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Abstract—In modern embedded systems, the C2RTL (high-
level synthesis) technology helps the designer to greatly reduce
time-to-market, while satisfying the performance and cost con-
straints. To attack the performance challenges in complex designs,
we propose a FIFO-connected hierarchical approach to replace
the traditional flatten one in stream applications. Furthermore,
we develop an analytical algorithm to find the optimal FIFO
capacity to connect multiple modules efficiently. Finally, we prove
the advantages of the proposed method and the feasibility of our
algorithm in seven real applications. Experimental results show
that the hierarchical approach can have an up to 10.43 times
speedup compared to the flatten design, while our analytical
FIFO sizing algorithm shrinks design time from hours to seconds
with the same accuracy compared to the simulation based
approach.

I. INTRODUCTION

With continuous scaling down of CMOS technology, the
gap between design productivity and transistor resources be-
comes ever larger. To resolve the challenge, design community
is seeking a higher abstraction rather than register transfer
level(RTL). Furthermore, in modern SoC designs, extensive
use of embedded processors, huge silicon capacity, reuse of be-
havior IPs, extensive adoption of accelerators and more time-
to-market pressure are needed. Compared with the traditional
RTL approach, the C2RTL flow provides magnitudes of im-
provements in productivity to better meet those requirements.
Recently, people observed a rapid rising demand for the high
quality C language to RTL (C2RTL) tools [1].

In reality, designers have successfully developed various
applications using C2RTL tools with much shorter design time,
such as face detection [2], 3G/4G wireless communication [3],
digital video broadcasting [4] and so on. Among those tools,
many [5]–[8] are focusing on stream applications. They create
design architectures including different modules connected
by first-in first-out (FIFO) channels. There are some other
tools focusing on general purpose applications. For example,
Catapult C [9] takes different timing and area constraints to
generate Pareto-optimal solutions from common C algorithms.
However, little control on the architecture leads to suboptimal
results. As [10] has shown, FIFO-connected architecture can
generate much faster and smaller results in stream applications.

Among C2RTL tools for stream applications, GAUT [5]
transforms C functions into pipelined modules consisting of
processing units, memory units, and communication units.
Global asynchronous local synchronous interconnections are
adopted to connect different modules with multiple clocks.
ROCCC [6] can create efficient pipelined circuits from C to
be re-used in other modules or system codes. Impulse C [7]
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provides a C language extension to define parallel processes
and communication channels among modules. ASC [8] pro-
vides a design environment for users to optimize systems from
algorithm level to gate level, all within the same C++ program.

All above tools leave the user to determine the FIFO
capacity between modules, which is nontrivial. As shown in
Section II, the FIFO capacity has a great impact on the system
performance and memory resources. Though determining the
FIFO capacity via extensive simulations may work for several
modules, the exploration space will become prohibitive large
in the multiple-module case. Therefore, previous simulation-
based method is neither time-efficient nor optimal.

To design a stream application, researchers also had inves-
tigated on the input stream rates to make sure that the FIFO
between PEs will not overflow, while the real-time processing
requirements are met. On-chip traffic analysis of the SoC ar-
chitecture had been explored [11]. However, their simulation-
based approaches suffer from a long executing time and fail
in exploring large design space. A mathematical framework of
rate analysis for stream applications have been proposed [12].
Based on the network calculus, [13] extended the service
curves to show how to shape an input stream to meet buffer
constraints. Furthermore, [14] discussed the generalized rate
analysis for multimedia processing platforms. However, all
of them adopts a more complicated behavior model for PE
streams, which is not necessary in the hierarchical C2RTL
framework.

This paper proposed a novel C2RTL framework, which
supports a hierarchical way to implement complex stream
applications and determines the FIFO capacity automatically.
It is noted that this framework may be applicable to other
applications, but it has the best improvement in stream ap-
plications. Our contributions are listed as below: 1) Unlike
treating the whole algorithm as one module in the flatten
design, we cut the complex stream algorithm into modules and
connect them with FIFOs. Experimental results showed that
the hierarchical implementation provides 10.43 times speedup
compared to the flatten design. 2) We formulate the parameters
of modules in stream applications and give out analytical
results for the optimal FIFO capacity in two-module case,
which is validated by exhaustive simulations. Furthermore, we
develop a heuristic algorithm to find the optimal FIFO capacity
in a multiple-module design. 3) We demonstrate the proposed
method in seven real applications. Compared to the uniform
FIFO capacity, our method can save memory resources by
14.46 times. Furthermore, the algorithm can optimize FIFO
capacity in seconds, while extensive simulations may need
hours.

