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Saint Pée sur Nivelle, France, 5. Université de Pau et des Pays de l9Adour, UMR 1224 Ecobiop Ecologie

Comportementale et Biologie des Populations de Poissons, Anglet, France

*guillaume.bal.pro@gmail.com

Abstract

Providing generic and cost effective modelling approaches to reconstruct and

forecast freshwater temperature using predictors as air temperature and water

discharge is a prerequisite to understanding ecological processes underlying the

impact of water temperature and of global warming on continental aquatic

ecosystems. Using air temperature as a simple linear predictor of water

temperature can lead to significant bias in forecasts as it does not disentangle

seasonality and long term trends in the signal. Here, we develop an alternative

approach based on hierarchical Bayesian statistical time series modelling of water

temperature, air temperature and water discharge using seasonal sinusoidal

periodic signals and time varying means and amplitudes. Fitting and forecasting

performances of this approach are compared with that of simple linear regression

between water and air temperatures using i) an emotive simulated example, ii)

application to three French coastal streams with contrasting bio-geographical

conditions and sizes. The time series modelling approach better fit data and does

not exhibit forecasting bias in long term trends contrary to the linear regression.

This new model also allows for more accurate forecasts of water temperature than

linear regression together with a fair assessment of the uncertainty around

forecasting. Warming of water temperature forecast by our hierarchical Bayesian

model was slower and more uncertain than that expected with the classical

regression approach. These new forecasts are in a form that is readily usable in

further ecological analyses and will allow weighting of outcomes from different

scenarios to manage climate change impacts on freshwater wildlife.
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Introduction

Climate change [1, 2] is impacting the physiology, phenology and distributions of

organisms worldwide resulting in changing communities structure [3, 4]; stream

ecosystems are no exception [5] with climatic changes affecting both water

temperatures and discharge, key factors in the functioning of freshwater

ecosystems [6, 7, 8]. In particular, water temperature is of primary importance for

ectothermic organisms having limited ability to adapt their spatial distributions

owing their dependence on river networks and habitat fragmentation [9]. For

instance, changes in water temperature affects the growth of cold water fish such

as salmonids [10, 11, 12] and may disrupt their life histories and population

dynamics [13, 14, 15]. Such changes may result in modifications of the

distributions [16, 17, 18] and ranges [19, 20, 21] of native species, while invasive

species could be favoured [22, 23, 24]. This in turn can alter the structure and

functioning of ecosystems, food web architecture, dynamics and energy budgets

[24, 25].

Long and continuous historical water temperature time series are required to

assess how fluctuations of water temperature have affected the functioning of

aquatic ecosystems, while forecast scenarios are prerequisite to evaluate possible

impacts of future global warming. Freshwater water temperature time series are

however, comparatively rare, shorter, and more prone to errors than time series of

air temperature. In addition stream water temperature is rarely available as an

output of climate change models. Providing tools to reconstruct and generate

time series scenarios of water temperature based on commonly available

predictors, such as air temperature and/or water discharge [26, 27, 28], is thus a

key issue.

Both mechanistic and statistical modelling approaches have been developed to

predict water temperature [7]. Mechanistic models based on energy budgets are

data-intensive, requiring site-specific and often costly data such as meteorological

variables other than air temperature, topography and stream bed information

[29, 30, 31, 32]. They provide fine scale estimates of the water temperature but are

difficult to use for forecasting stream temperatures on wider geographical scales

because of the amount of data needed.

Statistical models are often deemed more robust, requiring air temperature and

in some instances water discharge data, and tend to be more popular for water

resource and aquatic habitat management [7, 33]. After filtering long term trends,

time series models consider random variations in water temperature as a function

of random variations in air temperature [7, 34, 35, 36]. These methods perform

well in filling gaps in past series of water temperature when continuous series of

air temperature are available, but are inadequate in forecasting water temperature

over periods of several years. Periodic autoregressive models [37] and non-

parametric models (e.g., based on k-nearest neighbours methods) and artificial

neural networks [38] have also been proposed but they suffer from a lack of

parsimony and may provide spurious predictions outside the range of

temperatures used for model fitting [33].
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Simple linear regression models between air and water temperatures have been

one of the most used approaches to infer water temperature [39, 40, 41, 42, 43].

Because of their simplicity and low data requirement, these simple approaches are

quite popular among freshwater ecologist to reconstruct and/or forecast stream

temperature time series[44, 45, 46]. However, simple regression models suffer

from methodological caveats that have received little attention in the literature.

