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Abstract 

A Hierarchical Community of Experts 

Brian Sallms 

Master of Science 

Graduate Department of Computer Science 

University of Toronto 

1998 

The unsupervised extraction of high-level representations from data is a difficult problem. 

Many hierarchical graphical models have been proposed to solve this problem, but all 

suffer from representational difficulties or problems in generalizing the architecture to 

multiple layers. 

A multilayer graphical model is proposed that avoids the difficulties of earlier models. 

The model combines binary and linear stochastic units in a novel way: The binary units 

gate the outputs of the linear units. Inference is intractable, so a Markov chain Monte 

Carlo approximation scheme called Gibbs sampling is used. Normal Gibbs sampling 

requires that the Markov chain reach equilibrium before samples are used for learning. 

It is shown that "brief" Gibbs sampling can be used for learning, where the samples are 

used even though the Markov chain is far from equilibrium. Simulations demonstrate 

that the network can extract high-level representations from some small but interesting 

data sets. 
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Chapter 1 

Background 

1.1 Introduction 

Connectionist models are often used to perform classification tasks. In a classification 

task there is a set of observations and a set of classes. The task is to learn the mapping 

from observations to classes so that new observations can be assigned to the correct class, 

or so that a probability distribution can be computed over possible class assignments. 

In practice, classification tasks are learned by networks trained with supervised learning 

algorithms. In supervised learning all of the training cases are labeled, and the  error 

between the predicted and actual label is minimized over the entire training set. 

Supervised learning is efficient because it makes use of information about the desired 

targets as well as information about the input data. Unfortunately, supervised learning 

requires labeled data that can be expensive or impossible to obtain. Also, there is 

something unsatisfying about supervised learning: We humans only have to be told the 

class label of a few examples of something before we can recognize objects of a similar 

kind. 

A model could learn a classification task with a minimum of supervision if first an 

unsupervised learning algorithm was used to cluster the data, and then a supervised 



algorithm was used to learn labels for each of the clusters. This way we need only a few 

labeled training cases for each class. The model first extracts a high-level representation 

of the data in an unsupervised fashion by making use of underlying statistical structure 

in the data. Once this structure is learned it is easier to learn the classification task. Of 

course, this assumes that the underlying statistical structure in the data corresponds to 

the classes to be learned. As long as class membership is assigned based on some kind 

of clusters in the data, this is a reasonable assumption. 

With unsupervised learning there are no target values, so we must minimize something 

other than residual error between predicted and actual targets. Density estimation is one 

alternative. If we assume that the observations have been drawn from some probability 

distribution, then by learning this distribution we can gain some insight about the data. 

First we must make assumptions about the form of the distribution. Typically we assume 

that it belongs to some class of distributions for which we have a parameterized model. 

Then we can optimize the parameters of the model so as to maximize the probability 

that the distribution would generate the given observations. Because we assume that the 

model generates the data, it is called a generative model. We cail a set of parameters which 

maximize the   rob ability that the model would generate the given data a maximum- 

likelihood (ML) set of parameters. The generative model can be used for classification 

if there are unobserved random variables which can be interpreted as class Labels. The 

posterior distribution over these hidden variables yields a soft classification of a previously 

unseen datum. The process of calculating the posterior over the hidden units is called 

inference, and the optimization of the model parameters is called learning. 

The purpose of this thesis is to investigate a generative model for unsupervised learn- 

ing of statistical structure in real-valued data. This model, called a hierarchical commu- 

nity of experts, combines real-valued and binary stochastic units in a novel way. The 

goal is to find a model that can extract efficient high-level representations from data, and 

use these representations to learn minimally-supervised classification tasks. 



1.2. ORGANIZATION OF THIS THESIS 

1.2 Organization of this thesis 

This chapter begins with a brief explanation of the Expectation-Maximization ( E M )  

algorithm, one of the most common methods of learning ML parameters in generative 

models. Because inference plays a central role in the E M  algorithm, we then discuss 

methods of inference including exact, variational and Monte Carlo methods. We then 

review several previous models: factor analysis (section 1.5.1): mixture models (section 

1.5.2), logistic belief networks (section 1.5.3), independent component analysis (section 

1.5.4) and rectified Gaussim belief networks (section 1.5.5). In chapter 2 we motivate the 

new model, and describe how inference and learning axe performed. In chapter 3 we show 

the results of learning on some small tasks. In particular, we show that a hierarchical 

community of experts can extract interesting representations from data and use them to 

learn a minimally-supervised classification task for a simple binary classification problem 

(section 3.2.1). In chapter 4 we discuss some attributes of the model, including some 

shortcomings and possible solutions. Finally we consider possible modifications and 

extensions to t;he model. 



1.3 The Expectation-Maximization algorithm 

The Expectation-Maximization ( E M )  algorithm is an iterative method for learning ML 

parameters of a generative model where some of the random variables are observed, and 

some are hidden [Dempster et  al., 19771. The hidden random variables might represent 

quantities that we think are the underlying causes of the observables. For example, a 

model designed to explain data consisting of shoe size and reading ability might use age 

as a hidden variable. The hidden variables could be continuous as in the above example, 

or discrete as in the case of class labels. 

Let x be the values of the visible variables, y be the values of hidden variables, and 

let 6 be the parameters of the model. As the name implies there are two steps to the 

algorithm: 

Expectation (E) step: Calculate the distribution P ( y  lx; 0) over the hidden variables, 

given the visible variables and the current value of the parameters. 

Maximization (M) step: Compute the values of the parameters 8' that maximize the 

expected log-likelihood under the distribution found in the Estep: 

and set 8 t 8'. 

So the Estep involves inferring the distribution over hidden units, and the M-step involves 

learning new parameters. It can be shown that if these two steps are repeated the true 

log-likelihood will increase, or stay the same if a maximum has already been reached. 

Notice that the M-step might require solving a difficult non-linear optimization prob- 



Iem. It is sometimes natural to implement a partial M-step instead, where we just find 

a set of parameters that improve the expected log-likelihood instead of fully maximizing 

it. For example, gradient ascent-based partial M-steps are quite common. Algorithms 

that use a partial M-step are called generalized E M  algorithms (GEM), and they are 

also guaranteed to improve the true likelihood. 

The Es tep  can also be very difficult, depending on the form of the posterior. Some- 

times we must resort to approximate inference, where instead of finding the true posterior, 

we find an approximation to the true posterior. The approximation is then used to corn- 

pute the expectation required in the M-step. As we can see, inference is central to the 

problem of learning ML parameters with the E M  algorithm. Performing exact or ap- 

proximate inference is a very important problem that must be solved both to learn the 

parameters of a generative model, and to use the model once ML parameters have been 

found. 

1.4 Inference 

1.4.1 Exact inference 

In some cases there is no need for approximate inference because we can efficiently com- 

pute the correct posterior distribution. Examples include the case of linear-Gaussian 

models; and singly-connected graphical models, where some variant of probability prop- 

agation can be used to compute the posterior correctly[Pearl, 19851. F'actor analysis is an 

example of the former (see section 1.5.1), and the hidden Markov model [Baum and Petrie, 19661 

is an example of the latter. Kalman filters can be both singly-connected and Gaussian 

[Kalman, 19601. 

The advantages of exact inference are obvious: speed and precision. These properties 

account for the wide adoption of models in which exact inference is possible. Unfortu- 



nately exact inference is only possible for a very restricted range of architectures', and 

these do not seem to be expressive enough to capture complicated phenomena such as 

vision. 

1.4.2 Variational methods 

Consider a parameterized distribution Q over hidden vaxiables. Given a metric that mea- 

sures the difference between this distribution and the true posterior P we can optimize 

the parameters of Q to approximate P. The approximation Q is called a variational ap- 

proximation, and the parameters are variational parameters. There is a suitable distance 

metric called the Kullback-Leibler divergence between & and P: 

where y is a vector of hidden unit activities, and x is an observation. 

To evaluate (1.2) directly we would need to evaluate P(y1x) which is what we are 

trying to approximate in the first place. We can get around this difficulty by evaluating 

the free energy which is a function of the joint probability of the hidden and visible 

units P(x ,  y). The free energy is comparable to "variational free energy" from statistical 

physics. The joint probability is readily available in directed acyclic graphical models 

(called belief networks). 

The free energy is actually an upper bound on the negative log-probability of the 

data. It is the negative log-probability of the data plus the I<L divergence between Q 

and P2: 

hstead  of optimizing the parameters of Q by minimizing (1.2), we can minimize (1.3), 

'This assumes that P # N P  [Cooper, 19901. 
 he reader should note that the free energy is sometimes defined with opposite sign: F = log P ( x )  - 

KL(Q1IP). However, we will use the sign which is consistent with the free energy from statistical physics 



which will have the same effect (since log P ( x )  is independent of Q). It turns out that 

we will also train the model by minimizing (1.3) with respect to the model parameters. 

See section 2.4 for a further discussion of free energy. 

Variational methods have several advantages. They allow us to calculate an upper 

md lower bound on the log-probability of the data under the current generative model 

[Jaakkola, 19971 and they are fast. They are dso deterministic which can be an advantage 

in situations where gradients are shallow and sampling noise might hinder learning. The 

down side is that i t  is not always easy to come up with a good approximating distribution. 

