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Abstract— Integrating residential-level photovoltaic (PV) power 
generation and energy storage systems into the smart grid will 
provide a better way of utilizing renewable power. This has 
become a particularly interesting problem with the availability of 
dynamic energy pricing models in which electricity consumers 
can use their PV-based generation and controllable storage 
devices for peak shaving on their power demand profile from the 
grid, and thereby, minimize their electric bill cost. The 
residential-level storage controller should possess the ability of 
forecasting future PV-based power generation and load power 
consumption profiles for better performance. In this paper we 
present novel PV power generation and load power consumption 
prediction algorithms, which are specifically designed for a 
residential storage controller. Furthermore, to perform effective 
storage control based on these predictions, we separate the 
proposed storage control algorithm into two tiers, one which is 
performed at decision epochs of a billing period (e.g., a month) to 
globally “plan” the future discharging/charging schemes of the 
storage system, and another one performed locally and more 
frequently as system operates to compensate prediction errors. 
The first tier of algorithm is formulated and solved as a convex 
optimization problem at each decision epoch of the billing period, 
while the second tier has O(1) complexity. 
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I.  INTRODUCTION 

The traditional static and centralized structure of electricity 
grid consists of a transmission network, which transmits 
electrical power generated at remote power plants through 
long-distance high-voltage lines to substations, and a 
distribution network, which delivers electrical power from 
substations to local end users. Since the end user profiles often 
change drastically according to the day of week and time of 
day, the Power Grid must be able to support the worst-case 
demand of power to all end users  [1].  

To avoid expending a large amount of capital for expanding 
the power generation capacity to meet the expected growth of 
end user energy consumption at the worst case, integration of 
smart meters aims to transform the Power Grid to a 
decentralized Smart Grid, which can monitor and control the 
power flow in the Grid to match the amount of power 
generation to that of the power consumption, and to minimize 
the overall cost of electrical power delivered to the end 
users  [2]. Utility companies can deploy dynamic electricity 
pricing strategies incentivizing consumers to perform demand 
side management by adjusting their loads to match the current 
state of the network, i.e., shifting their loads from the peak 
periods to off peak periods. There are several ways to perform 
demand side management, including integration of intermittent 
energy sources such as photovoltaic (PV) power or wind power 
at the residential level, demand shaping, etc.  [3]. In this paper 
we focus on the former solution, or more specifically, 

integrating PV power generation with the Smart Grid for 
residential usage. 

Although integrating residential-level renewable energy 
sources into the Smart Grid will prove useful in reducing the 
usage of fossil fuels, one critical problem needs to be 
addressed. There exists a mismatch between the peak PV 
power generation time (usually at noon) and the peak load 
power consumption time for the residential user (usually in the 
evening.) This timing skew results in cases where the generated 
PV power cannot be optimally utilized for peak power shaving. 

One effective solution of the above-mentioned problems 
will be incorporating storage system into the PV assisted Smart 
Grid for residential users. The proposed residential-level 
storage system shall store power from the Smart Grid during 
off peak periods of each day and (or) from the PV system, and 
provide power during the peak periods of that day for peak 
power shaving and energy cost reduction (since electrical 
energy tends to be most expensive during these peak hours.) 
The design of energy pricing-aware control algorithm for the 
residential storage system, which controls the charging and 
discharging of the storage system, is hence an important task. 

A realistic electricity pricing function consists of both an 
energy price component, which is a time of usage (TOU) 
dependent function indicating the unit energy price during each 
time period of the billing period (a day, or a month, etc.), and a 
demand price component, which is an additional charge due to 
the peak power consumption in the billing period. The latter 
component is added to the price of energy consumed in order to 
prevent a case whereby all customers utilize their PV power 
generation and energy storage systems and/or schedule their 
loads such that a very large amount of power is demanded from 
the Smart Grid during low-cost time slots, which can 
subsequently result in power delivery failure for all customers. 

Moreover, the size of the storage system is limited due to 
the relatively high cost of electrical energy storage elements. 
Therefore, it is important for the controller to forecast the 
future PV power generation and load power consumption 
profiles so that it can perform optimization of the total cost. 
References  [4] [5] [6] are representative of PV power generation 
and load power consumption profile predictions. However, 
these methods are general profile predicting methods, not 
specifically designed to help a residential-level storage 
controller. The controller may not perform optimal electrical 
energy cost reduction with such prediction methods. 

