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Interactive or collaborative pick-and-place tasks occur during all kinds of daily activities, for example, when two ormore individuals
pass plates, glasses, and utensils back and forth between each other when setting a dinner table or loading a dishwasher together.
In the near future, participation in these collaborative pick-and-place tasks could also include robotic assistants. However, for
human-machine and human-robot interactions, interactive pick-and-place tasks present a unique set of challenges. A key challenge
is that high-level task-representational algorithms and preplanned action or motor programs quickly become intractable, even for
simple interaction scenarios. Here we address this challenge by introducing a bioinspired behavioral dynamic model of free-
owing
cooperative pick-and-place behaviors based on low-dimensional dynamical movement primitives and nonlinear action selection
functions. Further, we demonstrate that this model can be successfully implemented as an arti�cial agent control architecture to
produce e�ective and robust human-like behavior during human-agent interactions. Participants were unable to explicitly detect
whether they were working with an arti�cial (model controlled) agent or another human-coactor, further illustrating the potential
e�ectiveness of the proposed modeling approach for developing systems of robust real/embodied human-robot interaction more
generally.

1. Introduction

1.1. Introduction. Moving objects from place to place is a
commondaily activity.Whether picking up a dish and placing
it in a dishwasher or selecting a part from an assembly line for
manual construction, such pick-and-place behaviors, oen
involve the repeated sequence of goal-directed actions. Pick-
and-place behaviors also oen occur within social contexts,
requiring multiple individuals to coordinate pick-pass-and-
place action sequences together. For example, handing books
to a colleague to �ll a shelf or passing plates when setting
a dinner table with friends. In these collaborative pick-
and-place contexts, coactors oen act in a highly e�cient
and successful manner with minimal communication or

explicit prior planning. Indeed, the coordinated patterns of
multiagent pick-and-place behavior is oen best understood
to be an emergent consequence of the real-time perception
and actualization of actor-speci�c action possibilities (i.e.,
a�ordances) that structure a (multi-) agent-environment task
space [1].

Pick-and-place tasks have become central to the devel-
opment of robust and adaptive human-machine or human-
robotic interaction (HMI and HRI, respectively) in part
due to their ubiquity in everyday life [2–5]. One challenge
with regard to modelling multiagent pick-and-place behav-
ior for HMI/HRI, however, is that using high-level task-
representational algorithms or preplanned action or motor
programs for controlling arti�cial agents quickly becomes

Hindawi
Complexity
Volume 2019, Article ID 5964632, 16 pages
https://doi.org/10.1155/2019/5964632

http://orcid.org/0000-0003-2254-1396
http://orcid.org/0000-0003-1719-8044
http://orcid.org/0000-0002-8567-3559
http://orcid.org/0000-0001-9159-2774
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5964632


2 Complexity

intractable, even for simple interaction scenarios, such as
when a robot and a human must coordinate to move a
collection of objects from one side of a table to another [6–
8]. A method to avoid the intractability of high-dimensional
and variable planning problems in HMI/HRI is to reduce
an arti�cial agent’s potential action space within a complex
interaction context by imposing human-like constraints on
the task/behavioral dynamics [9, 10] of the arti�cial agent
[11, 12].

Research on human motor control [9, 16], e.g., [17] has
revealed that human goal-directed actions are composed
of two fundamental movement types: (1) discrete move-
ments, as reaching for an object or target location, hitting,
kicking, or throwing a ball, etc., and (2) rhythmic move-
ments, such as waving a hand, hammering a nail, or simply
walking. 	e signi�cance of this �nding is the implication
that human movement activity re
ects two fundamental
behaviors of nonlinear dynamical systems—namely, point-
attractor dynamics for discrete movements and limit-cycle
dynamics for rhythmic movements [9–12, 16, 18]. 	is also
implies that the behavioral dynamics of human activity can
be derived and modelled from these two types of dynam-
ical movement primitives. Consistent with this possibility,
numerous human movements and actions like reaching,
wiping, cranking, jumping, drumming, throwing, hitting,
and bouncing have been successfully modelled using rela-
tively simple task-speci�c systems of �xed-point and limit-
cycle attractors acting on corresponding end-e�ectors (e.g.,
hands for reaching) or limb-joint systems [19–23]. Similar
dynamical movement primitives have also been employed
to model the behavioral dynamics of human goal-directed
navigation within an obstacle-ridden environment, including
human route selection and switching behaviors [24, 25].
Motivated by the understanding that many human behav-
iors can be modeled using point-attractor and limit-cycle
systems, several researchers have demonstrated how similar
dynamical movement primitives can signi�cantly reduce the
dimensionality of behavioral control in arti�cial humanoid
and robotic systems [4, 16, 18, 26–28]. For instance, Ijspeert
and colleagues [11] have shown how dynamical movement
primitives can be employed to generatively train a virtual
end-e�ector or multijoint robotic arm to perform a range of
tasks, from goal-directed reaching and obstacle avoidance to
racket swinging.

With regard to complex multiagent activity, behavioral
dynamic models composed of dynamical motor primitives
have been employed to capture and understand the stable
patterns of coordinated perceptual-motor behavior across
a range of discrete and rhythmic interpersonal task con-
texts, e.g., [15, 29–31]. Of particular relevance here is the
recent work by Lamb and colleagues [13] demonstrating how
collaborative pick-and-place behaviors could be modelled
e�ectively using a hierarchical behavioral dynamic model
that captured both the movement trajectories of actors and
inter-actor pass decisions. 	at is, the behavioral dynamic
model was able to e�ectively simulate the movement behav-
iors of the agent’s end-e�ector (i.e., hand movements), as
well as the dynamics of action selection (i.e., to pass or not
to pass) during ongoing task behavior (for related research

on modeling action selection dynamics see, e.g., [32, 33]).
	e aim of the current study is to extend this latter work
and bridge the work on dynamical movement primitives
and behavioral dynamic modeling, by investigating whether
multiagent hierarchical behavioral dynamic models derived
from dynamical movement primitives can employed to
control arti�cial agents for HMI/HRI [4, 13, 30, 31, 34].
Indeed, although dynamic movement primitive models have
been implemented in HRI contexts, they are not typically
derived from human movement data. In contrast, although
behavioral dynamic models have been derived from human
movement data, they have not been well explored in the
context of HMI/HRI. 	e current study, therefore, brings
these related areas of research together into a single human-
agent task context in order to demonstrate and validate
methods for using human interaction-derived hierarchical
task-dynamic models as an agent control architecture.

Building on data observations from a human-human
interaction (HHI) experiment exploring the behavioral
dynamics of a more interactive (complicated) pick-and-place
task than was employed by Lamb et al.[13], in which only one
agentmade decisions and initiated task actions. In the current
experimental task, both coactors could make decisions about
and initiate task actions, allowing for the possibility of greater
in
uence and range of task action combinations. Further,
we implemented an extended version of the hierarchical
behavioral dynamic model proposed by Lamb et al. [13]
within the control architecture of an arti�cial human agent
in virtual reality. 	e proposed pick-and-place agent (PAPA)
was expected to illustrate how this hierarchical behavioral
dynamic model can be used not only to capture and predict
human behavior, but also to enact human behaviors in a
collaborative human-agent interaction (HAI) task context
as a generalized form of HRI/HMI. More speci�cally, we
compared the behavior of PAPA and its human coactor to the
behaviors of humans working together with other humans
to demonstrate the application of hierarchical behavioral
dynamic models (i.e., models that capture both movement
trajectories and action selection decisions) for e�ective and
robust human-agent pick-and-place task behavior which
could be implemented in any appropriate agent controlled
system.

