
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and

there are missing pages, these will be noted. Also, if unauthorized copyright

material had to be removed, a note will indicate the deletion.

Oversize materials (e-g., maps, drawings, charts) are reproduced by sectioning

the original, beginning at the upper left-hand comer and continuing from left to

right in equal secticns with small overlaps. Each original is also photographed in

one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white photographic

prints are available for any photographs or illustrations appearing in this copy for

an additional charge. Contact UMI directly to order.

Bell & Howell Infomation and Learning
300 North Zeeb Road, Ann A b r , MI 48106-1346 USA

800-521 -0600

Brian Sallans

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright @ 1998 by Brian Sallans

National ti brary Bibliothbque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibtiographiques

395 Wellington Street 395, rue Wellington
OttawaON KlAON4 Ottawa ON K I A ON4

Canada Canada
Your file Volre reference

Our W Norre reldrence

The author has granted a non-

exclusive licence allowing the

National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the

copyright in this thesis. Neither the

thesis nor substantial extracts fiom it

may be printed or otheMrise

reproduced without the author's
pexmission.

L'auteur a accorde m e licence non

exclusive pennettant a la
BLbliotheque nationale du Canada de
reproduire, preter, distribuer ou

vendre des copies de cette these sous
la forme de microfiche/f%n, de

reproduction sur papier ou sur format

Bectronique.

L'auteur conserve la propriete du

droit d'auteur qui protege cette e s e .

Ni la these ni des extraits substantiels

de celle-ci ne doivent Stre imprimes

ou autrement reproduits sans son
autorisation,

Abstract

A Hierarchical Community of Experts

Brian Sallms

Master of Science

Graduate Department of Computer Science

University of Toronto

1998

The unsupervised extraction of high-level representations from data is a difficult problem.

Many hierarchical graphical models have been proposed to solve this problem, but all

suffer from representational difficulties or problems in generalizing the architecture to

multiple layers.

A multilayer graphical model is proposed that avoids the difficulties of earlier models.

The model combines binary and linear stochastic units in a novel way: The binary units

gate the outputs of the linear units. Inference is intractable, so a Markov chain Monte

Carlo approximation scheme called Gibbs sampling is used. Normal Gibbs sampling

requires that the Markov chain reach equilibrium before samples are used for learning.

It is shown that "brief" Gibbs sampling can be used for learning, where the samples are

used even though the Markov chain is far from equilibrium. Simulations demonstrate

that the network can extract high-level representations from some small but interesting

data sets.

Acknowledgements

I am grateful to the many people who have contributed to this thesis, and to making

my time in the Computer Science graduate program a great learning experience. First

I would like to thank my thesis advisor Geoffrey Hinton for his patience, guidance and

seemingly boundless enthusiasm. I would also like to thank Radford Neal for his honest

and accurate input. I owe a great deal to Alberto Mendelzon and Vassos Hadzilacos, who

have encouraged and supported me during my time at the University of Toronto.

Current and former members of the Neural Networks Research Group have greatly

contributed to this thesis, and to making the group a fun place to work: Zoubin Ghahramani,

Andrew Brown, Brendan Frey, Alberto Paccanaro, Mike Revow and Yee Whye Teh. Ad-

ditional thanks to Zoubin Ghahramani for factor analysis, independent component anal-

ysis and rectified Gaussian belief net Matlab code. This research has also benefited from

the constant flow of visitors to the Neural Networks lab. Particularly I would like to

thank Josh Tenenbaum, Chris Williams, Ryohei Nakano and Naonori Ueda for useful

discussions.

My love and thanks to my parents and brother for their constant encouragement and

support.

I was financially supported by a Natural Sciences and Engineering Research Council

post-graduate scholarship. My work has been financially supported by grants from the

Natural Sciences and Engineering Research Council and the Institute for Robotics and

Intelligent Systems.

Contents

1 Background 1

1.1 Introduction . 1

. 1.2 Organization of this thesis 3

. 1.3 The Expect ation-Maximization algorithm 4

. 1.4 Inference 5

1.4.1 Exact inference . 5

. 1.4.2 Variational methods 6

. 1.4.3 Monte Carlo methods 8

. 1.5 Models 9

. 1.5.1 Factor Analysis 9

. 1.5.2 Mixture Models 12

. 1.5.3 Logistic Belief Networks 14

. Gibbs Sampling in Logistic Belief Nets 15

. 1.5.4 Independent Component Analysis 16

. 1.5.5 Rectified Gaussian Belief Nets 19

2 Hierarchical Community of Experts 22

. 2.1 Motivation 22

. 2.2 Combining Binary and Linear Units 25

. 2.3 Learning and Inference 27

2.4 Brief Gibbs Sampling . 29

2.5 Comparison to Mixture of Gaussians.

Factor Analysis and RGBN's . 33

2.5.1 Mixture of Gaussians . 34

2.5.2 Factor Analysis . 36

2.5.3 Rectified Gaussian Belief Nets . 37

3 Simulation Results 39

. 3.1 Noisy Bars 39

. 3.1.1 The Problem 39

. 3.1.2 HCE Results 39

. 3.2 Hand-WrittenDigits 43

. 3.2.1 Classification 43

. 3.2.2 Representation 48

4 Conclusion 51

4.1 Discussion . 51

. 4.2 Future Work 53

A Integrating Out a Hidden Layer

B Update Rules

C Gibbs Sampling Improves K-L Divergence

Bibliography

vii

List of Tables

2.1 Parameters of a mixture of two Gaussians, and parameters estimated by

a trained RGBN. 25

2.2 Parameters of mixture of two Gaussians, and average parameters learned

by the 100 trained HCE's (& two standard deviations). Learned Gaussian

1 is the Gaussian generated when the top-level binary unit is off, and

Learned Gaussian 2 is generated when the top-level binary unit is on. . . 35

List of Figures

1.1 Factor analysis, viewed as a Bayesian network. The circles represent linear

units, and the arrows between layers represent the factor loadings. When

viewed as a generative model, the hidden units are driven with zero mean,

unit-variance Gaussian noise. Independent Gaussian noise is also added

to the visible units . 10

1.2 A plot of (rcosh(x))-', a high-kurtosis distribution used by the ICA al-

. gorithm as a prior distribution over hidden unit activities. 17

1.3 The rectified Gaussian concentrates all of the probability mass from x < 0

in a spike a t zero. 20

2.1 Architecture of the RGBN used to model a mixture of two Gaussian dis-

tributions. Injected noise el has variance c:; and noise values €21 and €22

. both have variance cg. 23

2.2 a) The training data, generated from a mixture of two Gaussians. b) An

. equal number of data points generated from the trained RGBN. 25

2.3 Units in a community of experts, a network of paired binary and linear

units. Binary units (solid squares) gate the outputs of corresponding linear

units (dashed circles) and also send generative connections to the binary

units in the layer below. Linear units send generative connections to h e a r

units in the layer below (dashed arrows). 26

2.4 Architecture of a simple HCE to be used to model simple 2-D data sets.

The top-level binary-logistic unit (solid square) gates the output of the

top-level linear-Gaussian unit (dashed circle). The injected noise values

. €1, and €21 and €22 have variances 0: and 0; respectively. 34

2.5 a) Training data generated from a mixture of circular Gaussians. b) Data

generated from one of the trained HCE7s. 35

2.6 Parameters of a fuLl covariance Gaussian, and average parameters learned

by the 100 trained HCE's (& two standard deviations). Learned Gaussian

1 is the Gaussian generated when the top-level binary unit is off, and

. . Learned Gaussian 2 is generated when the top-level binary unit is on. 36

2.7 a) Training data generated from a full-covariance Gaussian. b) Data gen-

eratedfrornoneofthetrainedHCE7s.. 36

2.8 Converting an HCE to an RGBN. The solid square represents a binary-

probit unit and the solid circle represents a linear-Gaussian unit. When

they share the same input, bias and Gaussian noise, the result is a rectified-

. Gaussian unit (dashed square) 38

3.1 a) Training data for the noisy bars problem. b) Images generated by

the trained network. The area of each square represents the value of the

corresponding pixel in the 6 x 6 images. White represents positive values

and black represents negative values. 40

3.2 Generative weights and biases of a three-layered network after being trained

on the noisy bars problem. a) weights from the top layer linear-Gaussian

unit to the 24 middle layer linear-Gaussian units. b) Biases of the middle

layer linear units. c) weights from the 24 middle layer linear units to the

36 visible units. d) weights from the top layer binary logistic unit to the

24 middle layer binary logistic units. e) Biases of the middle layer binary

logistic units. 41

3.3 Generative weights of other density estimators, trained on the noisy bars

data. a) Factor analyzer with 24 hidden factors. b) Mixture of 24 (diagonal

covariance) Gaussians. c) ICA (with 36 hidden units). d) 3-layer RGBN

with 24 hidden units in the middle-layer, and 1 unit in the toplayer. . . 43

3.4 Generative weights of an HCE trained on the noisy bars, with no restric-

tions on the weights. The features axe reminiscent of those learned by

. ICA 44

3.5 a) A subset of the training data. b) Images generated by the trained

network. For clarity, black represents positive values in this figure. 45

3.6 Generative weights and biases of a three-layered network after being trained

on handwritten twos and threes. a) weights from the top layer linear-

Gaussian unit to the 24 middle layer linear-Gaussian units. b) Biases of

the middle layer linear-Gaussian units. c) weights from the 34 middle layer

linear-Gaussian units to the 36 visible units. d) weights from the top layer

binary logistic unit to the 24 middle layer binary logistic units. e) Biases

. of the middle layer binary logistic units. 46

3.7 Histograms of the average activity of the top level binary unit, after pro-

longed Gibbs sampling, when shown novel handwritten twos and threes.

a) Average activity for twos in the test set. b) Average activity for threes

in the test set. - 47

3.8 Average squared reconstruction error for 10 digit classes (plus or minus

. two standard deviations). 49

3.9 a) A randomly selected example from each digit class. b) The network's

reconstruction of each example. c) The average gated activity for each

feature. White denotes positive and black denotes negative. The area of

a square denotes magnitude, where the largest square in the figure has

magnitude 0.49. The reconstruction is formed by multiplying the average

gated activity by the corresponding feature from (d), and summing over

all features. d) The features learned by the network sorted by average

activity, over the entire test set, of the associated binary unit. The upper-

left-most feature was the least active over the 3000 test examples, and the

lower-right-most feature was the most active. 50

xii

Chapter 1

Background

1.1 Introduction

Connectionist models are often used to perform classification tasks. In a classification

task there is a set of observations and a set of classes. The task is to learn the mapping

from observations to classes so that new observations can be assigned to the correct class,

or so that a probability distribution can be computed over possible class assignments.

In practice, classification tasks are learned by networks trained with supervised learning

algorithms. In supervised learning all of the training cases are labeled, and the error

between the predicted and actual label is minimized over the entire training set.

