping, where the �rst fourdecompositions yield near-optimal policies, whereasthe last three are much weaker, though still as goodas the MDP heuristic8. We currently have no intuitive7The results reported were obtained using a simulateduser due to the large number of experiments necessary togain signi�cance. Experiments are currently underway toverify the performance of the robot policy with real users.8There is no theoretical guarantee that an H-POMDPpolicy will necessarily be better than an MDP policy

explanation for the performance di�erence, howeverthis is the object of ongoing work.
Figure 3. Manufacturing Task ResultsThe second task is a modi�ed version of Dietterich'staxi task (Dietterich, 2000) with noisy perception. Theproblem is simple enough to be solvable using conven-tional POMDP techniques. Figure 2b shows our ac-tion hierarchy for this domain.The third task is a more challenging one. It arisesfrom a robot-interface domain where a robot has toperform diverse tasks involving motion and dialogueexchanges, which can exhibit signi�cant uncertainty,in large part due to poor speech recognition. POMDPsare currently our best solution for this high-level robotcontrol problem. Figure 4 shows our action hierarchy,which decomposes the action space along the naturaldivisions of various conversational goals.

GoToKitchen
GoToFollow

VerifyFollow

GoToRoom

VerifyRoom
VerifyKitchen

CheckHealth

Move

Act

CheckWeather Phone

AskWho
CallHelp
CallNurse

VerifyHelp
VerifyNurse
VerifyFamily

AskWhere

CallFamily

Greet

GreetMorning
GreetGeneral

GreetNight
ReplyThanks

SayTime

AskWhen
SayCurrent
SayToday
SayNextDay

DoMeds

StartMeds
NextMeds
ForceMeds
QuitMeds

Initiate

OfferHelp
AskHealth

Figure 4. Dialogue Problem Action HierarchyTable 1 presents results for the two more complexproblems, showing policy computation times, and av-erage reward per action. For the taxi task, perfor-mance with the hierarchical POMDP (H-POMDP)approaches that of the conventional POMDP (goalis always reached, but occasionally requires an ex-tra action), and clearly exceeds that of the greedyMDP heuristic, which is unable to take advantage ofuncertainty-reducing actions. Results for the robotproblem show that even though the exact POMDPsolver is unable to �nd a policy (and had only com-pleted one iteration after 24 hrs), our hierarchical ap-proach (H-POMDP) was able to obtain a policy in

reasonable time. Execution performance with the H-POMDP policy was superior to that obtained with theMDP heuristic, both in terms of average reward peraction and goal success rate. The performance dif-ference between the MDP and H-POMDP policies issmaller for this domain since at many time steps thestate is fully observable.Problem Solution CPU time Average % Goal(secs) reward successTaxi Problem: jSj=11, jAj=6, jOj=6MDP 0.000654 0.0 50H-POMDP 2.84 12.2 100POMDP 1119.93 12.5 100Robot Problem: jSj=20, jAj=30, jOj=27MDP 6.46 53.33 80.0H-POMDP 77.99 64.43 93.2POMDP 24hrs+Table 1. Performance ResultsTable 2 provides a sample interaction in the robotdomain, using the H-POMDP policy. It shows howthe policy generated using our approach is able tomake use of additional information-gathering actions,thereby allowing the system to recover from speechrecognition errors (e.g. the third observation (\go to")is erroneous: the speech recognition extracted \go tobig" from the user's \go to room", and our H-POMDPdecides that the cost of accidentally moving to thewrong location outweighs the cost of asking for clar-i�cation.) The MDP-heuristic policy did not exhibitsimilar adaptability to poor recognition performance.Actor Speech Observation ActionPerson \Hello" helloRobot \Can I help you?" InitiatePerson \What time is it?" time requestRobot \It's now 11:41." SayTimePerson \Go to big." go toRobot \Where should I go?" AskWherePerson \Go to the." go to roomRobot \Should I go to theroom?" VerifyRoomPerson \Yes to the room." go to roomRobot \You want me to go tothe room?" VerifyRoomPerson \Yes." yesRobot Robot goes to room GoToRoomTable 2. An example dialogue from the interface domain.It is worth mentioning that the domains examined ex-hibit structure di�erently. In the �rst case, there is nostructure to speak of. In the second case, a �nal goalcan be satis�ed through a sequence of intermediatesubgoals. In the third case, the dialogue manager cansatisfy alternate goals within a uni�ed domain. Thus,our experiments address di�erent problem setups al-ways using the same algorithm, thereby shedding lightonto our approach under di�erent circumstances.

5. ConclusionWe presented a hierarchical POMDP algorithm thatcan be used to optimize policies for complex POMDP.A bottom-up algorithm was introduced that computesa sequence of POMDP policies, one for each task in thehierarchy. At run-time, the resulting hierarchy of poli-cies is traversed from the top to the bottom, until aprimitive action is found. Mild computational savingsare achieved through reduced action space. However,in many tasks the action hierarchy gives rise to stateand observation abstractions, which can drastically re-duce the computational complexity.Experimental results obtained for two di�erent tasksillustrate reduction in computational complexity ofseveral orders of magnitude with minimal performanceloss, when compared to the
at, computationally hardPOMDP model. These experiments suggest thatour hierarchical approach provides a viable approachfor solving complex POMDPs that are otherwise in-tractable | assuming that the domain possesses struc-ture that can be expressed via an action hierarchy.ReferencesAAAI (1998). AAAI Symposium on POMDPs. www.cs.duke.edu/mlittman/talks/pomdp-symposium.html.Cassandra, A., Littman, M. L., & Zhang, N. L. (1997).Incremental pruning: A simple, fast, exact method forpartially observable markov decision processes. UAI.Castanon, D. (1997). Approximate dynamic programmingfor sensor management. Conf. Decision and Control.Dayan, P., & Hinton, G. (1993). Feudal reinforcementlearning. NIPS 5.Dietterich, T. G. (2000). Hierarchical reinforcement learn-ing with the MAXQ value function decomposition. Jour-nal of Arti�cial Intelligence Research, 13, 227{303.Hernandez-Gardiol, N., & Mahadevan, S. (2001). Hierar-chical memory-bsed reinforcement learning. NIPS 13.Kaelbling, L. P., Littman, M. L., & Cassandra, A. R.(1998). Planning and acting in partially observablestochastic domains. Arti�cial Intelligence, 101, 99{134.Russell, S., & Norvig, P. (1995). Arti�cial intelligence: Amodern approach. Prentice Hall.Singh, S. (1992). Transfer of learning by composing solu-tions of elemental sequential tasks. Machine Learning,8, 323{339.Sondik, E. (1971). The optimal control of partially observ-able markov processes. Doctoral dissertation, Stanford.Wiering, M., & Schmidhuber, J. (1997). HQ-learning.Adaptive Behavior, 6.

