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ABSTRACT

In this paper we combine three simple refinements proposed
recently to improve HMM/ANN hybrid models. The first re-
finement is to apply a hierarchy of two nets, where the sec-
ond net models the contextual relations of the state poste-
riors produced by the first network. The second idea is to
train the network on context-dependent units (HMM states)
instead of context-independent phones or phone states. As
the latter refinement results in a lot of output neurons, com-
bining the two methods directly would be problematic. Hence
the third trick is to shrink the output layer of the first net us-
ing the bottleneck technique before applying the second net
on top of it. The phone recognition results obtained on the
TIMIT database demonstrate that both the context-dependent
and the 2-stage modeling methods can bring about marked
improvements. Using them in combination, however, results
in a further significant gain in accuracy. With the bottleneck
technique a further improvement can be obtained, especially
when the number of context-dependent units is large.

Index Terms— Phone recognition, MLP, HMM/ANN,
bottleneck, TIMIT

1. INTRODUCTION

The most successful approaches of applying artificial neu-
ral nets (ANNs) to automatic speech recognition (ASR) use
multi-layer perceptrons (MLP) to estimate local phone or
state posteriors. With a slight modification these can replace
the Gaussian mixture likelihood estimates in hidden Markov
models (HMMs), resulting in the HMM/ANN hybrid model
[1]. Alternatively, the MLP can be interpreted as a non-linear
transformation, and its output used (after some postprocess-
ing) as input features for a conventional HMM. This tandem
construct [2] allows one to combine the advantages of MLPs
with the capabilities of sophisticated HMM development
tools without the need for modifying the latter.

Since the introduction of the HMM/ANN hybrid, several
modifications of the MLP have been proposed in order to
make its posterior estimates more accurate. A simple idea
is to replace the standard 3-layer “big dumb neural network”
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with a hierarchic architecture, which then provides room for
many modifications, like training the subnets on different fea-
tures and/or targets. The tandem system also consists of one
learner stacked on another, the lower being an MLP, while the
upper is the Gaussian mixture model of the HMM. The same
idea can be implemented in HMM/ANN hybrids as well, with
two MLPs being trained on top of each other. Although this
idea appeared a few years ago [3], it was not thoroughly stud-
ied until quite recently [4, 5]. 2-stage modelling will be one
of the refinements we apply here in order to obtain enhanced
posterior estimates.

With conventional HMMs the use of context-dependent
(CD) phone models is standard practice. The commonly ap-
plied decision tree-based clustering decomposes the CD mod-
els into thousands of building units (‘tied states’ or ‘phys-
ical states’ [6]). As in the hybrid model one MLP output
is dedicated to each unit, adapting this methodology to the
hybrid directly would require a neural net with a huge out-
put layer. Most authors consider this infeasible, and hence
the difficulty of CD phone modelling is still one of the main
claims against hybrid recognizers, and only sporadic efforts
have been made to solve it [7]. However, the simple idea of
constructing CD ANNs by using decision tree-clustered states
as training targets re-appeared quite recently, and good results
were reported [8, 9]. This method will be the second refine-
ment that we apply in this study.

In a 2-stage hierarchic learner the lower stage is not re-
quired to have the same ‘1-of-N’ output representation as the
upper stage. In our case this means that there is no need for an
output layer of thousands of neurons in the lower net of the
hierarchy. A popular technique for reducing the size of the
output layer of an MLP while forcing it to represent the same
information is the ‘bottleneck’ method proposed in the frame-
work of tandem systems [10]. This is the third refinement that
we are going to apply here.

The structure of the paper is as follows. First we create
baseline results in Section 2 by training standard HMM and
HMM/ANN hybrid systems on TIMIT. We then introduce and
test the first two refinements; that is, 2-stage modelling and
CD training in Sections 3 and 4. The combined model is re-
fined further by applying the bottleneck technology in Section
5. Lastly, some extended tests and a comparison with results
taken from the literature are given in Section 6.
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2. BASELINE RESULTS

To train and test the various models the TIMIT corpus was
used. The training set consisted of the standard 3696 ‘si’
and ‘sx’ sentences. As training the MLPs requires a cross-
validation (CV) set, a random 10% of the training set was
separated for this purpose. During the experimentation phase,
recognition scores on the core test set (192 sentences) will be
reported. All these experiments use a bigram phone model
estimated from the training set. In the last section we will
also evaluate the best performing model on the complete test
set (1344 sentences) and without the bigram model to aid a
comparison with results taken from the literature.

