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Abstract— Integrating residential-level photovoltaic (PV) pover

generation and energy storage systems into the snagrid will

provide a better way of utilizing renewable power.This has
become a particularly interesting problem with theavailability of

dynamic energy pricing models in which electricityconsumers
can use their PV-based generation and controllablestorage
devices for peak shaving on their power demand prdé from the

grid, and thereby, minimize their electric bill cos. The
residential-level storage controller should possesthe ability of

forecasting future PV-based power generation and & power
consumption profiles for better performance. In ths paper we
present novel PV power generation and load power osumption
prediction algorithms, which are specifically desiged for a
residential storage controller. Furthermore, to peform effective
storage control based on these predictions, we septe the
proposed storage control algorithm into two tiers,one which is
performed at decision epochs of a billing period (g., a month) to
globally “plan” the future discharging/charging schemes of the
storage system, and another one performed locallynd more
frequently as system operates to compensate predat errors.

The first tier of algorithm is formulated and solved as a convex
optimization problem at each decision epoch of thkilling period,

while the second tier has O(1) complexity.

Keywords-PV; storage; prediction; hierarchical control

. INTRODUCTION

The traditional static and centralized structurelettricity
grid consists of a transmission network, which draits
electrical power generated at remote power plahtsugh
long-distance high-voltage lines to substations,d aa
distribution network, which delivers electrical pewfrom
substations to local end users. Since the endpueéles often
change drastically according to the day of week tme of
day, the Power Grid must be able to support thestacase
demand of power to all end users [1].

To avoid expending a large amount of capital fgraeding
the power generation capacity to meet the expegtedth of
end user energy consumption at the worst casayraiten of
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integrating PV power generation with the Smart Gid
residential usage.

Although integrating residential-level renewableewgy
sources into the Smart Grid will prove useful inueing the
usage of fossil fuels, one critical problem needs be
addressed. There exists a mismatch between the P¥ak
power generation time (usually at noon) and thek pdead
power consumption time for the residential usevdlly in the
evening.) This timing skew results in cases whieeegenerated
PV power cannot be optimally utilized for peak powsikaving.

One effective solution of the above-mentioned protd
will be incorporating storage system into the P¥isied Smart
Grid for residential users. The proposed residelgiel
storage system shall store power from the Smad @Guring
off peak periods of each day and (or) from the Ktesm, and
provide power during the peak periods of that day geak
power shaving and energy cost reduction (sincetraat
energy tends to be most expensive during these peals.)
The design of energy pricing-aware control algonitfor the
residential storage system, which controls the gihgr and
discharging of the storage system, is hence anriaptatask.

A realistic electricity pricing function consist$ both an
energy pricecomponent, which is a time of usage (TOU)
dependent function indicating the unit energy pdoeng each
time period of the billing period (a day, or a ntongtc.), and a
demand priceeomponent, which is an additional charge due to
the peak power consumption in the billing periotie Tlatter
component is added to the price of energy consumexdtier to
prevent a case whereby all customers utilize tR®rpower
generation and energy storage systems and/or dehtuhir
loads such that a very large amount of power isaseted from
the Smart Grid during low-cost time slots, whichnca
subsequently result in power delivery failure fcastomers.

Moreover, the size of the storage system is limiad to
the relatively high cost of electrical energy stmaelements.
Therefore, it is important for the controller tordoast the

smart meters aims to transform the Power Grid to &iture PV power generation and load power consumpti

decentralized Smart Grid, which can monitor andtrobrthe

profiles so that it can perform optimization of ttetal cost.

power flow in the Grid to match the amount of powerReferences [4][5][6] are representative of PWpngeneration

generation to that of the power consumption, anchit@mize
the overall cost of electrical power delivered ftwe tend
users [2]. Utility companies can deploy dynamiecticity
pricing strategies incentivizing consumers to penfaemand

and load power consumption profile predictions. Ideer,
these methods are general profile predicting methoubt
specifically designed to help a residential-levabrage
controller. The controller may not perform optimeléctrical

side managemertty adjusting their loads to match the current€nergy cost reduction with such prediction methods.

state of the network, i.e., shifting their loadsnir the peak
periods to off peak periods. There are several waygerform
demand side management, including integration tefinittent
energy sources such as photovoltaic (PV) poweriod wower
at the residential level, demand shaping, etc.If8this paper
we focus on the former solution, or more specifical

This work is sponsored in part by a grant fromilagional Science
Foundation.