Supervised learning is efficient because it makes use of information about the desired

targets as well as information about the input data. Unfortunately, supervised learning

requires labeled data that can be expensive or impossible to obtain. Also, there is

something unsatisfying about supervised learning: We humans only have to be told the

class label of a few examples of something before we can recognize objects of a similar

kind.

A model could learn a classification task with a minimum of supervision if first an

unsupervised learning algorithm was used to cluster the data, and then a supervised

algorithm was used to learn labels for each of the clusters. This way we need only a few

labeled training cases for each class. The model first extracts a high-level representation

of the data in an unsupervised fashion by making use of underlying statistical structure

in the data. Once this structure is learned it is easier to learn the classification task. Of

course, this assumes that the underlying statistical structure in the data corresponds to

the classes to be learned. As long as class membership is assigned based on some kind

of clusters in the data, this is a reasonable assumption.

With unsupervised learning there are no target values, so we must minimize something

other than residual error between predicted and actual targets. Density estimation is one

alternative. If we assume that the observations have been drawn from some probability

distribution, then by learning this distribution we can gain some insight about the data.

First we must make assumptions about the form of the distribution. Typically we assume

that it belongs to some class of distributions for which we have a parameterized model.

Then we can optimize the parameters of the model so as to maximize the probability

that the distribution would generate the given observations. Because we assume that the

model generates the data, it is called a generative model. We cail a set of parameters which

maximize the rob ability that the model would generate the given data a maximum-

likelihood (ML) set of parameters. The generative model can be used for classification

if there are unobserved random variables which can be interpreted as class Labels. The

posterior distribution over these hidden variables yields a soft classification of a previously

unseen datum. The process of calculating the posterior over the hidden units is called

inference, and the optimization of the model parameters is called learning.

The purpose of this thesis is to investigate a generative model for unsupervised learn-

ing of statistical structure in real-valued data. This model, called a hierarchical commu-

nity of experts, combines real-valued and binary stochastic units in a novel way. The

goal is to find a model that can extract efficient high-level representations from data, and

use these representations to learn minimally-supervised classification tasks.

1.2. ORGANIZATION OF THIS THESIS

1.2 Organization of this thesis

This chapter begins with a brief explanation of the Expectation-Maximization (E M)

algorithm, one of the most common methods of learning ML parameters in generative

models. Because inference plays a central role in the E M algorithm, we then discuss

methods of inference including exact, variational and Monte Carlo methods. We then

review several previous models: factor analysis (section 1.5.1): mixture models (section

1.5.2), logistic belief networks (section 1.5.3), independent component analysis (section

1.5.4) and rectified Gaussim belief networks (section 1.5.5). In chapter 2 we motivate the

new model, and describe how inference and learning axe performed. In chapter 3 we show

the results of learning on some small tasks. In particular, we show that a hierarchical

community of experts can extract interesting representations from data and use them to

learn a minimally-supervised classification task for a simple binary classification problem

(section 3.2.1). In chapter 4 we discuss some attributes of the model, including some

shortcomings and possible solutions. Finally we consider possible modifications and

extensions to t;he model.

1.3 The Expectation-Maximization algorithm

The Expectation-Maximization (E M) algorithm is an iterative method for learning ML

parameters of a generative model where some of the random variables are observed, and

some are hidden [Dempster et al., 19771. The hidden random variables might represent

quantities that we think are the underlying causes of the observables. For example, a

model designed to explain data consisting of shoe size and reading ability might use age

as a hidden variable. The hidden variables could be continuous as in the above example,

or discrete as in the case of class labels.

Let x be the values of the visible variables, y be the values of hidden variables, and

let 6 be the parameters of the model. As the name implies there are two steps to the

algorithm:

Expectation (E) step: Calculate the distribution P (y lx; 0) over the hidden variables,

given the visible variables and the current value of the parameters.

Maximization (M) step: Compute the values of the parameters 8' that maximize the

expected log-likelihood under the distribution found in the Estep:

and set 8 t 8'.

So the Estep involves inferring the distribution over hidden units, and the M-step involves

learning new parameters. It can be shown that if these two steps are repeated the true

log-likelihood will increase, or stay the same if a maximum has already been reached.

Notice that the M-step might require solving a difficult non-linear optimization prob-

Iem. It is sometimes natural to implement a partial M-step instead, where we just find

a set of parameters that improve the expected log-likelihood instead of fully maximizing

it. For example, gradient ascent-based partial M-steps are quite common. Algorithms

that use a partial M-step are called generalized E M algorithms (GEM), and they are

also guaranteed to improve the true likelihood.

The Es tep can also be very difficult, depending on the form of the posterior. Some-

times we must resort to approximate inference, where instead of finding the true posterior,

we find an approximation to the true posterior. The approximation is then used to corn-

pute the expectation required in the M-step. As we can see, inference is central to the

problem of learning ML parameters with the E M algorithm. Performing exact or ap-

proximate inference is a very important problem that must be solved both to learn the

parameters of a generative model, and to use the model once ML parameters have been

found.

1.4 Inference

1.4.1 Exact inference

In some cases there is no need for approximate inference because we can efficiently com-

pute the correct posterior distribution. Examples include the case of linear-Gaussian

models; and singly-connected graphical models, where some variant of probability prop-

agation can be used to compute the posterior correctly[Pearl, 19851. F'actor analysis is an

example of the former (see section 1.5.1), and the hidden Markov model [Baum and Petrie, 19661

is an example of the latter. Kalman filters can be both singly-connected and Gaussian

[Kalman, 19601.

The advantages of exact inference are obvious: speed and precision. These properties

account for the wide adoption of models in which exact inference is possible. Unfortu-

nately exact inference is only possible for a very restricted range of architectures', and

these do not seem to be expressive enough to capture complicated phenomena such as

vision.

1.4.2 Variational methods

Consider a parameterized distribution Q over hidden vaxiables. Given a metric that mea-

sures the difference between this distribution and the true posterior P we can optimize

the parameters of Q to approximate P. The approximation Q is called a variational ap-

proximation, and the parameters are variational parameters. There is a suitable distance

metric called the Kullback-Leibler divergence between & and P:

where y is a vector of hidden unit activities, and x is an observation.

To evaluate (1.2) directly we would need to evaluate P(y1x) which is what we are

trying to approximate in the first place. We can get around this difficulty by evaluating

the free energy which is a function of the joint probability of the hidden and visible

units P(x , y). The free energy is comparable to "variational free energy" from statistical

physics. The joint probability is readily available in directed acyclic graphical models

(called belief networks).

The free energy is actually an upper bound on the negative log-probability of the

data. It is the negative log-probability of the data plus the I<L divergence between Q

and P2:

hstead of optimizing the parameters of Q by minimizing (1.2), we can minimize (1.3),

'This assumes that P # N P [Cooper, 19901.
 he reader should note that the free energy is sometimes defined with opposite sign: F = log P (x) -

KL(Q1IP). However, we will use the sign which is consistent with the free energy from statistical physics

which will have the same effect (since log P (x) is independent of Q). It turns out that

we will also train the model by minimizing (1.3) with respect to the model parameters.

See section 2.4 for a further discussion of free energy.

Variational methods have several advantages. They allow us to calculate an upper

md lower bound on the log-probability of the data under the current generative model

[Jaakkola, 19971 and they are fast. They are dso deterministic which can be an advantage

in situations where gradients are shallow and sampling noise might hinder learning. The

down side is that i t is not always easy to come up with a good approximating distribution.

Typically a good variational approximation is very architecture-specific. If care is not

taken, the approximating distribution can be too simplistic to capture important features

of the posterior, or it can be too complicated to be used in subsequent calculations.

Finding good approximating distributions is as much art as science.

Two commonly-used variational approximations are the mean field approximation,

and the maximum a postenon' (MAP) approximation. Under a mean field approximation

we assume that the hidden units are independent. Instead of having a distribution whose

representation requires space exponential in the number of hidden units we have one that

only needs linear space. Under a MAP approximation we assume that Q is a single spike

of infinite density at a point y,. Like replacing a tent by a tent pole, the entire mass of

the distribution is replaced with this single spike. In this case, the KL distance between

Q and P is infinite, so we optimize the parameters of Q with respect to the expected

energy under Q, given by:

This quantity is proportional to the posterior, so during the optimization of Q we move

the spike to a point of maximum density under the posterior (the tallest part of the

tent), thus the name maximum a posteriori. This can be a reasonable approximation

if the true posterior is unimodd and sharply-peaked. Both of these approximations are

common because they are simple, and they seem to work for a large class of problems.

However if the posterior is multimodal or broad they may be insufficient.

It may appear that by adopting such simple approximations, we loose a Lot of the

expressiveness of the true posterior. It is true that the posterior is usually much more

expressive than the approximation. However, there is a mitigating factor that allows

simple approximations to do a reasonable job: Because we update the model parameters

by performing gradient descent in F, the model parameters are adjusted so as to reduce

KL(Q 11 P) as well as to increase log P (x) . The model parameters change so that the true

posterior is brought closer to the approximation.

1.4.3 Monte Carlo methods

Monte Carlo approximations can be used to estimate expectations when we cannot eval-

uate the posterior explicitly, but we can sample from it. Given N samples {XI, ..., XN}

from a distribution P (x) , we can approximate the expectation of a function f (x) under

P as follows:

There are a number of different schemes for generating the set of samples which de-

pend on the form of the distribution P (see [Neal, 19931 for a survey of Monte Carlo

sampling techniques). In general, Monte Carlo methods are not as dependent on archi-

tecture as are variational methods. A single Monte Carlo method can be applied to a

broad range of architectures. The disadvantage of Monte Carlo methods is speed: It

can take a long time to approximate an expectation to a high degree of accuracy. Also,

because the approximations involve taking a random sample from P, we get a noisy es-

timate of any quantities of interest. We discuss Monte Carlo methods in more depth in

section 1.5.3 and section 2.4.

1.5 Models

1.5.1 Factor Analysis

Factor analysis can be viewed as a two-tier generative model. The value of a D-

dimensional real-valued visible vector is given by:

where y is a real-valued vector, drawn from a multivariate Gaussian distribution with

zero mean and unit-diagonal covariance. The vector y can be viewed as the underlying,

or hidden cause of the data vector x. The real-valued vector 9, which plays the role of

independent sensor noise, is drawn from a multivariate Gaussian with zero mean and a

D x D diagonal covariance matrix Q, where +:, . .., $; are the elements along the diagonal.

The weights W, which specify the relationship between the hidden and visible units, are

called the factor loadings. Since y is drawn from a diagonal-covariance Gaussian, we can

consider each unit yj separately in the generative model. The prior over the jth hidden

unit is given by:

where in the standard factor analysis model ijj = 0 and nd j = 1. We will look at models

later in which Qj is non-zero and nd; is not unity. Viewed as a Bayesian network, a factor

analyzer consists of Gaussian stochastic units with linear transfer functions (see figure

Zero-mean, Unit-variance Gaussian noise

Independent Gaussian noise

Figure 1.1: Factor analysis, viewed as a Bayesian network. The circles represent linear

units, and the arrows between layers represent the factor loadings. When viewed as a

generative model, the hidden units are driven with zero mean, unit-variance Gaussian

noise. Independent Gaussian noise is also added to the visible units

1.1). We refer to this kind of unit as a linear-Gaussian unit.

