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ABSTRACT

Microphone arrays represent the basis for many challenging acoustic

sensing tasks. The accuracy of techniques like beamforming directly

depends on a precise knowledge of the relative positions of the sen-

sors used. Unfortunately, for certain use cases manually measuring

the geometry of an array is not feasible due to practical constraints.

In this paper we present an approach to unsupervised shape cal-

ibration of microphone array networks. We developed a hierarchical

procedure that first performs local shape calibration based on coher-

ence analysis and then employs SRP-PHAT in a network calibration

method. Practical experiments demonstrate the effectiveness of our

approach especially for highly reverberant acoustic environments.

Index Terms: microphone array, unsupervised calibration, shape

estimation, acoustic localization, SRP-PHAT

1. INTRODUCTION

Microphone arrays are spatial configurations of multiple sensors that

are used simultaneously for recording multi-channel acoustic data

[1]. As such arrays provide richer sensing capabilities than an iso-

lated acoustic sensor they can be applied to a variety of challenging

sensing tasks. The most important ones are beamforming, source lo-

calization, and blind source separation (BSS). In beamforming one

tries to focus the sensitivity of an array on a specific direction of

interest while at the same time suppressing interfering sounds from

others. Similar techniques are also used for localizing sound sources

(cf. [2]). BSS aims at isolating the true signal of a desired source

from interfering ones and thus goes beyond simple beamforming.

As there is no geometric aspect in the interpretation of BSS no

knowledge about the sensor positions is necessary. However, for

both beamforming and source localization a precise knowledge of

the shape of the microphone array, i.e. the relative positions of the

sensors w.r.t. each other, is mandatory.

Microphone arrays are frequently built in certain shapes such as

linear arrays with equal or logarithmic sensor spacing, as T-arrays

with three linearly arranged microphones and a fourth offset from

the linear base, or as circular arrays. Given that these arrays are suf-

ficiently small their shape can easily be measured by hand. However,

as soon as either a single array becomes large (cf. [3]) or a combina-

tion of multiple arrays within a microphone array network is used,

automatic array shape calibration becomes an issue.

Ideally, such an automatic calibration procedure would not re-

quire special calibration signals or even special calibration hardware.

It would rather work in a completely unsupervised manner relying

only on acoustic signals picked up naturally by the array. In this pa-

per we propose a method for unsupervised microphone array shape

calibration that extends techniques proposed recently for solving this

challenging problem. The key idea is to exploit the intrinsic hierar-

chy found in larger microphone arrays during the calibration pro-

cess. Consequently the method consists of a local part that works

for groups of sensors that are in near vicinity and form a small lo-

cal array. Given the local calibration these arrays can be used for

source localization and the measurements obtained can be exploited

for the calibration of the relative position of microphone array pairs

in the network using a robust matching procedure of localized acous-

tic sources. In this paper we focus on planar arrays assuming con-

stant heights of the acoustic sources relative to the array network

plane. However, this restriction does not limit the proposed idea of

hierarchical calibration of microphone arrays in general.

2. BACKGROUND

In principle, microphone array networks are special cases of general

sensor networks as they exist, for example, for distributed wireless

sensing. Therefore, the methods for microphone array shape cali-

bration are inspired by those used for node localization in general

sensor networks (cf. [4]).

Basically, they can be distinguished either as being supervised,

i.e. using known acoustic targets for calibration, or as being unsuper-

vised. A supervised method was proposed in [3] addressing shape

calibration for the Huge Microphone-Array. It relies on a complex

acoustic apparatus with five tweeters arranged in a pyramidal shape.

Shape calibration is based on time-delay estimation of short chirp

signals emitted from known positions. Due to the well-defined setup

the technique is also used for automatic gain calibration.

The method proposed by [5] also relies on the use of known

calibration signals (short chirps). Though source and microphone

positions need not to be known in advance, the method requires prior

knowledge regarding the number of sources and microphones. Non-

linear Maximum Likelihood estimation using time-of-flight (TOF)

data is performed for shape calibration.

Recently, some methods were proposed that try to solve the

shape calibration problem in an unsupervised mode. The method

described in [6] makes no assumptions about source or microphone

positions. However, the far-field assumption needs to be valid for all

sources and only a single array can be considered. Affine structure

from sound is derived using Singular Value Decomposition (SVD)

and then the shape is recovered using non-linear optimization.

An energy-based method that relies on received signal strength

(RSS) was proposed in [7]. It is capable of jointly estimating relative

positions of speakers and microphones. However, due to the use of

RSS only, the method is rather inaccurate.

In [8] an alternative approach to unsupervised shape calibration

for planar array networks was presented. Evaluating time-of-arrival
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and angle-of-arrival data the positions of acoustic sources are esti-

mated. Additionally, the positions and rotations of the arrays used

are derived. Incorporating prior knowledge regarding sensor and

source locations maximum a-posteriori optimization is applied. Fur-

thermore, the Cramér-Rao bound is computed in order to give a reli-

ability measure for the estimation.