In this paper we consider the case of a residential Smart 
Grid user equipped with local PV power generation and energy 
storage systems. We consider a realistic electricity price 
function comprised of both energy and demand prices. First, 
we present novel PV power generation and load power 
consumption profile predictors specifically designed for the 
residential-level Smart Grid controller. Furthermore, to perform 
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effective storage system control utilizing such prediction 
results to minimize total electricity cost, we separate the 
proposed control algorithm into two tiers, one performed at 
each decision epoch of the billing period to globally “plan” the 
future discharging and charging schemes of the storage system, 
and another one performed locally as system operates to 
compensate the prediction errors. The first tier of the control 
algorithm can be effectively implemented by solving a convex 
optimization problem at each decision epoch, while the second 
tier has a time complexity of O(1). Experimental results 
demonstrate the accuracy of PV generation and load 
consumption predictions, as well as the effectiveness of the 
proposed residential-level storage control algorithm. 

II. SYSTEM MODEL AND COST FUNCTIONS 

In this paper, we consider an individual residential Smart 
Grid user equipped with PV power generation and energy 
storage systems, as shown in Figure 1. The PV system and 
storage system are connected to the residential-level DC bus 
via DC-DC conversion circuitries. The AC bus, which is 
further connected to the Smart Grid, is connected via an 
AC/DC interface to the residential-level DC bus. The 
residential-level AC load is connected to the AC bus.  

We adopt a slotted time model, i.e., all system constraints 
as well as decisions are provided for discrete time intervals of 
equal length. More specifically, each day is divided into T time 
slots, each of duration D. We use T = 96 and D = 15 minutes. 

 
Figure 1.  Block diagram showing the interface between PV array, storage 

system, residential load, and the Smart Grid. 

We adopt a realistic electricity price function consisting of 
both the energy price component and the demand price 
component, with a billing period of a month  [7]. Consider a 
specific day i of a billing period. The residential load power 
consumption at the jth time slot of that day is denoted by 
�����,�[	]. The output power values of PV and storage systems 
at the j th time slot are denoted by ���,�[	]  and �
�,�[	] , 
respectively, in which �
�,�[	] can be positive (discharging from 
the storage), negative (charging the storage), or zero. Therefore 
the power required from the Smart Grid, i.e., the grid power, at 
the jth time slot of the i th day, denoted by �����,�[	], satisfies 

�����,�[	] = �����,�[	] − ���,�[	] − �
�,�[	]  (1) 

where �����,�[	]  can be positive (if the Smart Grid provides 
power for the residential usage), negative (if the residential 
system sells power back into the Grid), or zero.  

As specified in  [7], the electricity price function is pre-
announced by the utility company just before the start of each 
billing period, and the price function will not change until the 
start of the next billing period. Reference  [7] also specifies five 
different time periods of each day, denoted by the term price 
periods, with (potentially) different unit energy prices and 
demand prices. These price periods are: the 1st off peak (OP) 
period from 00:00 to 09:59, the 1st low peak (LP) period from 
10:00 to 12:59, the high peak (HP) period from 13:00 to 16:59, 
the 2nd LP period from 17:00 to 19:59, and the 2nd OP period 
from 20:00 to 23:59. We denote the 1st OP, 1st LP, HP, 2nd LP, 

and 2nd OP price periods of a day as the 1st, 2nd, 3rd, 4th, and 5th 
price periods of that day. We use 	 ∈ �� to denote the statement 
that the j th time slot belongs to the kth price period. We use �
,� 
and ��,� to denote the start time and end time of the kth price 
period in each day, respectively. Obviously, we have �
,� =00: 00, ��,� = 23: 59, and �
,� = ��,� � for 2 ≤ " ≤ 5. 

We use �#$%&_()* , �#$%&_(+* , and �#$%&_(,*  to denote 
the unit energy price in the OP period (the 1st and 5th price 
periods), the LP period (the 2nd and 4th price periods), and the 
HP period (the 3rd price period) of each day, respectively, and 
use �#$%&_-+* , �#$%&_-,* , and �#$%&_-)������  to denote the 
monthly demand price for the peak power demands drawn from 
the Grid during the LP period, the HP period, and the overall 
peak power demand of a billing period (a month), respectively. 
Obviously we have �#$%&_(,* > �#$%&_(+* > �#$%&_()* , 
and �#$%&_-,* > �#$%&_-+* . Hence, the cost we pay of a 
billing period due to the energy price component is given by 

/01�2 = �#$%&_()* ⋅4 4 �����,�[	]
5∈67⋃69

:;

�<�
⋅ - + 

�#$%&_(+* ⋅4 4 �����,�[	]
5∈6>⋃6?