1.2. Original Model

1.2.1. Directed Reaching Dynamics. With regard to pick-and-
place behaviors in both individual and multiagent contexts,
the hand movements of individuals engaged in a goal (target)
directed reaching task can be modeled using a modi�ed
version of a behavioral dynamic model �rst introduced in the
context of goal-directed locomotion [13, 25, 35–37] (see also
[9, 11]). 	e model characterizes the movements of an agent’s
end-e�ector in terms of its heading direction, �, such that

�̈ = −���̇ − �� (� − 	�) (�−�1�� + �2) (1)

Here, �̇, and �̈, correspond to the velocity and acceleration
of the agent’s end-e�ector heading angle, respectively, and�� and �� are damping and spring/sti�ness terms, such
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Figure 1: Illustration of the dynamical task space adapted from [10].
	e goal is the object to be picked up or the location to place the
object depending on the subtask phase.	emodel predicts a change
in the agent’s end-e�ector heading, �, such that � ≈ 	� . 	e rate
of change of � depends on the values of �� and �� along with the
distance to the goal, ��.

that –���̇ acts as a friction force on turning rate, and the
function –��(� − 	�) operates to minimize the di�erence
between the current heading angle,�, and the angle, 	�, of the
corresponding subtask goal/target location (see Figure 1).	e
distance of the agent from the current goal location is de�ned

by the Euclidean distance, ��, with the function (�−�1�� + �2)
introducing an exponentially decaying term characterized by
a constant o�set parameter �2 that ensures that the rate of
change in heading direction never goes to zero [35] and an
exponential decay rate, which is a function of the constant
parameter �1 and the distance to the goal, ��. Notably, while
(1) is a purely reactive model of end-e�ector movements, it is
both capable of producing human-like approach trajectories
and ensuring that the system does not get trapped in local
minima which would keep it from arriving at its goal [13, 27,
36, 37].

Typically, human hand movements in directed reaching
tasks exhibit a bell-shaped, nonconstant velocity pro�le [38,
39]. 	is velocity dynamic can be modeled as

V̈ = −�
V
V̇ − �

V
(V − ���� (1 − �−��)) , (2)

where �
V
and �

V
act as damping and sti�ness terms on the

rate of change of end-e�ector’s velocity, V, which increases
and decreases as a function of the current goal distance, ��
[13, 40]. When the end-e�ector is far away from the target

location (1 − �−��) ≈ 1 and V increases, as the distance to the
goal location decreases, however, (1 − �−��) approaches zero
and V decreases accordingly. 	e constant parameter ����
speci�es the maximum velocity in m/s, such that the same
equation can be used for a wide range of di�erent move-
ment distances, with di�erential peak velocities resulting for
shorter and longer distances.

1.2.2. Action Selection Dynamics. 	e movement model in-
troduced in the previous section assumes that movements
are directed at a single goal location only. As a result, when
multiple goal locations are available, an additional system

is required to handle switching between goal states. For
example, in Lamb et al. [13], participants were allowed to
choose between passing a task object to another person
or taking it to an indicated target location. To capture the
dynamics observed (i.e., metastability and hysteresis), these
pass decisions were modeled using a nonlinear �rst-order
ordinary di�erential equation (ODE), with the �rst derivative
of the current decision, ̇���		, a function of the current
decision state, ���		, and an agent normalized task parameter,�
, where � indexes a task speci�c parameter equation. 	at
is,

�̇��		 = −�
 + ���		 − �3��		. (3)

	is system exhibits a saddle-node bifurcation as �
 is scaled
up or down past a critical value �� (approximately ±0.35)
(see Figure 2). For critical values ±��, (3) exhibits a region
of bistability which corresponds to the hysteretic behavior
observed in human participants when �
 is smoothly scaled
(also see [32] for an example of how this same system can
capture the pass-or-not-pass dynamics in rugby). For values�
 < −�� and �
 > +�� the system has a single stable �xed
point at −���		 and +���		, respectively. In Lamb et al. [13] it
was shown that the decision to pass the object to a coactor or
complete the task alone was driven by the agent’s distance to
the target, ��� , relative to their reach capability, �	, such that

�	 = (�	 − ����	 )�	. (4)

Note that the constant scaling factors, �	 and �	, operate to
normalize the task speci�c �	 with respect to the current task
space.

1.3. Current Study. 	e current study had two related aims.
	e�rst aimwas to extend the Lamb et al. [13] pick-and-place
hierarchical behavioral dynamic model to a more interactive,
free-
owing, two-person cooperative pick-and-place task,
in which both actors were free to select, move, pass, and
organize a constant stream of objects. 	e second aim was to
validate whether the resultant model could be implemented
successfully into an arti�cial agent (virtual avatar) capable of
producing e�ective and robust human-like behavior during
human-machine interaction.

	e current study uses a general human-agent interaction
(HAI) paradigm which subsumes the structure of both HMI
and HRI. Two virtual reality experiments were conducted
to achieve the study aims. In the �rst experiment, pairs of
naive human-actors completed a virtual pick-and–place task
cooperatively. 	ey were required to pick up and move a
constant stream of colored discs, presented one at a time,
from one end of a virtual tabletop to a corresponding colored
target positioned at the other end of the virtual tabletop.
Participants stood on opposite sides of the virtual table and
were free to choose when and who picked up and moved the
discs and whether to move the discs to the target location
alone or by passing them between each other [40]. Of par-
ticular relevance for extending the Lamb et al. [13] model was
determining and mathematically modeling the dynamics of
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Figure 2: Illustrations of potential functions plotted for (3) and (4) for changes in the value of �	. In (a), the value of �	 increases from �	 < 0
to > 0. As �	 approaches 0, the system becomes bistable but continues to converge on a stable solution at −���		. As �	 increases and −���		
becomes less stable the system eventually converges on the solution at +���		. In (b) the value of �	 decreases from �	 > 0 to �	 < 0, exhibiting
the same characteristics as illustrated in (a) but in the opposite direction (�gure modi�ed from [13]).

the object pick-up decisions, as in the previous task only one
participant picked up the object. Based on the pass decision
dynamics de�ned in (4), we expected that a participant’s
object pick-up decision would be functionally related to arm
length or, more speci�cally, comfortable reaching distance.
However, we also expected that participant pick-up decisions
would be a function of the relative distance of their own
and their coactor’s current hand location with respect to the
location of the object to be picked up. In other words, pick-
up decisions would be a relative function of both reachability
and proximity.

	e same virtual pick-and-place task was employed in
Experiment 2, except that naı̈ve individual human actors
were recruited to complete the task with a virtual avatar
whose movements and action decisions (i.e., object pick-
up and pass decisions) were controlled by the extended
Lamb et al. (2017) hierarchical behavioral dynamic model
identi�ed from the results of the human-human testing
conducted in the �rst experiment. 	e expectation was that
the behavioral dynamics exhibited during human-arti�cial
system testing would be qualitatively and quantitatively
similar to human-human performance because PAPA was
derived from human-human interaction observations. We
also manipulated whether actors knew if the movements and
decisions of their virtual coactor were computer-controlled.
Of particular interest was whether participants who were
led to believe that the coacting avatar was human-controlled
would be able to discern this deception. If the interper-
sonal pick-and-place model developed here was able to
e�ectively capture the dynamics of human performance
then participants should be unaware of the deception

(i.e., participants should believe they were working with
another human actor when told so, even though they were
not).