In this paper we consider the case of a resideBStahrt
Grid user equipped with local PV power generatind anergy
storage systems. We consider a realistic elegtripitice
function comprised of both energy and demand priEast,

we present novel PV power generation and load power

consumption profile predictors specifically designir the
residential-level Smart Grid controller. Furthermaio perform



effective storage system control utilizing such dicgon  and 2° OP price periods of a day as té 29 39 4" and &'
results to minimize total electricity cost, we sepa the price periods of that day. We use S, to denote the statement
proposed control algorithm into two tiers, one perfed at that thej™time slot belongs to thi" price period. We USE
each decision epoch of the billing period to glpghlan” the  andt, , to denote the start time and end time of kfigrice
future discharging and charging schemes of thegeosystem, period in each day, respectively. Obviously, we ey =
and another one performed locally as system opertge . 00, t, < = 23:59, andt, , = t, ., for2 < k <5.
compensate the prediction errors. The first tieth&f control ’ ’ ’
algorithm can be effectively implemented by solvangonvex

optimization problem at each decision epoch, wthitesecond periods), the LP period (thdé“and &' price periods), and the

tier has a time complexity of O(1). Experimentabulés / g ; :
demonstrate the accuracy of PV generation and Ioa'é‘P period (the 8 price period) of each day, respectively, and

consumption predictions, as well as the effectigsnef the umsgrﬁﬁll;eagrﬁ’énq;%g ’];’gr’ tﬁgdpiglieﬁgv%err ﬁg:ﬁaﬁgg‘%ﬁotmhe
proposed residential-level storage control algarith the Grid during the LP period, the HP period, dnel dverall

II.  SYSTEMMODEL AND COSTFUNCTIONS peak power demand of a billing period (a monthgpeetively.
. : L . Obviously we havePrice_Eyp > Price_E,p > Price_Eyp ,
In this paper, we consider an individual residérimart  5,q Price_Dyp > Price_D,p. Hence, the cost we pay of a

Grid user equipped with PV power generation andrasne pilling period due to the ener rice componermiven b
storage systems, as shown in Figure 1. The PV maysied ap 30 P ponery y

storage system are connected to the residentiel-RC bus  cost, = Price_E,, Z Z Pyria;lil D+

We usePrice_Eqp, Price_E,p, andPrice_Eyp to denote
the unit energy price in the OP period (tféahd &' price

via DC-DC conversion circuitries. The AC bus, whigh = ST, @)
further connected to the Smart Grid, is connecte an 30 30

AC/DC interface to the residential-level DC bus. eTh Price_ELp~Z Z Pyriailj1D +Price—EHP'ZZPgrid,i[i]D
residential-level AC load is connected to the AG.bu i=1 jes,Uss [=1 jes;

We adopt aslotted timemodel, i.e., all system constraints gnd th(ej cost we have tto_ pay ofba billing period tiethe
as well as decisions are provided for discrete fintervals of ~ GEManc price Component s green by
equal length. More specifically, each day is dididato T time ostp = Price Dyp -, max  Poriail/l+

@)

slots, each of duratioD. We useT = 96 and = 15 minutes. Price Dy _max Pyriailj] + Price_Doyerau reiemax_ Foria 1
DC Bus AC Bus Obviously, the total cost for the residential uséra billing

period is the sum of two aforesaid cost components.

Ill. PV AND LOAD POWERPROFILE PREDICTION

Accurate prediction of the PV power generation &atl
power consumption profiles is extremely importaot the
development of residential-level storage contrajodthms.

Figure 1. Block diagram showing the interface between PVyastorage Due to the fact that predicting the complete loadRV) power
system, residential load, and the Smart Grid. profile is difficult and unnecessary, we use praic to

We adopt a realistic electricity price function simting of  forecast the peak and average load power consumaioPV
both the energy price component and the demande prigower generation) values falifferent price periods in each
component, with a billing period of a month [7]oiGider a day, i.e., one predictor for theIOP period, one for the™1LP
specific dayi of a billing period. The residential load power period, one for the HP period, one for tH8 PP period, and
consumption at th¢" time slot of that day is denoted by one for the ¥ OP period. Subsequently, we shall reconstruct
Pioaa,[j]. The output power values of PV and storage systerriéie approximate load (or PV) power profile for eaty based
at the j‘h time slot are denoted by, [j] and Py [j] on the pred|ctec_i average an(_j peak values in eaImeBnod.
respectively, in whictP,, ;[j] can be positive (discharging from  In the following we describe the peak power preatitthe
the storage), negative (charging the storage)emr. Therefore ~average predictors can be realized in the same Waypresent
the power required from the Smart Grid, .., dtiel power at the peak load power consumption predictor in SactlA

thej™ time slot of thé™ day, denoted b¥,riaj], Satisfies and peak PV power generation predictor in SectibB.IThe

