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Abstract. We propose a management architecture for the P2P model
which respects its distributed nature while building a hierarchical struc-
ture. This architecture enables the distribution of management functions,
avoids an excessive centralization of the manager role and fits the dy-
namic of the P2P model well. The architecture is evaluated through an
implementation in the Pastry framework.

1 Introduction

Nowadays, P2P networking is an emerging model that extends the limits of
the client/server approach. Indeed, applications built on top of it present bet-
ter scalability, load balancing and fault tolerance. Enterprises, administrations
or universities are interested in the deployement of P2P applications for pur-
poses like the distribution of networked file systems, including data replication
mechanisms, or the use of distributed collaboration tools for projects that count
remote participants. Network and service providers also see a good opportunity
in supporting P2P applications with service level agreements. In this context,
the need for a management framework for these services is obvious in order to
ensure service levels for value-added applications.

The power of the P2P model relies on the distribution of all resources, knowl-
edge and load. We believe that the management of a P2P community cannot
be achieved in a centralized way mainly because such a centralization can po-
tentially strongly affect the advantages brought by the P2P model. It does not
make sense for a P2P community to have a central authority which manages
all the peers: all the efforts done to increase the service level by the use of a
distributed model will be impacted by the addition of a centralized framework,
which actually owns the same goal of service operating improvement. This is
why, in the same way peers act both as client and server, they have to act both
as manager and agents for their management plane. Thus, the management of
P2P services should be achieved through a P2P approach and, in this paper,
we present a framework which takes the advantages of both the P2P model for
management task distribution and the centralized management approach with
the use of the standard manager and agent roles, to build a hierarchical man-
agement architecture for P2P networks and services. This architecture fits the
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P2P model characteristics, which are decentralization, dynamic of peers naming
and presence, heterogeneous nature of involved devices, and behavior of partici-
pants. Moreover, it presents interesting properties concerning the load-control of
manager nodes, the structure balance and the choice of nodes for crucial points.

The paper is organized as follows: motivations are given in section 2. section
3 deals with the current research works that address the management of P2P
networks and services. Work on tree-based infrastructures for P2P networks is
also addressed in this section. Section 4 presents the objectives we want to reach
through our proposal and the general algorithm we designed for the tree con-
struction. The way we distribute this algorithm among peers is shown in section
5 and deployment aspects are treated in section 6. Finally, some conclusions and
directions for future works are given in section 7.

2 Motivation

The proposal of a hierarchical distributed management model that is aligned
with the underlying P2P framework it manages is driven by the following moti-
vations:

Resist to scale: P2P infrastructures involve a large number of components
often spread among multiple administrative domains. Only self-management
capabilities built in these complex infrastructures can provide scalable and
efficient management;

Master the dynamics: The individual components of a large P2P infrastruc-
ture are expected to be very dynamic (i.e. versatile presence and contribution
to a service). Traditionnal management systems in which all participating
components and ressources are known in advance and registered cannot be
applied there.

Our approach is based on a partial integration of the management plane in
the service plane of the P2P infrastructure. Such an integration avoids developers
and service operators to have to deal with two different worlds (naming schemes,
access protocols, security issues, . . . ). JMX is a good example of such successful
integration in the Java world. Moreover, the merging of dedicated management
signaling with the existing inftrastructure signaling potentially reduces the man-
agement overhead.

Our architecture is hierarchical since it has proven efficient for many monitor-
ing operations, i.e. those based on monotonic functions (e.g. Sum, Min, Max,
Count and Average) [1]. It is also very well adapted to the dynamics of the
underlying environment.

3 Related Work

3.1 P2P Management

Currently, a lot of applications, built over different protocols, allow users of a
community to share files. Besides the fact that shared data are copyrighted, the
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major problem content sharing applications have to face concerns the free riding
which consists, for a peer, in the use of other peers’ resources without providing
any themselves [2]. This phenomenon clearly shows the need for a management
framework able to ensure service levels. From this point, several proposals have
emerged. They are service-embedded and use incentive approaches which rely on
economic models [3]. For example, the MMAPPS (Market Management of Peer-
to-peer Services) project proposes a cost evaluation for resources that depends
on their availability, interest and quality [4].