Typically a good variational approximation is very architecture-specific. If care is not 

taken, the approximating distribution can be too simplistic to capture important features 

of the posterior, or it can be too complicated to be used in subsequent calculations. 

Finding good approximating distributions is as much art as science. 

Two commonly-used variational approximations are the mean field approximation, 

and the maximum a postenon' (MAP)  approximation. Under a mean field approximation 

we assume that the hidden units are independent. Instead of having a distribution whose 

representation requires space exponential in the number of hidden units we have one that 

only needs linear space. Under a MAP approximation we assume that Q is a single spike 

of infinite density at a point y,. Like replacing a tent by a tent pole, the entire mass of 

the distribution is replaced with this single spike. In this case, the KL distance between 

Q and P is infinite, so we optimize the parameters of Q with respect to the expected 

energy under Q, given by: 



This quantity is proportional to the posterior, so during the optimization of Q we move 

the spike to a point of maximum density under the posterior (the tallest part of the 

tent), thus the name maximum a posteriori. This can be a reasonable approximation 

if the true posterior is unimodd and sharply-peaked. Both of these approximations are 

common because they are simple, and they seem to work for a large class of problems. 

However if the posterior is multimodal or broad they may be insufficient. 

It may appear that by adopting such simple approximations, we loose a Lot of the 

expressiveness of the true posterior. It is true that the posterior is usually much more 

expressive than the approximation. However, there is a mitigating factor that allows 

simple approximations to do a reasonable job: Because we update the model parameters 

by performing gradient descent in F, the model parameters are adjusted so as to reduce 

KL(Q 11 P) as well as to increase log P ( x ) .  The model parameters change so that the true 

posterior is brought closer to the approximation. 

1.4.3 Monte Carlo methods 

Monte Carlo approximations can be used to estimate expectations when we cannot eval- 

uate the posterior explicitly, but we can sample from it. Given N samples {XI, ..., XN} 

from a distribution P ( x ) ,  we can approximate the expectation of a function f (x) under 

P as follows: 

There are a number of different schemes for generating the set of samples which de- 

pend on the form of the distribution P (see [Neal, 19931 for a survey of Monte Carlo 

sampling techniques). In general, Monte Carlo methods are not as dependent on archi- 

tecture as are variational methods. A single Monte Carlo method can be applied to a 



broad range of architectures. The disadvantage of Monte Carlo methods is speed: It 

can take a long time to approximate an expectation to a high degree of accuracy. Also, 

because the approximations involve taking a random sample from P, we get a noisy es- 

timate of any quantities of interest. We discuss Monte Carlo methods in more depth in 

section 1.5.3 and section 2.4. 

1.5 Models 

1.5.1 Factor Analysis 

Factor analysis can be viewed as a two-tier generative model. The value of a D- 

dimensional real-valued visible vector is given by: 

where y is a real-valued vector, drawn from a multivariate Gaussian distribution with 

zero mean and unit-diagonal covariance. The vector y can be viewed as the underlying, 

or hidden cause of the data vector x. The real-valued vector 9, which plays the role of 

independent sensor noise, is drawn from a multivariate Gaussian with zero mean and a 

D x D diagonal covariance matrix Q, where +:, . .., $; are the elements along the diagonal. 

The weights W, which specify the relationship between the hidden and visible units, are 

called the factor loadings. Since y is drawn from a diagonal-covariance Gaussian, we can 

consider each unit yj separately in the generative model. The prior over the jth hidden 

unit is given by: 

where in the standard factor analysis model ijj = 0 and nd j  = 1. We will look at models 

later in which Qj is non-zero and nd; is not unity. Viewed as a Bayesian network, a factor 

analyzer consists of Gaussian stochastic units with linear transfer functions (see figure 



Zero-mean, Unit-variance Gaussian noise 

Independent Gaussian noise 

Figure 1.1: Factor analysis, viewed as a Bayesian network. The circles represent linear 

units, and the arrows between layers represent the factor loadings. When viewed as a 

generative model, the hidden units are driven with zero mean, unit-variance Gaussian 

noise. Independent Gaussian noise is also added to the visible units 

1.1). We refer to this kind of unit as a linear-Gaussian unit. 

Because the prior is Gaussian and the hidden units are linear, a factor analyzer 

in generative mode defines a Gaussian distribution over observation space. Therefore, 

factor analysis can only capture second-order correlations in the data, and is insensitive 

to higher-order correlations. The Gaussian defined by a factor analyzer has zero mean 

if = 0, and it can be shown to have covariance matrix WWT + 8. Typically, factor 

analysis is used as a means of dimensionaiity reduction, when it is conjectured that 

a small number of underlying hidden factors are responsible for the distribution of the 

visible data. In this case the number of hidden factors used is less than D [Everitt, 19841, 

and the factor analyzer can only model a restricted subset of possible covariance matrices. 

Given a data set, the ML factor loadings (W) and diagonal covariance matrix (Q) can 

be found with the Expectation-Maximization ( E M )  algorithm [Rubin and Thayer, 19821. 

In the Es tep  the distribution of the hidden units given the visible units is calculated. In 

the M-step the parameters are updated so as to  maximize the probability of generating 

the given data vector given the posterior found in the Estep. The posterior distribution 



1.5. MODELS 

can be found using Bayes' rule: 

where 2, is a normalizing constant. 

The posterior is Gaussim and can be computed exactly. Factor analysis is a widely- 

used model in part because exact inference is tractable. The tractability of the posterior 

results in a straight-forward inference algorithm in which explaining away is handled 

correctly [Pearl, 19881. 

Factor analysis learns representations that are fully distributed across the hidden 

units. The hidden layer tends to use all of the hidden units to represent each data point. 

Unfortunately, this means that all of the hidden factors, and  so all of the basis vectors in 

W, must concern themselves with each data point. A factor analyzer will not dedicate 

subsets of its factor loadings to model localized features of a data set. This ability 

would be advantageous when trying to model images, for example, which are typically 

compositions of small objects. 

Factor analysis models have been extended to use non-Gaussian priors over the hid- 

den factors [Bell and Sejnowski, 1995, Olshausen, 1996, Hinton and Ghahraxnani, 1997, 

h i c  Moulines et al., 1997, Lewicki and Olshausen, 19981. In most cases the posterior 

cannot be computed exactly, and approximations must be used. These approximations in- 

clude learning an explicit recognition model [Hinton et al., 19951, estimating the posterior 

with a variational method [Saul et al., 19961 or with M A P  inference [Olshausen, 19961, 

or sampling from the posterior using Monte Carlo sampling techniques [Neal, 19931. As 

an alternative to these approximations the model can be simplified by removing the inde- 

pendent noise on the visible units [Bell and Sejnowski, 19951. This causes the posterior 

to  shrink to  a single point which can be found by multiplying the observation by the 

inverse of the generative weight matrix. This simplification is analogous to  the one made 



for principal component analysis (PCA) which can be viewed as a factor analysis model 

with no independent noise on the visible units. Note that if the generative weight matrix 

is not square then the resulting model does not define a proper probability distribu- 

tion over the observation space. A well-defined probabilistic version of PCA has been 

investigated [Roweis, 1997, Tipping and Bishop, 19971. 

1.5.2 Mixture Models 

A mixture model can be viewed as a probabilistic generative model composed of several 

distinct density models (or components). To generate an observation, exactly one of the 

components is chosen, and the new point is drawn from the distribution defined by this 

component. If the probability of component i generating data point x is given by ~ ~ ( ~ 1 8 )  

then the probability of the mixture generating x is given by: 

where 0 represents the parameters of the mixture model, P(il0) is the prior probability 

of choosing component i, and K is the number of density models in the mixture. To 

generate a new data point, first component i is chosen with probability P(ilB), and then 

the new data point x is drawn from the distribution ~ ~ ( ~ 1 0 ) -  

A set of ML model parameters can be found with the E M  algorithm. In the Estep,  

the responsibility of each component i is calculated for each data point x: 

This is the posterior probability of selecting component i given the data point x, and 

(1.10) is simply a restatement of Bayes' rule. Notice that pi(xlO) must be evaluated to 

find the responsibilities. This may not be easy, depending on the form of the model. 



The M-step consists of updating the model parameters 8 so as to maximize the ex- 

pected log-likelihood; typically, the expected negative log-likelihood is minimized instead. 

Given the responsibilities, the expected log-likelihood is: 

The parameters can be updated by performing gradient ascent on (1.11). Many different 

models have been used including Gaussians [Day, 19691, principal component analyzers 

[Jacobs et al., 19911 and factor analyzers [Hinton et al., 1997a, Ghahramani and Hinton, 19961. 

One benefit of a mixture model is that if there are several distinct clusters in the 

data the mixture model can assign a separate mixture component to each cluster. For 

this reason mixture models are well suited to solving classification problems where each 

cluster defines a class of objects. In this case the latent variable i corresponds to the 

class labels. Not only can the mixture model adapt to each class separately, but the 

responsibilities computed for a previously unseen data point yield a soft classification of 

the new observation. 