As is usual, the 61 phone labels of TIMIT were mapped
to a set of 39 labels before performing the experiments. How-
ever, some researchers carry out the fusion of labels only after
decoding, just for the evaluation step [11]. We will report re-
sults with this strategy as well in Section 6.

For the training and evaluation of the HMM model the
HTK Toolkit was applied [6]. The MLP of the hybrid was
trained using our own implementation, while the decoding
from the frame-level probabilities produced by the MLP was
performed by a modified version of HTK’s HVite tool. The
HMM/ANN hybrid worked directly with the posteriors, that
is, without division by the priors, as in earlier phone recogni-
tion experiments we obtained better scores with this config-
uration. As acoustic features the standard 13 MFCCs were
used (including the 0th one) along with their Δ and ΔΔ co-
efficients extracted from 25 ms frames at 10 ms frame skips.

A special feature of HTK’s language modelling utilities
is that the decoding process must start and end on dedicated
start and end symbols, and these must have an acoustic coun-
terpart. If we map these to the leading-ending silences (la-
belled as h#) of the TIMIT sentences, we have two options
during evaluation: if we include the h# labels in the recogni-
tion score, we then bias the results because these are guaran-
teed to be hit by the language model. We could also ignore
these labels, but this biases the results the other way because
these segments would be recognized with better-than-average
accuracy. Following [11], we chose this latter scenario for the
experiment phase, but in Section 6 for comparison purposes
we also report scores with the h# symbols included.

To obtain baseline scores, first we trained a monophone
(context-independent, CI) HMM system with 3-state phone
models. The number of Gaussians was gradually increased,
using the ‘mixture splitting’ feature of HTK. The phone
recognition error peaked around 30-40 components with
scores of about 33.3-33.1%. The next step was to obtain a
baseline triphone (context-dependent, CD) system. We con-
figured the decision tree-based state clustering tool of HTK
so that it resulted in relatively few, 613 tied states. The corre-
sponding CD-HMM yielded accuracy scores of 29.5-29.0%
with 20 to 30 Gaussian components per state. The motivation
for working with few physical states was that this many units

Model PhER

CI-HMM 33.04%
CD-HMM 29.01%
HMM/ANN 26.77%

Table 1. Phone error rates of the baseline systems.

seemed manageable by MLPs, but we should mention that we
could not obtain significantly better results with more states.

The baseline HMM/ANN hybrid was trained as follows.
The CI-HMM system was used to create force-aligned state
labels for the training set. Separate ANN outputs were ded-
icated to the 3 states of each phone, so altogether the MLP
had 117 output neurons. As input 9 neighboring frames were
used, so the size of the input layer was 351. The net con-
tained one hidden layer with 5000 neurons, and was trained
using backpropagation in semi-batch mode on batches of 256
frames. Training was stopped when the error rate on the CV
set stopped improving. The resulting HMM/ANN hybrid pro-
duced a phone recognition error rate of 26.77%. The three
baseline scores are listed in Table 1.

3. TWO-STAGE ESTIMATION OF POSTERIORS

In theory, an MLP with one hidden layer is sufficiently flexi-
ble for any practical machine learning task. In practice, how-
ever, we can guarantee only locally optimal training. Hence
it makes sense to construct a hierarchy of learners, especially
if we have a priori knowledge about how the information is
structured. Many efforts have been made to create hierarchic
phone classifiers, a recent example being described in [12].