2. Human-Human Interaction Experiment

2.1. Method

2.1.1. Participants. Twenty University of Cincinnati under-
graduate students (14 females and 6males; aged 18 to 28 years,
all right-handed) were recruited to participate in Experiment
1. Participants participated as pairs, though they did not
necessarily know each other prior to the experiment. All
participants were recruited via the Psychology Department’s
online recruitment system and received partial course credit
for participation. Participants provided written consent prior
to completing the study, with the procedures and method-
ology employed reviewed and approved by the University of
Cincinnati Institutional Review Board.

2.1.2. Materials and Apparatus. An illustration of the exper-
imental setup and task is provided in Figure 3. Participants
stood on either side of a 1.65m × 0.89m × 0.995m table in
a laboratory room and completed the pick-and-place task
in a virtual environment. Participants stood across from
one another in both the laboratory room and the virtual
environment. 	e virtual environment consisted of a room
similar to the laboratory room, with a virtual table that
was the same size as the real laboratory table. 	e physical
table provided a solid surface on which participants could
move a hand-held wireless Polhemus Latus motion-sensor
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Figure 3: Experimental setup and testing environment. (le�) Birds-eye view illustration of the task space layout. 	e large black rectangle
represents the tabletop, with the object appearance region on the le and the �ve colored object drop-o� locations on the right: M=magenta,
Y=yellow, G=green, B=blue, R=red. 	e circle on the le in the middle of the appearance location region represents a disk object. (right)
Participants performed the task in a virtual environment, with a 1:1 mapping between the real and virtual tabletops.

(Polhemus Ltd, Vermont, USA) that tracked their right-hand
movements at 96 Hz.

	e virtual environment was presented to participants
using Oculus Ri (DK2) virtual reality headsets (Oculus VR,
Irvine, California) andwas designed using theUnity 3D game
engine (version 5.2.0;Unity Technologies, San Francisco, Cal-
ifornia) and Sketchup 2015 (Tremble Navigation Technolo-
gies, Sunnyvale, California). 	e Oculus Ri presented the
3D environment using a pair of 1920x1080 screens arranged
to produce stereoscopic 3D images at approximately 75Hz
with a 100∘ FOV. Positional head tracking was provided by
theRi’sCrystal Cove tracking system.	emaximumdisplay
latency between the participants’ real-world movements and
their movements in the virtual environment was 33ms, with
experimental task states and movements recorded at 70 Hz.

As illustrated in Figure 3, the participant standing posi-
tion on side “A” of the table was slightly closer to the object
appearance side of the table compared to the participant
standing position on side “B” of the table. 	is ensured that
the (tracked) right-hand of each participant was equidistant
fromboth the object appearance range and the target (object-
drop-o�) locations.

Within the virtual environment, the participants were
represented as identical avatars modeled aer a crash test
dummywith a height of 1.8m.	e avatar’s right hand was rep-
resented by a semitransparent blue sphere in order to simplify
interactionwith the task environment.	emovements of this
virtual hand were de�ned by the position of the participant’s
hand-held Polhemus motion tracking sensor. Avatar head
movements were mapped to actual participant head move-
ments tracked using the Oculus Ri’s Constellation tracking
system.	ese hand and headmotionswere integratedwith an
inverse kinematics controller (model and controller supplied
by Root Motion, Tartu, Estonia) in order to generate related
right arm (e.g., elbow angle and forearm orientation) and
upper-body (torso) movements of the participants’ virtual
avatars. 	e resulting arm and upper-body movements were

not identical to the real-world arm and body movements of
the participants butwere deemed to be close enough to render
any di�erences between the real and virtual body postures of
the participants unnoticeable or not functionally distinct.

2.1.3. Pick-and-Place Task. As illustrated in Figure 3, partici-
pants were immersed within a virtual environment including
a virtual table mapped to a lab room table. Disc objects for
pick up (henceforth discs) were presented to participants on
one end of the table and were color coded (magenta, yellow,
green, blue, or red) to indicate a speci�c target location. Discs
were presented randomly within a region near the side of the
table occupying the middle third of the table. Participants
were instructed to pick up the discs when they appeared and
move them to the target location of the corresponding color
as quickly as they felt comfortable. Target locations and colors
were �xed across all participants and trials (see Figure 3).
Participants were informed that either one of them could
pick up a disc when it appeared, but only one individual
could hold the disc at a time. Importantly, participants
were also informed that if the target was either too far
away or uncomfortable to reach, they could pass it to their
coactor.

A pick-up occurred when the participant’s sphere came
in contact with the disc. When picked up, the disc moved
with the participant’s sphere until it reached the target or
the individual released (dropped) the disc. A participant
could release (drop) a disc anywhere on the tabletop by
liing their hand/sphere up and away from the tabletop.
Once a disc was dropped either individual could then pick
up the disk. A pass involved one participant picking up
the disc at the appearance location and then moving and
releasing the disc partway across the tabletop for the second
participant to then pick up and move the disc the rest of the
way to the target. Note that although it was not explicitly
prohibited, no back-and-forth passing was observed in the
study.
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2.1.4. Procedure. Upon arrival, participants were informed
that the experiment was investigating the dynamics of a two-
person pick-and-place task. Participants were then randomly
assigned to side A or B of the table and were positioned
in their assigned table locations. Participants were then
instructed to secure the Oculus Ri HMD on their head and
their �rst-person view was calibrated to be properly aligned
with their avatar’s head height. Following task instructions
(see Section 2.1.3), participants completed 2 practice blocks
to acclimate to the task environment and mechanics.

	e �rst practice block consisted of 12 trials, in which a
green disc always appeared in the center of the appearance
region and had to be moved to the middle (green) target.
Each participant took 6 turns picking up the disc and was
instructed to pick up the object and take it to the target 3 times
on their own and to pick up the object and the pass it to their
coactor 3 times. 	e second practice block involved 20 trials,
4 trials for each target location (i.e., 4 discs of each color). In
this practice block, discs appeared in a random y-axis pick-
up location within the appearance range on each trial and
participants were instructed to complete the task as quickly as
they felt comfortable and to make their own decisions about
if and when to pass.

Aer participants completed both practice blocks and
indicated that they understood the objective of the task, they
completed two experimental trial blocks. Each experimental
trial block included 150 trials, 30 trials for each target color
presented in a random order. In between the �rst and second
block of experimental trials, participants switched sides (i.e.,
the participant on side Amoved to side B and the participant
on side B moved to side A) and were given a 5-minute break.
Each experimental block lasted between 10 and 15 minutes.