Notice that in generative mode only one mixture component can be active at a time; 

this is a considerable limitation. Consider the case of images, where each image is com- 

posed of a collection of objects. Since each mixture component must try to explain the 

entire image the model cannot simply adapt one component to each object. Instead, it 

must adapt one component to each combination of objects. If the data contain com- 

binations drawn from D possible objects then 2D mixture components will be required 

to model the data. Clearly if there are exponentially many mixture components the 

calculation of responsibilities (1.10) becomes intractable. 

Mixture models learn a localized representation of each data point: Only one unit in 

the hidden layer is active for each observation. The representational power of mixture 

models is limited because they do not learn a distributed representation. Unlike with a 



factor analyzer, the representation of an input vector is not shared across several hidden 

units. 

1.5.3 Logistic Belief Networks 

Logistic belief networks, first investigated by Neal [Neal, 19921, are directed acyclic net- 

works of stochastic binary units. The binary units discussed here output either 0 or 1. 

A unit i outputs a 1 with probability dependent on the outputs of the units above: 

where si is the output of unit i, j < i denotes the parents of unit i, wji is the connection 

strength from unit j to unit i, bi is the bias on unit i, and a(x) is the logistic function: 

1 
~ ( f  = I + e-' 

We refer to these units as binary-logistic units. 

In order to learn ML parameters for this model we mu e the post erior dis- 

tribution over the hidden units given a visible vector. This amounts to finding the 

probability of each of the possible states of the hidden units given the input vector. If a 

network has D hidden units there will be 2D such states making the exact calculation of 

the full posterior intractable. To approximate the full posterior distribution Neal used 

a Monte Carlo sampling technique called Gibbs sampling. The posterior has also been 

approximated with a variational approximation [Saul et al., 19961, and by learning an 

explicit set of bottom-up recognition connections that, given a training vector, produce 

a set of hidden unit activities [Hinton et al., 19951. 



Gibbs Sampling in Logistic Belief Nets 

Gibbs sampling is a Monte Carlo method that can be used to approximate expectations. 

Gibbs sampling is appropriate when we cannot explicitly calculate these expectations, 

but we can sampie from the distribution of a single unit given the states of all of the 

other units in the network. During Gibbs sampling hidden units axe visited one at a 

time, and the new state of each unit is drawn from its distribution conditioned on the 

activities of all of the other units. Let a denote a particular set of hidden unit activities, 

or configuration of the network, and let Pa denote the probability of this configuration, 

given by: 

where sp denotes the state of unit i in configuration a. 

The conditional probability of unit i emitting a 1, given the configuration denoted by 

a: over the other units, is given by: 

where ~ ~ \ s i = ~  and Pa\si=0 are the probabilities of a configuration that  is identical to a, 

with the exception that unit i takes on the values 1 and 0 respectively. 

If we define the energy of a configuration as Ea = - log Pa7 then (1.15) can be 

rewritten as: 

P(si = l l a )  = o(AE,") (1.16) 

where AE;P is the difference in energies when unit i takes on the value of either 1 or 0: 



Here, Zr = o (bi + CkCi W ~ ~ S Z )  is the probability that si = 1 given its total input from 

the other units, plus the bias. 

To perform Gibbs sampling each unit is visited in turn, and its state is chosen using 

(1.16) If sampling continues for long enough, this process is guaranteed to converge to 

the correct distribution [Neal, 19931. Unfortunately, 'long enough" is hard to determine. 

Even if we can tell that the Markov chain has reached equilibrium, the amount of time 

required might make this approximation unattractive. We discuss this problem further 

in section 2.4. 

Given a sample from the posterior distribution of the hidden units, the weights can 

be updated with the online delta rule: 

where e is the learning rate. This performs steepest ascent in the log-likelihood. 

1.5.4 Independent Component Analysis 

We have seen in section 1.5.1 and section 1.5.2 that sometimes it is undesirable to produce 

representat ions of data that are fully localized or fully distributed. Logistic belief net- 

works finds sparse, distributed representations, but are unable to represent real-valued 

quantities efficiently. Independent component analysis (IC A) finds sparse, distributed 

representations of real-valued data. 

Factor analysis tries to find factor loadings that model the covariance structure of 

data, but is insensitive to higher-order structure. ICA tries to capture the higher order 

statistics as well by finding a weight matrix that makes the hidden factors statistically 



independent [Bell and Sejnowski, 19951. Bell and Sejnowski originally derived their al- 

gorithm from within an information-maximization framework, but it can be viewed as 

the ML optimization of a two-tier generative model with a high-kurtosis non-Gaussias 

prior over the hidden units [Mackay, 1996, Pearlmutter and Parra, 19971. An example of 

such a distribution is shown in figure 1.2. ICA can also be viewed as a generative model 

Figure 1.2: A plot of ( ~ c o s h ( x ) ) - ~ ,  a high-kurtosis distribution used by the ICA algo- 

rithm as a prior distribution over hidden unit activities. 

whose hidden units are Gaussian distributed, but have a non-hear transfer function 

[Mackay, 199 61. 

Intuitively this prior encourages sparse, distributed representations because it places 

a large probability mass near zero, and spreads the rest of the probability mass far out in 

the tails of the distribution. This means that, when operating in generative mode, most 

hidden units will take on values close to zero while a few others will take on relatively 

large values. This can be contrasted with a zero-mean Gaussian prior where most hidden 

units will take on small but non-zero values. 

If we assume a Gaussian noise model on the input units the computation of the 

posterior distribution over the hidden units is intractable. The ICA algorithm is equiv- 



dent  to assuming that there is no independent sensor noise in the generative model 

[Mackay, 19961. In this case, the activities in the hidden layer can be found by multi- 

plying the visible unit activities by the inverse of the generative weights. The result is a 

simple weight-update rule: 

where W is the inverse of the generative weight matrix, p ( y )  is the density function of 

the non-Gaussian prior over the hidden units, y is a vector of the values of the hidden 

units, and x is a vector containing the values of the visible units. 

The matrix inversion in the first term of (1.19) makes this algorithm cornputationally 

unattractive, and biologically implausible since the learning rule is not local. Versions of 

ICA have been derived which eliminate the matrix inversion, and converge faster than 

the original algorithm [Amari et al., 1996, Mackay, 1996, Cardoso, 19961. 

Unfortunately, the lack of independent sensor noise in the generative model makes 

the ICA algorithm sensitive to noise in the training data. Also, this algorithm requires 

that the number of hidden units be equal to the dimensionality of the input data. If the 

ICA algorithm is used on data that has only a few underlying causes the remainder of 

the "independent components" will be used to model noise in the  data. It is not always 

easy to distinguish true underlying causes from noise components (see section 3.1 for an 

example of the performance of ICA on a noisy task). Further, the lack of sensor noise 

makes i t  difficult to extend this model to multiple layers. 

Olshausen and Field investigated a similar two-layer model [Olshausen and Field, 19961 

which can be viewed as a generative model with a high-kurtosis non-Gaussian prior over 

the hidden units [Olshausen, 19961. In this model Olshausen and Field retain the indepen- 

dent Gaussian sensor noise, and approximate the posterior distribution over the hidden 

units with a MAP estimate. The posterior can also been approximated by a best-fit Gaus- 



sian which better accounts for the mass under the posterior [Lewicki and Olshausen, 19981. 

These are reasonable approximations when the posterior is unimodal and sharply peaked. 

Given the  approximated posterior the weights can be updated by taking a gradient step 

which increases the expected likelihood. 

These latter models avoid some of the limitations of ICA in that the inclusion of 

sensor noise reduces the model's sensitivity to noise in the training data. Also, there 

are no limitations on how many hidden units can be employed; the model can be used 

for the purposes of dimensionality reduction, or to compute an L'overcomplete'7 basis set 

[Olshausen and Field, 19961. This greater flexibility is achieved a t  a price: The approx- 

imation of the posterior is more computationally expensive than that required to learn 

the parameters of an ICA model which, in the case of a covariant algorithm, just requires 

a few matrix multiplications per data point per weight update. 

1.5.5 Rectified Gaussian Belief Nets 

A Rectified Gaussian Belief Net (RGBN) is a hierarchical generative model that extracts 

sparse, distributed representations [Hinton and Ghahramani, 19971. The prior distribu- 

tion used in the RGBN is a rectified Gaussian (see figure 1.3). Given the input from its 

parents yj, a unit selects an output value ai as follows: 

( 0 otherwise 

The intuition behind why the RGBN extracts sparse, distributed representations is 

similar to  that for ICA. The rectified Gaussian distribution allows hidden units to place 

a large probability mass exactly on zero, and some probability mass far from zero. The 

rectified Gaussian also provides a good example of viewing a non-Gaussian prior as a 



Gaussian prior passed through a non-linearity; in this case the non-linearity is a simple 

rectification. 

Figure 1.3: The rectified Gaussian concentrates all of the probability mass from x < 0 
in a spike at zero. 

