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Abstract

Background: Discovering the genetic basis of common genetic diseases in the human genome represents a

public health issue. However, the dimensionality of the genetic data (up to 1 million genetic markers) and its

complexity make the statistical analysis a challenging task.

Results: We present an accurate modeling of dependences between genetic markers, based on a forest of

hierarchical latent class models which is a particular class of probabilistic graphical models. This model offers an

adapted framework to deal with the fuzzy nature of linkage disequilibrium blocks. In addition, the data

dimensionality can be reduced through the latent variables of the model which synthesize the information borne

by genetic markers. In order to tackle the learning of both forest structure and probability distributions, a generic

algorithm has been proposed. A first implementation of our algorithm has been shown to be tractable on

benchmarks describing 105 variables for 2000 individuals.

Conclusions: The forest of hierarchical latent class models offers several advantages for genome-wide association

studies: accurate modeling of linkage disequilibrium, flexible data dimensionality reduction and biological meaning

borne by latent variables.

Background
Genetic markers such as SNPs are the key to dissecting

the genetic susceptibility of common complex diseases,

such as asthma, diabetes, atherosclerosis and some can-

cers [1]. The purpose is identifying combinations of

genetic determinants which should accumulate among

affected subjects. Generally, in such combinations, each

genetic variant only exerts a modest impact on the

observed phenotype, whereas, in contrast, the interac-

tion between genetic variants and, possibly, environmen-

tal factors is determinant. Decreasing genotyping costs

now enable the generation of hundreds of thousands of

SNPs, spanning the whole human genome, across

cohorts of cases and controls. This scaling up to gen-

ome-wide association studies (GWASs) makes the analy-

sis of high-dimensional data a hot topic [2]. Despite

recent technological advances and extensive research

effort, the genetic basis of the aforementioned diseases

remains to a large extent unknown. Yet, the search for

associations between single SNPs and the variable

describing case/control status requires carrying out a

large number of statistical tests. Since SNP patterns,

rather than single SNPs, are likely to be determinant for

complex diseases, a high rate of false positives as well as

a perceptible statistical power decrease, not to mention

intractability, are severe issues to be overcome.

The simplest type of genetic polymorphism, single

nucleotide polymorphism (SNP), involves only one

nucleotide change, which occurred generations ago

within the DNA sequence. To fix ideas, we emphasize

that one single individual can be uniquely defined by
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only 30 to 80 independent SNPs and unrelated indivi-

duals differ in about 0.1% of their 3.1 billion nucleotides

[3]. Compared with other kinds of DNA markers, SNPs

are appealing because they are abundant, genetically

stable and amenable to high-throughput automated ana-

lysis. Consistently, advances in high-throughput SNP

genotyping technologies lead the way to various down-

stream analyses, including GWASs.

Exploiting the existence of statistical dependences

between neighboring SNPs, also called linkage disequili-

brium (LD), is the key to association study achievement

[4]. Indeed, a causal variant (i.e. a genetic factor) may

not be a SNP. For instance, insertions, deletions, inver-

sions and copy-number polymorphisms may be causa-

tive of disease susceptibility. Nevertheless, a well-

designed study will have a good chance of including one

or more SNPs that are in strong LD with a common

causal variant. In the latter case, indirect association

with the phenotype, say affected/unaffected status, will

be revealed (see Additional file 1).

Interestingly, LD also offers solutions to reduce data

dimensionality in GWASs. In the human genome, LD is

highly structured into the so-called “haplotype block

structure” [5]: regions where statistical dependences

between contiguous markers (called blocks) are high

alternate with shorter regions characterized by low sta-

tistical dependences (see Additional file 2). The most

likely explanation of this phenomenon is related to the

presence of large regions with low recombination rates

separated by recombination hotspots (i.e. small specific

regions with high recombination rates) [6]. Relying on

this feature, various approaches were proposed to

achieve data dimensionality reduction: testing associa-

tion with haplotypes (i.e. inferred data underlying geno-

typic data) [7], partitioning the genome according to

spatial correlation [8], selecting SNPs informative about

their context, or SNP tags [9] (for more references, see

[10] for example). Recent methods, such as HaploBuild

[11], have permitted to construct more biologically rele-

vant haplotypes where the “haplotype cluster structure”,

instead of the “haplotype block structure”, is assumed:

haplotypes are not constrained by contiguous orientation.

Unfortunately, these methods do not take into account

all existing dependences since they miss higher-order

dependences. Actually, these methods do not consider

the fuzzy nature of LD: the LD block boundaries are

not accurately defined over the genome (see Additional

file 3).

Due to their ability to represent conditional indepen-

dences between variables, probabilistic graphical models

(PGMs) offer an adapted framework for an accurate

modeling of dependences between SNPs. A PGM is a

probabilistic model relying on a graph representing con-

ditional independences within a set of random variables.

Inherently, this model simplifies the description of the

joint distribution of the set of variables. Several sub-

classes of PGMs exist such as Markov random fields

(MRFs) and Bayesian networks (BNs). The main differ-

ence between these two subclasses remains in the nature

of the graph: in contrast with MRFs, Bayesian networks

are directed graphs. Although the observed variables

(OVs) are often sufficient to describe their joint distri-

bution, sometimes, additional unobserved variables, also

named latent variables (LVs), have a role to play.

Only few research works have been dedicated to SNP

dependence modeling through PGMs. A hard task

because of high data dimensionality, tackling this model-

ing issue through PGMs nevertheless offers an attractive

lead. Approaches based both on MRFs [12] and BNs

have been designed. Regarding the latter, some methods

only consider observed variables [13,14] whereas other

models include latent variables [15,16]. In particular,

hierarchical BNs are the most promising models for LD

representation: their hierarchical structure supported by

LVs allows flexible information synthesis, thus efficiently

reducing the data dimensionality. To our knowledge,

modeling LD through hierarchical BNs in order to

reduce SNP data dimensionality has not yet been

designed. Notably, scalability remains a crucial issue for

GWASs.

In this paper, we emphasize the interest of using a

forest of hierarchical latent class models (FHLCMs), to

reduce the dimension of the data to be further sub-

mitted to statistical analyses devoted to the discovery of

Table 1 Comparison of running times, dimension reduction rates and entropy compression rates between CFHLC and

other algorithms, for Daly et al.’s dataset: Daly et al.’s method [29], Gerbil [25], HaploBlock [13] and Zhang et al.’s

algorithm [16]

Algorithm Running time Dimension reduction rates Entropy compression rates

Daly et al.’s method - 0.107 0.313

Gerbil 40 s 0.107 0.300

HaploBlock 158 mn 0.066 0.241

Zhang et al.’s algorithm 168 s 0.078 0.229

CFHLC 84 s 0.146 0.231

We ran the last three programs on a standard computer. As we had no access to Daly et al.’s software, we could only compare the dimension reduction rates

and entropy compression rates calculated from their results with the dimension reduction rates and entropy compression rates obtained with the other methods.
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genetic factors potentially involved in the disease. Such

studies encompass single-SNP analysis [17], multiple-SNP

analysis [18], SNP-SNP interaction analysis [19] and ana-

lysis integrating gene expression [20,21]. An FHLCM is a

hierarchical BN with discrete observed and latent vari-

ables. Basically, latent variables capture the information

borne by underlying markers. In their turn, latent vari-

ables are clustered into groups and, if relevant, such

groups are subsequently subsumed by additional latent

variables. Iterating this process yields a hierarchical struc-

ture. First, the great advantage to GWASs is that further

statistical analyses can be chiefly performed on latent

variables. Thus, a reduced number of variables will be

examined. Second, a model based on a hierarchical struc-

ture provides a flexible data mining tool. For example,

different degrees of data dimensionality reduction are

available to the statistician. Moreover, the hierarchical

structure is meant to efficiently conduct refined associa-

tion testing: zooming in through narrower and narrower

regions in search for a stronger association with the dis-

ease ends pointing out the potential markers of interest.