Concerning performance management, [5] proposes to use an active network
framework dedicated to Gnutella-like applications. First, it enables the scattering
of a community into sub domains, thus limiting the scope of messages which
rely on a flooding method. Then, messages routing adapts itself to the traffic
load between peers. Thirdly, the virtual topology is adapted to the physical
underlying network, which increases the global overlay performance. This work
presents interesting results and is deployed over a Gnutella like infrastructure.

The major work concerning the deployment of a management infrastructure
for P2P networks and services concerns the MMP1 project of Jxta [6]. Jxta is a
generic platform for the development of P2P services. From a functional perspec-
tive, Jxta provides an abstraction of basic P2P mechanisms like routing, lookup,
organization or communication. It makes the development of services easier and
allows their interoperability. The MMP project aims at providing a management
infrastructure for Jxta communities. To do that, it provides an instrumentation
of Jxta peers, a remote monitoring service and a management console applica-
tion. The idea of this work is very interesting but actually, the instrumentation
of Jxta peers is incomplete and the MMP project is now abandoned.

3.2 Our Previous Work

One of our goals is to design and deploy a management infrastructure which
can be independent from the underlying services and which relies on standard
approaches of network management. A first instrumentation experiment of a in-
stant messaging P2P application clearly expressed the need for a management
framework for such a class of application [7]. Then, we designed a generic man-
agement information model for P2P networks and services [8]. The latter enables
a manager to build an abstract view of a P2P community, participating peers,
shared resources and deployed services. We used CIM (Common Information
Model) [9] as a formalism to express our model. In a second step, we refined our
model towards the performance management of DHTs2 [10]. As a case study, we
considered Chord [11] and we defined a set of metrics which feature the perfor-
mance of this DHT. Then, we integrated these metrics into our model. By this
way, we enable a manager to evaluate the global performance of a Chord ring.

Our current work concerns the architectural aspects for the management of
P2P networks and services. We are working on a proposal for a management

1 Metering and Monitoring Project - meter.jxta.org.
2 Distributed Hash Tables.
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architecture that is compliant with the characteristics of the P2P model, and we
present it in this paper.

3.3 Existing Overlay Tree Proposals

We propose to use a tree structure to enable a root manager to aggregate man-
agement information provided by sub-manager and agents in order to build an
abstract view of a P2P community. Nevertheless, there are many other use cases
where building a tree structure is required.

El-Ansary et al. [12] propose the building of a broadcast tree for structured
P2P networks. Despites it presents interesting properties, their algorithm is
strongly dependent on specific components of Chord [11].

From a theoretical perspective, our approach presents many similarities with
[13]. The authors propose to use a binary tree structure to build a DHT. Their
building principle and simulations provide very interesting results, such as the
cost for node insertion or removal which falls from log2(N), in [11,14] to log(N).
For management purpose however, the use of a binary tree is not the best choice,
mainly because the tree is too thin and deep and this can be problematic, for
instance, to propagate alarms from a leaf to the root.

Current work which our work is the most closest to is proposed in [15].
Its objective is to build an aggregation tree over any DHT that enables the
computation of aggregation functions. The definition of a Parent function allows
any node to establish a link towards its parent in the tree. Such a function has
to be well chosen, so that it ensures a good tree balance. Our work is very
similar, but it achieves a broader objective in the sense that if our management
tree enables the computation of aggregation functions, in a more general way, it
defines the roles of manager and agent for nodes.

4 Foundations and Principle

4.1 Goal

There are several objectives we want our management architecture to reach.
These are:

Optimal manager role distribution: The P2P model is a distributed model
where there is potentially no central point; each peer acts as both a client
and a server. From a management perspective, we want to distribute the
manager role among most peers so that they act as agent and manager.

Structure balance: To fit the distributed aspect of the P2P model, we want
our tree to be well balanced so that a node cannot act as an excessive central
point of failure and be stressed more than others.