The rest of the paper is organized as follows. Section II
describes the motivation of our work. We present our model
framework in Section III. The algorithm for optimal FIFO size

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

2A-4

133



is formulated in Section IV. Section V presents experimental
results. Section VI concludes this paper.

II. MOTIVATION

This section provides the motivation of the proposed hier-
archical C2RTL framework for FIFO-connected stream appli-
cations. We first compare the hierarchical approach with the
flatten one. And then we point out the importance of the FIFO
sizing.

A. Hierarchical vs Flatten Approach
The flatten C2RTL approach automatically transforms the

whole C algorithm into a large module. However, it faces two
challenges in practice. 1) The translating time is unaccept-
able when the algorithm reaches hundreds of lines. In our
experiments, compiling algorithms over one thousand lines
into HDL codes may cost several days to run or even failed.
2) The synthesized quality for larger algorithms is generally
not so good as small ones. Though the user may adjust the
code style, unroll the loop or inline the function, the effect is
usually limited.

Unlike the flatten method, the hierarchical approach splits
a large algorithm into several small ones and synthesizes
them separately. Those modules are then connected by FI-
FOs. It provides the flexibility of architecture as well as
small modules with better performance. For example, we
synthesized the JPEG encode algorithm into HDLs using
eXCite [15] directly compared to the proposed solution. The
flatten one costs 42’475’202 clock cycles with a maximal
clock frequency of 69.74MHz to complete one computation,
while the hierarchical method spends 4’070’603 clock cycles
with a maximal clock frequency of 74.2MHz. It implies a
10.43 times performance speedup and a 7.2% clock frequency
enhancement.

B. Performance with Different FIFO Capacity
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Fig. 1. FIFO size effect

In the hierarchial method, determining the FIFO size be-
comes relevant. We demonstrate the clock cycles of a JPEG
encoder under different FIFO sizes in Figure 1. As we can
see, the FIFO size will lead to an over 50% performance
difference. It is interesting to see that the throughput can
not be boosted after a FIFO size. The threshold may vary
from several to hundreds of bits for different applications
in Section V. However, it is impractical to use large FIFOs
(several hundreds) due to the area overheads. Furthermore,
designers need to decide the FIFO size in an iterative way

when exploring different function partitions in the architecture
level. Even worse, considering several FIFOs in a design, the
optimal FIFO size of each module may interact with each
other. Thus, determining the proper FIFO size accurately and
efficiently is important but complicated. Analytical methods
are preferred due to its ability to find global optimal solution
very fast.

III. HIERARCHICAL C2RTL FRAMEWORK

This section shows the diagram of the proposed hierarchical
C2RTL framework.1 We define two major stages: function
partition and FIFO interconnection.

A. System Diagram

The framework consists of three steps in Figure 2. In Step
1, we partition C codes into appropriate-size functions. In
Step 2, we use C2RTL tools to transform each function into a
hardware process element (PE), which has a FIFO interface. In
Step 3, we connect those PEs with proper sized FIFOs. Given a
large-scale stream algorithm, the framework will generate the
corresponding hardware module efficiently. The synthesizing
time is much shorter than that in the flatten approach. The
hardware module can be encapsulated as an accelerator or a
component in other designs. Its interface supports handshak-
ing, bus, memory or FIFO. We denote several parameters for
the module as below: the number of PEs in the module is
denoted as N, the module’s throughput as THall, the clock
cycles to finish one computation as Tall, the clock frequency
as CLKall and the area as Aall.
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Fig. 2. Hierarchical C2RTL Flow