Like ICA, an RGBN uses real-valued units, so real valued random variables can 

be represented eeciently. Again, because of the non-linear "rectification" function that 

produces the output value bi, and because independent Gaussian noise is added to visible 

units, the computation of the posterior is intractable. Instead of using a MAP estimate, 

Hinton and Ghahramani used Gibbs sampling to approximate the posterior. The rectified 

Gaussian prior was specifically chosen to make Gibbs sampling feasible while still allowing 

units to  place a large probability mass exactly on zero. By using Gibbs sampling to 

approximate the posterior Hinton and Ghahrarnani avoided the potential problem of 

findiog only one mode of a multi-modal posterior as would be the case if using a MAP 

or Gaussian estimate. It is unclear how much of a problem this is in practice, and MAP 

inference has been used successfully in single-layer models with rectified Gaussian units 

[Rao and Ballard, 1997, Socci et al., 19981. 

One possible problem with this approach, as discussed in section 1.5.3, is that Gibbs 



sampling may take a long time to converge. Hinton and Ghahramani found that the 

RGBN was able to  learn with only 10 to 20 Gibbs samples per hidden unit. We discuss 

"brief' Gibbs sampling further in section 2.4. 

Given samples from the posterior of the unrectified values yi, the weights of the RGBN 

can be updated with a simple online delta rule: 

and the variance of the local Gaussian noise can be Iearned with: 

Again, this update rule simply performs gradient ascent in log-likelihood. 

The RGBN was able to find localized features in lower layers, and to find correlations 

among these features in higher layers, for some small but interesting problems. 



Chapter 2 

Hierarchical Community of Experts 

2.1 Motivation 

Sometimes it makes sense to model data using both binary and real-valued quantities. 

For example, whether or not a particular object appears in a scene is a binxy decision, 

but its position, orientation, scale and colour are real-valued quantities. The only model 

we have seen so far that makes this distinction is a mixture model; however we have also 

seen that the mixture model is exponentially inefficient. 

All of the models examined in chapter 1 that use exclusively real-valued stochastic 

units implicitly assume that the presence of a feature is related to its magnitude. In 

these models, a feature being absent is indistinguishable from a feature being present 

with a very small magnitude. Even worse, it is impossible to represent large real values 

and small real values without giving significant probability to everything in between. 

This representation does not always make sense. For example, if we wanted to rep- 

resent the mass of adult elephants, then either we want the feature to be absent (when 

there is no elephant), or present with a large numerical value. We want the model to give 

small real values very low probability. Of course, a logistic belief network can represent 

this kind of information, but it would be inefficient to represent real-valued, locally linear 



Figure 2.1: Architecture of the RGBN used to model a mixture of two Gaussian distribu- 

tions. Injected noise €1 has variance of; and noise values e 2 ~  and €22 both have vrtriance 

4;. 

variables with highly nonlinear binary units. 

To demonstrate the problems inherent in the assumption that a feature's existence is 

related to its magnitude, we trained an RGBN model on a simple data set consisting of 

1000 Zdimensional points generated from a mixture of two Gaussians (see figure 2.2(a)). 

Each observation was generated by the first Gaussian with probability ~1 = 0.6, and 

from the second with probability 7i2 = 0.4. (see table 3.1 for a summary of the Gaussian 

mixture). The RGBN had one top-level unit, and two visible units (see figure 2.1). 

Ideally, the RGBN should place high density on the two clusters, and little in between. 

This RGBN can represent two distinct Gaussians: one when the top-level unit is off, and 

the other when it is on. We will assume that the first Gaussian is being modeled when 

the top-level unit is off. The mixing proportion for the first Gaussian is determined by 

the probability mass of the Gaussian prior on the top-level unit that is below zero: 

0 1 

L ,EG1 enp { ~ ( x  20: - b1 j2 1 d~ = 



where bl and a: are the bias and variance of the top-level unit; and nl is the mixing 

proportion for the first Gaussian (0.6 in this example). 

Further, the mean of the Gaussian prior on the top-level unit also influences the means 

of the two Gaussians in the mixture: 

where pl and p2 are the means of the first and second Gaussians; W is the pair of 

weights from the top-level unit to the two visible units; and b2 = [b21bzz] is the bias on 

the visible units. 

The parameter bl must simultaneously determine the mixing proportions of the two 

Gaussians (see (2.1)), which control which Gaussian is used to generate an observation, 

and the mean of the second Gaussian (see (2.3)), which control the magnitude of the 

generated data. Clearly the mixing proportions are independent of the means of the 

Gaussians, so it is unfortunate that the RGBN must try to model them both with the 

same parameter. 

After training, the top-level unit of the RGBN was on 89% of the time. When 

this occurred, the RGBN produced data from a full-covariance Gaussian which did not 

correspond to either of the distributions in the original mixture (see table 2.1). 

An equal number of data points were generated from the trained RGBN and plotted 

(see figure 2.2). Notice that the RGBN is unable to place significant mass on the two 

clusters without placing mass on everything in between. It manages to model the first 

Gaussian, but in trying to capture the right mixing proportions, it must use a poor choice 

of bias on the top-level unit, misplacing the mass of the second Gaussian. 



2-2. COMBINING BINARY AND LINEAR UNITS 

Original Gaussian 1 1 I Original Gaussian 2 

Learned Gaussian 1 

Learned Gaussian 2 

2 
Table 2.1: Parameters of a mixture of two Gaussians, and parameters estimated by a 

trained RGBN. 

Figure 2.2: a) The training data, generated from a mixture of two Gaussians. b) An 
equal number of data points generated from the trained RGBN. 

Combining Binary and Linear Units 

We can model both kinds of information by gating the output of each linear-Gaussian 

unit with the output of a binary-logistic unit. The binary unit in a pair will be used 

to code the presence or absence of a feature while the linear unit can model real values 

that are approximately locally linear (see figure 2.3). We will use y to denote the values 

of linear-Gaussian units and s to denote the values of binary-logistic units, and paired 

units will share the same subscript. 



Figure 2.3: Units in a community of experts, a network of paired binary and linear units. 

Binary units (solid squares) gate the outputs of corresponding linear units (dashed circles) 

and also send generative connections to the binary units in the layer below. Linear units 

send generative connections to linear units in the layer below (dashed arrows). 

Recall from the definition of a linear-Gaussian unit (see (1.7)): 

where yj is the output and a: is the variance of the linear-Gaussian unit. Here, the mean 

of the Gaussian distribution is the weighted sum of the gated outputs of the units above 

plus the bias: 

There are weighted connections from linear units to linear units. We also include weighted 

connections from binary units to binary units, and use (1.12) to determine the output of 

the binary units in the generative model. We could also include connections from binary 

units to linear units, although in the simulations reported in chapter 3 these connections 

are not used. If these connections were included, then the prior on a linear unit ijj would 

just be the weighted sum of the linear and binary outputs of the units above. To make 
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inference and learning feasible (see section 2.3) connections from linear units to binary 

units are prohibited. 

The result is a network of binary units that synthesizes a linear network from a large 

set of available linear units. The binary units indicate the existence of features while the 

linear units represent real-valued variables that are locally linear. Given the activities 

of the binary units, the network is linear, and can be viewed as a rnultilayer version of 

factor analysis. The model uses a non-linear mechanism (the binary units) to select a 

Linear model from a large set of possible linear models. In this respect it is similar to 

a hierarchical mixture of experts (HME) [Jacobs et al., 1991, Jordan and Jacobs, 19941, 

with the binary units playing the role of gating networks. However, unlike a n  HME, 

each linear unit acts as an expert, and any combination of experts can cooperate to 

explain an observation. We call this network a hierarchical community of experts (HCE) 

[Hinton et d., 1997bl. 

2.3 Learning and Inference 

In order to find an EvIL set of model parameters we want to compute the posterior 

distribution over the hidden units. As with the LBN and RGBN, we cannot compute 

the full posterior, but can approximate it with Gibbs sampling. The obvious way of 

performing Gibbs sampling is to visit the units one at a time, and choose the state 

of the current unit while holding all others constant. This obvious approach has two 

disadvantages: First, the distribution for a binary unit is affected by the value of its 

corresponding linear unit. Instead of using the current (sampled) value of the linear unit 

to determine the distribution of the binary unit, we can integrate over all possible values 

of the linear unit, weighted by their probabilities. This should lead to faster convergence 

to the posterior. 

Second, the distribution of a linear unit is affected by the pre-gated values of the 



linear units below it. If a unit below is gated out (i.e. disabled), then its distribution 

is completely determined by the values of the units in the layer above. There is no 

connection to the data, so the values of the gated out units below do not provide any 

data-driven information about what values should be taken by units in the layer above. 

Allowing the values of gated out units in the layer below to influence the sampling will 

only increase sampling noise. This is unfortunate since we hope that the representation 

found by the binary units will be sparse, and so most of the linear units will be gated 

out at  any particular time. In this case we would like to integrate out Linear units below 

that are gated out. The correct way to integrate out linear-Gaussian units that are gated 

out is simply to ignore their energy contribution. 

Given a set of binary activities, the network is linear. We could therefore choose the 

state of a binary unit while holding the other binary units constant, and while integrating 

out the entire linear network. However, integrating out a layer of k linear units requires 

the inversion of a k x k matrix (see appendix A). It is not clear that the reduction in 

sampling noise is worth this additional computational effort, especially early on when 

most of the units are not doing anything meaningful. We have chosen the intermediate 

solution of integrating out just the corresponding Linear unit when sampling from a binary 

unit, and integrating out the gated-out linear units in the layer below when sampling 

from units in a given layer. 