2.2. Results and Discussion

2.2.1. Decisions. 	ere were two decision events in the pick-
and-place task: (1) a decision to pick up or not pick up
the object and (2) a decision to pass or take the object
to the target aer the object was picked up. In order to
understand the basis for the pick decision we applied the C4.5
decision tree algorithm [41] with 10-fold cross-validation to
participant in pick decisions (N = 2998) in order to create
a decision tree with a minimum node size of 50 instances.
Attributes that were considered for each participant included:
hand’s current distance to the target, disc location, target
location, participant waist height, and hand’s resting location.
An attribute was not considered relevant to modeling the
decision behavior if it was not included in the decision tree
produced by the C4.5 method or if its exclusion resulted in
a change in predictive success of < 3%. Using this exclusion
criterion, the resulting decision tree was able to correctly
predict 86% of the pick decisions using only the current
distance of each actor’s hand to the pick-up location and each
actor’s height and right arm length.

	e C4.5 decision tree algorithm was also applied using a
10-fold cross-validation to the data set of passing decisions
(� = 2998) in order to create a decision tree with a
minimumnode size of 50 instances. 	e same set of attributes
considered for the pick-up decision were considered for the

pass decision, with the addition of the previous pass decision.
Likewise, the same exclusion criterion was used to determine
which attributes were relevant to the pass decision. Using
this method, 79% of the pass decisions were predicted by
a decision tree constructed from only the distance of the
resting location of one of actor’s hand to the target location.
Resting hand location for each side was de�ned as a position
0.15m from the edge of the table directly in front of the
participant’s right shoulder.	is result was in line with results
from previous research [13].

On pass trials, participants were not instructed to pass at
a certain location. In order to identify pass locations, cluster
analysis was conducted using the K-means cluster analysis
algorithm, which �nds cluster centers that minimize the sum
of squared error (SSE) for a given number of clusters, k.
We analyzed the release/pass locations to determine whether
these locations typically clustered around 1, 2, or 3 cluster
centroids (see Figure 4). 	e optimal number of clusters was
identi�ed using the gap statistic, de�ned as the value of k, such
that the average di�erence between the SSE for a reference
distribution and the actual data was greatest compared to the
other values of k [14]. Reference distributions were generated
for each dataset (i.e., pass locations from each table side for
each pair) drawing from a uniform distribution over the
principal components of pass locations in the dataset. For
each pair, separate evaluations were run for each side of the
table. For side A, when a participant on side A passed at
least once during the experiment (N = 8 pairs), the optimal
number of clusters was 1 for all passes on this side of the table.
Likewise, when a participant on side B passed at least once
during the experiment (N = 9 pairs), the optimal number
of clusters was 1 for most pairs (N = 7). When a participant
on side A passed during the experiment, the passes clustered
around an average (x, y) table location of (0.24m, 0.62m).
When a participant on B side of the table passed, the passes
clustered around an average (x, y) table location of (0.33m,
0.18m). Both of these locations were near the resting location
of the receiving coactor’s hand.

2.2.2. Movement. An example set of participant pair trajec-
tories are illustrated in Figure 5 as a heat map. 	is heat map
plot was created by dividing the task space into a 125x108
grid and for each trial, the number of times a participant’s
location was recorded in a given grid cell was tallied to
create a histogram of trajectory locations in table coordinates.
A color value was assigned to each cell from a scale of
64 colors. All participants exhibited a qualitatively similar
sideways “spaghetti monster” heat map, with concentrations
of trajectories (brighter areas), corresponding to discs (far le
side of heat map plot), pass/rest locations (top and bottom le
of center on the heatmap plot), and target locations (5 distinct
points across the right of the heat map plot).

Participant subtask movements exhibited a bell shaped
velocity pro�le with the peak velocity occurring around half
way through a given trajectory (Figure 5) (for each side
of the table, subtask trajectories examined include rest-to-
pick-up, pick-up-to-target, pick-up-to-pass, rest-to-receive,
receive-to-target, pass-to-rest, and target-to-pick-up). Across
all subtask trajectories, the average peak velocity was 1.231m/s
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Figure 4: Average gap values for k=1, 2, and 3 for pass locations from table side A (right) and table side B (right). 	e largest gap value
indicates the optimal number of clusters [14].

0 128 256 384 512

Samples

Average Velocity for Pickup-to-Target Trajectories (All Participants)

0

0.4

0.8

1.2

1.6

V
el

o
ci

ty
 (

m
/s

)

Human-Human Pick and Place Trajctories: All Trials Pair 5

−0.4 −0.2 0.2 0.4 0.6 0.8 1.0 1.20

Table X-Axis (meters)

0.14

0.28

0.42

0.56

0.84

T
ab

le
 Y

-A
xi

s 
(m

et
er

s)

Figure 5: (Le) Heat map of table positions for example pair during Experiment 1 illustrating trajectories during the experimental task.
(Right) Average velocity for all participants during the pick-up-to-target subtask trajectory with 95% con�dence interval (grey). Velocity
time series lengths were normalized to 512 samples.

(Mdn = 1.252m/s, Q1 = 0.924m/s, Q3 = 1.373m/s) and the
peak velocity occurred on average around 57% (SD = 15%)
of any given subtask trajectory. For the 14 subtask trajectories
examined, average peak velocity for each subtask trajectory
was signi�cantly correlated, r(14) = 0.89, p<0.001, with the
average straight-line distance of each subtask trajectory.
Shorter trajectories had lower average peak velocities than
longer trajectories.

3. Model Extension and Artificial Agent Design

3.1. Pick-Up Decision Extension. As discussed in Section 1.3,
we previously developed a dynamic model that characterizes
both human movement trajectories and pass decisions in a
simple cooperative pick-and-place task [10, 13]. In order to
extend this model to the current task context, we also needed
to de�ne an action selection function with regard to object
pick-up decisions. Based on the results of Experiment 1 (see
Section 2.2.1), which found that individuals tended to pick
up the object when their hand was closest to its appearance
location at the beginning of a trial, we chose to de�ne this
function using a similar system to that employed to model
pass decisions in (3). More speci�cally, pick-up decisions
were modeled using the system

̇����
� = −��� + ����
� − �3���
� (5)

such that a stable �xed point at ����
� > 0 de�ne pick up and
a stable �xed point at ����
� < 0 de�nes do not pick up. Here,��� is de�ned as

��� = �((���i��� )��� − (
�����pc )�p�) (6)

such that the value of ��� is determined by the di�erence
between the current distance, ��, for each agent, �, and
their coactor, �, to the object to be picked up. 	ese dis-
tances were normalized by each individual’s respective reach
capability, �� and scaled by each actor’s height, ��, and a
constant task space scaling parameters �. According to (6),
each individual’s decision to pick up or not pick up was
driven by ��� for each agent, such that when implemented
with (5), previous decisions regarding pick-ups a�ected the
current pick-up decision (see Figure 2). Further, while each
agent was modeled as making this decision independently,
(6) e�ectively couples each pick-up decision to the other
agent’s current state by taking into consideration the coactor’s
current normalized distance to the goal. 	us, if both agents
were equally close to the pick-up object in normalized reach
terms, the model predicts that both agents may decide to
move to pick up the object. However, variations in previous
pick decisions, as well as action capabilities, e.g., movement
speed and trajectory, ultimately result in one agent backing
o� while the other picks up. Intuitively, this is analogous to
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Figure 6:	e structure of PAPA [15]. Movement dynamics were calculated in the upper loop and action selection dynamics were calculated
in the lower loop. As PAPAmoved through the task environment and switched action modes, task parameters were adjusted.

a situation where two people reach for the same object in
a noncompetitive context and one of them pulls their hand
back reactively.