As C2RTL tools can handle the small-sized C codes syn-
thesis (Step 2) efficiently, two main challenges exist: how to
partition the large-scale algorithm into proper-sized functions
(Step 1) and how to decide the optimal FIFO size (Step 3).
We will discuss them separately.
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B. Function Partition
The C code partition has a great impact on the hardware

performance. Figure 3 demonstrates the partition’s impacts on
operating cycles and logic elements under different combina-
tions of six GSM’s sub functions. We normalized the results
by the last partition. As we can see, the improper partition can
slow down the performance. For example, partition A1 simply
clusters five sub functions into one module and leads to a quite
slow PE. It becomes the bottleneck of the system performance.
On the contrary, the most efficient partition leads to an
identical throughput of each PE. For example, partition B2
adopts near equal-sized function cluster and provides the best
performance with reasonable area overheads. Currently, we
use a manual partition strategy. An integer linear programming
based partition approach is presented in [16]. Integrating such
an automatical partition stage into the framework is our future
work.

C. FIFO Interconnection
To deal with the FIFO interconnection, we first define the

parameters of FIFO and PE’s interfaces. They will be used to
analyze the performance in the next section. Figure 4 shows
the signals of a FIFO. F clk denotes the clock signal of the
FIFO. F we and F re denote the enable signals of writing and
reading. F dat i and F dat o are the input and output data
bus. F ful and F emp indicate the full and empty state, which
are active high. Given a FIFO, its parameters are shown in
Table I. To connect modules with FIFOs, we need to determine
D(n−1)n and W(n−1)n.

Without considering the constraints posed by FIFOs con-
nected, we formulate the parameters of the nth PE interface

1Presently, this framework accepts the finished HW/SW partition from other
tools or designers. It focuses on transforming C algorithms into RTL modules.
However, it is possible to integrate HW/SW partition procedure into this
framework by iterative design explorations.
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Fig. 3. Partition’s Impacts
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Fig. 4. Circuit diagram of FIFO blocks connecting to PE2

TABLE I
THE PARAMETER OF FIFO BETWEEN PEn−1 AND PEn

Name Description Examples2

Fclk(n−1)n Clock frequency (MHz) 50
W(n−1)n Data bus width 16
A(n−1)n Area: memory resource used (bit) 704
D(n−1)n FIFO depth 44

f(n−1)n(m) 1 Number of data in FIFO at mth cycle
1 m means mth cycle.
2 This example comes from the FIFO between PE1 and PE2 in the JPEG

encode case.

TABLE II
THE PARAMETER OF THE Nth PE’S INPUT/OUTPUT

INTERFACES

Name Description Examples2

Type Interface type,I or II II
Tn Period of PEn (cycles) 848

Kni/o Number of data input/output in Tn 64
tni/o Reading or writing time in Tn (cycles) 128
rni/o Reading or writing rate: Kni/o/tni/o 0.5
Rni/o Input or output throughput Kni/o/Tn 0.0755
1 m means mth cycle.
2 Output of PE2 in the JPEG encode case, as shown in Figre 5

in Table II. Based on a large number of PEs converted by
eXCite, we have observed two types of interface parameters.
Figure 5 shows the waveform of type II. As we can see, tn
is less than Tn in this case. In type I, tn equals to Tn, which
indicates the idle time is zero.

2
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Fig. 5. Type II case: Interface of PE2 in the JPEG encode

IV. ALGORITHM FOR FIFO-CONNECTED BLOCKS

This section formulates the FIFO interconnection problem.
We then describe the equations of optimal FIFO capacity for
two PEs. Finally, we propose an algorithm to solve the FIFO
interconnection problem of multiple PEs2.

A. FIFO Interconnection Formulation

Given a design consisting of N PEs, we need to deter-
mine the depth D(i−1)i of each FIFO3, which maximizes the
throughput THall and minimizes the area Aall.

MIN.
N∑
i=2

D(i−1)i (1)

s.t. THall ≥ THref and Aall ≤ Aref (2)

where THref and Aref can be the user-specified constraints
or optimal values of the design. Without losing generality, we
set THref=THbest and Aref=∞, THbest means the maximum
throughput the system can get. We assume that F01 never
empty and FN(N+1) never full. That is for ∀m, f01(m) >
0 and fN(N+1)(m) < DN(N+1)

4.