Given samples from the posterior distribution of the binary units, the binary-tebinary 

connections are updated using (1.18). The linear-to-linear connections are updated with 

a similar rule: 

Awji = ~ y j s j ( ~ ~  - Q ~ ) s ~ / o ?  (2.6) 

and the local noise variance of the linear-Gaussian units can be learned with: 



If there were binazy-to-linear connections they would also be updated with (2 .6 ) ,  but iji 

would be a weighted sum of binary and linear unit activities. 

We do not include linear-tebinary connections because it would make it difficult 

to sample from the posterior of the linear unit. The non-Gaussian likelihood term in 

the posterior caused by the binary-logistic connections would make the posterior of the 

linear unit non-Gaussian. The posterior would, however, correspond to an unnormdized 

energy function that we can calculate explicitly. This raises the possibility of using a 

sampling technique such as the Metropolis algorithm to sample from the Linear units in 

the case of linear-to-binary connections [Metropolis et al., 19531. Alternatively, because 

the distribution over a linear unit with connections to linear-Gaussian and binary-logistic 

units would be log-concave, we could use adaptive rejection sampling for Gibbs sampling 

[Gilks, 19921. These possibilities have not been explored. 

2.4 Brief Gibbs Sampling 

It might seem a t  first glance that Gibbs sampling is a bad choice for an efficient on-line 

learning algorithm. If considered as a method of computing expectations with respect to 

the posterior distribution over hidden units, Gibbs sampling faces several difficulties: 

1. We should let the Markov chain reach equilibrium before we use the samples for 

parameter learning, but it is hard to tell when the equilibrium distribution has been 

reached. 

2. E.ven if we can determine this, it may take the Gibbs sampler far too long to reach 

equilibrium to make Gibbs sampling viable. To make matters worse, as the weights 

change, this equilibrium distribution changes as well. The Gibbs sampler must 

chase a moving target. 



3. To avoid having to start the Gibbs sampling from a state that is far from equilib- 

rium we must provide a separate realization of the Markov chain for each training 

example. In practice we need to store the last set of hidden unit activities that 

the sampler provided for each observation. For large training sets, or for online 

training schemes, this requirement is infeasible. 

We can try to avoid the convergence problems by allowing for a burn-in period, and 

by using a small learning rate. Even if the burn-in period is not long enough for the 

Markov chain to reach equilibrium, the first part of the run (when the Gibbs sampler 

was not at  equilibrium) will be overshadowed by later samples. With a small learning 

rate, the equilibrium distribution after a weight update should be close to the equilibrium 

distribution before the update, so the  Markov chain will remain close to its equilibrium 

distribution. However, this approach may still be too slow and will require a separate 

Markov chain for each observation. 

In chapter 3 we show that an HCE network can learn some small but interesting tasks 

when each Gibbs sampling pass consists of only a few iterations of Gibbs sampling for 

each unit. The model can learn even if the distribution being sampled is far from the 

true equilibrium distribution. As a byproduct, we do not have to store previous network 

states for each training example. This "brief" Gibbs sampling has been used previously 

to train RGBN7s [Hinton and Ghahramani, 19971. 

To understand why brief Gibbs sampling works, we can consider a cost function other 

than the negative log-likelihood. If Q is the distribution over the hidden units produced 

by the Gibbs sampler given the energy E, then the free energy of the network is defined 

as the expected energy under Q minus the entropy of Q. For a network of binary and 

real-valued units, this is given by: 



where x is a real-valued vector of linear-Gaussian hidden unit activities; a denotes a 

configuration of the binary-logistic hidden units; Q(x, a) is the joint probability of the 

real-dued units having value x and the binary hidden units being in configuration a; 

and z is a (fixed) vector of visible unit activities. The E M  algorithm can be viewed as 

coordinate descent in this new objective function [Neal and Hinton, 19973. 

For simplicity, we will drop the dependence on x and cr in the following discussion. 

Let P be the actual posterior distribution given E. If Q = P, then (2.8) is just the 

negative log probability of the visible units. Otherwise, KL(QI1 P) > 0, so (2.5) is the 

negative log probability of the hidden units plus the Kullback-Leibler divergence between 

Q and P: 

In our case we approximate the actual posterior with brief Gibbs sampling. Since the 

sampled distribution has not had time to reach equilibrium we actually sample from the 

approximate posterior Q. Assume that we have an infinite ensemble of networks, so that 

the approximate distribution Q and the gradient of F with respect to the parameters 

can be computed exactly. We will denote the distribution reached at the end of partial 

Estep t by Qt and the energy function used during partial Estep t by EL. Partial M-step 

t updates the energy function from Et to Et+'. B y  cautiously following the gradient of 

the log-likelihood during the partial M-step we reduce the energy: 

Gibbs sampling during the partial Es tep  moves the approximate posterior Q closer to 

the true posterior even if the Markov chain has not reached equilibrium [Goutsias, 19911 

(see appendix C): 



Therefore F t f l  5 Ff for an infinite ensemble of networks. 

The above argument assumes that Gibbs sampling in partial Estep t + 1 starts from 

the final hidden states visited in step t. In this case, we can approximate an infinite 

ensemble by using a small learning rate in a single network, so that the energy functions 

of successive Esteps will be similar. Then (2.10) and (2.11) tell us that, even if the 

Markov chain has not reached equilibrium1, we will be adjusting the weights so as to 

minimize an upper bound on the negative log-probability of the data. 

We would like to avoid storing the result of previous Gibbs sampling sweeps. One 

alternative would be to learn an explicit bottom-up recognition model. Before Gibbs 

sampling begins we could do a bottom up pass to initialize the activities of the hidden 

units, and let Gibbs sampling proceed from this point. The recognition model could be 

learned using the difference between the next sample generated by the Gibbs sampler 

and this bottom-up initialization value. In this way, we could hope to start the Gibbs 

sampler close to what would have been the previous sample without having the extra 

overhead of storing the previous sample for each training case. 

Instead we take the simpler approach of always starting the Gibbs sampler from the 

same initial state, and sampling for only a few sweeps, generating samples from some 

approximate posterior distribution Q. The free energy F is an upper bound on the 

negative log-probability of the data; the bound exceeds the negative log-probability by 

the Kullback-Leibler divergence between the true posterior P and the approximat ion 

Q. If the equilibrium distribution of the Markov chain is far from the initial value, this 

divergence term will be large, and the partial M-step will tend to improve F by decreasing 

the divergence. The model will be regularized towards models that can converge to the 

posterior from the initial state in only a few Gibbs sweeps. This is similar to the way 

that a model that uses a mean-field approximation tends to learn weights such that the 

'Of course, the learning rate must be smaU enough that successive energy functions will be similar, 

but not so small that the weights remain unchanged, which would eventuaHy let the Markov chain reach 

equilibrium 



posterior comes closer to a factorial distribution. 

In fact, brief Gibbs sampling is similar to a variational approximation. With a vari- 

ational approximation, the parameters of Q are optimized so as  to minimize the I<-L 

divergence between the approximat ion and the true posterior. The  approximat ion is 

explicitly chosen so that after the optimization step the expectations required can be 

calculated exactly. In the case of brief Gibbs sampling, we do not know the form of the 

approximation Q, but we can sample from it. We calculate expectations with respect to  

Q with Monte Carlo approximations. There are advantages to this approach: First, the 

approximating distribution can potentially be as complex as the true posterior. Second, 

we do not need to explicitly state what our approximating distribution is. We do not 

need to come up with one that is a good approximation to the posterior and can be used 

to analytically compute expectations. The disadvantage is that we are introducing two 

levels of approximation: The first is the approximate posterior Q which is caused by 

terminating Gibbs sampling prematurely. The second is the Monte Carlo approximation 

of Q. In other words, even the expectations found with respect to the approximation Q 

are only approximate due to sampling noise. 

2.5 Comparison to Mixture of Gaussians, 

Factor Analysis and RGBN's 

One advantage of the HCE model is that not only can it extract sparse, distributed 

representations from data, but it can also produce representations at either extreme. To 

demonstrate this, we generated two very simple Zdimensional data sets of 1000 points 

each; one from a mixture of two circulax Gaussians; and the second from a non-circular 

2-dimensional Gaussian. The former can be well modeled by a mixture of Gaussians 

model, and the latter can be modeled by a factor analysis model with only one hidden 

factor. We trained the same simple two-layer HCE 100 times on each data set. In all 



Figure 2.4: Architecture of a simple HCE to be used to model simple 2-D data sets. 

The top-level binary-logistic unit (solid square) gates the output of the top-level linear- 

Gaussian unit (dashed circle). The injected noise values el, and €21 and cz2 have variances 

o: and 0; respectively. 

cases, the HCE had one pair of units in the top layer, and two linear units in the visible 

layer (see figure 2.4). 