However, most algorithms dedicated to the learning of

hierarchical latent class models (HLCMs) fail the scal-

ability criterion when the data describe thousands of

variables and a few hundreds of individuals. In a pre-

vious work-on progress paper [22], we designed an algo-

rithm devoted to learning FHLCMs. This algorithm was

named CFHLC, which stands for Construction of For-

ests of Hierarchical Latent Class models. The contribu-

tion brought in the present extended version is the

following: (i) we advocate the use of FHLCMs to model

LD; (ii) we provide a detailed description of the main

concepts underlying our approach; (iii) using real data,

we show that the FHLCM graph is representative of the

haplotype cluster structure; (iv) in addition, we compare

the haplotype cluster structure obtained through

CFHLC with those output by four other algorithms; (v)

relying on both real and simulated data, we demonstrate

the ability of FHLCMs to concisely model SNP depen-

dences, showing that the multiple layers of the model

can take into account different LD degrees and haplo-

type diversity; (vi) finally, we present a thorough study

focused on both scalability and impact of adjustment of

the input parameters of CFHLC algorithm.

As a prerequisite to further understanding, Section

Preliminaries provides an informal definition of Bayesian

networks, focusing on latent class models and hierarchi-

cal latent class models. Then the Section dedicated to

the state of the art first points out the few anterior

works devoted to HLCM learning in general. This sec-

tion ends with a short review of the few attempts to

implement probabilistic graphical models for the specific

purpose of LD modeling. Section Methods motivates

the modeling of LD through FHLCMs and informally

describes such models. Then, the focus is set on the

general outline of the method proposed for FHLCM

learning. The next Section depicts the sketch of algo-

rithm CFHLC. The last Section is dedicated to experi-

mental results and discussion. In this Section, we first

test and discuss the ability of FHLCMs to accurately

represent the haplotype cluster structure of genetic data.

Then, we compare our algorithm to other methods with

respect to faithfulness in LD modeling and data dimen-

sion reduction. We end the Section with a thorough

study centered on scalability and influence of the input

parameters of the CFHLC algorithm.

Preliminaries
From now on, we will restrain the study to discrete and

finite variables (either observed or latent). For readers

that are not familiar with PGMs, Figure 1 clarifies the

meaning of specific key terms used hereafter.

Bayesian networks are probabilistic graphical models.

They are defined by a directed acyclic graph (DAG),

G(X, E), and a set of parameters, θ. The set of nodes

 = {X1, ..., Xn} represents n random variables and the

set of edges E captures the conditional dependences

between these variables (i.e. the structure). The variables

are either observed or latent. The set of parameters

θ is a matrix of conditional probability distributions

 i i XX Pa
i

= ( )





 / where PaX i
denotes node i’s

parents. If a node has no parent, then it is described by

an a priori probability distribution. For further under-

standing, we now briefly introduce the concepts of mar-

ginal independence and conditional independence

between two variables.

Definition 1 The marginal independence between two

variables Xi and Xj is defined referring to the joint distri-

bution P(Xi , Xj): P(Xi , Xj) = P(Xi) P(Xj).

A non-equality implies that Xi and Xj are marginally

dependent.

Definition 2 More restrictive, the definition of condi-

tional independence between two variables Xi and Xj

given a subset of variables  ⊆ X\{Xi , Xj} is the follow-

ing: P(Xi , Xj|  ) = P(Xi|  ) P(Xj|  ).
A non-equality implies that Xi and Xj are condition-

ally dependent given S.

A latent class model (LCM) is a particular type of

Bayesian network. It is defined as containing a unique

latent variable connected to each of the observed vari-

ables. The latent variable simultaneously influences all

observed variables and hence renders them dependent.

In the LCM framework, an underlying assumption,

called local independence (LI), states that the observed

variables are pairwise independent, conditional on the

latent variable [23]. The intuition behind LI is that the
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latent variable is the only explanation for the depen-

dences between observed variables. However, this

assumption is often violated for observed data. To tackle

this issue, HLCMs were proposed as a generalization of

LCMs. HLCMs are tree-shaped BNs where leaf nodes

are observed while internal nodes are not. In a Bayesian

network, local dependence between variables may be

modeled through the use of an additional latent variable

(see Figure 2). On a larger scale, multiple latent vari-

ables organized in a hierarchical structure allow high

modeling flexibility. Additional file 4 illustrates the abil-

ity of HLCMs to depict a large variety of relations

encompassing local to higher-order dependences.

State of the art
HLC model learning

Various methods have been conceived to tackle HLCM

learning. These approaches differ by the following

points: (i) structure learning; (ii) determination of the

latent variables’ cardinalities; (iii) learning of parameters,

i.e. a priori and conditional probabilities; (iv) scalability;

(v) main usage.

As for general BNs, besides learning of parameters (θ),

i.e. a priori and conditional probabilities, one of the

tasks in HLCM learning is structure (  ) inference. This

task generally remains the most challenging due to the

complexity of the search space. To address this issue,

two main categories of HLCM learning methods have

been developed. The first category, structural expecta-

tion maximization (SEM), successively optimizes

θ conditional on   |( ) and  conditional on

  |( ) . Amongst a few proposals, greedy search [24]

and dynamic programming [25] were designed. They

explore the space of possible graphs guided by a scoring

function, such as the Bayesian information criterion

(BIC) [26]. When using maximum likelihood estimation,

the BIC score prevents model overfitting through a pen-

alty term on the number of parameters in the model. As

regards greedy search, the search space of HLCM struc-

tures can be visited through two operations: a structure

in the neighborhood of the current structure may either

result from the addition or the removal of latent nodes

or from the addition or the dismissing of states, for

Figure 1 Illustration of key terms specific to probabilistic graphical models. The specific key terms illustrated below are the following:

probability distribution, conditional probability distribution, common ancestor, most recent common ancestor, child and parent.

Figure 2 Modeling of the local dependence between two

nodes (a) Latent Bayesian network modeling the local

dependence between B and C nodes. (b) Modeling of the local

dependence between B and C nodes through a latent

hierarchical model. The light shade indicates the observed

variables whereas the dark shade points out the latent variables.
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existing nodes. In the other solution, implemented in

Gerbil algorithm, dynamic programming discovers the

best segmentation of a genomic region into blocks of

contiguous SNPs. Then, for each previously learned

block, an LCM is learned. Alternative approaches imple-

ment ascending hierarchical clustering (AHC), which

provides clusters within which the SNPs are not neces-

sarily contiguous. In the following, we will use the terms

“blocks” and “clusters” to distinguish between these two

possibilities. Relying on pairwise dependence strength,

Wang and co-workers first build a binary tree; then they

apply regularization and simplification transformations

which may result in subsuming more than two nodes

through a latent variable [27]. Hwang and collaborators’

approach confines the HLCM search space to binary

trees augmented with possible connections between sib-

lings (nodes sharing the same parent into immediate

upper layer) [28]. To construct the tree, they design an

AHC strategy. First, a partition of the observed variables

into clusters of size 2 is performed, based on a mutual

information criterion. Any such cluster then defines a

new LCM (thus a new LV) in the upper layer under

construction. Second, the parameters of each LCM are

learned. Thus missing values of LVs can be imputed.

Therefore these LVs can be considered as observed vari-

ables for the next step. A tree is completed through the

iteration of these two steps (partitioning, missing value

imputation).