:;

�<�
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(2) 

and the cost we have to pay of a billing period due to the 
demand price component is given by 
/01�A = �#$%&_-+* ⋅ max�E�E:;,5∈6>⋃6?

�����,�[	] + 

�#$%&_-,* max�E�E:;,5∈6@
�����,�[	] + �#$%&_-)������ max�E�E:;,�E5EFG�����,�[	] 

(3) 

Obviously, the total cost for the residential user of a billing 
period is the sum of two aforesaid cost components. 

III.  PV AND LOAD POWER PROFILE PREDICTION 

Accurate prediction of the PV power generation and load 
power consumption profiles is extremely important for the 
development of residential-level storage control algorithms. 
Due to the fact that predicting the complete load (or PV) power 
profile is difficult and unnecessary, we use predictors to 
forecast the peak and average load power consumption (or PV 
power generation) values for different price periods in each 
day, i.e., one predictor for the 1st OP period, one for the 1st LP 
period, one for the HP period, one for the 2nd LP period, and 
one for the 2nd OP period. Subsequently, we shall reconstruct 
the approximate load (or PV) power profile for each day based 
on the predicted average and peak values in each price period.  

In the following we describe the peak power predictors; the 
average predictors can be realized in the same way. We present 
the peak load power consumption predictor in Section III-A 
and peak PV power generation predictor in Section III-B. The 
proposed load power consumption and PV power generation 
prediction algorithms consist of an initial prediction phase 
followed by an intra-day refinement phase, as explained below. 

Consider the peak power (consumption or generation) 
prediction for the i th day of a billing period (i.e., a month.) The 
initial prediction of the peak power refers to prediction 
performed at time 00:00 (�
,�) of the i th day, for the peak load 
power consumption (or PV power generation) in all five price 
periods of the i th day. The intra-day refinement of peak power 
prediction may be performed at the start time of the kth 
(1 < " ≤ 5) price period, i.e., �
,�, of the i th day, with the goal 
of refining the initial prediction of the peak power values in the 
kth, (k+1)st, …, 5th price periods. Motivation for the intra-day 
refinement is that at time �
,� (1 < " ≤ 5), the actual peak load 
power consumption (or PV power generation) values in the 1st, 
2nd, …, (k-1)st price periods of the ith day are known. This 



information can thus be used to improve the accuracy of peak 
power prediction for the remaining price periods in the day.  

A. Prediction Algorithm for Peak Load Power Consumption 
For the initial prediction phase of peak load power 

consumption, an adaptive regression-based algorithm is used. 
Consider that we are at time �
,� = 00: 00 of the i th day. The 
peak load power values in the kth price period of the i th day 
(1 ≤ " ≤ 5) are predicted as follows: 

�#&J$%��,� = K�,�L0M + ∑ K�,�O�<� LPM ⋅ Q&R�S#&�,�LPM  (4) 

where T�,� = LK�,�L0M, K�,�L1M, … , K�,�LVMM is a dynamically-
updated coefficient vector with n elements initialized to 1/n. In 
addition, the feature vector WXYZ[\X�,� =	 LQ&R�S#&�,�L1M,Q&R�S#&�,�L2M, … , Q&R�S#&�,�LVMM captures the actual values 
of peak load power consumption sampled at some points of 
interest. We have found that a value of n=5 with the feature 
vector defined as follows yields the best prediction results:  
WXYZ[\X�,� = L^%�SRP� �,�, ^%�SRP� _,� ,  
																													^%�SRP� `,�, ^%�SRP� �a,� , ^%�SRP� _�,�M 

(5) 

where ̂ %�SRP∗,�	denote actual peak load power consumptions 
in the kth price period of the (i-1)st day, the (i-2)nd day, the (i-7)th 

day, the (i-14)th day, and the (i-21)st day, respectively.  
Utilizing a stochastic gradient descent optimization method 

(see  [8] for details), the vector T�,� is updated as follows: 