2.5.1 Mixture of Gaussians 

Each 2-D mixture of Gaussians datum was generated in the following way: one of the two 

possible Gaussians was chosen, and the data point was drawn from this Gaussian. The 

two Gaussian distributions used and their mixing proportions were the same as those 

used in section 2.1. See table 2.2 for a summary of the distribution used to produce the 

training data, and the distributions produced by the HCE's after training. A plot of the 

training data and a sample of ZOO0 points generated from the one of the trained models 

are shown in figure 2.5. 

An HCE with the above architecture can model two Gaussians: one when the top-level 

binary unit is on, and one when it is off. Notice that, in this case, the HCE can model the 



Original Gaussian 1 

Original Gaussian 2 

Table 2.2: Parameters of mixture of two Gaussians, and average parameters learned by 

the 100 trained HCE7s (& two standard deviations). Learned Gaussian 1 is the Gaussian 

generated when the toplevel binary unit is off, and Learned Gaussian 2 is generated 

when the top-level binary unit is on. 

Learned Gaussian 1 

Learned Gaussian 2 

Figure 2.5: a) Training data generated from a mixture of circular Gaussians. b) Data 

generated from one of the trained HCE's. 
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one-on behaviour of the Gaussian mixture because there are only two Gaussians in the 

mixture, requiring one binary unit at the top level. If there were n Gaussian distributions 

in the mixture, the HCE wodd need logn layers to capture the one-on behaviour in a 

binary tree. Alternatively, lateral inhibitory connections between top-layer binary units 

could be learned. 



2.5.2 Factor Analysis 

Data was generated from a 2-D Gaussian that can be properiy modeled by a factor 

analysis model with one hidden unit; see table 2.6 for a summary of the distribution 

used to produce the training data, and the distributions produced by the HCE's after 

training. 4 plot of the training data and a sample of 1000 points generated from one of 

the trained models are shown in figure 2.7. 

Figure 2.6: Parameters of a full covariance Gaussian, and average parameters learned by 

the 100 trained HCE7s (rt two standard deviations). Learned Gaussian 1 is the Gaussian 

generated when the top-level binary unit is off, and Learned Gaussian 2 is generated 

when the top-level binary unit is on. 

Original Gaussian 

Learned Gaussian 1 

Learned Gaussian 2 

Figure 2.7: a) Training data generated from a full-covariance Gaussian. b) Data gener- 

ated from one of the trained HCE's. 

In this case, the HCE model faces similar restrictions as a factor analysis model. If 

there are more independent causes of the data than there are hidden units, then the HCE 

will have trouble modeling the data. However, unlike a factor analyzer, if the HCE has 

more hidden units than are required to model the data, it can simply bias the binary 
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units of the unnecessary pairs so that they are always gated out. Turning off unused 

units will not increase the expressiveness of the model, but it does make the model easier 

to interpret. 

2.5.3 Rectified Gaussian Belief Nets 

In the previous two sections we saw that an HCE can represent any distribution that can 

be represented by a factor andyser or by a mixture of Gaussians. It can duplicate the 

factor analyzer by biasing binary units to be always on or always off. It can potentially 

represent any distribution that can be modeled by a mixture of Gaussians (given enough 

units, and if the HCE has lateral connections or a sufficient number of hidden layers) by 

modeling each Gaussian in the mixture with a linear-Gaussian unit in the first hidden 

layer, and learning a one-on behaviour for the corresponding binary units. 

We saw in section 2.1 that an HCE can also represent distributions that  cannot be 

effectively modeled with an RGBN. A reasonable question is whether or not the converse 

is true: Can an RGBN model densities that an HCE cannot? Clearly, since an HCE can 

duplicate the behaviour of a mixture of Gaussians, it can potentially model arbitrary 

distributions. In fact, the set of densities modeled by an RGBN is a subset of those that 

can be modeled by a simple variant of the HCE with only one pair of units for every 

rectified Gaussian unit [Hinton and Ghahramani, 19971. 

To show this we must first describe another type of binary unit: a binary-probit unit. 

Assume that the binary-probit unit i has inputs s j ,  j < i. Define Gi as: 

where bi is the bias on unit i. Then the binary-probit unit emits a 1 with probability 

given by: 



I Input and bias 

Figure 2.8: Converting an HCE to an RGBN. The solid square represents a binary-probit 

unit and the solid circle represents a linear-Gaussian unit. When they share the same 

input, bias and Gaussian noise, the result is a rectified-Gaussian unit (dashed square) 

A binary-probit unit is like a binary-logistic unit with the logistic function replaced by a 

cumulative Gaussian. 

Now consider the following modification to the HCE architecture (see figure 2.8): 

First, instead of using binary-logistic units, we will use binary-probit units. Second, we 

will require that the input, bias and internal Gaussian noise of each unit in a pair of 

binary and linear units be shared. 

The combined linear-Gaussian/binary- robi it pair emit a non-zero value when the the 

internal random variable in the binary-probit unit is greater than zero. However, since 

the random Gaussian noise and input are shared, this occurs exactly when the linear- 

Gaussian unit emits a value greater than zero. The combination of the two units is a 

rectified-Gaussian unit. 



Chapter 3 

Simulation Results 

3.1 Noisy Bars 

3.1.1 The Problem 

The noisy bars task is a toy problem that demonstrates the need for sparse distributed 

representations [Hint on et al., 1995, Hinton and Ghahramani, 19971. There are four stages 

in generating each K x K image. First a global orientation is chosen, either horizontal or 

vertical, with both cases being equally probable. Given this choice, each of the K bars of 

the appropriate orientation is turned on independently with probability 0.4. Next, each 

active bar is given an intensity, chosen from a uniform distribution. Finally, independent 

Gaussian noise is added to each pixel. A sample of images generated in this way is shown 

in figure 3.1 (a). 

3.1.2 HCE Results 

We trained a 3-layer HCE network on the 6 x 6 noisy bars problem. The  network consisted 

of one pair of units in the top hidden layer, where each pair consists of a linear-Gaussian 

unit gated by its corresponding binary logistic unit; 24 pairs of units in the first hidden 

layer; and 36 linear-Gaussian units in the visible layer. We used update rules with 



Figure 3.1: a)  Training data for the noisy bars problem. b) Images generated by the 

trained network. The area of each square represents the value of the corresponding pixel 

in the 6 x 6 images. White represents positive values and black represents negative values. 

weight-decay. The modified update rule for the binary-to-binary connections is given by: 

where e is the learning rate and X is the weight decay parameter. The update rule for 

the linear-to-linear connections was similarly modified. The network was trained for 12 

passes through a data set of of 1000 images, with a learning rate of 0.04 and a weight 

decay parameter of 0.04. The images were presented in a different, random order for each 

pass. 

For each image ~resented, 16 Gibbs sampling iterations were performed. Gibbs sam- 

pling was performed by visiting each pair of units in a layer in random order, where for 

each pair the binary unit was visited first, followed by the linear unit. Of the 16 network 

states visited, the first four were discarded, and the next 12 were used for learning. The 

weights from the linear units in the first hidden layer to the units in the visible layer were 



constrained to be positive. Without this constraint, the trained model learns a similar 

distribution, but the solution is not so easily interpreted. The result of training is shown 

in figure 3.2. 

Figure 3.2: Generative weights and biases of a three-layered network after being trained 

on the noisy bars problem. a) weights from the top layer linear-Gaussian unit to the 24 

middle layer linear-Gaussian units. b) Biases of the middle layer linear units. c) weights 

from the 24 middle layer linear units to the 36 visible units. d)  weights from the top 

layer binary logistic unit to the 24 middle layer binary logistic units. e) Biases of the 

middle layer binary logistic units. 

The trained network is using 12 of the linear-Gaussian units in the first hidden layer 

to represent each of the 12 possible horizontal and vertical bars. The top level binary 

unit is selecting the linear units in the first hidden layer that represent horizontal bars by 

exciting the corresponding binary units; these binary units are biased to be off otherwise. 

Similarly, the binary units that correspond to vertical bars, which are often active due to 



positive biases, are being inhibited by the top binary unit. The top linear unit is simply 

acting as an additional bias on the linear units in the first hidden layer. Examples of 

data generated by the trained network are shown in figure 3.l(b). As can be seen in 

figure 3.l(b),  the distribution learned by the model is not perfect. The top binary unit 

is biased to be on 51.7% of the time, which is quite close to the 50% used by the process 

that generated the bars. However, when generating vertical images (when the top-level 

binary unit is off), the trained HCE still allows horizontal bars to be used (with average 

probability 34.8% for each horizontal bar). Ideally, the negative biases on the binary 

units corresponding to horizont a1 bars should be larger (see figure 3.2(e)). 

The network was shown novel images, and 10 iterations of Gibbs sampling were 

performed. After the final iteration, the top level binary unit was found to be off for 90% 

of vertical images, and on for 84% of horizontal images. 

The results shown in figure 3.2 should be contrasted with the features learned by 

other models on the same problem. Figure 3.3 shows the features learned by a factor 

analyzer with 24 hidden factors, a mixture of 24 Gaussians, an ICA model (with the 

required 36 hidden units), and an RGBN with 24 hidden units in the middle-layer, and 

one hidden unit in the top-layer. 