) . ) ] ' proposed load power consumption and PV power gdoera
Pyriailil = Proaa,ilil = Ppv,ilil = Pst,ilJ] (@) prediction algorithms consist of anitial prediction phase
wherePy,4;[j] can be positive (if the Smart Grid provides followed by arintra-day refinemenphase, as explained below.
power for the residential usage), negative (if thsidential Consider the peak power (consumption or generation)
system sells power back into the Grid), or zero. prediction for thé™ day of a billing period (i.e., a month.) The

As specified in [7], the electricity price funatids pre- initial prediction of the peak power refers to poidn
announced by the utility company just before treetstf each performed at time 00:0Q;) of thei™ day, for the peak load
billing period, and the price function will not afge until the ~ power consumption (or PV power generation) in ia forice
start of the next billing period. Reference [Babpecifies five periods of the™ day. The intra-day refinement of peak power
different time periods of each day, denoted byt#ren price  prediction may be performed at the start time of
periods with (potentially) different unit energy pricesca (1 < k < 5) price period, i.etg;, of thei™ day, with the goal
demand prices. These price periods are: theffipeak (OP) of refining the initial prediction of the peak powealues in the
period from 00:00 to 09:59, thé'low peak (LP) period from K", (k+1)¥, ..., 8" price periods. Motivation for the intra-day
10:00 to 12:59, the high peak (HP) period from 03®16:59, refinement is that at timg , (1 < k < 5), the actual peak load
the 2° LP period from 17:00 to 19:59, and th® ©P period power consumption (or PV power generation) valuethé £
from 20:00 to 23:59. We denote th# @P, £'LP, HP, 2°LP, 2" .. -1)" price periods of the" day are known. This



information can thus be used to improve the acguodgeak
power prediction for the remaining price periodshia day.

A. Prediction Algorithm for Peak Load Power Consumptio

For the initial prediction phase of peak load powe
consumption, an adaptive regression-based aI%on'ﬂ;hm;ed.
Consider that we are at tinig; = 00: 00 of thei" day. The
peak load power values in thé price period of thé" day
(1 < k <5) are predicted as follows:

Predict;), = 6;,,(0) + X716, () - Feature; (1) 4)

wheref;, = (0;,(0), 8;x(1), ..., 8;,(n)) is a dynamically-
updated coefficient vector with elements initialized to &/ In
addition, the feature vectdfFeature;;, = (Feature;; (1),
Feature;(2), .., Feature;;,(n)) captures the actual values
of peak load power consumption sampled at sometpaih
interest. We have found that a valuens with the feature
vector defined as follows yields the best predittiesults:
Feature;; = (Actual;_,y, Actual;_y, )
Actual;_7, Actual;_j,x, Actual;_, )

whereActual, , denote actual Peak load power consumption
in thek™ price period of thei{1)*'day, the i2)"day, the it7)"
day, the ic14)"day, and thei{21)"day, respectively.

Utilizing a stochastic gradient descent optimizatinethod
(see [8] for details), the vect6y is updated as follows:

0iy1x < 0 + a- (Actual; — Predict; ) - Feature;

where0 < a < 1 is alearning parameter

For the intra-day refinement phase of peak load ggow
consumption prediction, consider that we are ctiyeat time
instancet,, of dayi, and we intend to refine the initial
prediction results of the peak load power consuonptialues

(6)

(1 <k <5) price period, i.ets,, of that day, to predict the
decay factors (and subsequently, the actual peakp&Mer
generations) in the remaining price periods.