T�c�,� ← T�,� + e ⋅ L^%�SRP�,� − �#&J$%��,�M ⋅ WXYZ[\X�,�  (6) 

where 0 < e < 1 is a learning parameter. 
For the intra-day refinement phase of peak load power 

consumption prediction, consider that we are currently at time 
instance �
,�  of day i, and we intend to refine the initial 
prediction results of the peak load power consumption values 
in the "f th (" ≤ "f ≤ 5) price period of that day. We denote the 
result of refinement as g&h$V&�,�f . Since at that time �
,�  the 
actual peak load power consumption in the (k-1)st price period 
is known, we calculate g&h$V&�,�f  as follows: 

g&h$V&�,�f ← L1 − iM ⋅ �#&J$%��,�f + i ⋅ jk�l��m,no7*����k�m,no7 ⋅ �#&J$%��,�f   (7) 

where 0 < i < 1 is another learning parameter. 
The intuition for this update equation is that if the actual 

peak load power consumption in the (k-1)st price period is 
higher than the predicted peak load power consumption in that 
period, i.e., ̂ %�SRP�,� � > �#&J$%��,� �, it is highly likely that 
the actual load power consumption in the "f th price period 
(" ≤ "f ≤ 5) will also be higher than the predicted peak load 
power consumption in that period, and vice versa. 

B. Prediction Algorithm for Peak PV Power Generation 
For the peak PV power generation prediction, an important 

observation is that the actual peak PV power generation over a 
specific price period (e.g., the kth price period) in the i th day of a 
billing period may be viewed as the peak PV power generation 
over the kth price period for a sunny day, multiplied by a decay 
factor, representing the effect of clouds, if that day is cloudy. 
Obviously, such sunny day peak PV power generation over the 
kth period (1 ≤ " ≤ 5) varies with the change in seasons, i.e., it 
is higher in the summer and lower in the winter. This effect is 
however captured by a smoothing operation as described below 
(cf. equations (9) and (10).) Therefore, for each day, we use the 
initial prediction, performed at the beginning of the day, mainly 
to predict the sunny day peak PV power generation over each 
price period of that day of the billing period. Next, we rely on 
the intra-day refinement, performed at the start time of the kth 

(1 < " ≤ 5) price period, i.e., �
,�, of that day, to predict the 
decay factors (and subsequently, the actual peak PV power 
generations) in the remaining price periods.  

In the initial prediction phase, we adopt a variant of the 
well-known exponential average based prediction method, for 
effectively predicting the sunny day peak PV power generation 
in each price period of day. Consider that we are at time 
�
,� = 00: 00  of the ith day, and we want to derive the 
prediction value of the sunny day peak PV power generation in 
the kth ( 1 ≤ " ≤ 5 ) price period of that day, denoted by 
�#&J$%��,� , based on the prediction of sunny day peak PV 
power generation in the kth price period of the (i‒1)st day, 
denoted by �#&J$%�� �,� , and the actual peak PV power 
generation in the kth price period of the (i‒1)st day, denoted by 
^%�SRP� �,� . Note that we must also capture and predict 
seasonal change of the sunny day peak PV power generation 
values, while filtering out random power decaying effects due 
to the presence of clouds. This is a smoothing operation. Thus 
the �#&J$%��,� value can be calculated as follows: 
�#&J$%��,� = pq�#&J$%�� �,� , ^%�SRP� �,�r ⋅ ^%�SRP� �,�  
+L1 − pL�#&J$%�� �,�, ^%�SRP� �,�MM ⋅ �#&J$%�� �,�  

(8) 

In the above equation, the learning rate function 
pL�#&J$%�� �,�, ^%�SRP� �,�M is set to: 
p;, if	�#&J$%�� �,� < ^%�SRP� �,�  
p; ⋅ & u⋅L*����k�mo7,n jk�l��mo7,nM, otherwise  

(9) 

where p; is basis learning rate, and } is a decaying parameter. 
The motivation for this smoothing operation is as follows. 

Since (i) we want to predict the seasonal change of sunny day 
peak PV power generations while filtering out the effect of 
clouds and (ii) ̂ %�SRP� �,�  << �#&J$%�� �,�  only if there are 
clouds, it is natural that our new predicted sunny day peak PV 
power generation value �#&J$%��,�  should not be so much 
influenced by the ̂%�SRP� �,� value (which is strongly affected 
by the clouds.) Therefore we adopt the exponentially decaying 
learning rate function (9), instead of the constant learning rate 
in the original exponential average based prediction algorithm.  

The intra-day refinement phase of PV power generation 
prediction, which is performed at the start time of the kth (1 <
" ≤ 5) price period of each day to predict the decay factors 
(and subsequently, the actual peak PV power generations) in 
the remaining price periods, can be implemented via exactly 
the same algorithm (Eqn. (7)) as the intra-day refinement phase 
of load power consumption prediction. 