Parameter learning requires the determination of the

LVs’ cardinalities, e.g. the number of possible states (or

classes) for each LV. A simple method is to arbitrarily

set a small value for the cardinality. Following this idea,

Hwang and collaborators constrain LVs to binary vari-

ables. This method is very fast but presents several

drawbacks: on the one hand, a too small cardinality can

lead to a loss of information in the process subsuming

child variables into a unique LV; on the other hand, a

too large cardinality can entail model overfitting and

heavy computational burden. Wang and co-workers pro-

pose a regularization step to reduce the cardinality of an

LV Y, knowing the cardinality of its neighbor variables

Z
Z

max Z
i

i
k

i

i
k

i

:| |
| |

| |
Y =

Π =

=

1

1

. Other authors use a greedy

search approach, starting with a preset value and incre-

menting or decrementing it to meet an optimal criter-

ion. The latter method has the drawback of entailing

computational overload because it runs several steps of

the expectation maximization (EM) algorithm, imple-

menting an iterative procedure.

Usually, the EM algorithm is used for parameter learn-

ing in the presence of LVs or missing data, but it is

computationally expensive and does not guarantee that

the global optimum will be reached. To speed up the

EM process, Hwang and collaborators implemented a

heuristic based on partial imputation of binary LVs’

missing values. Thus, the EM algorithm is actually run

on partially imputed data. For an LCM containing two

child variables Yj and Yk, the heuristic is the following:

all individuals showing the most probable configuration

of {Yj, Yk} are assigned an LV value of 0. Similarly, the

individuals characterized with the second most probable

configuration are assigned an LV value of 1. To avoid

getting trapped in local optima while running the EM

algorithm to learn a set of latent models, other authors

adapted a simulated annealing approach [16].

Hwang and co-workers’ approach is the only one we

are aware of that succeeds in processing high-dimen-

sional data: in an application dealing with a microarray

dataset, more than 6000 genes have been processed for

around 60 samples. To the best of our knowledge, no

running time was reported for this study. Nevertheless,

the twofold binarity restriction (binary tree, binary LVs)

and the lack of control for information decay as the

level increases are severe drawbacks to reach our aims:

i.e. to achieve realistic SNP dependence modeling and

perform subsequent association study with sufficient

power.

Graphical models for LD modeling

To address LD modeling through a probabilistic graphi-

cal model framework, various models were proposed:

hidden Markov models (HMM), Markov random fields

and Bayesian networks with or without latent variables.

HMMs represent simple but efficient models to parti-

tion a SNP sequence into blocks, because no structure

learning step is required [29] and the latent states may

represent common haplotypes. Verzilli and co-workers

modeled SNP dependences using Markov random fields

[12]. They designed an MCMC (Markov Chain Monte

Carlo) method to sample over the space of possible

graphs while exploiting prior biological knowledge.

Their approach allows to discover cliques of dependent

SNPs, to further allow the identification of causal rela-

tions between markers and the disease status indicator.

To implement a tractable method for genome-wide

data, Verzilli and co-workers reduce the space of possi-

ble graphs by specifying a maximal physical distance

between SNPs belonging to the same clique, as well as a

maximal size of 8 SNPs for any clique. In the family of

Bayesian networks without LVs, HaploBlock implements

a statistical model of haplotype block variation [13].

This model’s advantage lies in integrating population

genetics concepts such as recombination hotspots, bot-

tleneck, genetic drift and mutations. Another method,

BNTagger, was developed for SNP tag selection; it

exploits conditional independence between variables

[14]. To learn the structure, BNTagger implements a
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greedy search with random restarts; then it determines a

subset of independent and highly predictive SNPs. The

two latter methods were only tested on a small number

of SNPs (less than 1000) and the authors reported run-

ning times of 40 h for 97 SNPs [13] and between 2 and

4 h for only 52 SNPs [14]. Thus, these methods do not

seem fitted to GWAS data processing. Regarding the

family of Bayesian networks with LVs, Nefian modeled

SNP dependences through embedded Bayesian net-

works. Her model is indeed a set of LCMs augmented

with SNP-SNP dependences and LV-LV dependences

[15]. To learn the model, the SNP data sequence is split

into contiguous windows of fixed common size. Then,

for each window, an LCM is created. The lack of flex-

ibility of the SNP partitioning method used remains a

severe draw-back. Zhang and Ji also proposed to model

LD through a set of LCMs, using an SEM strategy [16].

Their method does not require splitting the sequence

into fixed-size windows. Nevertheless, the number of

LCMs has to be specified. As far as we know, no execu-

tion times were reported for the two latter approaches

when run on high-dimensional data.

Other methods are based on regularization, such as

the graphical Lasso [30], and have been applied to learn-

ing sparse PGMs for proteomics or gene expression stu-

dies, whose data dimensionality is high (around 5000

variables) but lower than that of genome-wide data

(above 100000 variables). The basic idea is to consider

that the observations follow a multivariate Gaussian

distribution with mean µ and covariance matrix Σ (gra-

phical Gaussian model). If the ijth partial correlation

coefficient of the precision matrix Σ
-1 equals zero, vari-

ables i and j are conditionally independent, given the

other variables. The use of Lasso aims at restraining the

learning task to sparse PGMs through finding a least-

square solution under the following constraint: ∑ν|bν| ≤

t, meaning that the sum, over the whole variable set, of

the absolute values of the regression coefficients v has

to be inferior or equal to a constant t. This Lasso-based

approach has been extended to the case where it is rea-

sonable to assume that the variables can be clustered

into groups sharing similar correlation patterns (corre-

sponding to underlying biological modules in gene

expression) and where sparse block-structured precision

matrices are estimated [31].

To our knowledge, Verzilli et al’s method is the only

one whose tractability regarding GWAS data is known.

However, in practice, their MRF modeling reveals a

drawback. The LD is modeled through cliques contain-

ing a maximum number of 8 SNPs, whereas, generally,

several tens or hundreds of SNPs may be dependent.

Furthermore, no dependences between cliques are taken

into account. In contrast, BNs with LVs offer a crucial

advantage over other models: they provide synthesizing

variables useful to reduce data dimensionality. However,

when the number of variables exceeds several hundreds,

implementing the SEM approach for LD modeling leads

to prohibitive computational burden. When dealing with

genome-wide data, the imperious requirement for tract-

ability leads us to choose a hierarchical clustering

approach, in the line of Hwang and co-workers.

Methods
Motivation of the FHLC model for GWASs

The HLCMs offer several advantages for GWASs. First,

beside data dimensionality reduction, they allow a

simple test of direct dependence between an observed

variable and a target variable such as the phenotype,

conditional on the latent variable, parent of the observed

variable. Note that the phenotype variable is not

included in the HLCM. In the context of GWASs, this

test helps find the markers which are directly associated

with the phenotype, i.e. causal markers, should there be

any. Second, HLCMs can deal with the fuzzy nature of

LD blocks. Indeed, HLCMs can take into account var-

ious degrees of LD strength between any two SNPs,

depending on the height of their lowest common LV

node ancestor in the tree. Thirdly, the hierarchical

structure allows zooming in through narrower and nar-

rower regions in search for a stronger association with

the disease, thus offering a data mining tool. This zoom-

ing process ends pointing out the potential markers of

interest. Finally, the latent variables may be interpreted

in terms of biological meaning. For instance, in the case

of haplotypes, that is, phased genotypes, the latent vari-

ables are likely to represent the so-called haplotype

block structure of LD. To a certain extent, an LV might

be interpreted as the shared ancestry of the haplotypes

defined by the observed variables, namely, the contem-

porary haplotypes of the tree rooted in the LV. Each

state of an LV may represent a group of similar haplo-

types. In the situation of limited ancestral recombina-

tion, similar haplotypes tend to share recent common

ancestry. Although this situation is not guaranteed along

the genome, it is very likely for low-level LVs, since they

are expected to cover very small genomic regions show-

ing strong LD. Thus the directed edges, LV ® SNP, can

represent causal effects and provide a biological sense.

Besides, it has to be noted that when the latent variables

capture dependences between distant SNPs (or distant

groups of markers), they can be viewed as population

structure.

However, SNP dependences would better be more

wisely modeled through a forest of HLCMs. In the case

of a forest, higher-order dependences are captured only

when relevant, i.e when meeting a strength criterion.