In the initial prediction phase, we adopt a variahtthe
'well-known exponential average based predictionhoubt for
effectively predicting the sunny day peak PV pogeneration
in each price period of day. Consider that we drdirae
ts1 = 00:00 of the i" day, and we want to derive the
prediction value of the sunny day peak PV poweegaion in
the K" (1 <k <5) price period of that day, denoted by
Predict;;, based on the prediction of sunny day peak PV
power generation in th&" price period of the i{1)* day,
denoted byPredict;_;; , and the actual peak PV power
generation in th&" price period of thei{1)*day, denoted by
Actual;_,) . Note that we must also capture and predict
seasonal change of the sunny day peak PV poweraeme
values, while filtering out random power decayirfpes due
to the presence of clouds. This is a smoothingatjper. Thus
the Predict; ; value can be calculated as follows:

SPredicti,k = ﬁ(Predicti_Lk, Actuali_l,k) -Actual;_q @)

+(1 — B(Predict;_qx, Actual;_,y)) - Predict;_;

In the above equation, the Ilearning rate function
p(Predict;_y, Actual;_,,) is set to:

Bo, if Predict;_1, < Actual;_q ©)

ﬁo . e—A~(Predicti_lvk—Actuali_lvk)‘ otherwise

wherep, is basis learning rate, aids a decaying parameter.
The motivation for this smoothing operation is alofvs.

Since (i) we want to predict the seasonal changaunfy day

peak PV power generations while filtering out tHéea of

clouds and (iiActual;_,; << Predict;_,, only if there are

clouds, it is natural that our new predicted suday peak PV

in thek™ (k < k < 5) price period of that day. We denote the power generation valuredict;, should not be so much

result of refinement aBefine;;. Since at that time;, the
actual peak load power consumption in tke ' price period
is known, we calculatBefine; ; as follows:

Actualip_q

Refine;; « (1 —v)- Predict;z +y - Predict;p  (7)

Predictiy_q
where0 < y < 1 is anothefearning parameter

The intuition for this update equation is thathgtactual
peak load power consumption in thie1)™ price period is
higher than the predicted peak load power consumpt that
period, i.e.Actual;_, > Predict;;_4, it is highly likely that
the actual load power consumption in th& price period

(k < k < 5) will also be higher than the predicted peak load

power consumption in that period, and vice versa.

B. Prediction Algorithm for Peak PV Power Generation

For the peak PV power generation prediction, aroimamt
observation is that the actual peak PV power géioeraver a
specific price period (e.g., th& price period) in thé" day of a
billing period may be viewed as the peak PV powarggation
over thek" price period for a sunny day, multiplied bylacay
factor, representing the effect of clouds, if that daglsudy.
Obviously, such sunny day peak PV power generatian the
K"period (L < k < 5) varies with the change in seasons, i.e., i
is higher in the summer and lower in the winterisTéffect is
however captured bysmoothing operatioas described below
(cf. equations (9) and (10).) Therefore, for eaah, dve use the
initial prediction, performed at the beginning bétday, mainly
to predict the sunny day peak PV power generativer each
price period of that day of the billing period. Newe rely on
the intra-day refinement, performed at the stanetiof thek™

influenced by thelctual;_, ; value (which is strongly affected
by the clouds.) Therefore we adopt the exponentidicaying
learning rate function (9), instead of the consteatning rate
in the original exponential average based predictigorithm.
The intra-day refinement phase of PV power gemati
prediction, which is performed at the start timetlef k™ (1 <
k < 5) price period of each day to predict the decayofac
(and subsequently, the actual peak PV power geoesatin
the remaining price periods, can be implementedexactly
the same algorithm (Eqn. (7)) as the intra-dayhegfient phase
of load power consumption prediction.

IV. RESIDENTIAL-LEVEL STORAGECONTROL

In this section, we discuss the proposed residdetial
storage control algorithm, which could effectivelilize the
combination of PV power generation and load power
consumption predictions to minimize the total eieityy cost
over each billing period. The proposed storage robnt
algorithm ishierarchical in that it consists of global control
tier, which is performed at eackecision epoclito be precisely
defined later) to “plan” the future discharging aadldarging
schemes of the local energy storage for the rereainfl the
lday, and docal control tief which is performed locally (and
much more frequently) at regular fixed-length tiiimtervals
calledtime slotgo mitigate the effect of prediction errors.