IV.  RESIDENTIAL-LEVEL STORAGE CONTROL 

In this section, we discuss the proposed residential-level 
storage control algorithm, which could effectively utilize the 
combination of PV power generation and load power 
consumption predictions to minimize the total electricity cost 
over each billing period. The proposed storage control 
algorithm is hierarchical in that it consists of a global control 
tier, which is performed at each decision epoch (to be precisely 
defined later) to “plan” the future discharging and charging 
schemes of the local energy storage for the remainder of the 
day, and a local control tier, which is performed locally (and 
much more frequently) at regular fixed-length timing intervals 
called time slots to mitigate the effect of prediction errors. 

Consider that we are currently in the i th day of a billing 
period (a month.) Then the decision epochs in that day are 
defined to be the start times of each price period of that day 
(excluding the 1st OP period), i.e., �
,� for 1 < " ≤ 5. At each 
decision epoch, the storage controller gets information about 



the PV power generation and load power consumption profile 
characteristics (peak and average power) over the kth, (k+1)st, 
…, 5th price periods from intra-day refinement phase of PV and 
load predictors performed just at that decision epoch �
,�, and it 
is going to globally “plan” the discharging and charging 
scheme of the storage in the remaining price periods of the day. 
Obviously the “globally planned storage charging/discharging 
scheme” on the (k+1)st, …, 5th price periods obtained at 
decision epoch �
,�  may be modified in the global planning 
process at the following decision epoch �
,�c�. Note that the 
start time of the 1st OP period is not considered as decision 
epoch. This is because it is very unlikely to have a peak power 
demand to be drawn from the Grid during that price period. 
Therefore during the 1st OP period, the storage system is being 
charged, instead of being discharged as in the following 1st LP, 
the HP, and the 2nd LP periods. Hence we simply assume that 
peak power demand to be drawn from the Grid, which may 
affect the monthly demand price, will not occur during the 1st 
OP period, and furthermore, at the end of that price period (at 
time �
,_), the storage system will be (nearly) fully charged.  

We use (�,�  to denote the available storage energy at 
decision epoch �
,�  of the ith day, and we have (�,_ ≈ (�l��  in 
which (�l��  is the storage energy when fully charged, and 
(�,_ ≥ (�,: ≥ (�,a ≥ (�,�, since storage is being discharged in 
the 1st LP, the HP, and the 2nd LP period. 

A. The Global Control Tier 
In contrast to the other parts of the paper, in the global 

control tier of the storage control algorithm, we use a 
continuous-time based system model. Consider that we are 
currently at decision epoch �
,��  (1 < "; ≤ 5) of the i th day. In 
this algorithm we use the predicted net load power 
consumption profile of the remaining of the i th day, denoted by 
�O��,�L�M, � ∈ [�
,�� , ��,� = 24], which equals to the predicted 
load power consumption profile minus the predicted PV power 
generation profile. Such predicted �O��,�L�M  profile can be 
reconstructed from the intra-day refinement phase of PV and 
load peak and average power predictions, as shall be discussed 
later. The storage output power, which is the control variable of 
the global tier of the storage control algorithm, is denoted by 
�
�,�L�M. Therefore the (predicted) power drawn from the Grid 
(the grid power), denoted by �����,�L�M, can be calculated via 
�����,�L�M = �O��,�L�M − �
�,�L�M. 

Consider a specific price period (the kth price period with 
1 < " ≤ 5, for instance) of the ith day, as shown in Figure 2. 
We use �� and R� to denote the predicted peak and average net 
load power consumption values in that price period, 
respectively. Furthermore, we use �����,� and R����,� to denote 
the predicted peak and average load power consumption 
values, and use ���,�  and R��,�  to denote the predicted peak 
and average PV power generation values, over the kth price 
period of the ith day, respectively. Note that the index i of such 
�� , R� , etc. values has been dropped for the conciseness in 
notation. The above-defined �����,� , R����,� , ���,� , and R��,� 
values can be obtained from the intra-day refinement of PV and 
load predictions, and the ��  and R�  values can be 
approximately calculated in the following way: 
�� = �����,� − L2R��,� − ���,�M  
R� = R����,� − R��,�  

(10) 

Then the net load power consumption during the kth (1 < " ≤
5) price period of the ith day, i.e., �O��,�L�M, � ∈ [�
,� , ��,�], is 

assumed to be uniformly distributed between the lowest value 
2R� − ��  and the highest value ��. We draw such predicted net 
load power consumption curve as line segment (a) in Figure 2. 