Manager election: The more managers are close to the tree root, the more
their role is crucial to achieve management functions. This is why we want
to be able to choose managers according to any application context criteria
such as the hardware resources or the user behavior.
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Depth constraint: To ensure a minimum performance level of the manage-
ment architecture, we want to control the tree depth so that a manager can
contact any agent in a controlled number of hops as well as an agent, located
as a leaf to contact the root manager.

4.2 General Tree Construction Principle

In order to build our hierarchical structure, we define the following axioms:

1. Each node is an agent and eventually a manager (at most once);
2. Each leaf represents an agent;
3. Each intermediate node, up to the root, represents a manager;
4. Each node owns an identifier which is the one given at the DHT level.
5. Each node owns a metric, called Weight, which represents the quality of the

node for the manager role. This metric is based on any relevant criteria such
as the hardware capabilities, the behavior or the participation level of the
node. It used to choose the managers so that nodes with the highest weight
are the managers of the highest levels in the hierarchy.

Then, we define that: each manager of level L is responsible for nodes of level
L + 1 that present a common prefix of L digits. Moreover, managers are chosen
through an election process. The construction principle used here is very similar
to the one proposed in [16].

Figure 1 shows a simple tree example applied to a Pastry-like DHT. One can
see that each leaf represents an agent and appears zero or one time in upper
levels where the managers are placed. Moreover, each manager owns a common
prefix with its children that depends on its level. For example, node 001 located
at level 2 presents the common prefix 00 with each of its agents that are 001,
002 and 003.

4.3 Formal Definition

Our structure follows a formal definition that is expressed using a first order
logic statement. Consider the following construction parameters:

B The identifiers’ base

D The number of identifier’s digits

N The set of nodes in the community

Then, we define the following sets and variables:

di The digit of rank i of an identifier with 0 ≤ di < B and 1 ≤ i ≤ D

d1 . . . dD A node identifier

L The number of digits of a prefix

λ The set of all levels present, that is the set of all L

Qd1...dL The set of nodes that own the prefix d1 . . . dL

PL The set of set of nodes Qd1...dL which owns a common prefix of L digits

G The set of manager nodes.
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Fig. 1. Management tree example applied to a DHT

The statement below is always true with nodes that are involved in any
management process. As we will see in the next section, only arriving nodes or
temporarily disconnected nodes are not involved in management functions.

Tree definition ()
1 P−1 ← {∅}
2 ∀L ∈ λ
3 ∀n ∈ N
4 Qd1...dL ← Qd1...dL ∪ {n | n.Prefix(L) = d1 . . . dL}
5 PL ← {Qd1...dL | Qd1...dL �= {∅}, 0 ≤ di < B, 1 ≤ i ≤ L}
6 ∀P ∈ PL \ {PL ∩ PL−1}
7 G← G ∪ {n | n ∈ P, n /∈ G, n.Weight() = max(p.Weight(), p ∈ P )}

where n.Prefix(L) returns a list of L former digits from the node n identifier
and n.Weight() gives the node’s quality according the metric defined in section
4.2.

In line 4, we build Qd1...dL the sets of nodes that own a common prefix of L
digits. Then, in line 5 we gather all the non empty Qd1...dL sets in the PL set
of sets. Finally, in line 7, if needed, we elect a free manager which presents the
highest weight. This way, we construct a tree that fulfills the goals presented in
section 4.1.

5 Distribution of the Algorithm

We have designed two protocols for each event that can occur in the life of a P2P
community. These events are: the arrival of a new node requiring an attachment
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to the community and the departure of a node. Together with them, a regular
maintenance process triggers structure update when the above mentioned events
occur.

5.1 Node Insertion

The insertion process aims at adding a new node in the structure at its right
location. It consists in looking for the manager that owns the longer prefix with
the arriving node. In current DHTs, such an operation is not trivial since DHT
functions do not enable semantic lookup. One solution could rely on a method
of successive approaches: an arriving node looks for a node that owns a D − 1
prefix, then a D − 2 one, until it finds a manager. But, the method is costly in
term of number of messages.