Consider that we are currently in tiftday of a billing
period (a month.) Then the decision epochs in ttegt are
defined to be the start times of each price pedbthat day
(excluding the T OP period), i.et,, for1 < k < 5. At each
decision epoch, the storage controller gets inftionaabout



the PV power generation and load power consumjgofile
characteristics (peak and average power) ovekfhek+1)™,
..., 5" price periods from intra-day refinement phase\6faRd
load predictors performed just at that decisioncepg,, and it
is going to globally “plan” the discharging and oiiag
scheme of the storage in the remaining price periddhe day.
Obviously the “globally planned storage charginggtiarging
scheme” on the ki1)*, ..., 8" price periods obtained at
decision epoclt;, may be modified in the global planning
process at the following decision epagh,,. Note that the

start time of the %L OP period is not considered as decision; ¢

epoch. This is because it is very unlikely to hayeeak power
demand to be drawn from the Grid during that ppegiod.

Therefore during the®lOP period, the storage system is beingth price period

charged, instead of being discharged as in theviilig T LP,

the HP, and the"2 LP periods. Hence we simply assume that

peak power demand to be drawn from the Grid, whicty
affect the monthly demand price, will not occuridgrthe £
OP period, and furthermore, at the end of thateppieriod (at
timet,,), the storage system will be (nearly) fully chatrge

We useE;, to denote the available storage energy at

decision epochs of the i" day, and we havg;, =~ Efy, in

which Ef,;, is the storage energy when fully charged, and
E,=>E;;>E;,=E;, since storage is being discharged in

the F£'LP, the HP, and thé'®LP period.

A. The Global Control Tier

In contrast to the other parts of the paper, in ghabal
control tier of the storage control algorithm, weeua
continuous-time based system model. Consider tratave
currently at decision epoal, (1 < ko, < 5) of thei™day. In
this algorithm we use the predictedet load power
consumption profile of the remaining of tH&day, denoted by
Pret,i(t),t € [tsk,, tes = 24], which equals to the predicted
load power consumption profile minus the predid@dpower
generation profile. Such predicte®},,;(t) profile can be
reconstructed from the intra-day refinement phas\oé and
load peak and average power predictions, as sballdzussed
later. The storage output power, which is the admariable of
the global tier of the storage control algorithm dienoted by
P ;(t). Therefore the (predicted) power drawn from th&Gr
(the grid power), denoted WR,4;(t), can be calculated via
Pgrl’d,i(t) = Pnet,i(t) - Pst,i(t)-

Consider a specific price period (th8 price period with
1< k <5, for instance) of thé" day, as shown in Figure 2.

We usep, anda; to denote the predicted peak and average n

load power consumption values in
respectively. Furthermore, we ysg,q, andayqq x to denote

the predicted peak and average load power consoimpti
values, and usp,,, anda,,, to denote the predicted peak

and average PV power generation values, overkfherice
period of thei"day, respectively. Note that the indeaf such
P, Qg
notation. The above-defingly,qq k., Aioaa ks Ppvk: ANdapy
values can be obtained from the intra-day refingra€RV and
load predictions, and thep, and a, values can be
approximately calculated in the following way:
Pk = Pioad,k — (Zapv,k - ppv,k)

A = Qoad,k — Apv,k

Then the net load power consumption duringkhél < k <
5) price period of thé" day, i.e.,Prer;(t),t € [tk tex], iS

(10)

that price period

assumed to be uniformly distributed between theekiwalue
2a;, — p and the highest valysg,. We draw such predicted net
load power consumption curve as line segment (Rjgare 2.
The role of storage discharging in the price perafd
interest is to make the power drawn from the Gidy;(t)
lower than the net load powBf,, ;(t). It can be proved that
when the total predicted energy drawn from theagfersystem
during the k™ price period of thei™ day is fixed, then the
optimal (predicted) grid power profile in terms gifid power
peak minimization is given bynin(Pne.;i(t), Prargetr) fOr
[tskr tex]s in which theP,,, .. x Value can be determined
by the aforesaid total predicted storage energwmria such
price period. The optimal (predicted) grid poweofje in the
of thé" day is shown as curve (b) in Figure 2.

k-th Price Period k-th Price Period

i

The length
isx

is x,

2a;, —
*2a;. — pi

i
/ The area is ¥,

| Theareaisy

e te, & o to i

Figure 2. Relationship between the predicted net load posterage output
power and grid power profiles in ti#price period of thé"day.

We usex;, to denote the maximum power reduction
between the predicted net load power profile ardpifedicted
grid power profile in thek™ price period of thé™ day, i.e.,
Xk = Pk — Prargetx » @S shown in Figure 2. We usgg to
denote the total predicted energy drawn from stordgring
such price period. Obviously, is a function ofx;, denoted by
Vi = fx(xx) . In fact, y, is a convex and monotonically
increasingfunction ofx,, because: (ilf; (x;)/dx, > 0, and
(i) dfy(xx)/dx is the smallest at the beginning, (= 0), and

then gradually increases gsbecomes larger.
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Figure 3. The optimal control problem at decision epegh= 13: 00.