Both air and water temperature signals show seasonal fluctuations with maximum

amplitudes of approximately 15 to 25 C̊. The synchrony between the two signals

due to seasonal fluctuations will thus result in strong positive correlations between

pairwise records of water and air temperatures that could hide joint patterns of

the evolution of air and water temperatures over longer time scales [34, 35, 40, 47].

Simple models based on this positive correlation could thus lead to biased water

temperature forecasts or to underestimation of the associated uncertainty.

In this paper, we develop a generic statistical approach to forecast water

temperature from air temperature and water discharge time series that allows the

components of the correlation owing to seasonality to be separated from those

owing to longer term fluctuations or trends. The approach is developed in a fully

hierarchical Bayesian framework that provides a probabilistic rationale to

propagate and quantify uncertainty around inferences and predictions [48]. To

demonstrate the potential of our approach we compared its performance to that

of simple linear regression over a short time scale on i) a simulated example, and

ii) time series of air temperatures, water discharge and water temperatures from

three French coastal streams of contrasting size and bio-geography.

Material & Methods

1. Modelling and forecasting water temperature

Limits of simple regression models: a simulated illustrative example

To illustrate the potential caveats of simple regression models between water and

air temperature, we simulated water and air temperature time series exhibiting

characteristic seasonal fluctuations and weak but opposite long term time trends

(Fig. 1). Daily water temperatures were simulated using a sinusoidal function with

an annual periodicity and amplitude of 13 C̊, plus a negative trend in the annual

mean of 20.5 C̊ over 20 years starting from an original mean of 12 C̊. The time

series of air temperature was simulated with the same periodicity and amplitude

but with an increasing trend of +0.5 C̊ over the 20 years. Both time series were

augmented with noise modelled as a first order autoregressive model with

autocorrelation fixed to 0.5 and variance of the innovation process fixed to 2.

Because seasonal fluctuations are synchronous and exhibit a much higher

amplitude (13 C̊) than the change in annual means, pairwise correlation between

air and water temperatures considered over a short time period (5 day moving

average in this example) is positive (r50.97, p,0.001), masking the negative

correlation, which was weaker, but still significant (r520.81, p,0.001) between

the moving average temperatures calculated over 6 months periods.
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This simulated example illustrates that relying on only the strength of the short

term correlation to forecast water temperature could be inappropriate as it may

lead to erroneous conclusions regarding the long term evolution of water

temperature. By contrast, correlations calculated over a longer time period will

only pick up the associations between signals with longer periodicity. Neither of

these approaches however, allows both the seasonal and longer term trends to be

simultaneously captured. Moreover, simple regressions between air and water

temperatures do not account for the influences of other covariates such as water

discharge. A more consistent statistical approach should account for both

seasonality and long term trends in the climatic time series and the potential effect

of water discharge as a covariate.

Fig. 1. Linear regressions between pairwise records of air temperatures and water temperatures at
small time scale (moving average over 5 days; panel C) and long time scale (moving average over 6
months; panel D).

doi:10.1371/journal.pone.0115659.g001
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Separating seasonality from longer time trends: model M1

Model M1 is a fully Bayesian hierarchical model based on time series

decomposition according to eq (1) and is composed of three modules which are

all embedded within the same hierarchical model (detailed hereafter). The first

module aims at decomposing the time series of predictors (air temperature and

water discharge) and response variable (water temperature) into long term trends,

seasonal fluctuations and residual variability; In the second module, some

relations are introduced in the hierarchical structure to characterize the

relationships between the time series of the water temperature and its predictors at

different time periodicity; In the third module, these relationships are used to

forecast water temperature from air temperature and water discharge.

In module (1), air temperature and log-transformed river flow time series were

decomposed using eq. (1) [34], where Xy,t represents the time series of a variable

(indifferently air temperature, water temperature or (log-transformed) water

discharge).

Xy,t~ayzby| sin
2p

n
(tzt0)

� �

z t ð1Þ

ay and by are the mean and amplitude on the time window y respectively. A five-

day arithmetic average was used as the short time step t so n is equal to 73. A long-

term window of 6 months was set for the longer time window y. Preliminary trials

have shown that averaging over five days was the best compromise between the

computational performances (the computational time increases with the number

of time steps) and the degree of smoothing of short term variability. Using long

term windows of 6 months (instead of 1 year) maximizes the number of time step

used to fit relationships in eqs. (2a)-(2b) (see hereafter). t0 sets the position of the

sine signal on the time line. Preliminary analyses using parameters t0 that vary

between periods y have shown only very slight variability of t0 between periods

(not shown), and t0 was therefore assumed constant in time. As residual random

terms of the three time series are known to exhibit significant positive

autocorrelation, random terms t were modelled as a first order autoregressive

process with autocorrelation coefficient r and variance of the innovationss2.