The role of storage discharging in the price period of 
interest is to make the power drawn from the Grid �����,�L�M 
lower than the net load power �O��,�L�M. It can be proved that 
when the total predicted energy drawn from the storage system 
during the kth price period of the i th day is fixed, then the 
optimal (predicted) grid power profile in terms of grid power 
peak minimization is given by min	L�O��,�L�M, �������,�M  for 
� ∈ [�
,� , ��,�], in which the �������,� value can be determined 
by the aforesaid total predicted storage energy drawn in such 
price period. The optimal (predicted) grid power profile in the 
kth price period of the ith day is shown as curve (b) in Figure 2. 

 
Figure 2.  Relationship between the predicted net load power, storage output 

power and grid power profiles in the kth price period of the i th day. 

We use ��  to denote the maximum power reduction 
between the predicted net load power profile and the predicted 
grid power profile in the kth price period of the i th day, i.e., 
�� = �� − �������,� , as shown in Figure 2. We use ��  to 
denote the total predicted energy drawn from storage during 
such price period. Obviously, ��  is a function of ��, denoted by 
�� = h�L��M . In fact, ��  is a convex and monotonically 
increasing function of ��, because: (i) Jh�L��M J��⁄ > 0, and 
(ii) Jh�L��M J��⁄  is the smallest at the beginning (�� = 0), and 
then gradually increases as �� becomes larger. 

 
Figure 3.  The optimal control problem at decision epoch �
,: = 13: 00. 

Now we return to the optimal storage control problem at 
decision epoch �
,�� (1 < "; ≤ 5) of the ith day, as illustrated in 
Figure 3 ("; = 3 in this case.) At that time, the predicted �� 
and R�  values for "; ≤ " ≤ 5 can be derived from the intra-
day refinement of PV power generation and load power 
consumption predictions at decision epoch �
,��, as well as Eqn. 
(10), and the storage energy at decision epoch �
,�� is given by 
(�,��. Furthermore, we denote the peak grid power (actual peak 
power) consumptions observed so far over the OP, LP, and HP 
price periods in this billing period of interest by �&R")* , 
�&R"+* , and �&R",* , respectively. Obviously, such �&R")* , 
�&R"+* , and �&R",*  values are initialized to be zero at the 
beginning of billing period. The ��  values for "; ≤ " ≤ 5 in 
this optimal storage control problem are variables, and we have 
�� = h�L��M	for	"; ≤ " ≤ 5 . The objective of the optimal 
storage control problem is to find the optimal ��  values for 
"; ≤ " ≤ 5, subject to storage energy constraint ∑ �� ≤��<��



(�,��, for helping minimize the total cost over the billing period 
of interest, with total cost function given in (2), (3). 

Then the proposed (near-) optimal storage control algorithm 
at decision epoch �
,�� is given by the following. First we check 
whether storage has enough energy for peak shaving such that 
the (predicted) cost due to demand price in the billing period 
will not increase in the i th day, i.e., the (predicted) grid power 
�O��,�L�M in the LP, HP, and OP periods in the remaining of the 
ith day does not exceed �&R"+* , �&R",* , and max	L�&R")* ,�&R"+* , �&R",*M, respectively. More specifically, we set: 
�_ ← max	L0, �_ − �&R"+*M, if	"; = 2  (11) 

�: ← max	L0, �: − �&R",*M, if	"; ≤ 3  (12) 

�a ← max	L0, �a − �&R"+*M, if	"; ≤ 4  (13) 

�� ← max	L0, �� −max	L�&R")* , �&R"+*, �&R",*MM  (14) 

Then we compare between (�,�� and ∑ �� =��<��  ∑ h�L��M��<�� , 
and have the following two cases based on comparison results. 

Case I ((�,�� ≥ ∑ h�L��M��<�� ): In this case the storage 
energy is adequate for peak shaving such that the (predicted) 
cost due to demand price in the billing period will not increase 
in the remaining of the i th day. In this case we further minimize 
the (predicted) cost due to unit energy price in the remaining of 
the i th day, subject to the constraint that the (predicted) cost due 
to demand price will not increase in that day. We call such 
problem cost minimization with adequate energy (CMAE), 
with deterministic solution as follows: 
(1) If "; = 2,  we set �: ← h: �L(�,_ − h_L�_M − haL�aM −h�L��MM, and then �:  will become larger than its original 

value max	L0, �: − �&R",*M. We keep the �_, �a,	 and �� 
values the same as before. This is because the unit energy 
price in the HP period is the highest among each day, and 
thus we are going to use all the (predicted) surplus storage 
energy in the HP period for total cost minimization. 

(2) If "; = 3,  we set �: ← h: �L(�,: − haL�aM − h�L��MM , and 
keep the �a and �� values unchanged.  