Now we return to the optimal storage control prablat
decision epocl ;. (1 < kq < 5) of thei™day, as illustrated in
ei’figure 3 ko = 3in this case.) At that time, the predictad

|
te5=24:00

anda, values fork, < k <5 can be derived from the intra-
day refinement of PV power generation and load powe
consumption predictions at decision epogf), as well as Eqgn.
(10), and the storage energy at decision epgghis given by
E;x,- Furthermore, we denote the peak grid power (apeak

etc. values has been dropped for the conciseiness POWer) consumptionsbserved so faover the OP, LP, and HP

price periods in this billing period of interest Byak,p,
Peak,p, andPeak,p, respectively. Obviously, sudteakp,
Peak,p, andPeakyp values are initialized to be zero at the
beginning of billing period. The, values fork, <k <5 in
this optimal storage control problem are variabéesl we have
Vi = fi(xyx) forky <k <5. The objective of the optimal
storage control problem is to find the optimglvalues for
ko < k <5, subject to storage energy constr@ljt,, yx <



E; x,» for helping minimize the total cost over theibd period
of interest, with total cost function given in (23).

Then the proposed (near-) optimal storage conltgolrithm
at decision epocty . is given by the following. First we check
whether storage has enough energy for peak shauicty that
the (predicted) cost due to demand price in thiéngilperiod
will not increase in thé" day, i.e., the (predicted) grid power
Py i (t) in the LP, HP, and OP periods in the remaininthef
i" day does not excedtbak,p, Peakyp, andmax(Peak,p,
Peak,;p, Peakyp), respectively. More specifically, we set:

X, < max(0, p, — Peak;p), ifky = 2 (11)
x5 < max(0, p; — Peakyp), ifky <3 (12)
x4 « max(0, p, — Peak;p), ifky < 4 (13)
xg < max(0, ps — max(Peakyp, Peak,p, Peakyp)) (14)

Then we compare betwe&py,, andX3_i, Vi = =i, f (Xk).

and have the following two cases based on comparesllts.

Case | (Ejy, zZizkofk(xk)): In this case the storage
energy is adequate for peak shaving such thatpreslicted)
cost due to demand price in the billing period wik increase
in the remaining of th&" day. In this case we further minimize
the (predicted) cost due to unit energy price eardmaining of
thei™ day, subject to the constraint that the (predicted} due
to demand price will not increase in that day. Véd such
problem cost minimization with adequate ener¢@MAE),
with deterministic solution as follows:

(1) If kg=2, we setx; < fi'(Ep — f2(x2) — falxs) —
fs(x5)), and themx; will become larger than its original
valuemax(0, p; — Peakyp). We keep the,, x,, andxs
values the same as before. This is because theneigy
price in the HP period is the highest among eagh aad
thus we are going to use all the (predicted) ssrgtorage
energy in the HP period for total cost minimization

(2) If ko =3, we setx; « fi1(Eiz — falxs) — f5(x5)), and
keep thex, andx; values unchanged.

(3) If kg = 4, we setx, « f; ' (E; 4, — f5(x5)), and keep thes
value the same as before.

(4) If ky =5, we simply leave the; value as it was. This is
because the unit energy price in tHé @P price period is
the lowest among each day.

Case Il (Ey, <Z,5(=k0 fi(x;)): In this case the storage
energy is not adequate for peak shaving and herceawe to
make the predicted peak grid power consumption avézast
one of the LP, HP and OP price periods ofi y exceed the
Peak;p , Peakyp , and max(Peak,p, Peak;p, Peakyp)
values, respectively. We are going to solve thdofadhg
optimization problem, called thgeak shaving with inadequate
energy(PSIE) problem, such that the (predicted) costeage
due to demand price in tif&day will be minimized.

The PSIE Optimization Problem

Find the optimal values,, for k, < k < 5.