Equation (6) was developed using insights from the
results reported in Section 2.2 and validated using data
from that study. For validation (6) was parameterized using
observed trial to trial initial locations along with participant
height and arm lengths. 	e scaling parameter � was set to a
constant value of 2.8. As noted above, decision predictions
were determined based on the sign of the approximated
solution to (5) whereby solutions ����
� > 0 de�ned pick
up and solutions ����
� < 0 de�nes “do not” pick up.
	e equation was validated on each participant pair in the
human-human data set and correctly predicted an average
of 78% (SD = 12.2%, min = 59%, max = 96.7%) of pick-up
decisions.

3.2. Model-Based Arti	cial Agent. 	e proposed extended
model could be implemented as an interactive arti�cial
agent system by being embedded in an appropriate control
structure (see Figure 6) and embodied in the experimental
task context by a virtual avatar identical to the one used for
participants in Experiment 1 [42].	is arti�cial agent system,
PAPA, controlled the movements of the avatar’s right hand on
the virtual table with all other movements, e.g., arm and torso
movements, driven by the inverse kinematics model used in
Experiment 1.

	e control structure PAPA was embedded and consisted
of two components, one for driving action selection in terms
of a current goal location and one for controlling movement
dynamics (see Figure 6). 	e action selection component
selected goals based on task phase, de�ned in terms of
whether or not someone is holding the task object. Before the
object was picked up, the agent selected its goal as either the
pick-up object or a rest position directly in front of a virtual

avatar. Pick-up decisions were driven by (5) and (6). 	e
solution to (5) was approximated during each update loop
based on an Euler integration using the currently realized
state solution as the initial condition and solved for 100
iterations with a time-step of .01. 	e sign of the solution
to this integration determined if the agent’s goal would be
de�ned by the position of the task object or a rest position
in front of the avatar’s body. If the avatar picked up the
object, the action selection component integrated (3) and (4),
using the same integration method as the pick-up decision.
Note that, in the virtual avatar instantiation of PAPA, the
reach capabilities of the agent were constrained according to
typical human reach capabilities based on observations in the
human-human task. Since most human participants released
the object for a pass in a single location, the goal location
for passes was de�ned within a 15cm x 15cm region near the
coactor’s resting hand location. A speci�c pass location for
any given pass was randomly selected from a logarithmically
distributed set of points within this pass region, conforming
with previous observations of pass location distributions [13].

Movements were driven by (1) and (2), where (1) de�ned
the heading direction of the arti�cial agents end-e�ector
and (2) de�ned the rate of positional change (i.e., veloc-
ity) of the arti�cial agents end-e�ector movements. 	e
implementation of PAPA’s movement component leveraged
Unity’s update logic, which runs program logic once per
rendered frame. PAPA’s current heading and velocity were
approximated using an Euler integration run at that update
rate (approximately 80hz). Because the integration occurred
in real-time with the Unity frame rate, each frame rendered
a change in PAPA’s movements equal to a single step in the
Euler integration with a step size equivalent to the time it
took for the program to run the previous Unity frame. 	e
velocity drove the magnitude of PAPA’s change in position,
such that the position change distances were nonconstant
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and time normalized. 	us, at each Unity frame, the agent’s
hand moved in the direction calculated heading with a
magnitude modulated by the approximate solution to the
velocity equation. For each Unity frame the agent’s actual
position and velocity were then used to calculate the current
state of the system for (1) and (2). As a result, the integration of
the movement components of PAPA was directly embodied
in real-time by the avatar’s right hand movements. 	at is,
PAPA engaged in the task with no explicit trajectory planning
or prediction systems.

4. Human-Artificial Agent Experiment

4.1. Method

4.1.1. Participants. 20University of Cincinnati students (aged
18 to 28 years) were recruited to participate in the experiment.
11 females and 9 males participated in the study, all right-
handed. All participants were recruited via the Psychology
Department’s online recruitment system and received partial
course credit for participation. Participants provided written
consent prior to completing the study, with the procedures
and methodology employed reviewed and approved by the
University of Cincinnati Institutional Review Board. A male
researcher acted as a confederate throughout the experimen-
tal data collection. 	e confederate was the same for every
participant.

4.1.2. Materials and Apparatus. 	e experimental task setup
for the participant was identical to Experiment 1 (see Fig-
ure 3), with the exception that only one participant stood at
the table to engage in the task. PAPA was used to control
the hand of the virtual avatar on the opposite side of the
table from the participant. As in the previous experiment
an inverse kinematics controller generated the right arm
movements for both the participant and PAPA based on their
right hand location.

4.1.3. Procedure. 	epick-and-place task and task mechanics
were the same as in the previous experiment (see Sec-
tion 2.1.3). In both conditions, aer receiving instructions
on how to complete the task and calibration in the VR
environment, participants were instructed that their partner
would work with them to complete the pick-and-place task.
Participants always started on the A side of the table and
switched sides aer the �rst block of experimental trials. As in
Experiment 1, participants completed 4 blocks of trials. Aer
the �rst experimental block, participants moved the center
of their side of the table in the lab and the VR environment
was rotated so that the participant and their coactor switched
sides of the table. Aer recalibration of the participant’s view
in VR, the participant completed the �nal block of trials.

In order to understand participants’ behavioral reaction
to interacting with a virtual partner, we introduced two
information conditions: informed and deception. In the
informed condition, participants were told that they would be
working with a computer partner in VR to complete a pick-
and-place task. In the deception condition, participants were
told that they would be working with a human partner in VR

to complete a pick-and-place task. Before coming into the lab
room participants sat in a waiting area with a confederate
posing as participant. Both the participant and confederate
were brought into the lab and told that the task involved them
being in separate rooms. 	e participant was asked to select
a paper from a box for their room assignment. Participants
were always assigned to the experimental room. While the
participant waited in their assigned room, the experimenter
claimed to take the confederate to a di�erent lab room with a
di�erent experimenter. In reality, the confederate was led to a
separate lab area and their part in the experiment ended.

Participants stood across from the table from their com-
puter partner in the virtual environment. 	e participant
always started on the A side of the table and switched sides
aer the �rst block of experimental trials. For the initial
practice block, the participant was instructed to complete
the task as quickly as they felt comfortable. During this
practice block the computer partner was active and assisted
the participant by picking up some objects and taking
them to the target. 	e computer partner’s/arti�cial agent’s
behaviors were driven by PAPA for this and all subsequent
blocks. During the second practice block, the participant
was instructed to complete the task as quickly as they felt
comfortable and to attempt a pass to the computer partner at
least once. For all participants, PAPAended up passing at least
once in this practice block. Following the second practice
block, if there were no questions, participants began the �rst
experimental block.