To overcome the above constraints, we propose to use the following method:
when a node joins the tree, it generates a request with a random identifier.
According to the DHT properties, a node with an identifier close to the required
one responds. Then, the arriving node requests the manager of the latter node
for its management. Thus, the new node is inserted, but the tree is not consistent
regarding our formal description. This is not a problem because the new node
will be involved, as either agent or manager, until it is correctly placed in the
management architecture through the maintenance process.

5.2 Maintenance

The maintenance process is executed by manager nodes. It aims at maintaining
the structure consistent. It is composed of two functions: the first consists in
enforcing that the tree construction rules are effectively applied, and the second
consists in verifying that referenced nodes are still alive.

This is why the maintenance process is executed in several contexts: (1) when
a manager detects a new node insertion, to check that the arriving node is well
located, and (2) at regular intervals, to check for any node departure.

The different operations executed by the maintenance process are:

1. Presence checking: For an L level manager, it consists in checking the
presence of each of its children and its father. To do that, maintenance
requests are sent to each child. Whenever a child doesn’t respond, it is re-
moved from the children list. Moreover whenever no maintenance request is
received from its father, the manager is considered orphan and restarts the
join process.

2. Prefix checking: For an L level manager, it consists in checking the chil-
dren prefixes consistency. Two cases of reorganization are possible:
– Too short prefixes: Whenever a child doesn’t own a prefix of L digits

with the considered manager, it transfers the child to its father;
– Longer prefixes: Whenever two or more children share a prefix longer

than L, two cases are possible:
• Agent and manager children: If agents and managers share a

common prefix longer than L, then the manager with the highest
weight will manage the other ones.
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• Identical children: If children that share a longer prefix are ex-
clusively a set of managers or agents, the child of higher weight will
manage the other ones.

3. Weight checking: For an L level manager, it consists in checking that
it does not reference any child, that is not a manager, and that owns a
higher weight than its own weight. Each time this case occurs, the child of
highest rank will take the place of the current manager and the latter loses
its manager role.

5.3 Node Departure

When a node leaves the management structure and informs its father, all its chil-
dren will be managed temporarily by the father, until the maintenance process
reorganizes the structure. In case a node leaves the tree without informing its
father, the maintenance process of neighbor nodes will detect its absence. The
father will detect the absence of response from one of its children, and the chil-
dren of the failing node will detect that they have not received any maintenance
message for a given time. These orphan nodes will therefore use the insertion
process to join the tree again.

6 Deployment

We have designed a prototype implementation of our architecture. It is built
over the Java Free-Pastry3 implementation of Pastry [14]. In this section, we
first detail some implementation aspects. Then, we present the tests we have
performed and the results they provide.

6.1 Node Architecture

The code we have deployed follows the functionnal architecture shown on Figure
2. Each Pastry node is composed of two different parts: an agent and a manager.
The manager part is activated if the node endorses a manager role.

The agent part is composed of two main entities. The first one is a JMX
MBean server. It hosts standard MBean objects coming from the instrumenta-
tion of Pastry presented below. The second entity of the agent part concerns core
agent functionalities (requests processing, father soft state maintenance, . . . ).

The manager part is, as for the agent part, composed of two entities: the man-
ager core and the maintenance process. The core entity is in charge of standard
management functions of the tree, like requests forwarding or partial compu-
tations of a management function. The maintenance process is responsible for
ensuring the consistency of all meta-data stored in the state manager, repre-
sented in the upper part of Figure 2. This process periodically executes the
operations described in section 5.2.

3 freepastry.rice.edu
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Fig. 2. Node architecture

Concerning the communication, all the tree construction and maintenance
related messages are exchanged through the Pastry routing layer. Management
access to JMX MBean servers is achieved through a RMI as defined in JMX.