Time series of random terms were modelled as mutually independent between the

time series (water and air temperature, water discharge). Measurement errors

were not included in the model. As observation errors were quite low when

compared to the natural variability on our three case study (see Annexe 1), they

were unlikely to impact on the results and have not been modelled. Priors

specified for the unknown parameters (ay,by,t0,r ,s2) were all weakly informative

(Table 1).

In module (2) of the hierarchical model M1, parameters describing the shape of

the sine function for the water temperature were modelled a priori as linear

functions of those describing the shapes of the sine functions of air temperature

and water discharge. The sine signal can be parameterized by any combination of
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two of these four parameters(ay,by,maxy,miny), where maxy~ayzby and

miny~ay{by are the maximum and the minimum of the signal, respectively.

Here, the sine signal of water temperature (WT) was parameterized in terms of

maximum maxWT
y and minimum min

WT
y allowing the impact of air temperature

(AT) and discharge (Q) to be integrated. max
WT
y was defined as a linear function

of the maximum air temperature and minimum water discharge (eq. (2a)), while

minWT
y was defined as a linear function of the minimum air temperature and

maximum water discharge (eq. (2b)):

max
WT
y *Normal(m

maxWT
y

,s2
maxWT)

with m
mawWT

y
~h0zh1|max

AT
y zh2|min

Q
y

ð2aÞ

Table 1. Prior distributions assigned on parameters in models M0 and M1.

Model Time series Parameter Prior

M0 WT d , Normal (E50, VAR51000)

M0 WT w , Normal (E50, VAR51000)

M0 WT rv , Uniform [21, 1]

M0 WT s2v , Gamma (E51, C.V.51000%)

M1 AT ay , Normal (E50, VAR51000)

M1 AT by , Uniform[0, 20]

M1 AT t0 , Uniform[45, 65]

M1 AT r , Uniform [21,1]

M1 Q s2 , Gamma (E51, C.V.51000%)

M1 Q ay , Normal (E50, VAR51000)

M1 Q by , Uniform[0, 20]

M1 Q t0 , Uniform[15, 25]

M1 Q r , Uniform [21, 1]

M1 Q s2 , Gamma (E51, C.V.51000%)

M1 WT h0 , Normal (E50, VAR51000)

M1 WT h1 , Normal (E50, VAR51000)

M1 WT h2 , Normal (E50, VAR51000)

M1 WT h
0

0
, Normal (E50, VAR51000)

M1 WT h
0

1
, Normal (E50, VAR51000)

M1 WT h
0

2
, Normal (E50, VAR51000)

M1 WT s2
maxWT , Gamma (E51, C.V.51000%)

M1 WT s2
minWT , Gamma (E51, C.V.51000%)

M1 WT t0 , Uniform[45, 65]

M1 WT r , Uniform[21, 1]

M1 WT s2 , Gamma (E51, C.V.51000%)

E, VAR and C.V/correspond to expectation, variance and coefficient of variation respectively.

doi:10.1371/journal.pone.0115659.t001
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min
WT
y *Normal(m

minWT
y

,s2
minWT)

with m
minWT

y
~h

0

0
zh

0

1
|min

AT
y zh

0

2
|max

Q
y

ð2bÞ

Previous analyses have shown that the best compromise between the

complexity of the relationships and the quantity of deviance explained was

obtained through this set of simple linear regressions. Moreover, eqs (2a)-(2b) are

quite interpretable in term of environmental processes. h1 is expected to be

positive as maxWT
y series is expected to be positively correlated with the maxATy

series. h1 is expected to be negative as high minimum discharge is expected to

decrease the seasonal variation of water temperature because higher minimum

water discharge generally corresponds to cool temperatures in summer. h
0

1
, h

0

2
are

both expected to be positive, as warmer air relates to warmer water and a high

water discharge in winter tends to relate to high water temperatures because high

winter flows correlate with wet and mild conditions s2. Weakly informative prior

distributions were set for unknown parameters (h0,h1,h2,h
0

0
,h

0

1
,h

0

2
,s2

minWT ,s
2

maxWT)

(Table 1). As stated in the above section, random terms in water temperature were

modelled as a first order autoregressive process assumed to be independent from

that of the air temperature and flow time series’. Weakly informative parameters

were set on related parameters (Table 1). Observation errors were not modelled.