In the virtual environment the participants stood across
from the table from their computer partner in the virtual
environment. 	ey were informed that their partner con-
trolled the hand of the other avatar in the VR environment.
For the practice trials, participants were informed that their
partner had been instructed to start �rst and that when they
were ready they could join in the task to practice. For all
participants, PAPA ended up passing at least once in the sec-
ond practice block. Aer the experiment, participants were
asked a short series of questions regarding their experience
and were then informed that the person they entered the lab
with was a confederate and that they had actually completed
the task with a computer algorithm.

4.2. Results and Discussion

4.2.1. Decisions. In order to compare pick-up decisions across
HHI and human-agent interaction (HAI) conditions, we
calculated absolute value of the di�erence between the aver-
age percentages of initiated pick-ups for each coactor in a
participant pair (see Figure 7). 	is provides a measure of
the division of labor between coactors, where large values
indicated that one person tended to pick up more oen and
small values indicated coactors initialized pick-ups a similar
percentage of the time. In the HHI condition the average
di�erence in initialized pick-ups was 10.9% (SD = 12.7%,
N = 10). For the HAI deception and informed conditions
the average di�erences were 6.7% (SD= 3.7%, n=10) and
9.1% (SD = 11.7%, n=10), respectively. A one-way ANOVA
demonstrated no signi�cant di�erence in the division of labor
between HAI and HHI conditions (F(2,27) = 0.43, p =.65),
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Table 1: Model comparison – Division of labor.

Models P(M) P(M|data) BFM BF10 error %

Null model 0.500 0.781 3.565 1.000

HHI/HAI model 0.500 0.219 0.281 0.281 0.010

HHI HAI - Informed HAI - Deception HHI HAI - Informed HAI - Deception

0

2

4

6

8

10

12

14

16

D
iv

is
io

n
 o

f 
L

ab
o

r

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

50.0%

A
ve

ra
ge

 P
as

se
s

∗

Figure 7: Average percentage of passes for each experimental condition.

suggesting that participants did not change their pick-up
strategies when working with PAPA. A one-way Bayesian
ANOVA further suggests that there is moderate evidence
that participants did not change their pick-up strategies in
the HAI condition as seen in Table 1 [43, 44]. In the HAI
conditions, three participants in the deception condition and
�ve participants in the informed condition initiated pick-ups
a larger proportion of trails than PAPA.

Regarding pass decisions, the percentage of passes made
by each participant relative to the number of times they
picked up the object was calculated (see Figure 7). In the
HHI condition coactors passed an average of 24.4% (SD =
18.0%, N = 20) of the trials. For the deception HAI condition,
the agent passed an average of 28.0% (SD = 3.2%, N = 10)
and the participant passed an average of 26.6% (SD = 9.2%,
n = 10). For the informed HAI condition, the agent passed
an average of 35.7% (SD = 13.3%, n=10) and the participant
passed an average of 33.0% (SD=9.0%, n=10). 	ere was
a statistically signi�cant di�erence between conditions as
revealed by a one-way ANOVA (F(2,57) = 3.157, p = 0.05).
A Tukey post hoc test revealed that there was a signi�cant
di�erence between the informed HAI condition (M = 34.3%,
SD = 11.1%, n=20) and the HHI condition (p < 0.05), but that
there was no statistically signi�cant di�erence between the
HHI and HAI deception condition (M = 27.3%, SD=6.7%, N
= 20, p = 0.204) or between the HAI informed and deception
conditions (p = 0.755). Overall participants passed more
in the HAI deception condition than the HHI condition,
suggesting possibly that knowing the coactor was a computer
changed their perception of the PAPA’s action capabilities
or at least their willingness to make their coactor work
more.

4.2.2. Movements. Qualitative comparisons of coactor pair
trajectories can be made using heat maps illustrating trajec-
tories of all coactors in each experimental condition, as seen
in Figure 8. Heat maps were produced by creating 150x133

grid of the table space and tallying the number of times each
PAPA or the coactor’s location was recorded within a given
grid region. Colors were assigned to each grid from a color
map with 64 colors.

Along with a visual inspection of trajectory heat maps,
the relative di�erence between the trajectories of pairs within
each condition was quanti�ed using the earth mover’s dis-
tance (EMD) metric. EMD is widely used for pattern recog-
nition and content-based image retrieval where it is used to
provide a measure of pattern or image similarity based on
intensity histograms [45]. In the current context, EMD pro-
vides an intuitive quanti�cation of the similarity/di�erence
between pairs of trajectory histograms. A common approach
to characterizing EMD is by a metaphor of moving dirt
(hence the name), in which EMD is described as treating the
bins in compared histograms as di�erently sized piles of dirt
at the bin locations. 	e value output by the EMD metric
represents the minimum amount of e�ort required to trans-
form one histogram into the other, if dirt can only be moved
between adjacent piles. In the current context, a lower EMD
value indicates greater overall similarity between compared
trajectory histograms and higher values indicate greater
overall di�erence.When there is greater similarity, it suggests
that there is less variability among the trajectory patterns
being compared. Likewise when there is less similarity, it
suggests that there is greater variability among the trajectory
patterns being compared. While EMD is computationally
expensive to apply to high resolution data sets, it has been
shown to be robust when the resolution of a dataset is signif-
icantly compressed [45]. As such, trajectories in the current
study were characterized by 2D histograms measuring 50x62
bins. 	ese reduced resolution heat maps are referred to as
signatures. Within each condition, a signature was created for
the �rst and second experimental block. For each block, an
EMD value was calculated between each participant pair and
every other participant pair. An average EMDwas calculated
for each participant pair using this process representing the
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Figure 8: Example trajectory heat maps for HHI participant pair (bottom) and HAI participant with PAPA (top). Heat map colors represent
frequency of hand positions at a given location in the table task space. Participants were positioned relative to the top and bottom of the
�gure, objects appeared on the le, and target locations were on the right.

average trajectory pattern similarity of each participant pair
to all other participant pair trajectories. We then used the
calculated EMD values to compare movement trajectory
similarity between experimental conditions.

	ere was a statistically signi�cant di�erence between
conditions as determined by one-way ANOVA (F(2,27) =
11.512, p < .001). A Tukey post hoc test revealed that there
was a signi�cant di�erence between the EMD for the HHI
condition (M = 316.11, SD = 27.03, SE = 15.41) and the
deception condition (M = 245.87, SD = 13.93, SE = 4.40, p< 0.001) and the informed condition (Avg = 271.00, SD =
27.03, std. Error = 8.55, p = 0.014). 	ere was no statistically
signi�cant di�erence between HAI conditions (p = 0.226).
	is indicates that there were di�erences in the overall
trajectory patterns between the HHI and HAI conditions but
not a di�erence in the trajectory patterns produced during
HAI trials. Overall HHI trajectory patterns were less similar
to one another than trajectory patterns produced in the HAI
conditions.