Therefore, FHLCMs allow to model a larger set of

configurations than HLCMs do. Typically, an HLCM is
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limited to represent clusters of close dependent SNPs.

Actually, in this model, variables are constrained to be

dependent upon one another, either directly or indir-

ectly. Consequently, HLCMs cannot account for poten-

tial independence between groups of distant SNPs or

SNPs located on different chromosomes. But realistic

modeling requires a more flexible framework. For

instance, the LD plot of the 2 Mb sequence shown in

Additional file 5 reveals that the greatest part of LD is

observed between SNPs in vicinity. LD rarely exceeds

500 kb between SNPs.

An FHLCM consists of a directed acyclic graph (DAG)

also called the structure whose nonconnected compo-

nents are trees, and of θ, the parameters (further defined).

Figure 3 illustrates a possible structure for an FHLCM.

Principle of FHLC model construction

Our method can process both genotypic (unphased) and

haplotypic (phased) data. It takes as an input a matrix

DX defined on a finite discrete domain, say {0, 1, 2} for

unphased SNPs or {0, 1} for phased SNPs, describing n

individuals through p variables  = {X1, ..., Xp}. Algo-

rithm CFHLC yields an FHLCM, that is a forest struc-

ture and θ, the parameters of a set of a priori

distributions and local conditional distributions allowing

the definition of the joint probability distribution. Two

search spaces are explored: the space of directed forests

and the probability space. In addition, the whole set of

latent variables H of the FHLCM is output, together

with the associated imputed data matrix.

To handle high-dimensional data, our proposal com-

bines two strategies. The first strategy splits up the

genome-scaled data into contiguous regions. In our case,

splitting into (large) windows is not a mere implementa-

tional trick; it satisfies biological grounds: the overwhelm-

ing majority of dependences between genetic markers

(including higher-order dependences) is observed for

close SNPs. The user interested in taking into account

long-range LD due to the presence of population struc-

ture will be faced with the following choices: (i) adjusting

the window size, relying on biological background defin-

ing the maximum physical distance between SNPs in

long-range LD (e.g. 500 kb or 1 Mb); (ii) slightly dimin-

ishing the density of the studied SNP sequence. A combi-

nation of these two approaches may be more convenient.

Then, an FHLCM is learnt for each window in turn.

Within a window, subsumption is performed through an

adapted AHC procedure: (i) at each agglomerative step, a

partitioning method is used to identify clusters of vari-

ables; (ii) each such cluster is intended to be subsumed

into an LV, through an LCM. For each LCM, parameter

learning and missing data imputation (for the latent vari-

able) are performed. A global schema of our method is

presented in Figure 4.

Along with a hierarchy-based proposal of Hwang and

collaborators [28] developed for gene expression studies,

our method also implements data subsumption, meeting

the two following additional requirements: (i) a more

flexible thus more faithful modeling of underlying reality,

(ii) a control of information decay due to subsumption.

Node partitioning

Following Martin and VanLehn [32], ideally, we would

propose to associate a latent variable with any clique

of variables in the undirected graph of dependence

 !"#$

 !"#%

 !"#&

 !"#'

Figure 3 A forest of hierarchical latent models. This forest consists of two trees, of respective heights 2 and 3. The light shade indicates the

observed variables whereas the dark shade points out the latent variables.
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relations (see Figure 5). In the case when introducing an

additional LV increases a scoring function such as the

BIC score [26], the LCM is validated. However, search-

ing for such cliques is an NP-hard task. Moreover, in

contrast with these authors’ objective, FHLCMs do not

allow clusters to have more than one parent each: non-

overlapping clusters are required for our purpose. Thus,

an approximate method solving a clique partitioning

problem when provided with pairwise dependence mea-

sures is relevant; the clique partitioning problem con-

sists in finding the best partition of a graph into cliques.

An algorithm meeting this purpose has already been

described in the literature: BenDor and co-authors

designed CAST, a clique partitioning algorithm devoted

to variable clustering [33]. They especially applied CAST

for gene expression clustering. As an input, CAST

Figure 4 Schema of the CFHLC algorithm. The light shade indicates the observed variables whereas the dark shade points out the latent

variables.

Mourad et al. BMC Bioinformatics 2011, 12:16

http://www.biomedcentral.com/1471-2105/12/16

Page 8 of 20



requires a binary similarity matrix. The adaptation of

CAST to our case is straightforward: the dependence

measure between two SNPs, evaluated through mutual

information, is used as a similarity measure. All mutual

information values less than a threshold tMI are assigned

a similarity value of 0, whereas the others are assigned a

value of 1. As a threshold tMI , the median value (or

another quantile value) of the mutual information

matrix can be used. Then, the CAST algorithm con-

structs the clusters one at a time. The authors define

the affinity a(x) of an element x to be the sum of simi-

larity values between x and the elements present in the

current cluster open . x is an element of high affinity if

it verifies inequality a(x) ≥ tCAST| open |, where tCAST is a

specified similarity threshold. Otherwise, x is considered

an element of low affinity. To summarize, the algorithm

alternates between adding high affinity elements to
open and removing low affinity elements from it. When

the process stabilizes, open is closed. A new cluster can

be started.

Determining cardinalities for latent variables

A steep task is choosing - ideally optimizing - the car-

dinality of each LCM’s latent variable. This problem

cannot be remedied using greedy search because of its

intractability regarding high data dimensionality.

Although the regularization method of Wang and colla-

borators has the advantage of being very quick (see Sub-

section HLC model learning), in our context, their

method is impracticable. For instance, let us consider an

HLCM learned from genome-wide data. The first layer

of the HLCM contains the majority of the LVs in the

model. In our case, an LV in the first layer can subsume

more than 10 child OVs (i.e. SNPs). As the cardinality is

the same for all OVs (3 possible genotypes: 0, 1, 2), the

resulting cardinality of the LV after regularization

remains generally very large. For example, for an LCM

containing 10 OVs {X1 , ..., X10 } of cardinalities equal

to 3, the cardinality of the LV H would be : |H| =

310/3 = 39 = 19683. The simplest solution remains to

arbitrarily set a small value for LV cardinalities, but it

has several drawbacks (see Subsection HLC model

learning). Instead of using an arbitrary constant value

common to all latent variables, we propose that the car-

dinality be estimated for each latent variable through a

function of the underlying cluster’s size. The rationale

for choosing this function is the following: the more

child nodes a latent variable has, the larger the total

number of possible combinations is for the values of the

child variables and the larger also is the expected num-

ber of such combinations observed over all individuals

(when the number of individuals is sufficiently high).

Therefore, the cardinality of this latent variable should

depend on the number of child nodes. Nonetheless, to

keep the model complexity within reasonable limits, a

maximum cardinality is fixed.

Parameter learning and imputation

Parameter learning is carried out step by step, each time

generating additional latent variables and imputing their

values for each individual. At ith step, this task simply

amounts to performing parameter learning for as many

LC models as there are clusters of variables identified. We

recall that the nodes in the topology of an LCM are

reduced to a unique root and leaves. Therefore, at ith step,

each LCM’s structure is rooted in a newly created latent

variable. When latent variables are the source nodes in a

BN, parameter learning may be performed through a stan-

dard EM procedure. This procedure takes as an input the

cardinalities of the latent variables and yields the probabil-

ity distributions, that is, prior distributions for those nodes

with no parents and distributions conditional to parents

for the remaining nodes. After imputing the missing data

corresponding to latent variables, new data are available

to seed the next step of the FHLCM construction: latent

variables identified through step i will be considered as

observed variables during step i + 1.

It has to be noted that designing an imputation method

to infer the values of the latent variable for each indivi-

dual is a matter for investigation. Once the prior and

conditional distributions have been estimated for a given

LCM, probabilistic inference in BNs may be performed.