2Every module has the same hierarchical level.
3We assume that the W(i−1)i is decided by the application.
4This means that we only consider the operating state of the design instead

of the halted state.
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TABLE III
ANALYTICAL EXPRESSIONS FOR OPTIMAL FIFO SIZE WHEN N = 2

I+I
I+II II+I

R1o < R2i
R1o >R2i R1o <R2i R1o >R2iR1o <r2i R1o >r2i R2i <r1o R2i >r1o

D12 1 R1o*(T2i-t2i) (r2i-R1o)*t2i 1 (r1o-R2i)*t1o 1 R2i*(T1o-t1o)

TABLE IV
ANALYTICAL EXPRESSIONS FOR OPTIMAL FIFO SIZE WHEN N = 2 (II+II

CASE)

Conditions R1o >R2i R1o <R2i
r1o >r2i r1o <r2i r1o >r2i R2i <r1o <r2i r1o <R2i

D12

T1 >t1o

A 1

t1o*(r1o-R2i) max[t1o*(r1o-R2i), B>T2 >t2i t2i*(r2i (T2i-t2i)*r1o]
T1 >T2 -r1o)+A max[t1o*(r1o-r2i),

B2>t1o >t2i t1o*r1o-t2i*r2i]
T1 >T2 N/A t1o*(r1o-r2i)>t2i >t1o

1 A = (T1 − t2i)/R2i
2 If r1o ∗ t1o > r2i ∗ t2i , B = r1o ∗ min{(T2 − t2i), t1o};

Else B = min{r1o ∗ (T2 − t2i), r2o ∗ t2o ∗ n − r1i ∗ t1i},
n = �(r2i ∗ t2i)/(r1o ∗ t1o)�

B. Optimal FIFO Capacity for Two PEs
According to the interface classification in Section III-C,

there are four interface combinations for two PEs: I + I, I +
II, II + I and II + II.

We show the analysis results under the first three cases in
Table III. We will show the reason progress by the following
case. Considering data processing rate r2i >R1o >R2i in
the I+ II case, we need THall=THbest. Obviously, the design
throughput THall is limited by the slowest PE, considering
r2i >R1o >R2i, we have THall = THbest = R2o From the
condition of parameter Table II we know only when the FIFO
never affect PE2, can PE2 get its output throughput as R2o.
That means for ∀m,

f12(m) = f12(kT2) + (R1o − r2i) ∗ (m− kT2) ≥ 0 (3)
Considering r2i >R1o >R2i, the minimal value is achieved at
kT2+t2. Take it into equation 3, the minimal FIFO depth D12

can be obtained
D12 ≥ f12(kT2) ≥ (r2i −R1o) ∗ t2 (4)

Similarly, we can get other FIFO size equations in Table III.
Next, we show the FIFO size equations for II+ II in

Table IV. Assuming the R1o > R2i, r1o > r2i and T1 >
t1o > T2 > t2i, the maximal throughput is achieved when
THall = R2o. According to the condition of parameter
Table II, f12(m) > 0 should hold when m ∈ [kT2, kT2 + t2].
As the output of PE1 is not always working in this case,
we discuss them respectively. If m ∈ [kT2, kT2 + t2] and
lT1 < kT2 < kT2 + t2 < lT1 + t1 , we have

f12(m) = f12(kT2) + (r1o − r2i) ∗ (m− kT2) ≥ 0 (5)
Because we have r1o > r2i, equation 5 always holds. It

means the FIFO will never be empty in this condition. In
other conditions, we use the average writing rate R2i of PE2,
and we have the following equations:

f12(m) = f12(lT1 + t1)−R2i ∗ (m− lT1 − t1) ≥ 0 (6)
Taking m as lT1 + T1, the minimal FIFO depth D12 for this
case can be obtained

D12 ≥ f12(lT1 + t1) ≥ R2i ∗ (T1 − t1) (7)
Similarly, we can get other FIFO size equations in Table IV.

C. FIFO Capacity for Multiple Blocks
To determine the FIFO size for multiple PEs, we state an

assumption to simplify the problem and explain the algorithm.

After that, we explain how to merge two PEs into one, which
is a key step in the algorithm.