The most promising unsupervised and furthermore least con-

strained method for microphone array shape calibration was pro-

posed by McCowan and colleagues [9]. Though it is only applicable

to rather small arrays, the technique does not require any calibra-

tion signal at all because it solely relies on the coherence function

of a diffuse noise field. According to the authors the latter can be

found in typical reverberant environments such as offices (reverber-

ation time t60 > 400 ms) or cars.

Noise fields can be characterized by the complex coherence be-

tween two measurement positions i, j

Γij(f) =
φij(f)

p
φii(f)φjj(f)

(1)

where φij and φii denote cross- and auto-spectral densities, respec-

tively. These two quantities must be estimated in practice, e. g. with

a one-pole recursive time smoothing of Fourier transformed signal

blocks Xi(f) and Xj(f)

φ
(k)
ij (f) = αφ

(k−1)
ij (f) + (1 − α)Xi (f)X∗

j (f) (2)

with block index k, smoothing factor α, and (·)∗ denoting the com-

plex conjugate. For the sake of brevity in the following the block

indices are omitted.

Assuming a diffuse noise field and omnidirectional microphones,

equation 1 results in (cf. [1, chap. 4])

Γdiffuse
ij (f) = sinc

„
2πfdij

c

«
=

sin
`
2πfdijc

−1
´

2πfdijc−1
(3)

with frequency f , microphone distance dij , and speed of sound c.

The latter is assumed to be constant. Note that the noise field model

can also be derived for directional microphones.

Obtaining distances dij from coherence measurements is formu-

lated as a non-linear least-squares model fitting problem:

dij = arg min
d

fs/2X

f=0

˛̨
˛̨sinc

„
2πfd

c

«
− Γij(f)

˛̨
˛̨
2

(4)

where fs/2 is the Nyquist frequency. This optimization problem is

solved for all pairs and time indices k via the well known Levenberg-

Marquardt algorithm. Before proceeding, a representative out of all

distance estimates for a pair must be calculated. In contrast to [9],

we found the median to be a robust estimator for this purpose.

The last step in recovering the local array shape utilizes all pair-

wise distance estimates in order to find the shape, which best ex-

plains the measured distances. This problem can be solved analyti-

cally using classic multidimensional scaling (CMDS) (cf. [10]).

3. UNSUPERVISED ARRAY CALIBRATION:

A HIERARCHICAL APPROACH

The new approach for array shape calibration (cf. Fig. 1) exploits the

hierarchical structure of a typical microphone array network setup

where sensors are distributed and grouped into local arrays. Assum-

ing N microphones, the first step is to determine the number of local

N microphones
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Fig. 1. Overview of the proposed hierarchical shape calibration

arrays A and the sensor-to-array mapping, i.e. Mk ⊆ {1, 2, . . . , N}
providing the set of all channel indices belonging to array k (first

half of upper box). Subsequently, the local shape of an array is de-

termined by diffuse noise model fitting (second half of upper box).

Both steps can be performed in a completely unsupervised manner,

provided that the diffuse noise model assumption holds.

In order to determine the shape of the array network (lower

box of Fig. 1), each local array is used for acoustic source local-

ization. Matching of acoustic events that have been localized by two

arrays provides an optimal transformation that consists of a trans-

lation tkl and the relative rotation Rkl. Incorporating all pairwise

array translations and rotations a geometric optimization procedure

gives the array positions P = (p1, p2, . . . , pA) and rotations α =
(α1, α2, . . . , αA) w.r.t. an arbitrary reference p1 ≡ 0 and α1 = 0.

Combining the latter with the local array shapes finally reveals the

positions of all microphones. In the following, the overall calibration

procedure is explained in detail.

3.1. Local Shape Calibration

The local shape calibration stage is divided into two distinct steps.

First, the number of local arrays and the corresponding microphone-

to-array mapping is determined. Afterwards, the local shape of each

array that was found in step one is estimated according to [9]. For

these steps, no user interaction is needed as long as the diffuse noise

model assumption holds. In order to achieve a robust local shape

calibration, only a small portion of noise is required.

Based on initial distance estimates dij,0, which are also needed
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for solving eq. 4 iteratively, an undirected graph is built. In this case

vertices represent microphones and edges reflect local adjacencies.

The first zero crossing fij,0 of a coherence measurement Γij (eq. 1)

determines initial distance estimates dij,0 = c(2fij,0)
−1. An edge

is inserted between channel i and j if dij,0 < dmax with dmax being

the threshold for the expected maximum distance. The connected

components of this graph, found by a depth-first-search, provide the

number of arrays plus the microphone-to-array mapping.