Because the prior is Gaussian and the hidden units are linear, a factor analyzer

in generative mode defines a Gaussian distribution over observation space. Therefore,

factor analysis can only capture second-order correlations in the data, and is insensitive

to higher-order correlations. The Gaussian defined by a factor analyzer has zero mean

if = 0, and it can be shown to have covariance matrix WWT + 8. Typically, factor

analysis is used as a means of dimensionaiity reduction, when it is conjectured that

a small number of underlying hidden factors are responsible for the distribution of the

visible data. In this case the number of hidden factors used is less than D [Everitt, 19841,

and the factor analyzer can only model a restricted subset of possible covariance matrices.

Given a data set, the ML factor loadings (W) and diagonal covariance matrix (Q) can

be found with the Expectation-Maximization (E M) algorithm [Rubin and Thayer, 19821.

In the Es tep the distribution of the hidden units given the visible units is calculated. In

the M-step the parameters are updated so as to maximize the probability of generating

the given data vector given the posterior found in the Estep. The posterior distribution

1.5. MODELS

can be found using Bayes' rule:

where 2, is a normalizing constant.

The posterior is Gaussim and can be computed exactly. Factor analysis is a widely-

used model in part because exact inference is tractable. The tractability of the posterior

results in a straight-forward inference algorithm in which explaining away is handled

correctly [Pearl, 19881.

Factor analysis learns representations that are fully distributed across the hidden

units. The hidden layer tends to use all of the hidden units to represent each data point.

Unfortunately, this means that all of the hidden factors, and so all of the basis vectors in

W, must concern themselves with each data point. A factor analyzer will not dedicate

subsets of its factor loadings to model localized features of a data set. This ability

would be advantageous when trying to model images, for example, which are typically

compositions of small objects.

Factor analysis models have been extended to use non-Gaussian priors over the hid-

den factors [Bell and Sejnowski, 1995, Olshausen, 1996, Hinton and Ghahraxnani, 1997,

h i c Moulines et al., 1997, Lewicki and Olshausen, 19981. In most cases the posterior

cannot be computed exactly, and approximations must be used. These approximations in-

clude learning an explicit recognition model [Hinton et al., 19951, estimating the posterior

with a variational method [Saul et al., 19961 or with M A P inference [Olshausen, 19961,

or sampling from the posterior using Monte Carlo sampling techniques [Neal, 19931. As

an alternative to these approximations the model can be simplified by removing the inde-

pendent noise on the visible units [Bell and Sejnowski, 19951. This causes the posterior

to shrink to a single point which can be found by multiplying the observation by the

inverse of the generative weight matrix. This simplification is analogous to the one made

for principal component analysis (PCA) which can be viewed as a factor analysis model

with no independent noise on the visible units. Note that if the generative weight matrix

is not square then the resulting model does not define a proper probability distribu-

tion over the observation space. A well-defined probabilistic version of PCA has been

investigated [Roweis, 1997, Tipping and Bishop, 19971.

1.5.2 Mixture Models

A mixture model can be viewed as a probabilistic generative model composed of several

distinct density models (or components). To generate an observation, exactly one of the

components is chosen, and the new point is drawn from the distribution defined by this

component. If the probability of component i generating data point x is given by ~ ~ (~ 1 8)

then the probability of the mixture generating x is given by:

where 0 represents the parameters of the mixture model, P(il0) is the prior probability

of choosing component i, and K is the number of density models in the mixture. To

generate a new data point, first component i is chosen with probability P(ilB), and then

the new data point x is drawn from the distribution ~ ~ (~ 1 0) -

A set of ML model parameters can be found with the E M algorithm. In the Estep,

the responsibility of each component i is calculated for each data point x:

This is the posterior probability of selecting component i given the data point x, and

(1.10) is simply a restatement of Bayes' rule. Notice that pi(xlO) must be evaluated to

find the responsibilities. This may not be easy, depending on the form of the model.

The M-step consists of updating the model parameters 8 so as to maximize the ex-

pected log-likelihood; typically, the expected negative log-likelihood is minimized instead.

Given the responsibilities, the expected log-likelihood is:

The parameters can be updated by performing gradient ascent on (1.11). Many different

models have been used including Gaussians [Day, 19691, principal component analyzers

[Jacobs et al., 19911 and factor analyzers [Hinton et al., 1997a, Ghahramani and Hinton, 19961.

One benefit of a mixture model is that if there are several distinct clusters in the

data the mixture model can assign a separate mixture component to each cluster. For

this reason mixture models are well suited to solving classification problems where each

cluster defines a class of objects. In this case the latent variable i corresponds to the

class labels. Not only can the mixture model adapt to each class separately, but the

responsibilities computed for a previously unseen data point yield a soft classification of

the new observation.

Notice that in generative mode only one mixture component can be active at a time;

this is a considerable limitation. Consider the case of images, where each image is com-

posed of a collection of objects. Since each mixture component must try to explain the

entire image the model cannot simply adapt one component to each object. Instead, it

must adapt one component to each combination of objects. If the data contain com-

binations drawn from D possible objects then 2D mixture components will be required

to model the data. Clearly if there are exponentially many mixture components the

calculation of responsibilities (1.10) becomes intractable.

Mixture models learn a localized representation of each data point: Only one unit in

the hidden layer is active for each observation. The representational power of mixture

models is limited because they do not learn a distributed representation. Unlike with a

factor analyzer, the representation of an input vector is not shared across several hidden

units.

1.5.3 Logistic Belief Networks

Logistic belief networks, first investigated by Neal [Neal, 19921, are directed acyclic net-

works of stochastic binary units. The binary units discussed here output either 0 or 1.

A unit i outputs a 1 with probability dependent on the outputs of the units above:

where si is the output of unit i, j < i denotes the parents of unit i, wji is the connection

strength from unit j to unit i, bi is the bias on unit i, and a(x) is the logistic function:

1
~ (f = I + e-'

We refer to these units as binary-logistic units.

In order to learn ML parameters for this model we mu e the post erior dis-

tribution over the hidden units given a visible vector. This amounts to finding the

probability of each of the possible states of the hidden units given the input vector. If a

network has D hidden units there will be 2D such states making the exact calculation of

the full posterior intractable. To approximate the full posterior distribution Neal used

a Monte Carlo sampling technique called Gibbs sampling. The posterior has also been

approximated with a variational approximation [Saul et al., 19961, and by learning an

explicit set of bottom-up recognition connections that, given a training vector, produce

a set of hidden unit activities [Hinton et al., 19951.

Gibbs Sampling in Logistic Belief Nets

Gibbs sampling is a Monte Carlo method that can be used to approximate expectations.

Gibbs sampling is appropriate when we cannot explicitly calculate these expectations,

but we can sampie from the distribution of a single unit given the states of all of the

other units in the network. During Gibbs sampling hidden units axe visited one at a

time, and the new state of each unit is drawn from its distribution conditioned on the

activities of all of the other units. Let a denote a particular set of hidden unit activities,

or configuration of the network, and let Pa denote the probability of this configuration,

given by:

where sp denotes the state of unit i in configuration a.

The conditional probability of unit i emitting a 1, given the configuration denoted by

a: over the other units, is given by:

where ~ ~ \ s i = ~ and Pa\si=0 are the probabilities of a configuration that is identical to a,

with the exception that unit i takes on the values 1 and 0 respectively.

If we define the energy of a configuration as Ea = - log Pa7 then (1.15) can be

rewritten as:

P(si = l l a) = o(AE,") (1.16)

where AE;P is the difference in energies when unit i takes on the value of either 1 or 0:

Here, Zr = o (bi + CkCi W ~ ~ S Z) is the probability that si = 1 given its total input from

the other units, plus the bias.

To perform Gibbs sampling each unit is visited in turn, and its state is chosen using

(1.16) If sampling continues for long enough, this process is guaranteed to converge to

the correct distribution [Neal, 19931. Unfortunately, 'long enough" is hard to determine.

Even if we can tell that the Markov chain has reached equilibrium, the amount of time

required might make this approximation unattractive. We discuss this problem further

in section 2.4.

Given a sample from the posterior distribution of the hidden units, the weights can

be updated with the online delta rule:

where e is the learning rate. This performs steepest ascent in the log-likelihood.

1.5.4 Independent Component Analysis

We have seen in section 1.5.1 and section 1.5.2 that sometimes it is undesirable to produce

representat ions of data that are fully localized or fully distributed. Logistic belief net-

works finds sparse, distributed representations, but are unable to represent real-valued

quantities efficiently. Independent component analysis (IC A) finds sparse, distributed

representations of real-valued data.

Factor analysis tries to find factor loadings that model the covariance structure of

data, but is insensitive to higher-order structure. ICA tries to capture the higher order

statistics as well by finding a weight matrix that makes the hidden factors statistically

independent [Bell and Sejnowski, 19951. Bell and Sejnowski originally derived their al-

gorithm from within an information-maximization framework, but it can be viewed as

the ML optimization of a two-tier generative model with a high-kurtosis non-Gaussias

prior over the hidden units [Mackay, 1996, Pearlmutter and Parra, 19971. An example of

such a distribution is shown in figure 1.2. ICA can also be viewed as a generative model

Figure 1.2: A plot of (~ c o s h (x)) - ~ , a high-kurtosis distribution used by the ICA algo-

rithm as a prior distribution over hidden unit activities.

whose hidden units are Gaussian distributed, but have a non-hear transfer function

[Mackay, 199 61.

Intuitively this prior encourages sparse, distributed representations because it places

a large probability mass near zero, and spreads the rest of the probability mass far out in

the tails of the distribution. This means that, when operating in generative mode, most

hidden units will take on values close to zero while a few others will take on relatively

large values. This can be contrasted with a zero-mean Gaussian prior where most hidden

units will take on small but non-zero values.

If we assume a Gaussian noise model on the input units the computation of the

posterior distribution over the hidden units is intractable. The ICA algorithm is equiv-

dent to assuming that there is no independent sensor noise in the generative model

[Mackay, 19961. In this case, the activities in the hidden layer can be found by multi-

plying the visible unit activities by the inverse of the generative weights. The result is a

simple weight-update rule:

where W is the inverse of the generative weight matrix, p (y) is the density function of

the non-Gaussian prior over the hidden units, y is a vector of the values of the hidden

units, and x is a vector containing the values of the visible units.

The matrix inversion in the first term of (1.19) makes this algorithm cornputationally

unattractive, and biologically implausible since the learning rule is not local. Versions of

ICA have been derived which eliminate the matrix inversion, and converge faster than

the original algorithm [Amari et al., 1996, Mackay, 1996, Cardoso, 19961.