In case of multiple PEs, the FIFO sizing will interact with
each other. It will increase the exploration space greatly. We
set THn as the throughput of the system consisting of PE1 to
PEn. We have a recursive equation:

THn =

{
Rno TH(n−1)o > Rni

Kno/Kni ∗ TH(n−1) others
(8)

As THall=THN , we can express THall as the followings:

THall = THbn

N∏
i=bn+1

(Kno/Kni) (9)

where we denote the bottleneck PE’s index as bn. The as-
sumption is that D(bn−1)bn and Dbn(bn+1) are only affected by
PEbn−1, PEbn, and PEbn+1. Experimental results in Section V
show the assumption holds for real stream applications.

Algorithm 1 FIFO Capacity Algorithm for N > 2

Input: N,ParaG[N ]
Output: D(n−1)n, for ∀n ∈ [2, N ]
1: n = N − 1
2: while n > 1 do
3: i = Get bottleneck index(ParaG)
4: if i > 0 then
5: D(i−1)i = Fsize 2(ParaG[i− 1], ParaG[i])
6: Merge(ParaG[i− 1], ParaG[i])
7: end if
8: if i < N then
9: Di(i+1) = Fsize 2(ParaG[i], ParaG[i+ 1])

10: Merge(ParaG[i], ParaG[i+ 1])
11: end if
12: Update(ParaG)
13: n = n− 1
14: end while

We describe the proposed method to determine the
FIFO capacity for multiple PEs (N>2) in Algorithm 1.
The inputs are the number of PE N , the parame-
ters of PE interfaces ParaG[N ]. ParaG[N ] includes
Kni/o, rni/o, Rni/o, tni/o, Tn shown in Table II. The output
is each FIFO’s optimal depth D(n−1)n. In each loop, n means
the number of PEs left to be processed. We get the bottleneck
PE’s index i from function Get bottleneck index() in line 3;
Line 4 and 8 judge whether this PE is the head or tail node of
the PE chain. If not, they respectively generate the input and
output FIFO for PEi. As PEi is the bottleneck in the chain,
the assumptions in Section IV-B is satisfied. Therefore, we
call function Fsize 2() to derive the FIFO capacity based on
the equations in Table III and IV. After that, we call function
Merge() to merge two PEs into a new one, which will be
discussed soon. Because the active PE is reduced, we adjust
the array index in ParaG according to the merge operation
by function Update(). Finally, the number of PE decreases by
one and the loop continues until all FIFO sizes are determined.

We give out the equations to compute the interface param-
eters for the merged PE in Table V. As defined in Table II,
we use Ri/o, ri/o, ti/o, T to characterize the parameters of the
merged PE. We use a typical case to explain how to derive
the results in Table V. Considering r2i > R1o > R2i in the
I + II case, we first determine the output interface. Similar to
Table IV, we have To =T2. Because K2 never changes, other
output parameters remain the same.

Next, we decide the input interface. From nT to nT + ti,
n ∈ [1, 2, ...], we have the number of data in FIFO at m time
as below:
f12(m) = f12(nT )+R1o ∗ (m−nT )− r2i ∗ (m−nT ) (10)
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TABLE V
PARAMETERS OF THE NEW PE BY MERGING PE1 AND PE2

I+I I+II
R1o <R2i R1o >R2i R1o <R2i

R1o >R2i
R1o <r2i R1o >r2i

Ri R1i R2i/R1o*R1i R1i ri*ti/Ti R2i/R1o*R1i
ri r1i r2i/R1o*R1i r1i R1i r2i/R1o*R1i
ti t1i t2i*R1o/R1i t1i t2i*r2i/R1o t2i
Ti T1 T2*R1o/R1i T1 T2 T2
Ro R1o/R2i*R2o R2o R1o/R2i*R2o R2o R2o
ro r1o/R2i*R2o r2i r2o r2o r2o
to t1o*R2i/R2o t2i t2o t2o t2o
To T1*R2i/R2o T2 T2*R2i/R1o T2 T2

II+I II+II
R1o <R2i R1o >R2i R1o <R2i R1o >R2ir1o <R2i r1o >R2i

Ri R1i R1i R2i/R1o*R1i R1i r1i*t1i/Ti
ri r1i r1i r1i r1i r1i*t1i/ri
ti t1i t1i t1i t1i [t1i,t1i+∆t]1

Ti T1 T1 T1*R1o/R2o T1 r1o*t1o/R2i
Ro R1o/R2i*R2o ro*to/To R2o r2o*t2o/To R2o
ro r1o/R2i*R2o R2o r2o r2o*t2o/to r2o
to t1o t1o*r1o/R2i t2o [t2o,t2o+∆t]1 t2o
To T1 T1 T2 r2i*t2i/R1o T2

1 ∆t = |T1 − T2|
2 Here the input and output interfaces’ type of one PE are the same.