3.2. Shape Calibration of Array Networks

The calibrated local arrays are used for revealing the geometric shape

of the array network by using them for acoustic source localization.

Namely, a steered response power algorithm in combination with a

phase transformation (SRP-PHAT) ([1, chap. 8]) is applied. It pro-

vides azimuth, elevation, and – to some extent – range information

regarding an acoustic source relative to the center of the particular ar-

ray. However, the latter can only be achieved if four or more sensors

per array are available. If the source lies in the far-field of the array,

range information is indeterminable. Note that SRP-PHAT does not

constrain the kind of localizable signals. Advantageously, no special

calibration signal is needed. For example unconstrained speech or

ordinary hand claps are sufficient. In order to capture representative

spatial variety, the acoustic source is required to be moving during

the calibration procedure.

To circumvent the range ambiguity of the localization results,

the acoustic source is constrained to lie on a plane parallel to the

array network. The distance of the source from the network plane

needs to be known. Note, that these constraints can often be eas-

ily fulfilled for typical use-cases, e.g., by estimating the aforemen-

tioned distance by exploiting a few range measurements of a near-

field source. This allows to infer the Cartesian coordinates on the

source plane from azimuth and elevation, respectively.

In order to estimate the distance between two arrays and their

relative orientation, all sources localized by both arrays are ana-

lyzed. Hypotheses for the distance and the relative orientation of

an examined pair of arrays are derived by error minimzation over lo-

calized acoustic events. This data set matching (DSM) is performed

for every possible pair of arrays. Given n measurements, the matrix

Xk = (xk,1, xk,2, . . . , xk,n) contains the coordinates of source

positions estimated using array k. The optimal translation tkl and

rotation matrix Rkl for matching Xk and Xl is found by perform-

ing an SVD of their dispersion matrix (cf. [3])

Dkl =
1

n
XkCnX

T
l = UW V

T, Cn = I −
1

n
11

T
(5)

where Cn is the centering matrix of size n. The rotation and trans-

lation are given by Rkl = UV T and tkl = 1
n
(Xk − RklXl)1.

Depending on SNR conditions and putative reverberations, acous-

tic source localization can generally contain a substantial number of

erroneous detection results. Addressing increased robustness of the

DSM procedure we apply the iterative, non-deterministic random

sample consensus method [11]. The proposed procedure for match-

ing two data sets Xk and Xl can then be summarized as follows:

1. Randomly choose the minimal number of points for calculat-

ing the model parameters. In our case two coordinates from

each dataset that are assumed to be true positives, are suffi-

cient. Initialize consensus set C = ∅.

2. Calculate model parameters tkl and Rkl through a DSM with

the data points chosen in 1.

3. Determine the subset X c
k of all data points from Xk which are

in the vicinity of the transformed data set X ′

l . An Euclidean

distance metric d(·, ·) with a fixed distance threshold dε is

used, i.e.X c
k = {xk,i| d(xk,i, x

′

l,i) ≤ dε, ∀i}.

4. If the subset X c
k is larger than the consensus set C, a DSM is

performed using the whole subset. It becomes the new con-

sensus set if its error is less than the error of the current one.

5. Repeat until C is large enough, i.e. card(X c
k ) ≥ βn, where

for example β = 0.8, or until the (predefined) maximum

number of iterations Nmax is reached.

Using all pairwise translations and rotation matrices the array

positions P and their orientations α can be determined by the fol-

lowing geometric minimization procedure

P = arg min
P

AX

k=1

AX

l=k+1

‖tkl − (pl − pk)‖2
(6)

with α defined analogously, whereas αkl = arccos((Rkl)1,1). Fi-

nally, all microphone positions are derived using local array shapes.

4. EXPERIMENTAL EVALUATION

In order to evaluate the effectiveness of the new approach we per-

formed practical experiments within a challenging acoustic environ-

ment, namely a smart house. For a validation of the results we fur-

thermore conducted local shape calibration experiments in a desig-

nated audio lab. We first describe the methodology, followed by a

discussion of the achieved results.

4.1. Setup and Data Recording

The FINCA: The conference room of our smart house, the FINCA

(http://finca.irf.de), is equipped with 16 Behringer ECM8000 omni-

directional microphones mounted in a coffered ceiling using fixing

plates. Thus, almost arbitrary array layouts can be realized. All

microphones are attached to two eight-port amplifiers (SM PRO Au-

dio PR8E), which are connected to two M-Audio Delta 1010 sound

cards. The FINCA has an approx. rectangular shape (3.7 m× 6.8 m).