(3) If "; = 4, we set �a ← ha �L(�,a − h�L��MM, and keep the �� 
value the same as before. 

(4) If "; = 5, we simply leave the �� value as it was. This is 
because the unit energy price in the 2nd OP price period is 
the lowest among each day. 
Case II ((�,�� < ∑ h�L��M��<�� ): In this case the storage 

energy is not adequate for peak shaving and hence we have to 
make the predicted peak grid power consumption over at least 
one of the LP, HP and OP price periods of the i th day exceed the 
�&R"+* , �&R",* , and max	L�&R")* , �&R"+* , �&R",*M 
values, respectively. We are going to solve the following 
optimization problem, called the peak shaving with inadequate 
energy (PSIE) problem, such that the (predicted) cost increase 
due to demand price in the i th day will be minimized. 

The PSIE Optimization Problem 
Find the optimal values �� for "; ≤ " ≤ 5. 
Minimize: 
�#$%&_-+* ⋅ max	{�&R"+* , �["; = 2]L�_ − �_M, �["; ≤ 4]L�a − �aM} +  
�#$%&_-,* ⋅ max{�&R",* , �["; ≤ 3] ⋅ L�: − �:M} +  
�#$%&_-)������ ⋅ max	{�&R"+* , �&R",* , �&R")* ,	  
�["; = 2]L�_ − �_M, �["; ≤ 3]L�: − �:M, �["; ≤ 4]L�a − �aM, �� − ��}	 

(15) 

in which �[�]  is the indicator function, which equals to one if 
statement � is true, and equals to zero otherwise. 
Subject to: 
�� ≥ 0, for	"; ≤ " ≤ 5  (16) 

∑ h�L��M��<�� ≤ (�,��  (17) 

Remember that the function h�L��M  is a convex and 
monotonically increasing function over �� for "; ≤ " ≤ 5, the 
above PSIE problem is a convex optimization problem since it 
has convex objective function and convex inequality 
constraints, and therefore it can be solved in polynomial time, 
using convex optimization techniques such as  [9]. 

B. The Local Control Tier 
The local control tier of storage control algorithm shall be 

performed with system operates to compensate prediction 
errors. In this part we return to the slotted time model described 
in Section II. Consider that we are currently at the j th time slot, 
which belongs to the kth price period (1 < " ≤ 5), of the i th day 
of a billing period. At that time we have the �������,�  value 
which equals to �� − ��  of the kth price period, derived from 
the global tier of storage control algorithm performed at 
decision epoch �
,�. Besides, we also have the actual net load 
power consumption value �O��,�[	] = �����,�[	] − ���,�[	] . 
Generally speaking, the basic job of the local tier of storage 
control algorithm is to seek to make the grid power �����,�[	] =
�O��,�[	] − �
�,�[	]  no more than the �������,�  value through 
controlling the storage output power �
�,�[	]. Moreover, such 
algorithm should also make sure that the physical limitations of 
the storage system are not violated, i.e., the stored energy in the 
storage system will not exceed the maximum value (�l�� , or 
become less than zero, at the end of the jth time slot. The 
proposed local tier of storage control algorithm is given by: 

 
 

 
 
 
 
 
 

 

V. EXPERIMENTAL RESULTS 

In this section we present the experimental results on load 
power consumption and PV power generation prediction 
algorithms proposed for residential-level Smart Grid users, as 
well as on the effectiveness of the proposed residential-level 
storage control algorithm. The PV power profiles used in our 
experiments are measured at Duffield, VA, in the year 2007, 
while the electric load data come from the Baltimore Gas and 
Electric Company, also measured in the year 2007.  

A. Load and PV Power Profile Predictions 
In this section we show some representative experimental 

results on the accuracy of the peak load power consumption 
and PV power generation predictions. The average load power 
consumption and PV power generation prediction results are 
similar, and are not shown in this paper due to space limitation. 

Local tier of storage controller at time slot j, price period k, day i 
Assume that at the beginning of the j-th time slot, the stored energy in the 
storage system is (�[	]. 
If �O��,�[	] > �������,� 

�
�,�[	] ← min	L�O��,�[	] − �������,�, ($[5]A M. 
Else If we are currently at the 2nd OP period, i.e., " = 5 

�
�,�[	] ← max	L�O��,�[	] − �������,�, −
(hSPP ($[5]

A M. 
Else �
�,�[	] ← 0. 
Set �������,� ← max	L�������,�, �O��,�[	] − �
�,�[	]M. 