Minimize:

Price_D,p - max{Peakp,I[ky = 2](p, — x,), 1[ko < 4](ps — x4)} +

Price_Dyp - max{Peakyp,I[k, < 3] - (p5s — x3)} +

Price_Dyyerqy - max{Peak,p, Peakyp, Peakp,

I[ko = 2](pz — x2), ko < 3]1(p3 — x3), Ik < 41(Ps — X4), P5 — X5}

in which I[x] is the indicator function, which equals to one if

statemenk is true, and equals to zero otherwise.

Subject to:

X, =0, forkg <k<5

(15)

(16)

Yhk, fie (i) < Eig, (7)

Remember that the functiofi (x;) is a convex and
monotonically increasing function ovey fork, < k < 5, the
above PSIE problem is a convex optimization probéémse it
has convex objective function and convex inequality
constraints, and therefore it can be solved in rpmtyial time,
using convex optimization techniques such as [9].

B. The Local Control Tier

The local control tier of storage control algorithstmall be
performed with system operates to compensate piaulic
errors. In this part we return to the slotted timedel described
in Section 1. Consider that we are currently ajthtime slot,
which belongs to th&"price period { < k < 5), of thei"day
of a billing period. At that time we have tRg,, 4., value
which equals t@, — x, of the K" price period, derived from
the global tier of storage control algorithm penied at
decision epoch;,. Besides, we also have the actual net load
power consumption valueP,¢;[j1 = Pioaa,ilil — Ppv;ili] -
Generally speaking, the basic job of the local G&rstorage
control algorithm is to seek to make the grid poRgf,;[j] =
Ppetilil — Psi[j1 no more than thé,,g.., value through
controlling the storage output powRy ;[j]. Moreover, such
algorithm should also make sure that the physigatdtions of
the storage system are not violated, i.e., thedtenergy in the
storage system will not exceed the maximum vélyg, or
become less than zero, at the end of jthéme slot. The
proposed local tier of storage control algorithngiigen by:

Local tier of storage controller at time slotj, price period k, dayi
Assume that at the beginning of fhth time slot, the stored energy in thg
storage system & [j].

If Pnet,i []] > Ptarget,k
, . ; E;lj]
Pst,i [1] < mln(Pnet,i [1] - Ptarget,k' LTJ)
Else If we are currently at thé2OP period, i.ek = 5
, . Epyy-Eil]
Pst,i [1] < maX(Pnet,i[]] - Ptarget,k' - f)
Else Py, ;[j] < 0.
Setptarget,k « maX(Ptarget,kr Pnet,i []] - Pst,i []])

V. EXPERIMENTAL RESULTS

In this section we present the experimental resuitéoad
power consumption and PV power generation predictio
algorithms proposed for residential-level SmartdQrsers, as
well as on the effectiveness of the proposed rati@devel
storage control algorithm. The PV power profilegdisn our
experiments are measured at Duffield, VA, in thary2007,
while the electric load data come from the Baltien@as and
Electric Company, also measured in the year 2007.

A. Load and PV Power Profile Predictions

In this section we show some representative exgetiah
results on the accuracy of the peak load powerwnpton
and PV power generation predictions. The average fmwer
consumption and PV power generation prediction ltesare
similar, and are not shown in this paper due tesfiaitation.
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Figure 4. Comparison between the peak load power consumptigtiction
results from initial prediction (top) and from iatday refinement at time
ts3 = 13:00 (bottom) and actual peak load power consumptisnlig:

Figure 4 compares between the peak
consumption prediction results and the actual peadt power
consumption results in the HP period of each dayyear. The
peak load power consumption prediction results showthe
top subfigure of Figure 4 come from the initial girgion
performed at timeé0:00 of each day, while the prediction
results shown in the bottom subfigure come frominl&-day
refinement performed at timg; = 13:00. Data in the first
120 days of the year are used for initial trainiagg thus the
peak power consumption prediction results overdtdmys are
not shown in Figure 4. It can be observed from kgl that
our proposed adaptive regression-based initial igied
algorithm is effective in load power consumptioregtction,
resulting in an average prediction error of abo@t. 8The
average prediction error can be further reducdes® than 4%,
i.e., less than 50% of the average prediction eimoinitial
prediction, by the use of intra-day refinement.