In tandem systems the original motivation for combining
the ANN and GMM models was simply to maintain compat-
ibility with classic HMMs. However, the hierarchic stacking
of classifiers may also enhance the probability estimates they
produce. A tandem-like hierarchic combination of MLPs was
tested in [3] with good results. The effect of training a sec-
ond MLP on a longer context of posterior estimates yielded
by a first-stage MLP was studied quite recently in [4] and
[5]. Both sets of authors found that the hierarchical system
attained higher recognition accuracy scores, as the temporal
context of posteriors helps the second MLP correct the pho-
netic confusions of the first MLP, and also supports the mod-
elling of sub-lexical transitions. In the following we will refer
to this architecture of two MLPs as the ‘2-stage model’.

In our 2-stage experiments the MLP of the HMM/ANN
hybrid described in Section 2 served as the 1st-stage MLP.
The 117 posterior estimates it produced were then logarith-
mized and normalized (the effect of normalization is dis-
cussed in [5]). An MLP with the same structure as above was
trained on this data; that is, 9 neighboring frames served as
input (now corresponding to 117 ∗ 9 = 1053 input neurons),
while the number of hidden and output neurons was 5000 and
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MLP architecture PhER

1-stage, CI 26.77%
2-stage, CI 26.10%
1-stage, CD 25.70%
2-stage, CD 23.76%

Table 2. Phone error rates of the HMM/ANN hybrid for var-
ious MLP architectures and training targets.

117, respectively (the target labelling was also the same as for
the first net). No attempt was made to optimize the size of the
input context, though a thorough analysis would be worth-
while ([4] and [5] use a longer temporal context). The phone
error rate obtained with these 2-stage posterior estimates was
26.10% (see Table 2). In accord with Ketabdar [4], we found
that the 2-stage model is much less sensitive to the phone
insertion penalty and language model weight parameters than
the conventional systems. Thus in all the 2-stage experiments
no particular effort was made to fine-tune these parameters:
in all bigram experiments the language model weight was set
to 1.0 with no insertion penalty, while in the tests with no
language model the insertion penalty was set to -2.

4. CONTEXT-DEPENDENT POSTERIORS

In this set of experiments the physical states of the baseline
CD-HMM served as training targets for the MLP. As we men-
tioned in Section 2, this resulted in 613 different target la-
bels, which were then synchronized with the recordings using
forced alignment. Because of the increased size of the output
layer we reduced the size of the hidden layer of the MLP from
5000 to 2000, in order to decrease the training time and the
possibility of overfitting. The input layer and input data was
the same as with the conventional HMM/ANN hybrid; that is,
9 frames of MFCC vectors. The phone recognition error rate
obtained with this model was 25.70% (see Table 2).

The idea of combining CD training with the 2-stage ap-
proach appears natural. Unfortunately, stacking a second
MLP on the outputs in this case seems infeasible: with the
613 output neurons, 9 neighboring frames would require an
input layer of 5517 units for the second net. To avoid the
training of such a huge net, only the 2nd-stage was adjusted
to the CD targets. That is, the lower MLP was the same CI net
that served as the lower stage in the 2-stage CI model. This
way the 2nd-stage net had layer sizes of 1053x2000x613.
Decoding from the posteriors estimated by this MLP yielded
a phone recognition error rate of 23.76% (see Table 2).

5. ENHANCEMENT VIA BOTTLENECK TRAINING

Although the above result is very encouraging, there seems
to be room for even more improvement. As the first stage
was trained to discriminate CI units, the resulting posteriors

2nd-stage training targets
1st-stage training method 613 states 858 states

direct, on CI targets 23.76% 23.15%
bottleneck, full rand. init. 24.65% —
bottleneck, 1 rand. layer 23.53% —
bottleneck, 2 rand. layers 23.44% 22.42%

Table 3. Phone error rates for the various training strategies
of the 2-stage architecture.

are not necessarily optimal as features for discriminating the
CD units in the second stage. Hence, in the following we
seek to modify the training of the 1st stage while preserving
its size. The effect of modified training will be evaluated by
re-training the second net and checking the phone error rate.