Unfortunately, the lack of independent sensor noise in the generative model makes

the ICA algorithm sensitive to noise in the training data. Also, this algorithm requires

that the number of hidden units be equal to the dimensionality of the input data. If the

ICA algorithm is used on data that has only a few underlying causes the remainder of

the "independent components" will be used to model noise in the data. It is not always

easy to distinguish true underlying causes from noise components (see section 3.1 for an

example of the performance of ICA on a noisy task). Further, the lack of sensor noise

makes i t difficult to extend this model to multiple layers.

Olshausen and Field investigated a similar two-layer model [Olshausen and Field, 19961

which can be viewed as a generative model with a high-kurtosis non-Gaussian prior over

the hidden units [Olshausen, 19961. In this model Olshausen and Field retain the indepen-

dent Gaussian sensor noise, and approximate the posterior distribution over the hidden

units with a MAP estimate. The posterior can also been approximated by a best-fit Gaus-

sian which better accounts for the mass under the posterior [Lewicki and Olshausen, 19981.

These are reasonable approximations when the posterior is unimodal and sharply peaked.

Given the approximated posterior the weights can be updated by taking a gradient step

which increases the expected likelihood.

These latter models avoid some of the limitations of ICA in that the inclusion of

sensor noise reduces the model's sensitivity to noise in the training data. Also, there

are no limitations on how many hidden units can be employed; the model can be used

for the purposes of dimensionality reduction, or to compute an L'overcomplete'7 basis set

[Olshausen and Field, 19961. This greater flexibility is achieved a t a price: The approx-

imation of the posterior is more computationally expensive than that required to learn

the parameters of an ICA model which, in the case of a covariant algorithm, just requires

a few matrix multiplications per data point per weight update.

1.5.5 Rectified Gaussian Belief Nets

A Rectified Gaussian Belief Net (RGBN) is a hierarchical generative model that extracts

sparse, distributed representations [Hinton and Ghahramani, 19971. The prior distribu-

tion used in the RGBN is a rectified Gaussian (see figure 1.3). Given the input from its

parents yj, a unit selects an output value ai as follows:

(0 otherwise

The intuition behind why the RGBN extracts sparse, distributed representations is

similar to that for ICA. The rectified Gaussian distribution allows hidden units to place

a large probability mass exactly on zero, and some probability mass far from zero. The

rectified Gaussian also provides a good example of viewing a non-Gaussian prior as a

Gaussian prior passed through a non-linearity; in this case the non-linearity is a simple

rectification.

Figure 1.3: The rectified Gaussian concentrates all of the probability mass from x < 0
in a spike at zero.

Like ICA, an RGBN uses real-valued units, so real valued random variables can

be represented eeciently. Again, because of the non-linear "rectification" function that

produces the output value bi, and because independent Gaussian noise is added to visible

units, the computation of the posterior is intractable. Instead of using a MAP estimate,

Hinton and Ghahramani used Gibbs sampling to approximate the posterior. The rectified

Gaussian prior was specifically chosen to make Gibbs sampling feasible while still allowing

units to place a large probability mass exactly on zero. By using Gibbs sampling to

approximate the posterior Hinton and Ghahrarnani avoided the potential problem of

findiog only one mode of a multi-modal posterior as would be the case if using a MAP

or Gaussian estimate. It is unclear how much of a problem this is in practice, and MAP

inference has been used successfully in single-layer models with rectified Gaussian units

[Rao and Ballard, 1997, Socci et al., 19981.

One possible problem with this approach, as discussed in section 1.5.3, is that Gibbs

sampling may take a long time to converge. Hinton and Ghahramani found that the

RGBN was able to learn with only 10 to 20 Gibbs samples per hidden unit. We discuss

"brief' Gibbs sampling further in section 2.4.

Given samples from the posterior of the unrectified values yi, the weights of the RGBN

can be updated with a simple online delta rule:

and the variance of the local Gaussian noise can be Iearned with:

Again, this update rule simply performs gradient ascent in log-likelihood.

The RGBN was able to find localized features in lower layers, and to find correlations

among these features in higher layers, for some small but interesting problems.

Chapter 2

Hierarchical Community of Experts

2.1 Motivation

Sometimes it makes sense to model data using both binary and real-valued quantities.

For example, whether or not a particular object appears in a scene is a binxy decision,

but its position, orientation, scale and colour are real-valued quantities. The only model

we have seen so far that makes this distinction is a mixture model; however we have also

seen that the mixture model is exponentially inefficient.

All of the models examined in chapter 1 that use exclusively real-valued stochastic

units implicitly assume that the presence of a feature is related to its magnitude. In

these models, a feature being absent is indistinguishable from a feature being present

with a very small magnitude. Even worse, it is impossible to represent large real values

and small real values without giving significant probability to everything in between.

This representation does not always make sense. For example, if we wanted to rep-

resent the mass of adult elephants, then either we want the feature to be absent (when

there is no elephant), or present with a large numerical value. We want the model to give

small real values very low probability. Of course, a logistic belief network can represent

this kind of information, but it would be inefficient to represent real-valued, locally linear

Figure 2.1: Architecture of the RGBN used to model a mixture of two Gaussian distribu-

tions. Injected noise €1 has variance of; and noise values e 2 ~ and €22 both have vrtriance

4;.

variables with highly nonlinear binary units.

To demonstrate the problems inherent in the assumption that a feature's existence is

related to its magnitude, we trained an RGBN model on a simple data set consisting of

1000 Zdimensional points generated from a mixture of two Gaussians (see figure 2.2(a)).

Each observation was generated by the first Gaussian with probability ~1 = 0.6, and

from the second with probability 7i2 = 0.4. (see table 3.1 for a summary of the Gaussian

mixture). The RGBN had one top-level unit, and two visible units (see figure 2.1).

Ideally, the RGBN should place high density on the two clusters, and little in between.

This RGBN can represent two distinct Gaussians: one when the top-level unit is off, and

the other when it is on. We will assume that the first Gaussian is being modeled when

the top-level unit is off. The mixing proportion for the first Gaussian is determined by

the probability mass of the Gaussian prior on the top-level unit that is below zero:

0 1

L ,EG1 enp { ~ (x 20: - b1 j2 1 d~ =

where bl and a: are the bias and variance of the top-level unit; and nl is the mixing

proportion for the first Gaussian (0.6 in this example).

Further, the mean of the Gaussian prior on the top-level unit also influences the means

of the two Gaussians in the mixture:

where pl and p2 are the means of the first and second Gaussians; W is the pair of

weights from the top-level unit to the two visible units; and b2 = [b21bzz] is the bias on

the visible units.

The parameter bl must simultaneously determine the mixing proportions of the two

Gaussians (see (2.1)), which control which Gaussian is used to generate an observation,

and the mean of the second Gaussian (see (2.3)), which control the magnitude of the

generated data. Clearly the mixing proportions are independent of the means of the

Gaussians, so it is unfortunate that the RGBN must try to model them both with the

same parameter.

After training, the top-level unit of the RGBN was on 89% of the time. When

this occurred, the RGBN produced data from a full-covariance Gaussian which did not

correspond to either of the distributions in the original mixture (see table 2.1).

An equal number of data points were generated from the trained RGBN and plotted

(see figure 2.2). Notice that the RGBN is unable to place significant mass on the two

clusters without placing mass on everything in between. It manages to model the first

Gaussian, but in trying to capture the right mixing proportions, it must use a poor choice

of bias on the top-level unit, misplacing the mass of the second Gaussian.

2-2. COMBINING BINARY AND LINEAR UNITS

Original Gaussian 1 1 I Original Gaussian 2

Learned Gaussian 1

Learned Gaussian 2

2
Table 2.1: Parameters of a mixture of two Gaussians, and parameters estimated by a

trained RGBN.

Figure 2.2: a) The training data, generated from a mixture of two Gaussians. b) An
equal number of data points generated from the trained RGBN.

Combining Binary and Linear Units

We can model both kinds of information by gating the output of each linear-Gaussian

unit with the output of a binary-logistic unit. The binary unit in a pair will be used

to code the presence or absence of a feature while the linear unit can model real values

that are approximately locally linear (see figure 2.3). We will use y to denote the values

of linear-Gaussian units and s to denote the values of binary-logistic units, and paired

units will share the same subscript.

Figure 2.3: Units in a community of experts, a network of paired binary and linear units.

Binary units (solid squares) gate the outputs of corresponding linear units (dashed circles)

and also send generative connections to the binary units in the layer below. Linear units

send generative connections to linear units in the layer below (dashed arrows).

Recall from the definition of a linear-Gaussian unit (see (1.7)):

where yj is the output and a: is the variance of the linear-Gaussian unit. Here, the mean

of the Gaussian distribution is the weighted sum of the gated outputs of the units above

plus the bias:

There are weighted connections from linear units to linear units. We also include weighted

connections from binary units to binary units, and use (1.12) to determine the output of

the binary units in the generative model. We could also include connections from binary

units to linear units, although in the simulations reported in chapter 3 these connections

are not used. If these connections were included, then the prior on a linear unit ijj would

just be the weighted sum of the linear and binary outputs of the units above. To make

2.3. LEARNING AND INFERENCE 27

inference and learning feasible (see section 2.3) connections from linear units to binary

units are prohibited.

The result is a network of binary units that synthesizes a linear network from a large

set of available linear units. The binary units indicate the existence of features while the

linear units represent real-valued variables that are locally linear. Given the activities

of the binary units, the network is linear, and can be viewed as a rnultilayer version of

factor analysis. The model uses a non-linear mechanism (the binary units) to select a

Linear model from a large set of possible linear models. In this respect it is similar to

a hierarchical mixture of experts (HME) [Jacobs et al., 1991, Jordan and Jacobs, 19941,

with the binary units playing the role of gating networks. However, unlike a n HME,

each linear unit acts as an expert, and any combination of experts can cooperate to

explain an observation. We call this network a hierarchical community of experts (HCE)

[Hinton et d., 1997bl.

2.3 Learning and Inference

In order to find an EvIL set of model parameters we want to compute the posterior

distribution over the hidden units. As with the LBN and RGBN, we cannot compute

the full posterior, but can approximate it with Gibbs sampling. The obvious way of

performing Gibbs sampling is to visit the units one at a time, and choose the state

of the current unit while holding all others constant. This obvious approach has two

disadvantages: First, the distribution for a binary unit is affected by the value of its

corresponding linear unit. Instead of using the current (sampled) value of the linear unit

to determine the distribution of the binary unit, we can integrate over all possible values

of the linear unit, weighted by their probabilities. This should lead to faster convergence

to the posterior.

Second, the distribution of a linear unit is affected by the pre-gated values of the

linear units below it. If a unit below is gated out (i.e. disabled), then its distribution

is completely determined by the values of the units in the layer above. There is no

connection to the data, so the values of the gated out units below do not provide any

data-driven information about what values should be taken by units in the layer above.

Allowing the values of gated out units in the layer below to influence the sampling will

only increase sampling noise. This is unfortunate since we hope that the representation

found by the binary units will be sparse, and so most of the linear units will be gated

out at any particular time. In this case we would like to integrate out Linear units below

that are gated out. The correct way to integrate out linear-Gaussian units that are gated

out is simply to ignore their energy contribution.