Finally module (3) is a forecasting module embedded in the hierarchical model

M1 that uses the information from module (1) and (2) to forecast the water

temperature while fully propagating the uncertainty through the hierarchical

structure. We denote AT9 and Q9 the time series’ of air temperature and water

discharge from which we want to forecast water temperature WT9. Such series

may be historical observations or climatic model scenarios. AT9 and Q9 are first

decomposed following the model described in eq. (1) to obtain estimates of

parameters (max
AT
y ,min

AT
y ,max

Q
y ,min

Q
y ). Relationships (2a)-(2b), combined

with the regression parameters (h0,h1,h2,h
0

0
,h

0

1
,h

0

2
,s2

maxWT ,s
2

minWT) are then used to

forecast parameters maxWT
y and min

WT
y series, which characterise the forecast sine

signal of WT9. Combined with the variance of noise around this, the whole WT9

series can be forecast conditionally upon all the information conveyed by the

historical series of water temperature, air temperature and water discharge and

upon AT9 and Q9 series. In a Bayesian framework, this is done through the

posterior predictive distribution [49]of the forecast time series WT9, that

integrates out the uncertainty around all model parameters (from their posterior

distribution) and the uncertainty owing to the autoregressive residual variation.

Posterior predictive distributions were also used to directly estimate any missing

data.
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A simple linear regression model

For the purpose of comparison, a linear regression model between water and air

temperatures (M0) was also implemented and fitted in a Bayesian framework

using pairwise historical records averaged over 5 days using the following

equation:

WTy,t~dzQ|ATy,tzvt ð3Þ

Residual random terms vt were modelled as a first order autoregressive process

with autocorrelation coefficient rvand variance of the innovations s2v. Non

informative prior distributions were used for parameters in eq. (3) (Table 1).

Posterior distributions of the parameters d, Q, s2v and the series of air temperature

AT9 were used to provide posterior predictive distributions of the forecasted time

series WT9.

2. Bayesian computation

Bayesian fitting, forecasting and the derivations were implemented using Markov

Chain Monte Carlo algorithms in JAGS (Just Another Gibbs Sampler) [50]

through the R software [51]. Three parallel MCMC chains were run and 20,000

iterations from each were retained after an initial burn-in of 20,000 iterations.

Convergence of chains was assessed using the Brooks-Gelman-Rubin diagnostic

[52].

3. Posterior checking, model comparison and cross validation

The consistency between the model a posteriori and the data was assessed via

posterior checking techniques [49]. If model fits, then replicated data generated

under the model should look similar to observed data, i.e. data should look

plausible under the posterior predictive distribution. Any systematic discrepancy

coming from this ‘‘self consistency’’ check indicates potential failing of the model.

Here, we employ as a discrepancy measure the x2 discrepancy statistic [49]. For

each model, the x2 statistic was calculated as:

x2(WT,h)~
X

y

X

t

(WTy,t{E(WTy,tjh))
2)

Var(WTy,tjh)
ð4Þ

where E(WTy,tjh) and Var(WTy,tjh) are respectively the expected mean and

variance of the water temperature conditionally upon the parameters h. For each

set of parameters (y) drawn in their joint posterior distributions, the realized

discrepancies x2(WTobsjh) computed with the observed values of water

temperature were compared against the predicted discrepancies x2(WT repjh)
computed with posterior predictive replicates of water temperature. If the model

is consistent with the data, x2(WT repjh) should be similar to x2(WTobsjh). The

Bayesian p-value was calculated as the probability that x2(WT repjh)wx2(WTobsjh)

Bayesian Forecasting of Stream Water Temperature
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estimated over the posterior sample of h. A p-value near 0.5 indicates consistency

between model and data, whereas a very high (0.95) or low (0.05) p-value

provides serious warning.

The Deviance Information Criterion (DIC) [53] was also used to compare the

goodness of fit of models M0 and M1. As with the Akaike Information Criterion,

DIC combines a measure of the goodness of fit penalized by a measure of the

model complexity. The smaller the DIC, the more a model is supported by data.

The predictive performances were compared through cross-validation analyses.

A cross-validation was implemented using the first two thirds of the available time

series to fit the model and make forecasting on the last third. These were

subsequently compared against known temperatures. Differences between the

observed and predicted water temperatures were quantified using the root mean

square error (RMSE) [37, 41, 54].