When m ∈ [nT + ti, (n+ 1)T ], the new PE’s input interface
will be idle, which means F12 is full:

f12(nT + ti) = f12(nT + T ) = f12(nT ) = D12 (11)
Based on equation 10 and 11, we have ti = r2i ∗ t2i/R1o

when m =nT + ti. Because r2i > R1o, ri remains as Ri.
When m ∈ [nT + ti, (n + 1)T ], f(m) < D always holds.
That means F12 can not be full and PE1 will run at full speed
without halting. Similarly, we have other parameters for the
merged PE in other conditions in Table V.

V. EXPERIMENTS

In this section, we first explain our experimental config-
urations. After that, we compare the flatten approach with
the proposed hierarchical method. Finally, we demonstrate the
effectiveness of our algorithm using seven real applications.

A. Experimental Configurations
In our experiments, we use eXCite to do the C2RTL con-

version. The HDL files are simulated by ModelSim to get the
timing information. The area and clock information is obtained
by Quartus II from Altera, where Cyclone II is selected as the
target hardware. We derive seven large stream applications
from high-level synthesis benchmark suits CHstone [17]. They
come from real applications and consist of programs from the
areas of image processing, security, telecommunication, and
digital signal processing.

• JPEG encode/decode: JPEG transforms image between
JPEG and BMP format.

• AES encryption/decryption: AES (Advanced Encryp-
tion Standard) is a symmetric key cryptosystem.

• GSM : LPC (Linear Predictive Coding) analysis of GSM
(Global System for Mobile Communications).

• ADPCM : Adaptive Differential Pulse Code Modulation
is an algorithm for voice compression.

• Filter Group: The group includes two FIR filters, a FFT
and an IFFT block.

B. Flatten vs Hierarchical Approach
We compare two approaches using seven benchmarks. Ta-

ble VI shows the clock cycles saved by the hierarchical
approach. As we can see, an up to 10.43 times speedup can
be reached. Furthermore, Table VI also shows the maximal
clock frequency of two approaches. Obviously, the hierarchical

TABLE VI
FLATTEN AND HIERARCHICAL APPROACH COMPARISON

Benchmark Flatten Hierarchical Speedupapproach approach

JPEG encode T1 42,475,202 4,070,603 10.43
C2 69.74 74.2 1.064

JPEG decode T 623,090 456,821 1.364
C 71.15 71.3 1.002

AES encryption T 1,904,802 719,263 2.648
C 71.24 91.06 1.278

AES decryption T 2,185,802 915,222 2.388
C 75.56 87.35 1.156

GSM T 620,802 204,356 3.038
C 55.73 59.16 1.062

ADPCM T 35,691 12,464 2.864
C 53.29 68.32 1.282

Filter groups T 6,537,416 1,702,406 3.840
C 93.41 96.69 1.035

1 T means the min operation cycles Tall(cycles).
2 C means the max clock frequency CLKall(MHz).

TABLE VII
OPTIMAL FIFO SIZE(D12) WHEN N=2

Condition I+I
I+II II+I

R1 <R2
R1 >R2 R1 <R2 R1 >R2R1 <r2 R1 >r2 r1 >R2 r1 <R2

Analytical: 1 6 43 1 1 13 11
Simulation: 2 6 44 1 2 14 12

approach is also faster. Among those benchmarks, the area
overheads of them are generally less than 5% except the GSM
case. It has a 15.77% larger area using the hierarchical method.
5

C. Optimal FIFO Capacity
We first valid our equations to determine the optimal FIFO

size for N = 2 (Table III and IV). We compared our results
with exhaustive simulations under random inputs. We listed
those results in Table VII and VIII. As we can see, the
analytical results fit the simulation-based ones quite well for
the FIFO connecting two PEs.