Given a set of binary activities, the network is linear. We could therefore choose the

state of a binary unit while holding the other binary units constant, and while integrating

out the entire linear network. However, integrating out a layer of k linear units requires

the inversion of a k x k matrix (see appendix A). It is not clear that the reduction in

sampling noise is worth this additional computational effort, especially early on when

most of the units are not doing anything meaningful. We have chosen the intermediate

solution of integrating out just the corresponding Linear unit when sampling from a binary

unit, and integrating out the gated-out linear units in the layer below when sampling

from units in a given layer.

Given samples from the posterior distribution of the binary units, the binary-tebinary

connections are updated using (1.18). The linear-to-linear connections are updated with

a similar rule:

Awji = ~ y j s j (~ ~ - Q ~) s ~ / o ? (2.6)

and the local noise variance of the linear-Gaussian units can be learned with:

If there were binazy-to-linear connections they would also be updated with (2 .6) , but iji

would be a weighted sum of binary and linear unit activities.

We do not include linear-tebinary connections because it would make it difficult

to sample from the posterior of the linear unit. The non-Gaussian likelihood term in

the posterior caused by the binary-logistic connections would make the posterior of the

linear unit non-Gaussian. The posterior would, however, correspond to an unnormdized

energy function that we can calculate explicitly. This raises the possibility of using a

sampling technique such as the Metropolis algorithm to sample from the Linear units in

the case of linear-to-binary connections [Metropolis et al., 19531. Alternatively, because

the distribution over a linear unit with connections to linear-Gaussian and binary-logistic

units would be log-concave, we could use adaptive rejection sampling for Gibbs sampling

[Gilks, 19921. These possibilities have not been explored.

2.4 Brief Gibbs Sampling

It might seem a t first glance that Gibbs sampling is a bad choice for an efficient on-line

learning algorithm. If considered as a method of computing expectations with respect to

the posterior distribution over hidden units, Gibbs sampling faces several difficulties:

1. We should let the Markov chain reach equilibrium before we use the samples for

parameter learning, but it is hard to tell when the equilibrium distribution has been

reached.

2. E.ven if we can determine this, it may take the Gibbs sampler far too long to reach

equilibrium to make Gibbs sampling viable. To make matters worse, as the weights

change, this equilibrium distribution changes as well. The Gibbs sampler must

chase a moving target.

3. To avoid having to start the Gibbs sampling from a state that is far from equilib-

rium we must provide a separate realization of the Markov chain for each training

example. In practice we need to store the last set of hidden unit activities that

the sampler provided for each observation. For large training sets, or for online

training schemes, this requirement is infeasible.

We can try to avoid the convergence problems by allowing for a burn-in period, and

by using a small learning rate. Even if the burn-in period is not long enough for the

Markov chain to reach equilibrium, the first part of the run (when the Gibbs sampler

was not at equilibrium) will be overshadowed by later samples. With a small learning

rate, the equilibrium distribution after a weight update should be close to the equilibrium

distribution before the update, so the Markov chain will remain close to its equilibrium

distribution. However, this approach may still be too slow and will require a separate

Markov chain for each observation.

In chapter 3 we show that an HCE network can learn some small but interesting tasks

when each Gibbs sampling pass consists of only a few iterations of Gibbs sampling for

each unit. The model can learn even if the distribution being sampled is far from the

true equilibrium distribution. As a byproduct, we do not have to store previous network

states for each training example. This "brief" Gibbs sampling has been used previously

to train RGBN7s [Hinton and Ghahramani, 19971.

To understand why brief Gibbs sampling works, we can consider a cost function other

than the negative log-likelihood. If Q is the distribution over the hidden units produced

by the Gibbs sampler given the energy E, then the free energy of the network is defined

as the expected energy under Q minus the entropy of Q. For a network of binary and

real-valued units, this is given by:

where x is a real-valued vector of linear-Gaussian hidden unit activities; a denotes a

configuration of the binary-logistic hidden units; Q(x, a) is the joint probability of the

real-dued units having value x and the binary hidden units being in configuration a;

and z is a (fixed) vector of visible unit activities. The E M algorithm can be viewed as

coordinate descent in this new objective function [Neal and Hinton, 19973.

For simplicity, we will drop the dependence on x and cr in the following discussion.

Let P be the actual posterior distribution given E. If Q = P, then (2.8) is just the

negative log probability of the visible units. Otherwise, KL(QI1 P) > 0, so (2.5) is the

negative log probability of the hidden units plus the Kullback-Leibler divergence between

Q and P:

In our case we approximate the actual posterior with brief Gibbs sampling. Since the

sampled distribution has not had time to reach equilibrium we actually sample from the

approximate posterior Q. Assume that we have an infinite ensemble of networks, so that

the approximate distribution Q and the gradient of F with respect to the parameters

can be computed exactly. We will denote the distribution reached at the end of partial

Estep t by Qt and the energy function used during partial Estep t by EL. Partial M-step

t updates the energy function from Et to Et+'. B y cautiously following the gradient of

the log-likelihood during the partial M-step we reduce the energy:

Gibbs sampling during the partial Es tep moves the approximate posterior Q closer to

the true posterior even if the Markov chain has not reached equilibrium [Goutsias, 19911

(see appendix C):

Therefore F t f l 5 Ff for an infinite ensemble of networks.

The above argument assumes that Gibbs sampling in partial Estep t + 1 starts from

the final hidden states visited in step t. In this case, we can approximate an infinite

ensemble by using a small learning rate in a single network, so that the energy functions

of successive Esteps will be similar. Then (2.10) and (2.11) tell us that, even if the

Markov chain has not reached equilibrium1, we will be adjusting the weights so as to

minimize an upper bound on the negative log-probability of the data.

We would like to avoid storing the result of previous Gibbs sampling sweeps. One

alternative would be to learn an explicit bottom-up recognition model. Before Gibbs

sampling begins we could do a bottom up pass to initialize the activities of the hidden

units, and let Gibbs sampling proceed from this point. The recognition model could be

learned using the difference between the next sample generated by the Gibbs sampler

and this bottom-up initialization value. In this way, we could hope to start the Gibbs

sampler close to what would have been the previous sample without having the extra

overhead of storing the previous sample for each training case.

Instead we take the simpler approach of always starting the Gibbs sampler from the

same initial state, and sampling for only a few sweeps, generating samples from some

approximate posterior distribution Q. The free energy F is an upper bound on the

negative log-probability of the data; the bound exceeds the negative log-probability by

the Kullback-Leibler divergence between the true posterior P and the approximat ion

Q. If the equilibrium distribution of the Markov chain is far from the initial value, this

divergence term will be large, and the partial M-step will tend to improve F by decreasing

the divergence. The model will be regularized towards models that can converge to the

posterior from the initial state in only a few Gibbs sweeps. This is similar to the way

that a model that uses a mean-field approximation tends to learn weights such that the

'Of course, the learning rate must be smaU enough that successive energy functions will be similar,

but not so small that the weights remain unchanged, which would eventuaHy let the Markov chain reach

equilibrium

posterior comes closer to a factorial distribution.

In fact, brief Gibbs sampling is similar to a variational approximation. With a vari-

ational approximation, the parameters of Q are optimized so as to minimize the I<-L

divergence between the approximat ion and the true posterior. The approximat ion is

explicitly chosen so that after the optimization step the expectations required can be

calculated exactly. In the case of brief Gibbs sampling, we do not know the form of the

approximation Q, but we can sample from it. We calculate expectations with respect to

Q with Monte Carlo approximations. There are advantages to this approach: First, the

approximating distribution can potentially be as complex as the true posterior. Second,

we do not need to explicitly state what our approximating distribution is. We do not

need to come up with one that is a good approximation to the posterior and can be used

to analytically compute expectations. The disadvantage is that we are introducing two

levels of approximation: The first is the approximate posterior Q which is caused by

terminating Gibbs sampling prematurely. The second is the Monte Carlo approximation

of Q. In other words, even the expectations found with respect to the approximation Q

are only approximate due to sampling noise.

2.5 Comparison to Mixture of Gaussians,

Factor Analysis and RGBN's

One advantage of the HCE model is that not only can it extract sparse, distributed

representations from data, but it can also produce representations at either extreme. To

demonstrate this, we generated two very simple Zdimensional data sets of 1000 points

each; one from a mixture of two circulax Gaussians; and the second from a non-circular

2-dimensional Gaussian. The former can be well modeled by a mixture of Gaussians

model, and the latter can be modeled by a factor analysis model with only one hidden

factor. We trained the same simple two-layer HCE 100 times on each data set. In all

Figure 2.4: Architecture of a simple HCE to be used to model simple 2-D data sets.

The top-level binary-logistic unit (solid square) gates the output of the top-level linear-

Gaussian unit (dashed circle). The injected noise values el, and €21 and cz2 have variances

o: and 0; respectively.

cases, the HCE had one pair of units in the top layer, and two linear units in the visible

layer (see figure 2.4).

2.5.1 Mixture of Gaussians

Each 2-D mixture of Gaussians datum was generated in the following way: one of the two

possible Gaussians was chosen, and the data point was drawn from this Gaussian. The

two Gaussian distributions used and their mixing proportions were the same as those

used in section 2.1. See table 2.2 for a summary of the distribution used to produce the

training data, and the distributions produced by the HCE's after training. A plot of the

training data and a sample of ZOO0 points generated from the one of the trained models

are shown in figure 2.5.

An HCE with the above architecture can model two Gaussians: one when the top-level

binary unit is on, and one when it is off. Notice that, in this case, the HCE can model the

Original Gaussian 1

Original Gaussian 2

Table 2.2: Parameters of mixture of two Gaussians, and average parameters learned by

the 100 trained HCE7s (& two standard deviations). Learned Gaussian 1 is the Gaussian

generated when the toplevel binary unit is off, and Learned Gaussian 2 is generated

when the top-level binary unit is on.

Learned Gaussian 1

Learned Gaussian 2

Figure 2.5: a) Training data generated from a mixture of circular Gaussians. b) Data

generated from one of the trained HCE's.

(O.98f 0.13, 2.00f 0.15)

(-1.92&0.56,-1.46rt0.51)

one-on behaviour of the Gaussian mixture because there are only two Gaussians in the

mixture, requiring one binary unit at the top level. If there were n Gaussian distributions

in the mixture, the HCE wodd need logn layers to capture the one-on behaviour in a

binary tree. Alternatively, lateral inhibitory connections between top-layer binary units

could be learned.

2.5.2 Factor Analysis

Data was generated from a 2-D Gaussian that can be properiy modeled by a factor

analysis model with one hidden unit; see table 2.6 for a summary of the distribution

used to produce the training data, and the distributions produced by the HCE's after

training. 4 plot of the training data and a sample of 1000 points generated from one of

the trained models are shown in figure 2.7.