4. Application

Our approach was applied to i) the illustrative simulated time series of air and

water temperature and ii) time series of water temperature, air temperature and

water discharge from three coastal streams of the French Environmental Research

Observatory for Small Coastal Streams (ERO SCT; Fig. 2 which benefits from long

term monitoring of environmental parameters and fish populations; the Oir River

[55, 56], the Scorff River [57] and the Nivelle River [58]. The main characteristics

of rivers and associated data are summarized in Table 2 and Fig. 3. More details

about the Rivers are provided in Annexe 1 and data used in this study can be

made available by contacting staff members of the ERO SCT (https://www6.inra.

fr/ore-pfc).

5. Forecasting scenarios

For the illustrative example based on simulated data, models M0 and M1 were

applied to forecast water temperatures, with a simplified version of model M1

(eq.1 to 3) using air temperature as the only predictor of water temperature.

Water temperature was forecast based on a 50 years extension of air temperature

simulated with a linear increment in the annual mean resulting in a warming of

+3.2 C̊ (corresponding to the maximum air temperature increments supported by

the IPCC (2007) [1].

The three simulated scenarios, extended from the coastal stream examples, also

consisted of 50 years of air and water temperature and discharge data. Air

temperatures were simulated with the same +3.2 C̊ linear increment in the annual

mean. To allow for comparisons between outputs of models M0 and M1, the

simulated water discharge time series were constructed with a constant mean and

amplitude set to the average over the last 10 years.
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Results

First, we compare the forecasts of water temperature provided by the models M0

and M1 with the simple simulated example. Then, we compare the quality of fit,

the internal consistencies (posterior checking) and the forecasting performances

(cross validation) of the two models when applied on the three coastal streams.

Lastly, we provide some key features of the results of the model M1.

1. Simulated illustrative example

Fig. 4 highlights that the two modelling approaches lead to different forecasts of

water temperature. Simulations from M0 are based on the positive correlation

between air and water temperatures owing to their synchronous seasonal

fluctuations, which logically leads to forecast an increase in the water temperature.

Fig. 2. Watersheds of the three case study rivers. x: hydrometric station; N: water temperature
measurement stations.

doi:10.1371/journal.pone.0115659.g002
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By contrast, M1 captures the difference in long term trends in air temperature and

water temperature and hence produces a decreasing trend in water temperature,

which is more consistent with the observed patterns in the historical time series.

The 95% credibility envelope around the forecast produced by M1 is also wider

than that produced by M0.

2. Applications to coastal streams data

Posterior checking, model comparison and cross validation

Overall, when applied to the data from the three coastal streams, the model M1

produces similar results toM0 in term of internal consistency and outperformed it

in terms quality of fit and predictive performance.

For each of the three coastal streams, discrepancies between observed and fitted

means calculated on 6 months intervals are globally smaller for model M1 than for

model M0 (Fig. 5). This value appeared close to 0.5 in case of both models

indicating equivalent posterior consistency with data. It is worth noting that the

simple regression approach M0 was not able to capture the variability in the data

for the years 1991, 1992 and 1993 for the Nivelle River, 1987 for the Oir River and

1999 for the Scorff River.

Table 2. Study rivers characteristics and summary of data sets.

River Oir Scorff Nivelle

Location Lower Normandy Brittany Basque Country

Mouth (Latitude & Longitude) 48 3̊79N, 1 1̊79W 47 2̊89N, 3 2̊39 W 43 2̊29 N, 1 3̊8 W

Drainage area (km2) 87 480 238

River Length (km) 19.5 75 32.2

Estuary length (km) 8 15 8.8

Source altitude (m above sea level) 220 270 600

Geology (predominant) Schist & granite Granite & schist Schist & sandstone

Land use (% of catchment) Agricultural 82 60 80

Woodland 10 30

Urban 6

Wetland 2

Climate Oceanic Mild oceanic Mild & wet oceanic

Precipitation (mm per year) ,1000 ,1000 ,1700

Water temperature Period 1986–2007 1995–2007 1984–2007

Mean ( C̊) 11.88 12.88 13.88

Missing data (%) 9.53 26.98 2

Air temperature Period 1986–2007 1995–2007 1984–2007

Mean ( C̊) 11.24 12.39 14.14

Missing data (%) 8.03 0.63 0.34

Water discharge Period 1986–2007 1995–2007 1984–2007

Mean (m3.s21) 0.99 4.95 4.39

Missing data (%) 17.75 1.05 0.68

doi:10.1371/journal.pone.0115659.t002
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x2 discrepancies and associated p-values for the two models do not reveal

inconsistencies between the models and the data from the three rivers as all p-

values are close to 0.5 (Table 3).