A straightforward way would consist in imputing the

latent variable value for each individual as follows:

h argmax p H h X x X x X xh j j j j j jc c
* / , ,...,= = = = =( ){ }1 1 2 2

.

However, in the framework of probabilistic models,

this deterministic approach is disputable. In

contrast, a more convincing alternative will draw a

value h for latent variable H, knowing the

probabilities p H h X x X x X xj j j j j jl c c
= = = =( )/ , ,...,

1 2 2
for

each individual.

Figure 5 Associating a latent variable to any clique of variables

in the undirected graph of dependence relations (a) Three

pairwise dependent variables (clique). (b) Latent model: the

three variables depend on a common latent variable. The dark

shade indicates the latent variable designed to model the pairwise

dependence between the three variables.

Mourad et al. BMC Bioinformatics 2011, 12:16
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Controlling information decay

Conversely to Hwang and co-workers’ approach, which

mainly aims at data compression, information decay

control is required: in step i, any candidate latent vari-

able H which does not bear sufficient information about

its child nodes must be invalidated. As a consequence,

such child nodes will be seen as isolated nodes in

step i + 1.

Let us consider two variables X and H. Basically,

the mutual information measures the difference

of entropies between the independent model P(X)

P(H) and the dependent model P(X|H) P(H):

      ( ( ) (H) ( ) ( ( (X H X X H H X X H, ) | ) ) ( | )= +( ) − +( ) = − . There-

fore, the mutual information measures the dependence

of the two variables. The larger the difference between

entropies, the higher is the dependence. Now, let

us consider a set of child variables  = {X1, X2, ..., Xn}

and the parent variable H. In our case, we want to

compare the two models: P(X1) P(X2) ... P(Xn) P(H)

and P(X1|H) P(X2|H) ... P(Xn|H) P(H). Thus, ∆, the dif-

ference of entropies between the two models is:

      ( ) ( ) ( ) ( ) ( ) ( ) (X H X H H X X H Xii

n
ii

n
i i i+( ) − +( ) = −( ) =

= =∑ ∑1 1
| | || H

i

n

i

n
)

== ∑∑ 11
.

∆ corresponds to the sum of mutual information values

over all LCM’s edges.

Normalization through entropy and averaging are

performed to provide a more intuitive criterion:

C
S

X H

X HH

i

i
i cluster H

=
( )
( ) ( )( )∈ ( )∑1 

 
,

min ,
, with SH the

size of cluster (H).  represents the average percentage

of information captured by the LV with respect to its

child variables.

Algorithm
The sketch of CFHLC is presented in Algorithms 1

and 2. The user may tune seven parameters. Window

size s specifies the number of contiguous SNPs - or vari-

ables - spanned per window. The aforementioned criter-

ion C is meant to estimate information decay, thus

allowing information dilution to be constrained to a

minimal threshold t. Parameters a, b and cardmax partici-

pate in the calculus of the cardinality of each latent vari-

able. Finally, parameter PartitioningAlg enables flexibility

in the choice of the method dedicated to clustering

highly-correlated variables into non-overlapping groups.

Within each window i, the AHC process is initiated

from the first layer consisting of univariate models. Each

such univariate model is built for any observed variable

in the set W i (lines 6 to 8). The AHC process stops if

each cluster identified is reduced to a singleton (line 13)

or if no cluster of size strictly greater than 1 could be

validated (line 31). Each cluster containing at least

two nodes is subject to LCM learning (lines 19 and 20)

followed by validation (line 23 to 28). In order to simplify

the FHLCM learning, the cardinality of the latent variable

is estimated as an affine function of the number of vari-

ables in the corresponding cluster (line 19). Algorithm

learn_latent_class_model is plugged into this generic fra-

mework (line 20). After validation through threshold

t (lines 23 and 24), the LCM is used to enrich the

FHLCM associated with the current window (line 25):

a specific merging process links the additional node cor-

responding to the latent variable to its child nodes, them-

selves already present in the FHLCM structure under

construction; the prior distributions of the child nodes

are replaced with distributions conditional on the latent

variable. The newly created latent variable, L jk
, is added

to the set of latent variables, whereas its imputed values,

D L jk




 , are stored (line 26). In W i, the variables in

C jk are now replaced as a whole with the corresponding

latent variable; data matrix D W i  is updated accord-

ingly (line 27). In contrast, the nodes in unvalidated clus-

ters are kept isolated for the next step. Finally, the

collection of forests, DAG, is successively augmented

with each forest built within a window (line 36). In paral-

lel, due to assumed independence between windows, the

joint distribution of the final FHLCM is merely computed

as the product of the distributions associated with the

windows (line 36).

INPUT:

 , a set of p variables (X = X1; ...; Xp),

D , the corresponding observations for n individuals,

s , a window size,

 , a criterion designed to estimate information decay

while building the FHLCM,

t, a threshold used to constrain information dilution,

based on criterion ,
PartitioningAlg, an algorithm dedicated to partition a

set of variables into non-overlapping clusters of

variables,

a; b and cardmax, parameters used to estimate the car-

dinality of latent variables.

OUTPUT:

DAG and θ, respectively the DAG structure and the

parameters of the FHLCM constructed,

L, the whole set of latent variables identified through

the construction (L = {L1,..., Lm}), DL, the corresponding

data imputed for n individuals.

1: nbw← p/s /* computation of the number of con-

tiguous windows */

2: DAG ←∅; θ ← ∅; L← ∅; DL← ∅

3:

4: for i = 1 to nbw

5: /* processing of layer 0 */

6: W D W Di i i iX X i i← { } [ ] ← −( ) × + × −( )× + ×1 1 1 1   , ..., ; : )
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7: { , } _ _ ( )∪ ∪ ←∈ ∈j univ j univ ii j i j
DAG learn univariate models

W
W

W


8: DAG DAGi j univ i j univi j i j
← ∪ ← ∪∈ ∈W W

; 

9:

10: step ← 1

11: while true

12: { ,..., } ( , [ ], )#C C W D W 1  ← partition PartitioningAlgii

13: if all clusters C q are singletons then break end if

14:

15:

C C j1 2
, ..., _ _ _ _ _

#j
identify clusters of size strictly great

{ } ← eer than one_ _ ( ,..., )#C C 1 

16: nbValidClusters ← 0

17:

18: for k = 1 to #2

19: card LV ← min(a × number_of_variables ( C jk
) +

b; cardmax)

20: {DAGjk, θjk, Ljk,

DAG L L learn latent class model Lj j j j j jk k k k k
, , , _ _ _ , D C D C



{ } ← 

kk
cardLV





( ),

21:

22: /* validation of current cluster - see Subsection

Controlling information decay */

23: if  DAG L tj j jk k k
,D C D 









( ) ≥( )

24: incr(nbValidClusters)

25: DAGi ← merge_structures(DAGi, DAG jk
); θi ←

merge_parameters(θi,  jk
)

26: L L L Lj L L jk k
← ← 



 ;D D D

27:

D W D W D C D W W Ci i[ ] ← [ ] 



( ) ∪ 



 ← ( ) ∪\ ; \ j j i i j jk k k k

L L

28: end if

29: end for

30:

31: if (nbValidClusters = 0) then break end if

32:

33: incr(step)

34: end while

35:

36: DAG ← DAG ∪ DAGi; θ ← θ × θi

37: end for

Algorithm 1: CFHLC

INPUT:

C u : a cluster containing at least two nodes,

D C u[ ] : the corresponding observations for n

individuals,

cardLV: the cardinality of the latent variable to be

created.

OUTPUT:

a latent class model described by:

DAGu and θu, respectively the structure and the para-

meters of the latent class model,

Lu, a latent variable,

D Lu  , the data imputed for the latent variable (for

n individuals).