In order to determine if the di�erence between HHI and
HAI conditions was driven by the arti�cial agent behaviors

alone, we calculated trajectory histogram signatures for each
individual human participant in all three conditions, as well
as for the PAPA produced trajectories in the HAI conditions.
	is allowed us to examine 3 agent-type groups, i.e., humans
in the HHI condition (N = 20), humans in the HAI condition
(N = 20), and PAPA instances in the HAI condition (N = 20).
An instance of PAPAwas de�ned as a PAPAwhich was paired
with a speci�c human participant in an HAI condition. As
in the previous analysis comparing experimental conditions,
histogram signatures were made for each block in the experi-
ment and individuals were compared in a pairwise fashion to
all other individuals in their group for that block. Aer calcu-
lating the EMD for all individuals in this manner an average
EMD value for each participant and agent instance was cal-
culated. For human produced trajectories, the resulting EMD
values represented the average trajectory pattern similarity
of each participant to all other human participant trajec-
tories in the human-agent-type groups. Likewise, for PAPA
instances, the EMD value represented the average trajectory
pattern similarity for each PAPA instance to all other PAPA
instances.



12 Complexity

Table 2: Exit Question Responses.

Question Yes Maybe No

Did your partner receive di�erent instructions? 1 3 6

Were you in control of your avatar the entire time? 10 0 0

Was your partner in control of their avatar the entire time? 10 0 0

At any point during the study, was your partner replaced by a computer program? 0 0 10

	ere was a statistically signi�cant di�erence between
agent-type groups as determined by one-way ANOVA
(F(2,57) = 15.908, p < .001). A Tukey post hoc test revealed
that there was a signi�cant di�erence between the EMD for
the humans in the HHI condition (M= 177.06, SD = 29.40, SE
= 6.57, N = 20) and PAPA instances in the HAI conditions (M
= 140.34, SD = 17.26, SE = 3.86, p < 0.001, n=20). 	ere was
also a signi�cant di�erence between the humans in the HHI
condition (above) and the humans in the HAI conditions (M
= 149.57, SD= 14.60, std. Error = 3.26, p= 0.014, N= 20).	ere
was no statistically signi�cant di�erence between the humans
and PAPA instances in the HAI conditions (p = 0.535).	us,
trajectory variability remained di�erent between HHI and
HAI conditions and human participants were more similar
to their coactors in a given condition.

4.2.3. Perception of Agent. In the deception condition, par-
ticipants were asked a series of exit questions regarding their
perception of their partner. Because they were not deceived
with regard to the nature of their partner, the questions were
not asked in the HHI and HAI informed conditions. For
the questions and a breakdown of participant response see
Table 2. Overall participants in the HAI deception condition
failed to recognize the deception.

5. General Discussion

	e aim of the current project was to build on behav-
ioral dynamic approaches to HAI, developing a human
inspired collaborative agent, with a focus on introducing
action selection dynamics into the arti�cial agent design.
In the current pick-and-place task, the PAPA was able to
successfully collaborate with a human coactor. All instances
of PAPA completed the task without additional participant
instructions and, in conditions where a confederate was used,
without explicitly revealing that PAPAwas a computer/model
driven. 	e proposed approach converts an observationally
grounded collaborative behavioral dynamic model into an
embodied dynamic action planning system which can be
implemented in both virtual and robotic domains. Unique
to PAPA is a demonstration of the embodiment of both
dynamic action producing and dynamic action switching
components operating in a real-time collaborative planning
agent. In the remainder of the paper, we will explore several
insights, questions, and challenges raised by our results.
PAPA is a relatively simple starting point, demonstrating a
novel approach to using hierarchical behavioral dynamical
movement primitives of human interactions for designing
future collaborative HMI systems.

5.1. Using Human Models for Arti	cial Agents

5.1.1. Human Movement Constraints. As detailed in Sec-
tion 1.3, movement dynamics can be given mathematical for-
mulations which characterize not only the overall functional
features of an agent’s activities, but also how those behaviors
unfold over time [13, 18, 31, 46, 47]. Identifying human
relevant dynamical constraints on the behavior of interactive
arti�cial agents provides a method for developing controllers
that are robust to changes in task contexts and unexpected
task perturbations and do not depend on preplanned tra-
jectories. In the current study, PAPA assumed that human
trajectories were not generated as a result of variations on a
movement template, but as the result of constraints on a self-
organizing dynamical system embedded and parameterized
with regard to an environment task context.

By focusing on constraining dynamic trajectory genera-
tion without reference to prede�ned movement trajectories,
PAPA can perform adaptive and context sensitive movements
that feel natural to human collaborators. Indeed, in the
current task we explored the development and quanti�cation
of an arti�cial agent capable of producing emergent point-to-
point trajectories in an ecologically valid collaborative task
space. 	e task space construction meant that few (if any)
identical trajectory end points existed in the data set. 	e
implemented behavioral dynamic model was able to produce
qualitatively similar trajectories across conditions.	e results
regarding total trajectory similarities exhibited by the model
weremixed (as quanti�ed by the EMDmeasure), with greater
dissimilarity among trajectory patterns indicative of greater
variability in trajectory patterns between participants. 	us,
while the data indicates that the trajectory patterns produced
by PAPA in collaboration with a human were signi�cantly
less variable then the trajectory patterns produced by humans
collaborating with one another, the trajectory patterns pro-
duced by PAPA and humans in the HAI condition exhibited
similar variability. When working with PAPA, the human
collaborator adapted their behavior to the agent’s behavior
which is in line with previous research on adaptive HMI
systems [4, 34, 48]. Given participant responses to the exit
questions, along with the lack of signi�cant di�erences in
trajectory pattern variability within HAI conditions, explicit
knowledge of the coactor’s agency was not a signi�cant factor
driving a�ecting trajectory variability.

One aim of the current study was to implement a set of
human interaction-derived behavioral dynamic models as an
agent control architecture. As anticipated the resulting agent
was adaptive and easy to interact with and did not seem to
raise suspicion in participants. However, the results indicate
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that future research should determine if there are speci�c
modi�cations that can make the agent’s behaviors more
human-like, particularly with regard to trajectory variability.
Previous research on human movement and coordination
suggests that variability may be introduced with the addition
of noise. Noise may be simulated based on observations
of human movement behaviors and could be added into
the PAPA algorithms in order to produce greater trajectory
variability. 	is approach has been used successfully in
simulations of similar systems and in noninteractive robots
using similar control approaches [17, 27, 30, 40]. If the goal
is human-likeness, it is likely that the type and magnitude of
noise would need to be grounded in observations of human
movement patterns or coupling to the human coactor [49–
52]. Alternatively, since PAPA was a successful interaction
partner and did not seem to get in the way of its coactors, the
addition of noise or increased variability may not provide any
speci�c tangible bene�t in many application contexts. While
human-likeness can be an important goal unto itself, it may
also be better to set aside this goal when it does not enhance
task success.