Deviance Information Criterion clearly indicates a better fit of modelM1 for the

three coastal streams (Table 3). The posterior means of deviances are much

greater for model M0, and differences are not counterbalanced by the higher

model complexity of model M1. The high number of parameters estimated on the

Oir River for model M0 (pD571.8, Table 3) differs to that of the Scorff and

Nivelle Rivers (pD close to 6 in each case, Table 3) and is attributed to the higher

frequency of missing air and water temperature data for the Oir River (in the

Bayesian framework missing data are considered as unknown values to be

estimated).

The RMSE (Table 3), used as a summary measure to quantify the predictive

performances of both models, indicates better predictive performances for model

M1 on the three rivers. Even when a large proportion of missing data for any one,

or for multiple time series’ could have impeded the precision in the parameter

Fig. 3. Time series of the available data on the three rivers used as case studies.

doi:10.1371/journal.pone.0115659.g003
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estimates in eqs. (2a)-(2b), the performance of the new method was superior in its

estimates than those of model M0. See for instance air and water temperature data

in 1990, 1991, 1992 and 1994 on the Oir River together with the high proportion

of missing data for water discharge between 2001 and 2004, which represented

nearly half of the forecasting period.

Means and amplitudes of the air temperature, water discharge and water

temperature time series

Bayesian estimates of means and amplitudes (estimated for every 6 months

intervals) vary between time intervals, and with the exception of increasing trends

in the mean water temperature of the Oir River and air temperature of the Nivelle

and Oir rivers, no other clear trend emerged. Uncertainty around estimates is

quite low (Fig. 6) and slightly lower for periods with higher proportion of missing

data (see for instance the period 2001–2004 for water discharge on the Oir River).

Overall mean water temperature increased from north (Oir R.) to south

(Nivelle R.). Amplitudes of air temperature were close to 6 C̊ and the amplitudes

of water temperature increased with river lengths and catchment areas (Scorff R..

Nivelle R.. Oir R.). Time series of mean water and air temperatures appear to be

positively aligned, while time series of water amplitudes appeared to be positively

aligned with amplitudes of air temperatures but buffered by occurrences of high

mean flow (Fig. 6.).

Fig. 4. Evolution of temperatures predicted by the modelling approaches M0 and M1 for the simple
simulated example. Posterior means are represented by a full line for the model M1 and a dotted line for

model M0. 95% Bayesian credibility intervals corresponds respectively to dark and light grey shaded areas for

models M1 and M0. Points correspond to initial data.

doi:10.1371/journal.pone.0115659.g004
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Estimates of parameters linking water temperature to air temperature and water

discharge

Posterior estimates of regression parameters linking the characteristics of the

water temperature sine signal to that of the air temperature and water discharge

are consistent overall with our expectation (Fig. 7). Bayesian posterior distribu-

tions of all parameters have only low probability to be negative, except h
0

2
.

Fig. 5. Boxplots of the differences between observed and fitted means of water temperatures by six month blocks on the three Rivers with the
modelling approaches M0 and M1. Only blocks with representative data were included.

doi:10.1371/journal.pone.0115659.g005
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Uncertainties around parameter estimates are greater for the Scorff River, for

which data series are shorter (13 years) than those of the Nivelle and Oir Rivers

(24 and 22 years respectively). Maximum flow nonetheless had negligible effect on

minimum water temperature for the Nivelle River (posterior distribution of h2
around 0). The relationship between the time series of minimum flow and of the

maximum water temperature is also weak (posterior distribution of h
0

2
centred

around 0) (Fig. 7).

Forecasting water temperature from climatic scenarios

Based on the 50 years climatic scenarios, Bayesian forecasts of water temperature

produced by both models M0 and M1 exhibit clear increasing trends but the

median trends forecast by the modelling approach M1 were significantly weaker

(Fig. 8). The mean warming of stream water by the end of the 50 years forecasting

period ranges from around 1.5 C̊ to 2.5 C̊ according to model M0 while the three

forecast of model M1 were 0.2 to 1.5 C̊ lower.