 
Figure 4.  Comparison between the peak load power consumption prediction 

results from initial prediction (top) and from intra-day refinement at time 
�
,: = 13: 00 (bottom) and actual peak load power consumption results. 

Figure 4 compares between the peak load power 
consumption prediction results and the actual peak load power 
consumption results in the HP period of each day in a year. The 
peak load power consumption prediction results shown in the 
top subfigure of Figure 4 come from the initial prediction 
performed at time 00: 00  of each day, while the prediction 
results shown in the bottom subfigure come from the intra-day 
refinement performed at time �
,: = 13: 00. Data in the first 
120 days of the year are used for initial training, and thus the 
peak power consumption prediction results over those days are 
not shown in Figure 4. It can be observed from Figure 4 that 
our proposed adaptive regression-based initial prediction 
algorithm is effective in load power consumption prediction, 
resulting in an average prediction error of about 8%. The 
average prediction error can be further reduced to less than 4%, 
i.e., less than 50% of the average prediction error in initial 
prediction, by the use of intra-day refinement. 

 
Figure 5.  Comparison between the peak PV power generation prediction 

results from the initial prediction (top) and from intra-day refinement at time 
�
,_ = 10: 00 (bottom) and actual peak PV power generation results. 

Figure 5 compares between the peak PV power generation 
prediction results with the actual PV power generation results 
in the 1st LP period of each day in a year. The peak PV power 
generation prediction results shown in the top subfigure of 
Figure 5 come from the initial prediction performed at time 
00: 00 of each day, while the prediction results shown in the 
bottom subfigure come from intra-day refinement performed at 
�
,_ = 10: 00 . Data in the first 90 days are used for initial 
training, and thus the peak PV power generation prediction 
results over those days are not shown. It can be observed that 
our modified exponential average-based initial prediction 
algorithm is effective in predicting the sunny day peak PV 
power generation over each day in a year. The proposed intra-
day refinement technique also proves itself effective in 
predicting the decay factors due to clouds. 

B. Residential-Level Storage Control Algorithm 
In our experiments, the residential Smart Grid user is 

equipped with the load devices and PV system with power 
consumption and generation profiles same as the profiles used 

in Section V-A, as well as a storage system which could 
perform peak shaving and energy cost reduction. We define the 
cost saving capability of a storage control algorithm to be the 
average monthly cost saving due to the additional storage 
system, compared to the same residential Smart Grid user 
equipped only with the PV system. We compare the cost saving 
capabilities of our proposed storage control algorithm, with two 
baseline algorithms. The first baseline algorithm is a relatively 
simple algorithm which charges the storage system from the 
Grid during the OP period with constant power, and distributes 
all the available energy stored in the storage system evenly in 
the HP and LP periods. The second baseline algorithm is a 
relatively advanced algorithm which, although still charges the 
storage system from the Grid during the OP period with 
constant power, distributes its available energy with constant 
storage output power �
�,,*��
�_  in the HP period and with 
constant storage output power �
�,+*��
�_  in the LP period. 
Moreover, the �
�,,*��
�_ and �
�,+*��
�_ values satisfy: 

�
�,,*��
�_ �
�,+*��
�_� = �#$%&_-,* �#$%&_-+*⁄  (18) 

 
Figure 6.  Comparison of the cost saving capabilities between proposed near-
optimal residential-level storage control algorithm, and baseline algorithms. 

Figure 6 shows the comparison results on the cost saving 
capabilities between our proposed storage control algorithm 
and the baseline algorithms. The x-axis of this figure is the total 
storage capacity, and the y-axis is the ratio of the cost saving 
capability of a storage control algorithm to the cost saving 
capability of our proposed algorithm. We can see that our 
proposed near-optimal storage control algorithm consistently 
outperforms the two baselines, with an average cost saving 
capability improvement of 51.93% than the first baseline 
algorithm and 27.25% than the second baseline algorithm. 

VI. CONCLUSION 
This paper addresses the problem on integrating residential-

level PV and storage systems into the smart grid for 
simultaneous peak shaving and total electricity cost 
minimization, making use of the dynamic energy pricing 
models. We first propose novel PV power generation and load 
power consumption profile forecasting techniques, specifically 
developed for the residential storage controller for performing 
peak shaving. We further propose the effective residential 
storage control algorithm, which consists of a global control 
tier performing at each decision epoch of a billing period to 
globally “plan” the future discharging/charging schemes of the 
storage system, and a local control tier performing along with 
system operation to compensate for the prediction errors.  
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