PV Peak Prediction in 1st LP Period without Intra-day Refinement
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Figure 5. Comparison between the peak PV power generatiatigbien
results from the initial prediction (top) and frantra-day refinement at time
ts» = 10:00 (bottom) and actual peak PV power generation t@sul

Figure 5 compares between the peak PV power gémerat

prediction results with the actual PV power gerieratesults

load pow

in Section V-A, as well as a storage system whickld
perform peak shaving and energy cost reductiondéfiee the
cost saving capabilitypf a storage control algorithm to be the
average monthly cost saving due to the additionafage
system, compared to the same residential Smart Gset
equipped only with the PV system. We compare tts¢ €aving
capabilities of our proposed storage control atbarj with two
baseline algorithms. The first baseline algoritlsnairelatively
simple algorithm which charges the storage systenm fthe
Grid during the OP period with constant power, distributes
all the available energy stored in the storageesystvenly in
the HP and LP periods. The second baseline algoritha
relatively advanced algorithm which, although sthiarges the
storage system from the Grid during the OP peridth w

&onstant power, distributes its available energthwbbnstant

storage output poweP5%ig* in the HP period and with
constant storage output pow@g%%? in the LP period.
Moreover, theP545% andP5%55? values satisfy:

Phase? /pBase? = price_Dyp/Price_Dyp

(18)
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Figure 6. Comparison of the cost saving capabilities betw@eposed near-
optimal residential-level storage control algorittand baseline algorithms.
Figure 6 shows the comparison results on the @shg
capabilities between our proposed storage conigurithm
and the baseline algorithms. The x-axis of thiariégis the total
storage capacity, and the y-axis is the ratio eftbst saving
capability of a storage control algorithm to thestcgaving
capability of our proposed algorithm. We can seat thur
proposed near-optimal storage control algorithmsixtently
outperforms the two baselines, with an average sasing
capability improvement of 51.93% than the first dimee
algorithm and 27.25% than the second baselineitigor

VI.  CONCLUSION
This paper addresses the problem on integratindernsal-

in the ' LP period of each day in a year. The peak PV powelevel PV and storage systems into the smart grid fo

generation prediction results shown in the top iguié of
Figure 5 come from the initial prediction performatltime
00: 00 of each day, while the prediction results showrihia
bottom subfigure come from intra-day refinemenfqened at

ts2 = 10:00. Data in the first 90 days are used for initial

training, and thus the peak PV power generatiordigtion

results over those days are not shown. It can Bergéed that
our modified exponential average-based initial fotézh

algorithm is effective in predicting the sunny dpgak PV
power generation over each day in a year. The pexpmntra-
day refinement technique also proves itself eféectin

predicting the decay factors due to clouds.

B. Residential-Level Storage Control Algorithm

In our experiments, the residential Smart Grid ufser
equipped with the load devices and PV system witvgy
consumption and generation profiles same as thidgzraised

simultaneous peak shaving and total electricity tcos
minimization, making use of the dynamic energy ipgc
models. We first propose novel PV power generaiod load
power consumption profile forecasting techniquegectically
developed for the residential storage controllergerforming
peak shaving. We further propose the effectivedestial
storage control algorithm, which consists of a globontrol
tier performing at each decision epoch of a billperiod to
globally “plan” the future discharging/charging sahmes of the
storage system, and a local control tier perfornafegng with
system operation to compensate for the predictimrse

REFERENCES

[1] L. D. Kannberg et al., “GridWise™: The Benefits af Transformed
Energy System,” PNNL-14396, Pacific Northwest NagébLaboratory,
Richland, Sep. 2003.

[2] S. Kishore, L. V. Snyder, “Control Mechanisms foresRiential

Electricity Demand in SmartGrids,” Proc. of Smart Grid

CommunicationgSmartGridCommConference2010.



(3]

(4]

(5]

S. Caron and G. Kesidis, “Incentive-based EnergynsGmption [6]
Scheduling Algorithms for the Smart GridProc. of Smart Grid
CommunicationgSmartGridCommConference2010. [7]
T. Hiyama and K. Kitabayashi, “Neural network basestimation of  [8]
maximum power generation from PV module using eminental
information,”IEEE T. on Energy Conversiph997. [9]
C. Chen, B. Das, and D. J. Cook, “Energy predichiased on resident's
activity,” SensorKDD’102010.

L. Wei and Z-H. Han, “Short-term power load foregag using
improved ant colonv clusterindWKDD, 2008.
http://www.ladwp.com/ladwp/cms/ladwp001752.jsp

C. M. Bishop, Pattern Recognition and Machine LewynSpringer,
August 2006.

M. Grant and S. Boyd, “CVX: Matlab software for cijgined convex
programming, version 1.21.” http://cvxr.com/cvxpF@011.