1: Lu ← create_latent_variable()

2: DAGu ← build_structure_of_latent_class_model

(Lu, C u )

3: θu ← run_standard_EM(DAGu, D CLu[ ] , cardLV)

4: D Lu  ← impute_data(θu, D CLu[ ] )

Algorithm 2: learn latent class model

Experimental results and discussion
Implementation

Algorithm CFHLC has been developed in C++, relying

on the ProBT library dedicated to BNs http://bayesian-

programming.org. We have plugged into CFHLC a C++

implementation of CAST based on the original imple-

mentation provided in JAVA by Ben Fry http://benfry.

com/clustering/. Regarding the visualization of the

DAGs, the software Tulip http://tulip.labri.fr/TulipDru-

pal/ was chosen, meeting both high representation qual-

ity and compactness requirements. CFHLC was run on

a standard PC (3.8 GHz, 3.3 GB of RAM).

Experimental protocol

The performance of the FHLCM-based method is evalu-

ated using real phased and unphased genetic data, on

the one hand, and simulated phased and unphased

genetic data on the other hand.

For real data analysis, the well-known Daly et al. data-

set [29], available at http://www-genome.wi.mit.edu/

humgen/IBD5/index.html, was used. This dataset con-

sists of 129 trios, each composed of two parents and

one child. For each individual, 103 SNPs are genotyped

in the 5q31 region and cover 617 kb. We only analyzed

the child data.

Regarding simulated data, two well known programs

were used: HAPGEN and HAP-SIMU. Using HAPGEN

http://www.stats.ox.ac.uk/~marchini/software/gwas/hap-

gen.html, we generated 2000 unrelated individuals

(i.e. 4000 haplotypes) for a several hundreds kb region

containing around 20-30 SNPs. The haplotypes used

as references come from the HapMap phase II and con-

cern U.S. residents of northern and western European

ancestry (CEU) http://hapmap.ncbi.nlm.nih.gov/. Five

Mourad et al. BMC Bioinformatics 2011, 12:16
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sequences showing variable LD degrees (median(r2))

ranging from 0.007 to 0.5 were generated.

HAPSIMU http://l.web.umkc.edu/liujian/ was used

to simulate genotypes with simulation parameters

described in Additional file 6. Three sample sizes were

chosen with respect to the number of observed vari-

ables: 1 k, 10 k and 100 k SNPs (in all cases, the number

of individuals was set to 2000). For each sample size,

twenty benchmarks were generated. For these experi-

mentations, imputation of LVs’ values was achieved by

assigning the most probable values given the observa-

tions. A drawback of this method is the loss of probabil-

istic relation between a variable and its parent variable.

A definite advantage lies in its running in around half

the time required by imputation through simulation

(results not shown).

LD modeling

Real data

Regarding the Daly benchmark, our aim was to evaluate

how the forest obtained keeps up with the real structure

of the biological data. Moreover, the CFHLC algorithm

was compared to four other methods.

We learned FHLCMs on both haplotype (phased) and

genotype (unphased) data. The corresponding graphs

are displayed in Figures 6 and 7, respectively. Globally,

the two graphs are similar: most of SNPs which are

connected through an LV in the haplotype-data graph

(HDG) are also connected through an LV in the geno-

type-data graph (GDG), e.g. SNP1, SNP4 and SNP6.

Moreover, a substantial part of these SNPs share a

common parent in both graphs: for instance, in both

HDG and GDG, we observe that SNP61 and SNP65

are linked by an LV belonging to layer 1. Thus, learn-

ing FHLCM from genotype data instead of haplotype

data leads to similar hierarchical structures. However,

on average, we observe that the SNPs in the GDG are

more connected: 8 and 15 connected components are

identified in the HDG and the GDG, respectively. For

example, the two framed trees 1 and 5 in the HDG of

Figure 6 are linked by a high-level LV in the GDG of

Figure 7 (see tree 1).
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Figure 6 Directed acyclic graph of the FHLC model learned for haplotypes (phased genotypes) of Daly et al.’s dataset. The light shade

indicates the observed variables whereas the dark shade points out the latent variables. Observed variables are numbered from 1 to 103

whereas latent variables are denoted “Hℓ_i“ where ℓ specifies the layer number and i enumerates the different variables belonging to a same

layer. We recall that in any FHLCM graph, edges are directed from top to bottom. a = 0.2, b = 2, cardmax = 20, tCAST = 0.95, tMI = quantileMI(0.95),

t = 0.3 (for CFHLC parameter description, see Section Algorithm).
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We expect that the FHLCMs’ graphs will reflect the

“haplotype block structure": large blocks of correlated

contiguous SNPs separated by recombination hotspots.

First, we observe that the physical position of SNPs

influences their connection, since close SNPs tend to be

linked by an LV belonging to a low layer, whereas dis-

tant SNPs are generally connected by a high-level LV.

However, strong dependences between distant SNPs are

also observed, e.g. between SNP26 and SNP74 or SNP49

and SNP91 (see Figure 6, tree 6 and Figure 7, tree 2).

This characteristic reveals that the LD structure is not

only dominated by spatial effects and justifies our

haplotype cluster approach (instead of the standard hap-

lotype block approach). In addition, the graphs interest-

ingly show trends consistent with biological reality, that is

the variation of the recombination rates inferred by soft-

ware PHASE v2.1 [34] along the studied sequence (see

Figure 8). Indeed, most of subtrees rooted in low-level LVs

cover regions with low recombination rates (RR). More

than 68% and 94% of LVs from layer 1 cover chromosomic

segments showing RRs below 4 cM/Mb and 9 cM/Mb,

respectively. The same tendency is observed for more than

44% and 66% of LVs from layer 2, respectively. These

results show the relevance of (partly) interpreting low-

 

!"#
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%
Figure 7 Directed acyclic graph of the FHLC model learned for unphased genotypes of Daly et al.’s dataset. For node nomenclature, see

Figure 6. We recall that in any FHLCM graph, edges are directed from top to bottom. a = 0.2, b = 2, cardmax = 20, tCAST = 0.95, tMI = quantileMI

(0.95), t = 0. 3 (for CFHLC parameter description, see Section Algorithm).
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level LVs as haplotype shared ancestry when CFHLC’s

input is haplotype data.

We compared the structure obtained by CFHLC with

those output by four other approaches: Daly et al.’s

method [29], Gerbil [25], HaploBlock [13] and Zhang

et al.’s algorithm [16]. All these methods were detailed

in Section State of the art. The three former methods

partition the sequence into blocks of contiguous SNPs.

In contrast, the latter algorithm yields (non-overlapping)

clusters of non-contiguous SNPs. We recall that CFHLC

algorithm generates a hierarchical clustering of non-

contiguous SNPs. In Figure 9, we compare the haplotype

block- or cluster-structures obtained through all five

methods aforecited. In spite of the fact that these meth-

ods differently tackle LD modeling, common trends

emerge (see dotted lines in Figure 9). For instance, the

last block identified by Daly et al.’s method, Gerbil and

Zhang et al.’s algorithm (line 6) is also inferred by our

algorithm in line 31. Slight differences are observed with

the two first blocks resulting from Daly et al.’s method

and Gerbil which only form one block for Zhang et al.’s

algorithm (line 8) and CFHLC (line 15). Compared to

other methods, most divergences with our algorithm

remain in its unique ability to take into account the

fuzzy delimitations of clusters. This is illustrated with

the central area of the sequence (SNP26-SNP74), which

actually presents two weak recombination hotspots

(between SNP39 and SNP40, and between SNP58 and

SNP59). Another difference with the other methods is

the presence of “unclustered” SNPs, like SNP9, SNP20

and SNP25 in our model.