5.1.2. Action Selection Dynamics. While previous research on
behavioral dynamics of multiagent coordination and dynam-
ical movement primitive models for HMI have primarily
focused on movement generation, the current project aimed
to extend these modeling approaches by demonstrating
the application of hierarchically structured action selection
dynamics [32, 33]. Indeed, the addition of action selection
within the proposed hierarchical behavioral dynamic frame-
work adds an important tool for developing adaptive and 
ex-
ible HMI agents capable of dynamically changing behaviors
and interaction strategies without explicit task instruction.
	e action selection model proposed in this paper predicts
most of the observed subtask decisions, while grounding
both the decisions and variability inmeasurable task features.
	us, variability was introduced by the di�erences in coactor
capability, variation in the current task state con�guration,
and previous task/decision states. Moreover, building on
previous research and decisions in the pick-and-place context
exhibit features indicative of nonlinearity, e.g., hysteresis [13].

Regarding pass decisions observed in HHI and HAI,
when participants knew they were working with a computer
they passed the object to their partner signi�cantly more
oen than when they knew they were working with a human.
However, participants working with PAPA, but who thought
they were working with a human, did not exhibit signi�cantly
di�erent passing decisions from the HHI condition nor the
nondeception HAI condition. Nevertheless, while observa-
tions in the current HHI condition suggest that participants
chose to pass or not pass based almost entirely on their own
capabilities, when their partner was perceived as having less
constrained reach capabilities, their decision is known to be
a�ected [53, 54]. Accordingly, it is notable that the most inter-
active subtask (i.e., passing) participants passed more oen
to PAPA when they knew PAPA was a computer program.
	is suggests that human coactors were more inclined to
work less when they knew their coactor was not a person.
Previous research and the current HHI condition found no

in
uence of the other participant’s reach capabilities on the
decision to pass [13]. However, in the current study it appears
that pass decisions were a�ected by the perception of PAPA’s
reach capabilities. 	us, while PAPA’s reach capabilities were
parameterized such that it would pass and pick up similar
to a human coactor, the knowledge that it was a computer
controlled arti�cial agent did appear to result in participants
viewing its reach capabilities as farther, better, or requiring
less e�ort relative to a human coactor.

5.2. Applications in VR/AR and Robotics. While the collab-
orative agent proposed in this paper was implemented in
VR, the ultimate aim is the development of interactive agents
embodied in a physical robotic system [7, 8, 55]. Indeed,
PAPA has been implemented as a proof of concept in a
Kinova Mico2 robotic arm [42]. Robot collaboration has
tremendous potential to produce transformative technologies
in a wide range of areas. However, while computational
systems are capable of complex planning and control, current
hardware systems lack the capacities required to interact
in a meaningful way with human collaborators, e.g., speed,
safety, and portability. In the current experiment, modern
commercial VRwas used to provide an intermediate research
platform for planning algorithms that might be the basis
for future HRI systems. Importantly, in the current task,
PAPA was not only able to complete the task with its human
collaborator, but able to do so in a way that did not indicate
to the participant that it was not in fact a human partner.
Both participant behavior and responses to the exit questions
support this claim. Given that proliferation of Wizard of
Oz studies for testing and comparing algorithms in HRI,
VR provides a promising mechanism for obscuring the
actual control system for potential collaborators [56, 57].
Moreover, by placing PAPA “in the wild” using VR, we
can further determine the role of interaction in shaping
behaviors. While the current study provided only a single
iteration of parameterization and testing, future work will
focus on an iterative design, parametrize, and test process in
order to produce a viable interactive agent.

6. Conclusions

	e future of successful collaborative virtual and machine
agents will depend on a multifaceted design approach that
takes the complex dynamics of human action and action
selection seriously. In both cognitive science and robotics,
researchers have successfully modeled and driven a wide
range of individual movement behaviors using complex
dynamical systems methods. 	ese methods have been
extended to both human-human and human-machine inter-
action contexts, though in the latter context this has been
done relatively independently of the former. In the current
research, we have brought together these two perspectives,
re�ning the dynamical movement primitives used to drive
motion based on behavioral dynamic models. We have also
extended these approaches, introducing methods for dynam-
ically shiing goals by the introduction of task-relevant
action selection dynamics. Moreover, we have demonstrated
the application of a hierarchical behavioral dynamic model



14 Complexity

of multiagent, HAI coordination in a nonrhythmic inter-
action task with multiple and constantly changing goal
states. Finally, the arti�cially controlled agent was able to
successfully collaborate with a human coactor in a way that
did not cause participants to suspect it was a nonhuman
agent.
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[29] A. Mörtl, T. Lorenz, B. N. Vlaskamp, A. Gusrialdi, A. Schubö,
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[48] T. Lorenz, A.Mörtl, and S. Hirche, “Movement synchronization
fails during non-adaptive human-robot interaction,” in Proceed-
ings of the 8th ACM/IEEE International Conference on Human-
Robot Interaction, HRI 2013, pp. 189-190, Japan, March 2013.

[49] G. C. Van Orden, J. G. Holden, and M. T. Turvey, “Self-
organization of cognitive performance,” Journal of Experimental
Psychology: General, vol. 132, no. 3, pp. 331–350, 2003.

[50] J. G. Holden, I. Choi, P. G. Amazeen, and G. Van Orden,
“Fractal 1/f dynamics suggest entanglement of measurement
and human performance,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 37, no. 3, pp. 935–948,
2011.

[51] E. J. Rideout, A. J. Dornan, M. C. Neville, S. Eadie, and S.
F. Goodwin, “Control of sexual di�erentiation and behavior
by the doublesex gene in Drosophila melanogaster,” Nature
Neuroscience, vol. 13, no. 4, pp. 458–466, 2010.

[52] J. G. Holden, “Fractal characteristics of response time variabil-
ity,” Ecological Psychology Journal, vol. 14, no. 1, pp. 53–86, 2004.

[53] T. A. Sto�regen, K. M. Gorday, Y.-Y. Sheng, and S. B. Flynn,
“Perceiving a�ordances for another person’s actions,” Journal of
Experimental Psychology: Human Perception and Performance,
vol. 25, no. 1, pp. 120–136, 1999.

[54] M. J. Richardson, K. L. Marsh, and R. C. Schmidt, “Challenging
the egocentric view of perceiving, acting, and knowing,” in�e
Mind inContext, B.Mesquita, L. F. Barrett, andE. R. Smith, Eds.,
pp. 307–333, Guilford Press, New York, NY, USA, 2010.

[55] T. Lorenz, A. Weiss, and S. Hirche, “Synchrony and reciprocity:
key mechanisms for social companion robots in therapy and



16 Complexity

care,” International Journal of Social Robotics, vol. 8, no. 1, pp.
125–143, 2016.

[56] A. Steinfeld, O. C. Jenkins, and B. Scassellati, “	eOz of wizard:
Simulating the human for interaction research,” in Proceedings
of the 4th ACM/IEEE International Conference onHuman-Robot
Interaction, HRI’09, pp. 101–107, USA, March 2009.

[57] L. Riek, “Wizard of Oz studies in HRI: a systematic review and
new reporting guidelines,” Journal of Human-Robot Interaction,
vol. 1, no. 1, pp. 119–136, 2012.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 

Journal of 

Mathematics and 

Mathematical 

Sciences

Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

nalysNumerical AnalysisNumerical AnalysisericalNumerical AnalysisNumerical AnalysisericNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Discrete Dynamics in 
Nature and Society

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Differential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