Figure 2.6: Parameters of a full covariance Gaussian, and average parameters learned by

the 100 trained HCE7s (rt two standard deviations). Learned Gaussian 1 is the Gaussian

generated when the top-level binary unit is off, and Learned Gaussian 2 is generated

when the top-level binary unit is on.

Original Gaussian

Learned Gaussian 1

Learned Gaussian 2

Figure 2.7: a) Training data generated from a full-covariance Gaussian. b) Data gener-

ated from one of the trained HCE's.

In this case, the HCE model faces similar restrictions as a factor analysis model. If

there are more independent causes of the data than there are hidden units, then the HCE

will have trouble modeling the data. However, unlike a factor analyzer, if the HCE has

more hidden units than are required to model the data, it can simply bias the binary

P

(3.5,-7.0)

(Z' i6 f 0.77,-4.SOf 2-27)

(X56f O.24,-7.l'if 0.47)

9

["A 21
[

k 0.05 0.0

0.31 & 0.05 1
0-84 & 0.22 -1.59 k 0.44

-1.59 k 0.44 5.00 31 1.10]

7r

1 .o

0.02

0.98

units of the unnecessary pairs so that they are always gated out. Turning off unused

units will not increase the expressiveness of the model, but it does make the model easier

to interpret.

2.5.3 Rectified Gaussian Belief Nets

In the previous two sections we saw that an HCE can represent any distribution that can

be represented by a factor andyser or by a mixture of Gaussians. It can duplicate the

factor analyzer by biasing binary units to be always on or always off. It can potentially

represent any distribution that can be modeled by a mixture of Gaussians (given enough

units, and if the HCE has lateral connections or a sufficient number of hidden layers) by

modeling each Gaussian in the mixture with a linear-Gaussian unit in the first hidden

layer, and learning a one-on behaviour for the corresponding binary units.

We saw in section 2.1 that an HCE can also represent distributions that cannot be

effectively modeled with an RGBN. A reasonable question is whether or not the converse

is true: Can an RGBN model densities that an HCE cannot? Clearly, since an HCE can

duplicate the behaviour of a mixture of Gaussians, it can potentially model arbitrary

distributions. In fact, the set of densities modeled by an RGBN is a subset of those that

can be modeled by a simple variant of the HCE with only one pair of units for every

rectified Gaussian unit [Hinton and Ghahramani, 19971.

To show this we must first describe another type of binary unit: a binary-probit unit.

Assume that the binary-probit unit i has inputs s j , j < i. Define Gi as:

where bi is the bias on unit i. Then the binary-probit unit emits a 1 with probability

given by:

I Input and bias

Figure 2.8: Converting an HCE to an RGBN. The solid square represents a binary-probit

unit and the solid circle represents a linear-Gaussian unit. When they share the same

input, bias and Gaussian noise, the result is a rectified-Gaussian unit (dashed square)

A binary-probit unit is like a binary-logistic unit with the logistic function replaced by a

cumulative Gaussian.

Now consider the following modification to the HCE architecture (see figure 2.8):

First, instead of using binary-logistic units, we will use binary-probit units. Second, we

will require that the input, bias and internal Gaussian noise of each unit in a pair of

binary and linear units be shared.

The combined linear-Gaussian/binary- robi it pair emit a non-zero value when the the

internal random variable in the binary-probit unit is greater than zero. However, since

the random Gaussian noise and input are shared, this occurs exactly when the linear-

Gaussian unit emits a value greater than zero. The combination of the two units is a

rectified-Gaussian unit.

Chapter 3

Simulation Results

3.1 Noisy Bars

3.1.1 The Problem

The noisy bars task is a toy problem that demonstrates the need for sparse distributed

representations [Hint on et al., 1995, Hinton and Ghahramani, 19971. There are four stages

in generating each K x K image. First a global orientation is chosen, either horizontal or

vertical, with both cases being equally probable. Given this choice, each of the K bars of

the appropriate orientation is turned on independently with probability 0.4. Next, each

active bar is given an intensity, chosen from a uniform distribution. Finally, independent

Gaussian noise is added to each pixel. A sample of images generated in this way is shown

in figure 3.1 (a).

3.1.2 HCE Results

We trained a 3-layer HCE network on the 6 x 6 noisy bars problem. The network consisted

of one pair of units in the top hidden layer, where each pair consists of a linear-Gaussian

unit gated by its corresponding binary logistic unit; 24 pairs of units in the first hidden

layer; and 36 linear-Gaussian units in the visible layer. We used update rules with

Figure 3.1: a) Training data for the noisy bars problem. b) Images generated by the

trained network. The area of each square represents the value of the corresponding pixel

in the 6 x 6 images. White represents positive values and black represents negative values.

weight-decay. The modified update rule for the binary-to-binary connections is given by:

where e is the learning rate and X is the weight decay parameter. The update rule for

the linear-to-linear connections was similarly modified. The network was trained for 12

passes through a data set of of 1000 images, with a learning rate of 0.04 and a weight

decay parameter of 0.04. The images were presented in a different, random order for each

pass.

For each image ~resented, 16 Gibbs sampling iterations were performed. Gibbs sam-

pling was performed by visiting each pair of units in a layer in random order, where for

each pair the binary unit was visited first, followed by the linear unit. Of the 16 network

states visited, the first four were discarded, and the next 12 were used for learning. The

weights from the linear units in the first hidden layer to the units in the visible layer were

constrained to be positive. Without this constraint, the trained model learns a similar

distribution, but the solution is not so easily interpreted. The result of training is shown

in figure 3.2.

Figure 3.2: Generative weights and biases of a three-layered network after being trained

on the noisy bars problem. a) weights from the top layer linear-Gaussian unit to the 24

middle layer linear-Gaussian units. b) Biases of the middle layer linear units. c) weights

from the 24 middle layer linear units to the 36 visible units. d) weights from the top

layer binary logistic unit to the 24 middle layer binary logistic units. e) Biases of the

middle layer binary logistic units.

The trained network is using 12 of the linear-Gaussian units in the first hidden layer

to represent each of the 12 possible horizontal and vertical bars. The top level binary

unit is selecting the linear units in the first hidden layer that represent horizontal bars by

exciting the corresponding binary units; these binary units are biased to be off otherwise.

Similarly, the binary units that correspond to vertical bars, which are often active due to

positive biases, are being inhibited by the top binary unit. The top linear unit is simply

acting as an additional bias on the linear units in the first hidden layer. Examples of

data generated by the trained network are shown in figure 3.l(b). As can be seen in

figure 3.l(b), the distribution learned by the model is not perfect. The top binary unit

is biased to be on 51.7% of the time, which is quite close to the 50% used by the process

that generated the bars. However, when generating vertical images (when the top-level

binary unit is off), the trained HCE still allows horizontal bars to be used (with average

probability 34.8% for each horizontal bar). Ideally, the negative biases on the binary

units corresponding to horizont a1 bars should be larger (see figure 3.2(e)).

The network was shown novel images, and 10 iterations of Gibbs sampling were

performed. After the final iteration, the top level binary unit was found to be off for 90%

of vertical images, and on for 84% of horizontal images.

The results shown in figure 3.2 should be contrasted with the features learned by

other models on the same problem. Figure 3.3 shows the features learned by a factor

analyzer with 24 hidden factors, a mixture of 24 Gaussians, an ICA model (with the

required 36 hidden units), and an RGBN with 24 hidden units in the middle-layer, and

one hidden unit in the top-layer.

The factor analyzer has not learned the distinction between horizontal and vertical

bars. The mixture of Gaussians has Learned this, and with enough Gaussians in the

mixture, could learn the distribution exactly. Unfortunately, even if the bars were binary,

it would require z7 Gaussians just to represent all possible combinations of horizontal

and vertical bars. For the red-valued bars problem, it would need additional Gaussians

to model the uniform intensity distribution for each bar. The ICA and RGBN models

learn the distinction between horizontal and vertical bars, and find sparse, distributed

representations for the bars. The ICA features are obscured by noise, but the RGBN

learns the same features as the HCE with its weights restricted to be non-negative. If

the HCE is free to choose its weights with no restrictions, the resultant features are

Figure 3.3: Generative weights of other density estimators, trained on the noisy bars

data. a) Factor analyzer with 24 hidden factors. b) Mixture of 24 (diagonal covariance)

Gaussians. c) ICA (with 36 hidden units). d) 3-layer RGBN with 24 hidden units in the

middlelayer, and 1 unit in the top-layer.

qualitatively similar to those learned by the ICA model, but without being so obscured

by noise (see figure 3.4). With this restriction removed, the HCE's top-level binary unit

still learns to distinguish between horizontal and vertical bars.

3.2 Hand- Written Digits

3.2.1 Classification

We trained a similar three-layer network on handwritten twos and threes from the

CEDAR CD ROM 1 database [Hull, 19941. The digits were scaled to an 8 x 8 grid,

Figure 3.4: Generative weights of an HCE trained on the noisy bars, with no restrictions

on the weights. The features are reminiscent of those learned by ICA.

and the 256-gray-scale pixel values were rescaled to lie within [O, 11. The 2000 digits were

divided into a training set of 1400 digits, and a test set of 600 digits, with twos and threes

being equally represented in both sets. A small subset of the training data is shown in

figure 3.5(a).

The network consisted of a single pair of units in the top hidden layer, 24 pairs of

units in the first hidden layer, and 64 linear-Gaussian units in the visible layer. During

training, the network made 43 passes through the data set, with a learning rate of 0.01

and a weight decay parameter of 0.02. Gibbs sampling was performed as in the bars

problem, with 4 discarded Gibbs sampling iterations, followed by 12 iterations used for

learning. For this task, there were no constraints placed on the sign of the weights from

the linear-Gaussian units in the first hidden layer to the units in the visible layer. The

result of training is shown in figure 3.6.

In this case, the network uses all 24 linear units in the first hidden layer to represent

digit features. Some of the features span the entire image, and act as templates of digits.

Other features are highly localized, and can modify the templates. The top binary

unit selects the linear units in the first hidden layer that correspond to features found

predominantly in threes, by exciting the corresponding binary units. Features that are

Figure 3.5: a) A subset of the training data. b) Images generated by the trained network.

For clarity, black represents positive values in this figure.

exclusively used in twos are being gated out by the top binary unit, while features that

can be shared between digits are being only slightly excited or inhibited. When the top

binary unit is off, the features found in threes are inhibited by strong negative biases,

while features used in twos are gated in by positive biases on the corresponding binary

units. Unlike the bars problem where there were no shared features between "horizontal"

and "vertical" data points, the two classes of data in this problem can potentially share

features. The HCE takes advantage of this by finding common features and biasing them

so that they can be active for examples from either class. For example, the feature in

the lower right corner of figure 3.6(c) is a template of a two, which is inhibited when the

top-level binary unit is on and excited otherwise (figure 3.6 (d) and (e)). The feature in

the lower left corner of figure 3.6(c) can be used to shift the position of the upper stroke

of a digit. Since such strokes appear in both twos and threes, the corresponding binary

unit is only slightly excited by the top-level binary unit. Examples of data generated by

the trained network are shown in figure 3.5(b).