6.2 Node Instrumentation

To design a manageable DHT community, we have instrumented Pastry nodes.
Managed objects are CIM instances which follow the information model proposed
in [10]; we collect information concerning routing tables, leaf sets and lookup
and maintenance services. In fact, our management plane addresses two levels: a
local one where managed objects stand for data related to their host node, and
a global level, addressed by a manager (which can be centralized, hierarchical
or distributed) which aggregates local information to provide an abstract global
view of a community.

All the local and global managed objects are registered into a JMX MBean
server as standard MBeans and we use RMI to enable the communication be-
tween these entities. To validate this instrumentation, we have designed a small
application which draws a topological view of a managed Pastry community.
We have chosen to use the leaf associations as a topological criterion because it
respects the neighborhood semantic.

6.3 Evaluation

We present here the results of a small scale test that evaluates the construction
cost of our management architecture according to the number of nodes. We have
considered scenarios which involve from 1 to 20 nodes. Identifiers of nodes are
set randomly using the Pastry factory. The nodes’ weight, represented as a byte
value, is chosen randomly. Concerning timing aspects, the node arrival rate has
been fixed to 1 node per minute. The maintenance process is executed every 15
seconds and a timeout for messages has been set to 30 seconds.
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Fig. 3. (a) Evaluation of the global tree construction cost. (b) Evaluation of the indi-

vidual insertion cost.

We did perform two tests. The first one considers the nodes’ weight while
the second one doesn’t, i.e. step 3 of the maintenance process is executed in the
first case only. Figure 3.a depicts the global construction cost. The metric we
have considered is the number of messages exchanged between nodes to build
the tree. For each of the two tests, we have represented the average value and
the standard deviation. Figure 3.b represents the insertion cost for one node
expressed in term of the number of messages exchanged. On this Figure, we
have represented the average value of this metric for the two tests.

When considering the nodes’ weight, one can see that from 1 to 16 nodes, the
individual insertion cost is constant with a mean value of 12 messages per node.
From 16 nodes, the insertion cost doubles. This phenomenon is due to the fact
that statistically, up to 16 nodes with random identifiers, the tree contains only
one level: a root manager in charge of agents; but from 16 nodes, the tree tends
to present a second level; this is why the insertion cost increases. Then from
16 nodes, the standard deviation increases, because, the more nodes join the
tree, the more different scenarios leading to different tree construction operating
occur.

Concerning the second test, Figure 3.a and 3.b show that the tree construc-
tion cost is lower when the structure does not consider the nodes’ weight. More-
over, the evolution of the construction cost is more regular than in the first test.
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Finally, one can remark that, in the latter case, the two cases which count 18
and 20 nodes are not statistically correct and show that the more nodes there
are in the community, the more tests we have to perform to obtain meaningful
results.

To conclude, this test shows that the consideration of a weight metric in-
creases the construction cost strongly and may be removed to improve the per-
formance of the tree structure.

7 Conclusion and Future Works

In this paper, we expressed the need for a management framework for P2P net-
work and services; a management infrastructure is essential to enable a common
use of the P2P model in sensitive value-added services. We proposed a hier-
archical management architecture that fits the P2P model characteristics and
that relies on the naming properties of peers. Our structure enables an strong
distribution of the manager role, provides a balanced structure and a tree depth
control. Moreover, the addition of a weight metric to peers ensure that criti-
cal places will be used by best participants. To implement our model, we have
proposed a distributed algorithm which consists of three processes: insertion,
removal and maintenance, responsible for enforcing the structure consistency.

Free Pastry was used to implement our model . We have instrumented nodes
and integrated managed objects into a JMX MBean server. A prototype has
been deployed and the tree structure building algorithm validated.

We plan to test our architecture in a cluster of five hundred nodes. In this
context, we will be able to perform tests for communities containing up to 10000
virtual nodes and check the scalability of our proposal. Future tests will ad-
dress (1) the tree resistance to nodes failures and (2) the way we can tune the
prefix consideration to reach particular management objectives; for example, a
management infrastructure which deals with fault management and alarm prop-
agations requires a very short tree depth but the manager nodes will be strongly
loaded. Besides this case, applications which want to spread management func-
tions among peers will require a deep tree involving as most peers as possible.
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