Meanwhile, the models exhibit strong differences in the uncertainty around

forecasts (Fig. 8), the greater predictive performance and quality of fit of model

M1 being accompanied by a greater uncertainty in the forecasted trends, with 95%

credibility intervals at least 1.4 times greater than from model M0. The probability

that the forecast water temperatures exceeded the average temperature observed in

the last ten years can be used as a synthetic metric to compare the forecasts

between M0 and M1. According to model M0, the number of forecasting years

after which this probability exceeds 95% is less than 20 years. According to model

M1, this would occur latter on the three Rivers and are not forecast in case of the

Scorff River. Nonetheless, forecasting intervals are still overlapping by the end of

the forecasting period (Fig. 8).

Reconstruction of missing data using model M1

Missing data are considered in Bayesian modelling as unknown variables that can

be estimated directly from their posterior predictive distribution [49]. This is

illustrated for the Oir River (Fig. 9) where water temperature reconstructed from

model M1 integrate well with the existing time series. Uncertainties around

Table 3. Model selection, posterior checking and predictive performance for the two modelling approaches applied to the 3 rivers.

River Model Dev pD DIC p-value RMSE

Nivelle M0 12715 6.2 12721 0.50 3.15

M1 9882 767 9959 0.50 2.29

Oir M0 9379 71.8 9451 0.51 2.48

M1 7938 68.2 8007 0.49 2.17

Scorff M0 5200 6.4 5207 0.51 3.40

M1 4038 51.9 4085 0.50 3.00

Dev: deviance posterior mean; pD: measure of the model complexity (estimated number of parameters); DIC: Deviance Information Criterion. p-value: p-

value for the posterior checking tests; RMSE: root mean square errors used to quantify the predictive performance.

doi:10.1371/journal.pone.0115659.t003
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estimates are close to the observed variations of water temperatures around the

underlying mean seasonal pattern, showing that estimated water temperatures are

good approximation of the true water temperatures.

Fig. 6. Posterior distribution of the means (a) and amplitudes (b) characterizing the time series of water temperature (WT), air temperature (AT)
and water discharge (Q) on the three rivers. Solid line: posterior medians; shaded area: 95% posterior interval.

doi:10.1371/journal.pone.0115659.g006
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Discussion

The effect of climate warming on river temperatures is no longer just speculative,

with an observed warming up to 1 C̊ per decade [7, 8, 36]. Providing generic

models to reconstruct and forecast water temperature series based on predictors

such as air temperature and water discharge, for which historical series or

predictions from scenarios of climate change are available, is a prerequisite to

better understand how water temperature drives ecosystems functioning, and to

evaluate the impact of global warming. In this context, using a statistical

Fig. 7. Posterior distributions of the parameters involved in the linear regression used to infer the time series of stream water temperatures based
on time series of air temperature and discharge used as predictors.

doi:10.1371/journal.pone.0115659.g007
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framework allowing weighting of the outcomes of different management scenarios

is a cornerstone for further biological conservation [48, 59, 60]. The time series

modelling approach (M1) developed in this paper offers a useful contribution to

these challenges.

Fig. 8. Average temperature calculated for 6 months intervals forecasted by the modelling approachesM1 andM0 on the three rivers over 50 years
under an air temperature warming scenario of 3.2˚C. Posterior means are represented by solid lines for the modelM1 and dotted lines for modelM0. 95%

Bayesian credibility intervals correspond respectively to dark and light grey areas for models M1 and M0 respectively. Horizontal Black line: average water

temperature observed over the last ten year time series.

doi:10.1371/journal.pone.0115659.g008

Fig. 9. Observed (black line) and estimated missing water temperatures (black dotted line) using
model M1 with 95% Bayesian credibility interval (grey area) on the Oir River in 2006.

doi:10.1371/journal.pone.0115659.g009
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The time series decomposition approach has several advantages over the linear

regression modelling (M0). It can be used to reconstruct continuous time series of

discharge, air and water temperatures in the presence of missing data without

additional predictors. The method proved useful in reconstructing continuous

water temperature time series for three French coastal streams, even with

important proportions of the records missing. The time series modelling

approach also allows disentangling seasonal periodicity from longer time trends.

The illustrative simulated example demonstrated that a simple regression model

between air and water temperature does not distinguish between temporal scales

lead to different conclusions. Owing to the ability to separate seasonality from

long term trends, the methodology based on time series modelling allows for

unbiased and more accurate predictions of the water temperature.

When applied to the time series of three coastal streams, the time series

modelling approach outperforms the simple linear regression model in quality of

fit and predictive performances. The DIC favoured the time series modelling

approach despite a higher number of parameters. For the three rivers, cross

validation analysis show that the time series modelling approach has better

predictive performance than the simple regression. The 50 years forecasting

scenarios also shows that the simple regression approach M0 provides unduly

warmer forecast of water temperature by comparison with the time series

approach M1. Only the posterior checking, which does not compare the

forecasting precision of the two methods, show that the two modelling approaches

had equivalent posterior consistency with data.