Figure 3.6: Generative weights and biases of a three-layered network after being trained

on handwritten twos and threes. a) weights from the top layer linear-Gaussian unit to

the 24 middle layer linear-Gaussian units. b) Biases of the middle layer linear-Gaussian

units. c) weights from the 24 middle layer linear-Gaussian units to the 36 visible units.

d) weights from the top layer binary logistic unit to the 24 middle layer binary logistic

units. e) Biases of the middle layer binary logistic units.

The trained network was shown 600 test images, and 10 Gibbs sampling iterations

were performed for each image. The top level binary unit was found to be off for 94% of

twos, and on for 54% of threes. We then tried to improve classification by using prolonged

Gibbs sampling. In this case, the first 300 Gibbs sampling iterations were discarded, and

the activity of the top binary unit was averaged over the next 300 iterations. If the

average activity of the top binary unit was above a threshold of 0.32, the digit was

classified as a three; otherwise, it was classified as a two. The threshold was found by

calculating the optimal threshold needed to classify just 10 of the training samples under

the same prolonged Gibbs sampling scheme. The reason we used only 10 examples to set

the threshold was to demonstrate that good classification can be achieved with very little

labeled training data if an unsupervised learning algorithm has already extracted a good

representation. With prolonged Gibbs sampling, the average activity of the top binary

unit was found to be below threshold for 96.7% of twos, and above threshold for 95.3%

of threes, yielding an overall misclassification rate of 4% (with no rejections allowed).

Histograms of the average activity of the top level binary unit are shown in figure 3.7.

Figure 3.7: Histograms of the average activity of the top level binary unit, after prolonged

Gibbs sampling, when shown novel handwritten twos and threes. a) Average activity for

twos in the test set. b) Average activity for threes in the test set.

3.2.2 Representation

In the previous example we saw that an HCE can share features between classes. By

using a distributed representat ion of the digits the network can reuse hardware instead

of creating redundant features.

Another benefit of this type of representation is that previously unseen classes of data

can be accommodated. To demonstrate this, we trained a network on 16 x 16 handwritten

digits from the CEDAR CD-ROM database, scaled to have pixel intensities in the range

[0, l] . Digits from classes 0 through 8 were used, and there were 800 examples of each

class. No examples of the digit 9 were shown to the network. The network had 256 Linear

units in the visible layer, and 64 pairs of units in a single hidden layer. The network was

trained for 14 passes through the data set with a learning rate of 0.01 and weight decay

of 0.005.

After training, the network was shown 300 previously unseen examples of each of

the 10 digit classes, including the digit 9. Representations were found for each of these

examples in the following way: First 50 iterations of Gibbs sampling were discarded.

Then seven additional sweeps of Gibbs sampling were performed. For each of the seven

sweeps, a reconstruction was formed by passing the activities in the hidden Layer through

the generative weights. An average reconstruction was then found by averaging these

seven reconstructions. The squared difference between each original digit and its average

reconstruction was measured. Figure 3.5 shows the average squared error for each digit

class, plus or minus two standard deviations.

Notice that the average reconstruction error for the 9's, a previously unseen class

of digits, is no greater than for other similar classes of digits. The network is able

to accommodate the new class with the existing features. This is possible because the

network finds a sparse, distributed representation, resulting in general, localized features.

Unlike in the previous example, no global templates are learned. This reflects the fact

that the network had to represent a more diverse data set. Figure 3.9 shows a randomly

-21 I
I I 1 I 1 I I I I

0 1 2 3 4 5 6 7 8 9

Digit class

Figure 3.8: Average squared reconstruction error for 10 digit classes (plus or minus two

standard deviations).

selected data point from each digit class; the network's reconstruction; and how the

network has used the learned set of features in each case.

Figure 3.9: a) A randomly selected example from each digit class. b) The network's

reconstruction of each example. c) The average gated activity for each feature. White

denotes positive and black denotes negative. The area of a square denotes magnitude,

where the largest square in the figure has magnitude 0.49. The reconstruction is formed

by multiplying the average gated activity by the corresponding feature from (d), and

summing over all features. d) The features learned by the network sorted by average

activity, over the entire test set, of the associated binary unit. The upper-left-most

feature was the least active over the 3000 test examples, and the lower-right-most feature
was the most active.

Chapter 4

Conclusion

We have described a hierarchical generative model that can dynamically synthesize a

linear network from a large number of available linear-Gaussian units. The synthesis

mechanism is a network of binary-logistic units that gate the outputs of the linear units.

Maximum-likelihood model parameters can be learned using a local delta rule, where the

statistics required can be approximated with Gibbs sampling. We have shown that the

network can learn interesting tasks by increasing a lower bound on the log-likelihood,

even when the Gibbs sampling is so brief that the Markov chain is far from equilibrium.

Because each linear unit specializes in capturing a particular feature, and any combination

of linear units can co-operate to explain an observation, we call this model a hierarchical

community of experts.

4.1 Discussion

The simulations reported in chapter 3 are encouraging, and show that a Hierarchical

Community of Experts has some very desirable features. It makes appropriate use of

binrtry and real-valued random variables to model features of data. It learns low-level

localized features in lower layers, and finds relationships among features in higher layers.

It uses sparse internal representations that are distributed across many units. The result

is that many hidden units are used to represent each datum, and features are shared

across different classes of data. Learned features are general enough to accommodate

previously unseen classes of data.

Sparse, distributed representations are encouraged by the prior distribution over the

combined linear-binary pairs of units. It is easy for the HCE to place a large probability

mass exactly on zero, encouraging it to find representations where many features are

gated out for each data point. Each gated unit is like a mixture model, where one

density estimator in the mixture is a spike at zero, and the other is a Gaussian. The

mixing proportion and the mean of the Gaussian are learned by two distinct parameters,

so this model does not suffer from some of the representational difficulties of models

with rectified Gaussian priors. There is a clear distinction in the prior of a hidden unit

between a feature being absent, and a feature being present with a small mapitude.

This distinction is not made by ICA or other models that use a high-kurtosis unimodal

prior over hidden units.

Inference in a n HCE is intractable, so we use Gibbs sampling. Two of the drawbacks

of Gibbs sampling are that it can be slow to converge to the posterior, and it is difficult

to tell when convergence has occurred. We avoid these problems by using "brief" Gibbs

sampling where we use only 10 to 20 samples per data presentation. Gibbs sampling

can be viewed as coordinate descent in free energy, and we have shown that learning can

occur even if Gibbs sampling does not reach equilibrium. As a result, we need not start

each sweep of Gibbs sampling from the previous state, making online learning feasible.

We use a simple constant distribution to initialize the Gibbs sampler before each sweep,

but more sophisticated initialization schemes could be used.

Monte Carlo methods are not without disadvantages. If the correlations to be learned

by upper layers are subtle, the estimate of the gradient of the weights can be overwhelmed

by sampling noise, making learning impossible. By using a constant distribution to

initialize the Gibbs sampling, we increase the bias and reduce the variance of the gradient

estimate. Of course, at some point the gradient will be dominated by the bias, again

making Learning impossible. Since noise in the gradient estimate can cause problems,

one possible solution is to use a deterministic approximation of the posterior. It remains

to be seen if a version of the HCE which does approximate inference with a variational

method can learn more complicated tasks than the Monte Carlo-based HCE.

4.2 Future Work

The current model assumes i.i.d. data, but it should be possible to extend the model

to time-series data, by making the prior on the hidden units conditional on the state at

previous times. Inference would still be intractable, but if the prior on the 1inea.r units

were only influenced by the values of other linear units (either at earlier times or in higher

layers) then Gibbs sampling should still be feasible.

More import ant is the problem of improving the representations that are extracted

in higher levels of the model. In our simulations, the overwhelming conclusion is that

interesting low-level features are consistently extracted by the model, but the model is

much less consistent in solving the (much more interesting) problem of finding high-level

representations. For some (especially binary) classification tasks an HCE can find the

classes in an unsupervised fashion, but when the data becomes more complex the model

is not as successful. In fact, this is a problem for many of the generative models being

investigated today.

Obviously learning features from clamped data is easier than finding correlations

among noisy samples drawn from the posterior of a hidden layer. What, if anything,

can be done to make the latter task easier? If we increase the length of Gibbs sampling,

presumably the sampling noise will decrease, at the cost of greater computation time.

Instead, we could have an ensemble of units, all of which could model similar features

and be sampled in parallel. We could encourage units in the hidden layer to learn similar

features by inhibiting explaining away among these units. In the fully-connected model,

if two units try to learn the same feature, one unit is typically explained away by the

other when the that unit's feature is required to explain the data. The result is that

only one of the copies of the feature is in use at any one time, and over time one of

the units Learns some other feature. Unfortunately, in complex data, one class might be

allocated only a few units. Given a noisy sample from the posterior over hidden units,

it would be very difficult to detect correlations among these groups of just a few units.

If we inhibit explaining away among some groups of units, there is a greater likelihood

that multiple units will learn the saxne feature, and the activities of these units would

not be anti-correlated due to explaining away. This might result in samples with greater

redundancy, in which it would be easier to detect higher-level structure.

Appendix A

Integrating Out a Hidden Layer

In order to perform Gibbs' sampling for a layer of binary units, we want to integrate out

some of the linear units in the same layer. To integrate out all of the linear units in the

hidden layer we must evaluate the integral:

where x are the values of the real-valued visible units; y are the values of the real-valued

hidden units; and s are the values of the binary hidden units.

If we assume that the linear units are Gaussian and are gated by the binary units,

then (A.1) becomes:

where W is the matrix of weights from the hidden to the visible red-valued units; b, and

bh are biases on the visible and hidden real-valued layers respectively; Q, and W h are

covariance matrices for the visible m d hidden real-valued layers respectively; @ denotes

element-wise multiplication; and C is the normalizing constant:

where IC and D are the dimensionality of the hidden and visible layers respectively.

By expanding (A.2) and comparing to an arbitrary Gaussian distribution we can

compute the value of the integral:

where p and @ are the mean and covariance matrix of the Gaussian posterior distribution,

and D is a constant required to complete the square. Comparing (A.4) to (A.5) yields:

where S is a diagonal 1- x I< matrix with s placed along the diagonal. Notice that

postmultiplying W by S simply zeros out the columns of W that correspond to gated-

out units in the hidden layer. If no linear units were gated out, S would equal the K x K

identity matrix, and (A.6)-(A.8) would be identical to the result for a linear-Gaussian

network.

We can now evaluate the integral from (A.1) by combining (A.3) with (A.6)-(A.8):

~ (x , s) = P (S) c exp {;D} - /exp {:(y - p)ra-'(y - p)}dy

= P(s) C exp {$ D} (2ii)K/21~11/Z

To perform Gibbs sampling we define Ea = -log P (x , sa), and use (1.16) to sample

from the ith binary unit. Notice that in order to evaluate (A.9) we must invert a K x K

matrix. We can avoid this if instead of integrating out the entire linear hidden layer we

just integrate out the ith linear unit when sampling from the ith binary unit. The cost is

greater sampling noise.