Next, we compare the analytical FIFO size with the simu-
lated results for real designs with multiple PEs. First of all, we
show the relationship between the FIFO size and the running
time Tall. Figure 6 shows the JPEG encoding case. As we can
see, the FIFO size has a great impact on the performance of
the design. In this case, the optimal FIFO capacity should be
D12=44, D23=2.

Table IX lists both the analytical results and the experi-
mental ones on FIFO size in seven cases. It shows that our
algorithm is accurate enough for those real cases. Though little
mismatch exists, the difference is very small. Compared to
the magnitudes of speedup to determine the FIFO size, our

5We use the number of logic elements (LE) to represent the area.

TABLE VIII
OPTIMAL FIFO SIZE(D12) WHEN N=2 FOR CASE II+II

Condition R1 >R2 R1 <R2
r1 >r2 r1 <r2 r1 >r2 R2 <r1 <r2 r1 <R2

T1 >t1 > Analytical: 24 26 96 32 1
T2 >t2 Simulation: 25 25 97 33 2

T1 >T2 > Analytical: 24 32 64 32 1
t1 >t2 Simulation: 17 30 65 33 2

T1 >T2 > Analytical: 28 N/A 2 20 1
t2 >t1 Simulation: 25 3 21 2
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TABLE IX
OPTIMAL FIFO CAPACITY ALGORITHM EXPERIMENT RESULT IN 7 REAL

CASES

Benchmark D12 D23 D34 D45 D56 Tall

JPEG encode Analytical 43 2 - - - 4080201
Experiment 44 2 - - - 4070603

JPEG decode Analytical 2 33 17 2 - 456964
Experiment 2 33 18 2 - 456821

AES encryption Analytical 2 2 2 - - 719364
Experiment 3 2 3 - - 719263

AES decryption Analytical 2 257 2 - - 867407
Experiment 3 249 3 - - 867306

GSM Analytical 54 2 2 2 2 204554
Experiment 55 2 2 2 2 204356

ADPCM Analytical 2 2 2 2 2 12464
Experiment 2 2 2 2 1 12464

Filter group Analytical 2 2 86 2 2 1701896
Experiment 2 2 87 2 2 1701846

TABLE X
FIFO AREA SAVED

Benchmark
Memory resource used(bit)

SavingsFIFOs with 1 FIFOs with
enough size optimized size

JPEG encode 10,048 2,624 x3.83
JPEG decode 38,776 8,376 x4.63
AES encode 92,160 67,968 x1.36
AES decode2 92,160 75,808 x1.22

GSM 36,028 8,602 x4.19
ADPCM 54,040 3,736 x14.46

Filter groupe 114,400 76,736 x1.49
1 We set each FIFO depth as 128.
2 In this case we set each FIFO depth as 256.

algorithm is quite promising to be used in architecture level
design space exploration.

The memory resource savings by well designing FIFO are
listed in Table X. Compared to the large enough design strat-
egy, the memory savings are significant. Moreover, compared
to the simulation based method to decide FIFO capacity, our
work is extremely time efficient. Considering a hardware with
N FIFO to design, each FIFO size is fixed using a binary
searching algorithm. It will request log2(p) times simulations
with the initial FIFO depth value D(n−1)n=p. Assume the
average time cost by ModelSim simulation as C, the entire
exploration time is N ∗ log2(p) ∗ C. Considering the Filer
Group case with N = 5, p = 128 and C = 170 seconds,
which are typical values on a normal PC, we have to wait 100
minutes to find the optimal FIFO size. However, our analytical
solution can finish the exploration in seconds.
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Fig. 6. FIFO capacity in JPEG encode case

VI. CONCLUSIONS

Improving the booming design methodology of C2RTL to
make it more widely used is the goal of many researchers.
Our work of the hierarchical framework for FIFO-connected
stream applications does have achieved the improvement. We
propose a hierarchical C2RTL design flow to increase the
performance of the flatten one. Moreover, we develop an
analysis based heuristic algorithm to find the optimal FIFO
capacity in a multiple-module design. Experimental results
show that hierarchical approach can improve performance by
up to 10.43 times speedup. What’s more, the FIFO sizer works
accurately in seconds compared with the simulation based
approach in hours. The future work includes the automatical
C code partition and using our algorithm in more complex
architectures with feedback and branches.
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