The running times, dimension reduction rates and

entropy compression rates of all methods are reported

in Table 1. Results show that Gerbil is the fastest algo-

rithm tested, with a running time of 40 s. However,

CFHLC and Zhang et al.’s algorithm, which learn more

complex models (i.e. SNP clusters instead of SNP

blocks), achieve their tasks in quite a reasonable time,

84 s and 168 s, respectively. Compared to others, Haplo-

Block is the slowest method, with a running time of 155

mn, due to the high complexity of learning models

based on population genetics. For the three methods

exhibiting a partition of contiguous SNPs, we defined

the dimension reduction rate (DRR) as the ratio of the

number of blocks to the number of SNPs. As regards

Zhang et al.’s algorithm, the DRR was defined as the

ratio of the number of clusters to the number of SNPs.

In the case of CFHLC, we consider that the information

of each FHLCM’s tree can be synthesized by its root,

providing the best dimension reduction. Therefore, in

this case, the DRR is defined as the number of roots in

the whole forest divided by the number of SNPs. Haplo-

Block generates the lowest number of blocks with an

average of 6.8 (DRR value of 0.066), whereas Zhang

et al.’s algorithm partitions the sequence in 8 clusters

(DRR value of 0.078), and Daly et al.’s method and Ger-

bil both identify 11 blocks (DRR value of 0.107). CFHLC

presents the lowest dimension reduction with 15 trees

(DRR value of 0.146), due to the presence of 7 “unclus-

tered” SNPs: SNP9, SNP20, SNP25, SNP81, SNP82,

SNP94 and SNP103. As an alternative measure of com-

pression, we defined the entropy compression rate

(ECR) as the ratio of the sum of block (or cluster)

entropies in a partition to the entropy, assuming no

structure (i.e. the sum of individual SNP entropies). We

observe a different ranking of the methods. We notice

that CFHLC and Zhang et al.’s algorithm, which both

learn cluster models, provide the best (i.e. lowest) ECR

values (each around 0.23), whereas HaploBlock, Gerbil

and Daly et al.’s method show ECR values of 0.241,

0.3 and 0.313, respectively. Regarding the ECR criterion,

the comparatively better results obtained for the two

cluster models are explained by the absence of the con-

straint for compulsory physical proximity between

SNPs (as in blocks). Moreover, the ECR criterion does

not penalize anymore the CFHLC algorithm, since the

unclustered SNPs contribute relatively little to the over-

all information content.

In Subsection Motivation of the FHLC model for

GWASs, we argued that the multiple layers of an

FHLCM can describe various degrees of LD strength. To

analyze this property, we plotted the r2 squared correla-

tion coefficient of any pair of SNPs against the level of

their most recent common ancestor (MRCA). Figure 10(a)

and 10(b) show such plots drawn for haplotype and gen-

otype data, respectively. Starting from values in the range

[0.9-1.0], the r2 correlation coefficient quasi-linearly

decreases when the MRCA level increases. We conclude

that the layered structure of the FHLCM faithfully

reflects LD strength variety. These encouraging results

lead us to visually compare the LD plot and the triangu-

lar matrices of the MRCA levels for haplotype (phased)

Figure 8 Recombination rates (cM/Mb) inferred with software

PHASE v2.1 for phased haplotypes of Daly et al.’s dataset.

Mourad et al. BMC Bioinformatics 2011, 12:16
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Figure 9 Comparison of the outputs of five methods devoted to linkage disequilibrium modeling, for Daly et al.’s dataset. Partitions of

contiguous SNPs (blocks) inferred by (a) Daly et al.’s method, (b) Gerbil software and (c) HaploBlock. Subfigure (c) displays five different outputs

produced by non-deterministic software HaploBlock. Blocks are represented by alternating sequences of  and #. Partitions of non contiguous

SNPs (clusters) inferred by (d) Zhang et al.’s algorithm and (e) CFHLC algorithm. Subfigure (d) shows a partition of SNPs whereas Subfigure (e)

displays a hierarchical clustering. Symbol o in ith row and jth column indicates that the jth SNP belongs to the ith cluster. Dotted lines highlight

common trends between the five methods. Parameters for CFHLC algorithm: a = 0.2, b = 2, cardmax = 20, tCAST = 0.95, tMI = quantileMI (0.95),

t = 0.3 (for CFHLC parameter description, see Section Algorithm).
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and genotype (unphased) data, as presented in Figure 11.

For this purpose, the same color code was used in the

LD plot and the triangular matrix of MRCA levels. In the

LD plot, the color (intensity) of each cell varies with the

r2 value. Since the median value of r2 can be computed

for each MRCA level, the color of each cell in the trian-

gular matrix of MRCA levels is set, relying on the color

scale used for the LD plot.

We expected to observe a correspondence between

the three plots. The outstandingly clear correspondence

demonstrates the ability of FHLCMs to accurately

model multiple levels of LD strength: the overall major-

ity of the LD plot dependences are also present in the

MRCA level matrix. Interestingly, modeling from geno-

type data leads to quite good results compared to haplo-

type data.

Haplotype diversity is generally very low within haplo-

type blocks or clusters. In our hierarchical model, haplo-

type diversity is expected to be all the larger within a

cluster as the level of the LV subsuming this cluster is

high. To check this point, we have relied on the clusters

of Figure 9(e). For each LV, haplotype diversity has been

calculated as the number of the most common haplo-

types observed at level l of the tree rooted in this LV.

Figure 12 plots the number of the most common haplo-

types against the LV level. The plot shows that the hap-

lotype diversity median remains very low (below 6) for

the first four layers and dramatically increases to around

70 in the fifth layer. These results confirm our expecta-

tion relative to haplotype diversity in FHLCMs.

Simulated data

Finally, the impact of varying LD degrees was studied.

For this purpose, we generated haplotype data with the

HAPGEN software. Five sequences, showing variable

LD degrees (median(r2)) ranging from 0.007 to 0.5, were

used to learn FHLCMs. Figure 13 shows the forests

obtained. The forests reveal that increasing LD degrees

entails higher graph connectivity as well as a larger

number of layers. Indeed, when median(r2) equals 0.007,

11 connected components are identified and the highest

LV belongs to the third layer. Conversely, in the case

when median(r2) is equal to 0.5, the forest is only com-

posed of 3 connected components and the highest LV

belongs to layer 6. Thus, we conclude that CFHLC can

process sequences with various LD degrees and generate

FHLCMs whose structures reliably reflect linkage

disequilibrium.

Scalability for GWASs

Scalability has been studied through the data simulated

with HAPSIMU. In the hardest case (100 k SNPs), Addi-

tional file 7 shows that only 15 hours are required with

a window size s set to 100. For the same dataset pro-

cessed in the cases “s = 200” and “s = 600”, running

times are 20.5 h and 62.5 h, respectively. For the same

number of OVs (100 k), Wang et al. report running

times of about two months. Regarding the 10 k case,

running times are 1.3 h, 2 h and 5.8 h for “s = 100”,

“s = 200” and “s = 600”, respectively.

Further analysis of CFHLC algorithm

Finally, many other experimentations are reported with

their commentaries in additional files 8, 9, 10, 11, 12,

13, 14 and 15. Additional file 8 focuses on the impact of

window size on running time. In additional file 9 data

dimension reduction is evaluated from the distribution

Figure 10 Squared correlation coefficient of any pair of SNPs against the level of the most recent common ancestor (MRCA), for Daly

et al.’s dataset. (a) Phased data (b) Unphased data. N denotes the situation where the two SNPs considered do not belong to the same tree. a =

0.2, b = 2, cardmax = 20, tCAST = 0.95, tMI = quantileMI(0.95), t = 0.3 (for CFHLC parameter description, see Section Algorithm).
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of LVs over the forest’s layers. Additional files 10, 11, 12

and 13 study the impact of window size on the number

of roots in the forest, the number of LVs, the number of

layers and the distribution of LVs over the forest’s

layers, respectively. Additional files 14 and 15 analyze

how information fades while the layer number increases.

An important result is that CFHLC can achieve a data

dimensionality reduction of more than 80% of the num-

ber of observed variables (see Additional file 10).