Appendix B

Update Rules

The complete-data likelihood for a two-layer HCE with I< pairs of binary and linear units

in the top layer and D linear units in the bottom layer is given by:

where

In the above, W is the matrix of linear-to-linear weights; E2 and !El are the diagonal

covariance matrices of the visible and hidden layers respectively; y, x and s are the

activities of the visible linear, hidden linear and hidden binary units respectively; bi,

b: and b: are the biases on the visible linear, hidden lineax and hidden binary units

respectively; and 8 denotes element-wise multiplication.

Taking the negative logarit hrn of (B. 1) yields:

where C, is a constant.

The update rules for the parameters associated with the binary units are identical

to those in [Neal, 19921, and the reader is referred there for a derivation. We can find

update rules for the linear-unit parameters by taking derivatives of (B.3) with respect to

these parameters:

These yield the scalar update equations:

where c is a learning rate. We have enforced the diagonality constraint on X2 in (B.9)

by simply ignoring the off-diagonal terms in (B.6).

Notice that the update rules derived here will use the current (sampled) values of

linear units in the lower layer. If these units were gated out by corresponding binary

units, then we could easily (and correctly) integrate over these units by ignoring the

associated energy term. The result is that there is no update to the parameters associated

with a unit when that unit is gated out. The effect of eliminating the appropriate terms

from (B.3) is the same as multiplying the update for parameters associated with a linear

unit yi by the corresponding binary value si:

These are the update rules stated in section 2.3.

Appendix C

Gibbs Sampling Improves K-L

Divergence

We need to show that a sweep of Gibbs sampling brings the approximating distribution

Qt+' closer in terms of K-L divergence to the true posterior than the previous approxi-

mating distribution Q '. The following theorem and proof are almost exactly those given

in [Goutsias, 19911, except that this proof involves KL(Q 11 P) and not KL(P1IQ).

Theorem: If {T,(x, y)) is a set of transition probabilities such that

and

and if Qt(x) > 0, P (x) > 0 and T,(z, y) > 0 for all states x, y then KL(QtflllP) 5

WQt IIP).

Proof: First note that if Q t (x) > 0 and T,(x, y) > 0 for all states x, y then so is

Qtf ' (x) by (C.2). Define q,(y, x) and rrn(y , X) as follows:

Notice that / q , (y , x)dx = 1 and J r , (y t x) d x = 1, making q&, y) and r m (x , y)

proper densities over states x . Further, note that:

and

Now we have:

Replacing Q t (x) with J Qt+'(y)rm(y, x) d y and Qt+'(y) with / Qtf ' (y) r m (y , x) d x

(from (C.5) and (C.6)) yields:

since KL(AI1 B) 2 0 for any density functions A and B.0

The theorem tells us that KL(Qt+'II P) 5 KL(Qtll P), so a single sweep of Gibbs

sampling brings the approximation Q closer in terms of I<-L divergence to the true

posterior P.

Bibliography

[Amari et al., 19961 Amari, S., Cichocki, A., and Ymg, H. (1996). A new learning alp-

rithm for blind signal separation. In Touretzky, D. s., Mozer, M. C., and Hasselmo,

M. E., editors, Advances in Neural Information Processing Systems, volume 8 , pages

757-763. The MIT Press, Cambridge.

[Baum and Petrie, 19661 Baum, L. E. and Petrie, T. (1966). Statistical inference for

probabilistic functions of finite state Markov chains. Annals ofMathematica1 Statistics,

41.

[Bell and Sejnowski, 19951 Bell, A. J. and Sejnowski, T. J. (1995). An information-

maximisation approach to blind separation and blind deconvolution. Neural Compu-

tation, ?(6): 1004-1034.

[Cardoso, 19961 Cardoso, J.-F. (1996). Performance and implementation of invariant

source separation algorithms. In Proc. ISCAS796.

[Cooper, 19901 Cooper, G. F. (1990). The computational complexity of probabilistic

inference using bayesian belief networks. Artificial Intelligence, 4 X W M O 5 .

[Day, 19691 Day, N. E. (1969). Estimating the components of a mixture of normal dis-

tributions. Biornetrika, 56A63-474.

BIBLIOGRAPHY 65

[Dempster et al., 19771 Dempster, A., Laird, N., and Rubin, D. (1977). Maximum Like-

lihood from incomplete data via the EM algorithm. J. Royal Statistical Society Series

B, 39:l-38.

[~ r i c Moulines et al., 19971 ~ r i c Moulines, Cardoso, J.-F., and Gassiat, E. (1997). Max-

imum likelihood for blind separation and deconvolution of noisy signals using mixture

models. In Proc. ICASSP '97, pages 3617-20.

[Everitt, 19841 Everitt, B. S. (1954). An Introduction to Latent Variable Models. C h a p

man and Hall, London.

[Ghahramani and Hinton, 19961 Ghahramani, 2. and Hinton, G. E. (1996). The

EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-

1 [ftp : //ftp . cs . toronto. edu/~ub/zoubin/tr-96-1. ps . gz] , Department of Corn-

puter Science, University of Toronto.

[Gilks, 19921 Gilks, W. R. (1992). Derivativefree adaptive rejection sampling for gibbs

sampling. In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. F. M.,

editors, Bayesian Statistics 4. Oxford University Press.

[Goutsias, 19911 Goutsias, J. I<. (1991). A theoretical analysis of monte carlo algorithms

for the simulation of gib bs random field images. IEEE Transations on Information

Theory, 37:161S-1628.

[Hinton et al., 19951 Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The

wake-sleep algorithm for unsupervised neural networks. Science, 268: 1158-1 16 1.

[Hinton et al., 1997aI Hinton, G. E., Dayan, P., and Revow, M. (1997a). Modeling the

manifolds of Images of handwritten digits. IEEE Trans. Neural Networks, 8(1):65-74.

66 BIBLIOGRAPHY

[Hinton and Ghahrarnani, 19971 Hinton, G. E. and Ghahramani, 2. (1997). Generative

models for discovering sparse distributed representations. Phil. Trans. Roy. Soc. Lon-

don B, 352:1177-1190.

[Hinton et al., 1995bI Hinton, G. E., Sallans, B., and Ghahramani, 2. (1997b). A hier-

archical community of experts. In Jordan, M. I., editor, Learning and Inference in

Graphical Models. Kluwer -4cademic Publishers.

[Hull, 19941 Hull, J. J. (1994). A database for handwritten text recognition research.

IEEE Transactions on Pattern Analysis and Machine intelligence, 16(5):550-554.

[Jaakkola, 19971 J a a o l a , T. S. (1997). Variational Methods for Inference and Estima-

tion in Graphical Models. Department of Brain and Cognitive Sciences, MIT, Carn-

bridge, MA. Ph.D. thesis.

[Jacobs et al., 19911 Jacobs, R. A., Jordan, M. I.: Nowlan, S. J., and Hinton, G. E.

(1991). Adaptive mixture of local experts. Neural Computation, 3:79-87.

[Jordan and Jacobs, 19941 Jordan, M. I. and Jacobs, R. (1994). Hierarchical mixtures of

experts and the EM algorithm. Neural Computation, 6:181-214.

[Kalman, 19601 Kalman, R. E. (1960). A new approach to linear filtering and prediction

problems. Trans. ASME, Series D, Journal of Basis Engineering, (8):3545.

[Lewicki and Olshausen, 19981 Lewicki, M. S. and Olshausen, B. A. (1998). Inferring

sparse, overcomplete image codes using an efficient coding framework. submitted for

publication.

[Mackay,1996] Mackay, D. (1996). Maximum likelihood and covari-

ant algorithms for independent component analysis. Available at

http://wol.ra.phy.cam.ac.uk/mackay/ica.ps.gz.

BIBLIOGRAPHY 67

[Metropolis et al., 19531 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,

A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines.

Journal of Chemical Physics, 21:1087-1093.

[Mozer et al., 19971 Mozer, M. C., Jordan, M. I., and Petsche, T., editors (1997). Ad-

vances in Neural Information Processing Systems, volume 9. The MIT Press, Cam-

bridge.

[Neal, 19921 Neal, R- M. (1 992). Connectionist learning of belief networks. Artificial

Intelligence, 56:7l-l13.

[Neal, 19931 Neal, R. M. (1993). Probabilistic inference using Markov chain monte carlo

methods. Technical Report CRG-TR-93-1, Department of Computer Science, Univer-

sity of Toronto.

[Neal and Hinton, 19971 Neal, R. M. and Hinton, G. E. (1997). A new view of the

EM algorithm that justifies incremental and other variants. In Jordan, M. I., editor,

Learning and Inference in Graphical Models. Kluwer Academic Publishers.

[Olshausen, 19961 Olshausen, B. A. (1996). Learning linear, sparse, factorial codes. A.I.

Memo No. 1580, MIT Center for Biological and Computational Learning, Cambridge,

MA.

[Olshausen and Field, 19961 Olshausen, B. A. and Field, D. J. (1996). Emergence of

sirnple-cell receptive field properties by learning a sparse code for natural images.

Phture, 381:607-609.

[Pearl, 19881 Pearl, J . (1988). Probabilistic Reasoning in Intelligent Systems: Networks

of Plausible Inference. Morgan Kaufmann, San Mateo, CA.

68 BIBLIOGRAPHY

[Pearlmutter and Parra, 19971 Pearlmutter, B. A. and Parra, L. C. (1997). Maximum

likelihood blind source separation: A context sensitive generalization of ica. In

[Mozer et al., 19971, pages 613-619.

[Rao and Ballard, 19971 Rao, R. P. N. and Ballard, D. H. (1997). Efficient encoding of

natural time varying images produces oriented space-time receptive fields. Technical

report 97.4 [f t p : / / f t p . cs . rochester . edu/pub/u/rao/papers/space-t i m e . p s -21 ,

National Resource Laboratory for the Study of Brain and Behaviour, Department of

Computer Science, University of Rochester.

[Roweis, 19971 Roweis, S. (1997). Em algorithms for pca and spca. In

[Mozer et al., 19971.

[Rubin and Thayer, 19821 Rubin, D. and Thayer, D. (1982). EM algorithms for ML

factor analysis. Psychometrika, 47(1):69-76.

[Saul et al., 19961 Saul, L. I<., Jaakkola, T., and Jordan, M. I. (1996). Mean field theory

for sigmoid belief networks. Journal of Artificial Intelligence Research, 4:61-76.

[Socci et al., 19981 Socci, N. D., Lee, D. D., and Seung, H. S. (1998). The rectified

gaussian distribution. In Jordan, M., Kearns, M., and Solla, S. A., editors, Advances

in Neural Information Processing Systems 10. MIT Press, Cambridge, MA.

[Tipping and Bishop, 19971 Tipping, M. E. and Bishop, C. M. (1997). Probabilistic

principal component analysis. Technical Report NCRG/97/010, Neural Computing

Research Group, Aston University.