The room exhibits highly reverberant acoustic conditions with

t60 ≈ 500 ms. Different recordings were made for two different ar-

ray setups. For the local shape calibration step one minute of noise

– produced mainly by computers above the ceiling – was recorded

for each setup. In order to have a reproducible and spatially known

moving acoustic source for the array network calibration step a loud-

speaker (Behringer TRUTH B2030A) mounted on a mobile robot

(Scitos G5) was chosen. Moving along an arbitrary path, white

noise and speech samples were replayed and captured. Furthermore,

recordings of a talking person wandering around within the FINCA

in an unconstrained manner correspond to an additional data set. All

recordings were made with a sampling rate of fs = 48 kHz and have

an approximate length of one minute.

In order to determine the maximum distance for which the dif-

fuse noise model assumption holds, the evaluated setups include a

linear array with increasing inter-microphone distances (0.15 m up

to 0.9 m). The different array network setups exhibit the follow-

ing geometries: (F1) Two regular circular arrays are used, which are

2.5 m apart with eight microphones each and a diameter of 20 cm.

(F2) One T-shaped array is mounted per corner consisting of four

14.1 cm spaced microphones each.

Audio-Lab Paderborn: The recordings are done in a lab of size

3.5 m× 7.3 m with a room reverberation time of approximately t60 =
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Ground truth
distance in mm 150 350 625 875

Distance error in mm(%) 1 (0.6) 4 (1.1) 37 (5.9) 129 (14.7)

Table 1. Error of estimates with increasing microphone distance.

Setup F1 F2

Mean error in mm 9 10 15 17 40 9

Table 2. Mean error per setup (F1: two circular arrays with a

diameter of 20 cm, F2: four T-shaped arrays with 14.1 cm inter-

microphone distances) and per array of Euclidean distances between

ground truth and estimated local shapes.

250 ms, representing typical audio-video communication conditions.

We employed one T-shaped microphone array consisting of two lin-

ear arrays with 5 cm inter-microphone spacing and two linear arrays,

consisting of two microphones at a distance of 5 cm. The arrays are

mounted on the walls and an M-Audio Delta 1010 soundcard run-

ning at a sampling rate of 48 kHz is used for recordings. We decided

to generate the diffuse noise by computer fans covered with sound

absorbing foam parts, since experiments revealed that the ambient

noise in the lab is too low for calibration purposes.

4.2. Evaluation Results

Local Shape Calibration: Preliminary experiments showed reason-

able results with 10 s of noise, a block size of 43 ms and a smoothing

factor α = 0.95, which are used for the evaluation reported here.

Table 1 shows the median of distance errors – over all block indices

k – w.r.t. ground truth. It can be seen that the diffuse noise model

assumption holds up to approx. 60 cm microphone distance leading

to an error of 3.7 cm.

Results for the local shape calibration step are shown in table 2.

Due to the translation and rotation ambiguity of the CMDS, a DSM

is performed before determining the mean distance error. For F2

the third array leads to a higher error. Re-analyzing the setup we

identified the position of the array, which is mounted very closely

to a corner of the room, causing the accuracy drop. Apparently, the

diffusivity assumption here does not hold.

Due to a low t60 time in the second setup only distance estimates

for the linear arrays were determined. The errors are 8 mm(16 %),

9mm(18 %), 5 mm(10 %) and 14mm(28 %). The increase for the lat-

ter is again correlated with the array’s mounting position in a corner.

Shape Calibration of Array Networks: The results reported in ta-

ble 3 were obtained as the median of 100 Monte Carlo runs of the

RANSAC (Nmax = 200, β = 0.8, dε = 0.4 m) DSM procedure fol-

lowed by the aforementioned geometric optimization. The sources’

heights were assumed being constant and predetermined by range

measurements of a near-field source using 20 s of speech.

The mean distance error is proportional to the localizing capa-

bility of the source signal. Hence, in each setup the best results can

be achieved by using white noise. Even with speech as source signal

the obtained calibration is quite accurate – relative to the respective

array network dimensions.

FINCA setup F1 F2
Signal type w r s w r s

Mean error in mm 108 202 267 93 139 110

Table 3. Calibration results for different FINCA setups and three

different signals: (w)hite noise, (r)eplayed speech and (s)peech.

5. CONCLUSION

Unsupervised shape calibration of microphone array networks is a

demanding task, which is extremely relevant for numerous practical

applications. In this paper we presented a new hierarchical approach

that combines local shape calibration based on coherence analysis,

and network calibration using SRP-PHAT. The focus of our work

was on applications in highly reverberant acoustic environments.

By means of the proposed procedure we were able to success-

fully perform unsupervised array network calibration in a challeng-

ing setting. Thereby, the shapes of the particular microphone arrays

together with their relative arrangements have been unveiled very

precisely. The promising results were – to some extent – validated

in an additional setting. However, reasoned by substantially differing

acoustic conditions the calibration accuracy decreased for the latter.

Future work will consider methods for eliminating planar array

constraints as well as improved independence of room acoustics.
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