The bottleneck training technique [10] was introduced
within the framework of tandem models with the aim of mak-
ing the output size of the MLP independent of the number of
training classes (within reasonable limits). What makes this
possible is that the MLP of the tandem (or in our case, the
1st-stage MLP) is not required to have a dedicated output for
each class. Rather, it should provide a compact representa-
tion of the same information. The basic idea of bottleneck
training is to construct an MLP (usually with 4-5 layers) with
the middle layer having few neurons (this is the bottleneck
layer). The net is trained the usual way, but after training the
layers above the bottleneck layer are simply thrown away.

We wanted our bottleneck MLP to have the same structure
as the lower net in our earlier experiments (to aid compari-
son), but to be trained with the 613 CD training targets instead
of the 117 CI states. Thus we extended the 351x5000x117
network structure with an additional layer of 613 units. This
net was then trained on the MFCC features with the 613
context-dependent targets, and after training the topmost
layer of 613 units was thrown away. Then the second net of
size 1053x2000x613 was re-trained, and the resulting recog-
nizer evaluated. Unfortunately, as Table 3 shows, the score
obtained was significantly worse than the previous best result.

Frankel et al. found that bottleneck MLPs are difficult
to train, as the narrow bottleneck layer increases the chance
of getting stuck in a local optimum [13]. They proposed a
‘network growing’ technique to alleviate this problem, which
could be trivially adapted to our system. We performed net-
work growing as follows: instead of randomly initializing all
the weights of the bottleneck MLP, the weights for the first-
to-second and second-to-third layer connections were copied
from the CI 1st-stage net, and only the weights between the
third and fourth layers were initialized randomly. We also
ran a variant of this experiment where only the first layer of
connections was taken from the CI net, and the two upper
layers were initialized randomly. Both initalization schemes
brought slight improvements compared to the CI-trained net
(see Table 3).
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Language model core test set complete test

bigram (h# not counted) 22.42% 22.17%
bigram (h# counted) 21.24% 21.02%
no LM (h# counted) 21.59% 21.04%

Table 4. Phone error rates of the best model for both test sets.

6. EXTENDED TESTS WITH 61 PHONE LABELS
AND THE COMPLETE TEST SET

Some authors train on the 61 phones of TIMIT and fuse the
labels just for the evaluation [11]. Motivated by this, we
re-trained our two best-performing models with the origi-
nal 61 labels. For the 1st-stage MLP we kept the size of
351x5000x117; that is, it was not adjusted to the 61∗3 = 183

CI states of the 61 labels. For the 2nd-stage MLP we allowed
slightly more outputs: re-running the CD-HMM training with
the 61 labels we got 858 physical states. Two tests were then
performed with this new label set. In the first the 1st-stage
MLP was the same CI MLP as that applied in Sections 3 and
4, while in the second test it was adapted to the 858 targets by
applying the network growing technique with the two upper
layers initialized randomly. The two results are shown in the
third column of Table 3. In this case the system with the bot-
tleneck 1st-stage MLP performed significantly better. Also,
the scores are much better than those obtained with 613 tied
state targets.

The final step of evaluation was to compare our results
with those given in the literature. Unfortunately, some authors
report results on the core test set, while others report those on
the complete test set. Some apply a bigram language model
and some do not. Moreover, as was explained in Section 2, it
is not clear whether the h# symbols should be ignored or not
when decoding with bigrams in HTK (other decoder imple-
mentations might behave differently in this respect). Hence,
all combinations were evaluated and the results are listed in
Table 4. Hifny and Hinton et al. collected a lot of phone
recognition results on TIMIT [14, 11], and they report only
one better result than ours [15].

7. CONCLUSIONS

In this paper we combined three simple training strategies
in a novel way to obtain enhanced posterior estimates for
HMM/ANN hybrids. We showed that it is possible to replace
the usual CI state training targets with CD tied states. The 2-
stage modelling strategy can also improve the performance,
especially with CD targets. Lastly, the bottleneck training
technique introduced for tandem systems both suitable and
beneficial for the 2-stage MLP architecture as well. However,
more studies are required to see whether the method is scal-
able to much larger databases, where the number of tied states
used is usually much larger as well.
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