The factor analyzer has not learned the distinction between horizontal and vertical 

bars. The mixture of Gaussians has Learned this, and with enough Gaussians in the 

mixture, could learn the distribution exactly. Unfortunately, even if the bars were binary, 

it would require z7 Gaussians just to represent all possible combinations of horizontal 

and vertical bars. For the red-valued bars problem, it would need additional Gaussians 

to model the uniform intensity distribution for each bar. The ICA and RGBN models 

learn the distinction between horizontal and vertical bars, and find sparse, distributed 

representations for the bars. The ICA features are obscured by noise, but the RGBN 

learns the same features as the HCE with its weights restricted to be non-negative. If 

the HCE is free to choose its weights with no restrictions, the resultant features are 



Figure 3.3: Generative weights of other density estimators, trained on the noisy bars 

data. a)  Factor analyzer with 24 hidden factors. b) Mixture of 24 (diagonal covariance) 

Gaussians. c) ICA (with 36 hidden units). d) 3-layer RGBN with 24 hidden units in the 

middlelayer, and 1 unit in the top-layer. 

qualitatively similar to those learned by the ICA model, but without being so obscured 

by noise (see figure 3.4). With this restriction removed, the HCE's top-level binary unit 

still learns to distinguish between horizontal and vertical bars. 

3.2 Hand- Written Digits 

3.2.1 Classification 

We trained a similar three-layer network on handwritten twos and threes from the 

CEDAR CD ROM 1 database [Hull, 19941. The digits were scaled to an 8 x 8 grid, 



Figure 3.4: Generative weights of an HCE trained on the noisy bars, with no restrictions 

on the weights. The features are reminiscent of those learned by ICA. 

and the 256-gray-scale pixel values were rescaled to lie within [O, 11. The 2000 digits were 

divided into a training set of 1400 digits, and a test set of 600 digits, with twos and threes 

being equally represented in both sets. A small subset of the training data is shown in 

figure 3.5(a). 

The network consisted of a single pair of units in the top hidden layer, 24 pairs of 

units in the first hidden layer, and 64 linear-Gaussian units in the visible layer. During 

training, the network made 43 passes through the data set, with a learning rate of 0.01 

and a weight decay parameter of 0.02. Gibbs sampling was performed as in the bars 

problem, with 4 discarded Gibbs sampling iterations, followed by 12 iterations used for 

learning. For this task, there were no constraints placed on the sign of the weights from 

the linear-Gaussian units in the first hidden layer to the units in the visible layer. The 

result of training is shown in figure 3.6. 

In this case, the network uses all 24 linear units in the first hidden layer to represent 

digit features. Some of the features span the entire image, and act as templates of digits. 

Other features are highly localized, and can modify the templates. The top binary 

unit selects the linear units in the first hidden layer that correspond to features found 

predominantly in threes, by exciting the corresponding binary units. Features that are 



Figure 3.5: a) A subset of the training data. b) Images generated by the trained network. 

For clarity, black represents positive values in this figure. 

exclusively used in twos are being gated out by the top binary unit, while features that 

can be shared between digits are being only slightly excited or inhibited. When the top 

binary unit is off, the features found in threes are inhibited by strong negative biases, 

while features used in twos are gated in by positive biases on the corresponding binary 

units. Unlike the bars problem where there were no shared features between "horizontal" 

and "vertical" data points, the two classes of data in this problem can potentially share 

features. The HCE takes advantage of this by finding common features and biasing them 

so that they can be active for examples from either class. For example, the feature in 

the lower right corner of figure 3.6(c) is a template of a two, which is inhibited when the 

top-level binary unit is on and excited otherwise (figure 3.6 (d) and (e)). The feature in 

the lower left corner of figure 3.6(c) can be used to shift the position of the upper stroke 

of a digit. Since such strokes appear in both twos and threes, the corresponding binary 

unit is only slightly excited by the top-level binary unit. Examples of data generated by 

the trained network are shown in figure 3.5(b). 



Figure 3.6: Generative weights and biases of a three-layered network after being trained 

on handwritten twos and threes. a) weights from the top layer linear-Gaussian unit to 

the 24 middle layer linear-Gaussian units. b) Biases of the middle layer linear-Gaussian 

units. c) weights from the 24 middle layer linear-Gaussian units to the 36 visible units. 

d) weights from the top layer binary logistic unit to the 24 middle layer binary logistic 

units. e) Biases of the middle layer binary logistic units. 



The trained network was shown 600 test images, and 10 Gibbs sampling iterations 

were performed for each image. The top level binary unit was found to be off for 94% of 

twos, and on for 54% of threes. We then tried to improve classification by using prolonged 

Gibbs sampling. In this case, the first 300 Gibbs sampling iterations were discarded, and 

the activity of the top binary unit was averaged over the next 300 iterations. If the 

average activity of the top binary unit was above a threshold of 0.32, the digit was 

classified as a three; otherwise, it was classified as a two. The threshold was found by 

calculating the optimal threshold needed to classify just 10 of the training samples under 

the same prolonged Gibbs sampling scheme. The reason we used only 10 examples to set 

the threshold was to demonstrate that good classification can be achieved with very little 

labeled training data if an unsupervised learning algorithm has already extracted a good 

representation. With prolonged Gibbs sampling, the average activity of the top binary 

unit was found to be below threshold for 96.7% of twos, and above threshold for 95.3% 

of threes, yielding an overall misclassification rate of 4% (with no rejections allowed). 

Histograms of the average activity of the top level binary unit are shown in figure 3.7. 

Figure 3.7: Histograms of the average activity of the top level binary unit, after prolonged 

Gibbs sampling, when shown novel handwritten twos and threes. a) Average activity for 

twos in the test set. b) Average activity for threes in the test set. 



3.2.2 Representation 

In the previous example we saw that an HCE can share features between classes. By 

using a distributed representat ion of the digits the network can reuse hardware instead 

of creating redundant features. 

Another benefit of this type of representation is that previously unseen classes of data 

can be accommodated. To demonstrate this, we trained a network on 16 x 16 handwritten 

digits from the CEDAR CD-ROM database, scaled to have pixel intensities in the range 

[0, l] . Digits from classes 0 through 8 were used, and there were 800 examples of each 

class. No examples of the digit 9 were shown to the network. The network had 256 Linear 

units in the visible layer, and 64 pairs of units in a single hidden layer. The network was 

trained for 14 passes through the data set with a learning rate of 0.01 and weight decay 

of 0.005. 

After training, the network was shown 300 previously unseen examples of each of 

the 10 digit classes, including the digit 9. Representations were found for each of these 

examples in the following way: First 50 iterations of Gibbs sampling were discarded. 

Then seven additional sweeps of Gibbs sampling were performed. For each of the seven 

sweeps, a reconstruction was formed by passing the activities in the hidden Layer through 

the generative weights. An average reconstruction was then found by averaging these 

seven reconstructions. The squared difference between each original digit and its average 

reconstruction was measured. Figure 3.5 shows the average squared error for each digit 

class, plus or minus two standard deviations. 

Notice that the average reconstruction error for the 9's, a previously unseen class 

of digits, is no greater than for other similar classes of digits. The network is able 

to accommodate the new class with the existing features. This is possible because the 

network finds a sparse, distributed representation, resulting in general, localized features. 

Unlike in the previous example, no global templates are learned. This reflects the fact 

that the network had to represent a more diverse data set. Figure 3.9 shows a randomly 
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Figure 3.8: Average squared reconstruction error for 10 digit classes (plus or minus two 

standard deviations). 

selected data point from each digit class; the network's reconstruction; and how the 

network has used the learned set of features in each case. 



Figure 3.9: a) A randomly selected example from each digit class. b) The network's 

reconstruction of each example. c) The average gated activity for each feature. White 

denotes positive and black denotes negative. The area of a square denotes magnitude, 

where the largest square in the figure has magnitude 0.49. The reconstruction is formed 

by multiplying the average gated activity by the corresponding feature from (d), and 

summing over all features. d) The features learned by the network sorted by average 

activity, over the entire test set, of the associated binary unit. The upper-left-most 

feature was the least active over the 3000 test examples, and the lower-right-most feature 
was the most active. 



Chapter 4 

Conclusion 

We have described a hierarchical generative model that can dynamically synthesize a 

linear network from a large number of available linear-Gaussian units. The synthesis 

mechanism is a network of binary-logistic units that gate the outputs of the linear units. 

Maximum-likelihood model parameters can be learned using a local delta rule, where the 

statistics required can be approximated with Gibbs sampling. We have shown that the 

network can learn interesting tasks by increasing a lower bound on the log-likelihood, 

even when the Gibbs sampling is so brief that the Markov chain is far  from equilibrium. 

Because each linear unit specializes in capturing a particular feature, and any combination 

of linear units can co-operate to explain an observation, we call this model a hierarchical 

community of experts. 

4.1 Discussion 

The simulations reported in chapter 3 are encouraging, and show that a Hierarchical 

Community of Experts has some very desirable features. It makes appropriate use of 

binrtry and real-valued random variables to model features of data. It learns low-level 

localized features in lower layers, and finds relationships among features in higher layers. 

It uses sparse internal representations that are distributed across many units. The result 



is that many hidden units are used to  represent each datum, and features are shared 

across different classes of data. Learned features are general enough to accommodate 

previously unseen classes of data. 