Regarding spatial complexity of CFHLC algorithm, the

entire FHLCM does not require to be stored in RAM

because each window can be saved on the hard disk.

Conclusions
Our contribution in this paper is twofold: (i) a new fra-

mework has been described, which was tested on both

real and simulated data and was proven able to con-

cisely model LD and to reduce SNP data dimensionality;

(ii) CFHLC, an algorithm dedicated to learn FHLCMs,

has been shown to be efficient when run on genome-

scaled benchmarks.

Compared to Verzilli and co-workers’ works, our algo-

rithm provides a more accurate modeling of LD and

synthesizes genetic marker information through LVs. In

addition, unlike Nefian or Zhang and Ji, our method

does not require to specify the number of LCMs and

can capture multiple levels of dependences, thus taking

into account the fuzzy nature of LD. To our knowledge,

our hierarchical method is the first one shown to

achieve fast model learning for genome-scaled data sets,

while maintaining satisfying information scores and

relaxing the twofold binarity restriction of Hwang and

collaborators’ model (binary trees, binary latent vari-

ables). Hwang and collaborators’ purpose is only data

compression. We are faced with a more demanding

 

Figure 11 LD plot versus matrix of MRCA levels. (a) LD plot

(matrix of pairwise dependences between genetic markers - or

linkage disequilibrium -) for the real data benchmark of Daly et

al. (b) Triangular matrix of the MRCA levels learned from

haplotype data. (c) Triangular matrix of the MRCA levels

learned from genotype data. For any pair of SNPs, the MRCA is

the most recent common ancestor. The dataset consists of 103

SNPs in the 5q31 region; 129 individuals are described. This LD plot

comes from [16]. As regards the two MRCA matrices, the color

shade is all the darker as the MRCA level is high. N denotes the

situation where the two SNPs considered do not belong to the

same tree. a = 0.2, b = 2, cardmax = 20, tCAST = 0.95, tMI = quantileMI
(0.95), t = 0.3 (for CFHLC parameter description, see Section

Algorithm).

Figure 12 Number of most common haplotypes against the

latent variable’s level, for Daly et al.’s dataset. For any latent

variable, observed haplotypes are defined by the observed variables,

namely, the values for the leaves of the tree rooted in the latent

variable. The set of the most common haplotypes is the smallest

subset of observed haplotypes which covers at least 75% of the

sample. Haplotype diversity is evaluated as the number of most

common haplotypes observed at level l. a = 0.2, b = 2, cardmax =

20, tCAST = 0.95, tMI = quantileMI(0.95), t = 0.3 (for CFHLC parameter

description, see Section Algorithm).
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Figure 13 Impact of LD degree on the construction of Forests of Hierarchical Latent Class models. Five sequences showing variable LD

degrees have been used to learn Forests of Hierarchical Latent Class Models. For display convention and node nomenclature, see Figure 6. We

recall that in any FHLCM graph, edges are directed from top to bottom. a = 0.2, b = 2, cardmax = 20, tCAST = 0.95, tMI = quantileMI(0.95), t = 0.6

(for CFHLC parameter description, see Section Algorithm).
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challenge: to make a sufficiently powerful down-stream

association analysis possible.

In discussing the biological interpretation of latent

variables, we mentioned the potentiality of FHLCMs for

population substructure description. In essence, using

hierarchical models is highly appealing to take into

account the long-range LD expected in substructured

populations. However, this interesting use of such hier-

archical models as FHLCMs is somewhat precluded by

the technical necessity to partition the genome into

small regions. As a first palliative, we indicated two

strategies (adjusting the window size, diminishing the

density) to cope with this current technical limitation.

However, the strong expectation for faithful substruc-

ture modeling through FHLCMs advocates further

efforts to clear the hurdle on path to realistic long-range

LD modeling.

A bottleneck currently lies in the clique partitioning

method chosen, which forbids window sizes encompass-

ing more than 600 observed variables. In addition to

investigating alternative partitioning methods, a lead to

cope with this bottleneck may be to adapt the specific

processings at the limits of contiguous windows or use

overlapping windows.

In short, FHLCMs can be used to resolve several

major problems in the GWASs’ context. Beside flexible

data dimension reduction through FHLCMs’ LVs, fine

mapping of causal SNPs is expected thanks to condi-

tional independence properties encoded in such models.

For instance, FHLCMs’ LVs can be used to condition

tests for independence between a SNP and the pheno-

type. Moreover, due to their hierarchical structure,

FHLCMs represent an original and appropriate solution

to study long-range LD in substructured populations,

a recurring problematic in GWASs. Finally, genome-

wide visualization of LD can be easily achieved with

these models using a graph visualization tool and

will provide an intuitive representation of SNP - SNP

dependences as well as information synthesis through

latent variables.

In this current version of CFHLC, when processing

haplotype data, we were not interested in knowing the

sequence of each ancestral haplotype. We just wanted to

know from which ancestral haplotype (i.e. from which

haplotype cluster) a contemporary haplotype comes.

Nevertheless, it is feasible to infer the sequence of each

ancestral haplotype using probabilistic inference.

Finally, although our modeling is designed for GWAS

data, we emphasize that it could be applied to other

data presenting spatial dependences between variables,

in particular sequential data. Beyond this specific case,

it would be interesting to assess the model’s generality,

in order to determine if it can be applied to generic gra-

phical model learning.

Additional material

Additional file 1: Direct and indirect associations between a genetic

marker and the phenotype. The figure included into this additional file

illustrates the cases of direct and indirect associations between a genetic

marker and the phenotype.

Additional file 2: Linkage disequilibrium plot for a simplified

haplotype block structure. The figure included into this additional file

describes a standard representation of pairwise dependences between

genetic markers.

Additional file 3: Linkage disequilibrium plot of a real 500 kb SNP

sequence. The figure presented in this additional file shows the linkage

disequilibrium plot of a real 500 kb SNP sequence.

Additional file 4: Hierarchical latent class model. The figure presented

in this additional file depicts a hierarchical latent class model.

Additional file 5: Linkage disequilibrium plot of a 2 Mb SNP

sequence. The figure included in this additional file describes the linkage

disequilibrium plot of a 2 Mb SNP sequence.

Additional file 6: Parameter value adjustment for the generation of

simulated genotypic data through software HAPSIMU. The table

included in this additional file enumerates the values chosen for the

parameters of software HAPSIMU.

Additional file 7: Average running time versus number of variables.

The figure presented in this additional file plots the running time of the

CFHLC algorithm versus the number of SNPs in the dataset.

Additional file 8: Impact of window size on running time. The figure

presented in this additional file plots the running time of the CFHLC

algorithm versus the window size.

Additional file 9: Number of variables per layer over the whole

FHLC model. The figure included in this additional file describes the

average distribution of the variables over the layers (over 20

benchmarks).

Additional file 10: Impact of window size on the number of roots.

The figure included in this additional file depicts the impact of window

size on the number of roots.

Additional file 11: Impact of window size on the number of latent

variables. The figure presented in this additional file shows the impact

of window size on the number of latent variables.

Additional file 12: Impact of window size on the number of layers.

The figure presented in this additional file describes the impact of

window size on the number of layers.

Additional file 13: Impact of window size of the number of latent

variables per layer and on the ratio of the number of latent

variables per layer to the total number of variables. The two

subfigures included in this additional file depict the impact of window

size on the number of latent variables per layer on the one hand and

the impact of window size on the number of latent variables per layer to

the total number of variables, on the other hand.

Additional file 14: Impact of window size on scaled mutual

information, per layer. The figure presented in this additional file

describes the impact of window size on scaled mutual information, per

layer, over the whole FHLC model.

Additional file 15: Average scaled mutual information per layer

over the whole FHLC model; impact of parameters a and b. The

figure presented in this additional file shows the impact of parameters a

and b on scaled mutual information, per layer, over the whole FHLC

model.
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