The time series modelling approach led to greater uncertainty in the forecasts of

trends than the simpler linear regression approach. The 95% credibility intervals

calculated for the time series modelling approach were at least 1.4 times wider

than those of the linear regression model. The lower quality of fit and the lower

predictive performances of the linear regression approach indicate that this model

is more likely to produce unrealistically precise forecasts. Our approach used only

two predictors (air temperature and water discharge) for water temperature. This

offers the advantage of a robust approach working from predictors which are

easily available from scenarios of climate change. Time series of air temperature

and rainfall could be available from downscaling of climatic models [61], and

rainfall-runoff models for estimating water discharge from rainfall are widely

available [62]. The relevance of including water discharge in our time series

modelling approach could be questioned. As pointed out by Koch & Grunewald

(2010) [63], rainfall predictions from global and regional climate models are less

reliable than air temperature predictions, and the reliability of rainfall–runoff

models is also discussed. However, the management of water resource shall be a

key issue, for instance in highly irrigated watersheds. Including water discharge in

time series modelling is needed to assess the consequences of alternative water

resource management choices on water temperature. Sensitivity analyses could be

performed using simple scenarios of water discharge evolution and could provide

valuable information to managers.
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The time series modelling approach could be developed further. A first research

direction to improve statistical modelling could consist of implementing more

elaborate modelling of random variation around the mean signal. For instance,

the covariance between water temperature residuals and the residuals of the

predictors could be explicitly incorporated [7, 33]. Observation errors could also

be modelled if they are thought to be high and the information to do so is

available. Furthermore, additional predictors could also be incorporated. Our

time series modelling approach ignores many other factors that may play an

important role in controlling water temperature, for example predictable changes

in riparian vegetation were not considered in the present study although they have

been shown to influence water temperature [64, 65, 66]. The impact of climate

change on groundwater discharge and associated spatial heterogeneity of water

temperatures, which are of primary importance for the survival of many cold

water fish under high temperature stress [67, 68] could be included in the model

as well as other climate variables such as evapo-transpiration or solar radiation.

To conclude, the outputs of our model could be used to assess the past and

future effects of water temperature on very specific ecological mechanisms such as

the growth of juvenile salmonids [12]. More generally, water temperature

scenarios are essential inputs for evaluating the effects of climate change on

various broader ecological processes such as the dynamics of fish population

[15, 69, 70] or food webs [24, 25]. By virtue of the Bayesian framework proposed,

river water temperature, an important and yet often unrecorded variable may be

estimated and forecasted with its uncertainty fully integrated, an important issue

in resource management and ecology.

Annexe 1

The Oir River flows into the estuarine part of the Sélune River, 8 km from the Bay

du Mont Saint Michel. Water temperatures were measured by Tidbit temperature

data loggers (¡0.2 C̊) daily at the Cerisel station (Fig. 2) by the National Institute

of the Agronomic Research (INRA). Daily air temperatures were obtained from

the meteorological station at Saint-Hilaire-du-Harcouët, 14 km east of the water

temperature station. Water discharge was measured just upstream of the

confluence with the Sélune River, while data were available for 22 years (1986 to

2007), 11.8% of data were missing over the three time series.

The Scorff River flows in to the Atlantic Ocean (Fig. 2). Daily water

temperature measurements were made with Tidbit data loggers (¡0.2 C̊) at the

Moulin des Princes station by INRA. Daily air temperatures were obtained from

the Lorient (Lan Bihoue) airport meteorological station, 9 km south of the water

temperature station while discharge was monitored 8 km upstream. Data were

available for 13 years (1995 to 2007), 9.6% data were missing for the three series.

The Nivelle River flows from the western Pyrenees, Spain in to the Bay of Biscay

at Saint Jean de Luz. Daily water temperature was recorded at Ibarron (Fig. 2) by

INRA using successively Jules Richard (¡0.4 C̊), Minilog Vemco (¡0.3 C̊) and
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Tidbit (¡0.2 C̊) temperature data loggers. Daily air temperatures were recorded

13 km to the north at the Biarritz airport meteorological station. Water discharge

was measured at the confluence with its main tributary, the Lurgorrieta. 24 years

of data were available (1984 to 2007), with 1% missing across the three time series.
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