Sparse, distributed representations are encouraged by the prior distribution over the 

combined linear-binary pairs of units. It is easy for the HCE to place a large probability 

mass exactly on zero, encouraging it to find representations where many features are 

gated out for each data point. Each gated unit is like a mixture model, where one 

density estimator in the mixture is a spike at zero, and the other is a Gaussian. The 

mixing proportion and the mean of the Gaussian are learned by two distinct parameters, 

so this model does not suffer from some of the representational difficulties of models 

with rectified Gaussian priors. There is a clear distinction in the prior of a hidden unit 

between a feature being absent, and a feature being present with a small mapitude. 

This distinction is not made by ICA or other models that use a high-kurtosis unimodal 

prior over hidden units. 

Inference in a n  HCE is intractable, so we use Gibbs sampling. Two of the drawbacks 

of Gibbs sampling are that it can be slow to converge to the posterior, and it is difficult 

to tell when convergence has occurred. We avoid these problems by using "brief" Gibbs 

sampling where we use only 10 to 20 samples per data presentation. Gibbs sampling 

can be viewed as coordinate descent in free energy, and we have shown that learning can 

occur even if Gibbs sampling does not reach equilibrium. As a result, we need not start 

each sweep of Gibbs sampling from the previous state, making online learning feasible. 

We use a simple constant distribution to initialize the Gibbs sampler before each sweep, 

but more sophisticated initialization schemes could be used. 

Monte Carlo methods are not without disadvantages. If the correlations to be learned 

by upper layers are subtle, the estimate of the gradient of the weights can be overwhelmed 

by sampling noise, making learning impossible. By using a constant distribution to 

initialize the Gibbs sampling, we increase the bias and reduce the variance of the gradient 



estimate. Of course, at some point the gradient will be dominated by the bias, again 

making Learning impossible. Since noise in the gradient estimate can cause problems, 

one possible solution is to use a deterministic approximation of the posterior. It remains 

to be seen if a version of the HCE which does approximate inference with a variational 

method can learn more complicated tasks than the Monte Carlo-based HCE. 

4.2 Future Work 

The current model assumes i.i.d. data, but it should be possible to  extend the model 

to time-series data, by making the prior on the hidden units conditional on the state at 

previous times. Inference would still be intractable, but if the prior on the 1inea.r units 

were only influenced by the values of other linear units (either at earlier times or in higher 

layers) then Gibbs sampling should still be feasible. 

More import ant is the problem of improving the representations that are extracted 

in higher levels of the model. In our simulations, the overwhelming conclusion is that 

interesting low-level features are consistently extracted by the model, but the model is 

much less consistent in solving the (much more interesting) problem of finding high-level 

representations. For some (especially binary) classification tasks an HCE can find the 

classes in an unsupervised fashion, but when the data becomes more complex the model 

is not as  successful. In fact, this is a problem for many of the generative models being 

investigated today. 

Obviously learning features from clamped data is easier than finding correlations 

among noisy samples drawn from the posterior of a hidden layer. What, if anything, 

can be done to make the latter task easier? If we increase the length of Gibbs sampling, 

presumably the sampling noise will decrease, at the cost of greater computation time. 

Instead, we could have an ensemble of units, all of which could model similar features 

and be sampled in parallel. We could encourage units in the hidden layer to learn similar 



features by inhibiting explaining away among these units. In the fully-connected model, 

if two units try to learn the same feature, one unit is typically explained away by the 

other when the that unit's feature is required to explain the data. The result is that 

only one of the copies of the feature is in use at any one time, and over time one of 

the units Learns some other feature. Unfortunately, in complex data, one class might be 

allocated only a few units. Given a noisy sample from the posterior over hidden units, 

it would be very difficult to detect correlations among these groups of just a few units. 

If we inhibit explaining away among some groups of units, there is a greater likelihood 

that multiple units will learn the saxne feature, and the activities of these units would 

not be anti-correlated due to explaining away. This might result in samples with greater 

redundancy, in which it would be easier to detect higher-level structure. 



Appendix A 

Integrating Out a Hidden Layer 

In order to perform Gibbs' sampling for a layer of binary units, we want to integrate out 

some of the linear units in the same layer. To integrate out all of the linear units in the 

hidden layer we must evaluate the integral: 

where x are the values of the real-valued visible units; y are the values of the real-valued 

hidden units; and s are the values of the binary hidden units. 

If we assume that the linear units are Gaussian and are gated by the binary units, 

then (A.1) becomes: 

where W is the matrix of weights from the hidden to the visible red-valued units; b, and 

bh are biases on the visible and hidden real-valued layers respectively; Q, and W h  are 

covariance matrices for the visible m d  hidden real-valued layers respectively; @ denotes 



element-wise multiplication; and C is the normalizing constant: 

where IC and D are the dimensionality of the hidden and visible layers respectively. 

By expanding (A.2) and comparing to an arbitrary Gaussian distribution we can 

compute the value of the integral: 

where p and @ are the mean and covariance matrix of the Gaussian posterior distribution, 

and D is a constant required to complete the square. Comparing (A.4) to (A.5) yields: 

where S is a diagonal 1-  x I< matrix with s placed along the diagonal. Notice that 

postmultiplying W by S simply zeros out the columns of W that correspond to gated- 

out units in the hidden layer. If no linear units were gated out, S would equal the K x K 

identity matrix, and (A.6)-(A.8) would be identical to the result for a linear-Gaussian 

network. 



We can now evaluate the integral from (A.1) by combining (A.3) with (A.6)-(A.8): 

~ ( x ,  s) = P ( S )  c exp {;D} - /exp {:(y - p)ra-'(y - p)}dy 

= P(s )  C exp {$ D} (2ii)K/21~11/Z 

To perform Gibbs sampling we define Ea = -log P ( x ,  sa), and use (1.16) to  sample 

from the ith binary unit. Notice that in order to evaluate (A.9) we must invert a K x K 

matrix. We can avoid this if instead of integrating out the entire linear hidden layer we 

just integrate out the ith linear unit when sampling from the ith binary unit. The cost is 

greater sampling noise. 



Appendix B 

Update Rules 

The complete-data likelihood for a two-layer HCE with I< pairs of binary and linear units 

in the top layer and D linear units in the bottom layer is given by: 

where 

In the above, W is the matrix of linear-to-linear weights; E2 and !El are the diagonal 

covariance matrices of the visible and hidden layers respectively; y, x and s are the 

activities of the visible linear, hidden linear and hidden binary units respectively; bi, 

b: and b: are the biases on the visible linear, hidden lineax and hidden binary units 



respectively; and 8 denotes element-wise multiplication. 

Taking the negative logarit hrn of (B. 1) yields: 

where C, is a constant. 

The update rules for the parameters associated with the binary units are identical 

to those in [Neal, 19921, and the reader is referred there for a derivation. We can find 

update rules for the linear-unit parameters by taking derivatives of (B.3) with respect to 

these parameters: 

These yield the scalar update equations: 

where c is a learning rate. We have enforced the diagonality constraint on X2 in (B.9) 

by simply ignoring the off-diagonal terms in (B.6). 

Notice that the update rules derived here will use the current (sampled) values of 

linear units in the lower layer. If these units were gated out by corresponding binary 



units, then we could easily (and correctly) integrate over these units by ignoring the 

associated energy term. The result is that there is no update to the parameters associated 

with a unit when that unit is gated out. The effect of eliminating the appropriate terms 

from (B.3) is the same as multiplying the update for parameters associated with a linear 

unit yi by the corresponding binary value si: 

These are the update rules stated in section 2.3. 



Appendix C 

Gibbs Sampling Improves K-L 

Divergence 

We need to  show that a sweep of Gibbs sampling brings the approximating distribution 

Qt+' closer in terms of K-L divergence to the true posterior than the previous approxi- 

mating distribution Q '. The following theorem and proof are almost exactly those given 

in [Goutsias, 19911, except that this proof involves KL(Q 11 P) and not KL(P1IQ). 

Theorem: If {T,(x, y))  is a set of transition probabilities such that 

and 

and if Qt(x) > 0, P ( x )  > 0 and T,(z, y) > 0 for all states x, y then KL(QtflllP) 5 

WQt IIP). 



Proof: First note that if Q t ( x )  > 0 and T,(x, y )  > 0 for all states x, y then so is 

Qtf ' ( x )  by (C.2). Define q,(y, x) and rrn(y ,  X )  as follows: 

Notice that / q , ( y , x )dx  = 1 and J r , ( y t x ) d x  = 1, making q&, y )  and r m ( x ,  y )  

proper densities over states x .  Further, note that: 

and 

Now we have: 

Replacing Q t ( x )  with J Qt+'(y)rm(y,  x ) d y  and Qt+'(y) with / Qtf ' ( y ) r m ( y ,  x ) d x  

(from (C.5) and (C.6)) yields: 



since KL(AI1 B) 2 0 for any density functions A and B.0 

The theorem tells us that KL(Qt+'II P) 5 KL(Qtll P), so a single sweep of Gibbs 

sampling brings the approximation Q closer in terms of I<-L divergence to the true 

posterior P. 
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