

A hierarchical control architecture for job-shop manufacturing
systems
Citation for published version (APA):
Smit, G. H. (1992). A hierarchical control architecture for job-shop manufacturing systems. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mechanical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR368677

DOI:
10.6100/IR368677

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR368677
https://doi.org/10.6100/IR368677
https://research.tue.nl/en/publications/8d4a736b-89af-4d4b-80a7-c16c6673d459

A Hierarchical Control Architecture

for

Job-Shop Manufacturing Systems

proefschrift

ter verkri jging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. dr. J.H. van Lint
voor een commissie aangewezen door het College

van Dekanen in het openbaar te verdedigen op
dinsdag 10 maart 1992 om 16.00 uor

door

Gerrit Hendrik Smit

geboren te Laren (Gld.)

Dit proefschrift is goedgekeurd door de promotoren

prof. dr. iT. J.E. Rooda

en

prof dr. ~. Ftell1

copromotor

dr. iT. l.R.A. Arentsen

Acknowledgement

This research project was partly sponsored by ASM Europe b.v.,
Bilthoven, The Netherlands.

A Hierarchical Control Architecture

for

Job-Shop Manufacturing Systems

Print: Sansevieria, Eindhoven

CIP~GEGEVENS KONINKLIJKE BIBLIOTHBEK, DEN HAAG

Smit, Gerrit Hendrik

A hierarchical control architecture for job-shop
manufacturing systems / Gerrit Hendrik Smit. - [Eindhoven
; Technische Universiteit Eindhoven). - IlL

Proefschrift Eindhoven. - Met lit. opg. - Met samenvatting
in het Nederlands.
ISBN 90~386~0012-7
Trefw.: produktieproces.

voor mijn ouders

Summary

This thesis describes the development of a hierarchical control archi
tecture which allows control systems to be built for manufacturing
systems having a job shop character.

The control architecture is specified with the use of modelling and the
Process-Interaction approach. The architecture is then developed and
simulated in ProcessTalk with the aid of the ProcessTool. The total

approach described permits a smooth transition to be made from
modelling the system to its simulation and, fInally, to the implementation
of the controller.

A manufac turing system transfonns raw material into finished products.
The control architecture takes the specification of the physical manu
facturing system as its starting point. The specification is written using
the description of the operations, the material, the machines (= resources),
and the manufacturing process (,." recipe).

The job shop manufacturing system class is a complex system, it is
characterized by universal resources and a transpon system having a
high degree of route flexibility. The route of the material through the job
shop is not constrained. The control architecture can also be applied to
manufacturing system classes in which the route of the material through
the system is less free, such as the flow shop, the parallel shop and the

single shop.

The job shop manufacturing systeooconsists of a controller, one Or more
stores, transporters and processing resources, where the actual manu
facturing takes place. Repeating the control structure of a manufacturing
system inside a processing resource allows the creation of a hierarchical
control structure. Such a structure has at its top a factory controller,
which communicates with the outside world (conswners and suppliers)
and, as the bottom layer, one fmds controllers for the machines that
execute the manufacturing process.

The performance of a manufacturing system has to be measured, and
performance graphs are introduced for this purpose. Plotting such

graphs allows an impression to be gained of the behaviour of the
manufacturing system and the quality of the control system. The graphs
show the lead time and the throughput as a function of the inventory
level within the manufacturing system. The graphs also assist the

viii summary

designer in selecting a work point ("" inventory level) at which the
manufacturing system should be operated.

The control functions of planning, scheduling and monitoring are
discussed. The decisions a controller has to take concern material
exchange, transport and the processing of material. These decisions
have to be taken at a certain point in time and they have to be
communicated to the controlled resources. The consequences attached
to the time at which a decision is taken, as well as the possible
communication protocols between controller and resource, are dis
cussed.

The architecture is developed in the fonn of a general control model, the
data structure and process description of which are described. The
model uses requests from controlled resources in order to signal to the
controller that manufacturing capacity is free. A command that work is
to be done is sent to the resources in the form of a job. The resources
report the results of the jobs executed back to the controller (with
reports). The class of the manufacturing system is discussed in relation
to the strategies which may be adopted for the generation of requests.

Finally, the control architecture is used to model an Integrated Circuit
manufacturing system where wafers are fabricated by the diffusion
process. Simulation studies, pe:rfonned with the model, are used to
demonstrate the capabilities of the architecture.

The control architecture makes the design of manufacturing systems
and manufacturing controllers a more structured process, allowing the
consttuction of hierarchical control systems. In combination with the
performance graphs, the selection of a work point and the uSe of requests
foneguiating the release of jobs, the architecture also clearly shows how
even complex job shops can be controlled.

Samenvatting

Oit proefschrift beschrijft een hierarchische besturings-architectuur, die
geschikt is voor het bouwen van besturingen voor "job shop"
p~\U(tiesystenlen.

Bij het specificeren van de besturings-architectuur is de Proces Interac~
tie Benadering gebruikt. De architectuur is ge'lmplementeerd in
"ProcessTalk" en gesinluleerd met behulp van de "ProcessTooP'. Deze
werkwijze maakt de overgang van modelleren naar simuleren en
implementeren eenduidig.

De specificatie van het fysieke produktiesysteem is het uitgangspunt
voor de besturings-architectuur. Een produktiesysteem transfonneert
grondstoffen in produkten. De specificatie is beschteven in de VOITIl van
bewerkingen, materiaal, machines (= produktiemiddelen) en het pro
duktieproces ("" recepten voor produkten).

De "job shop!! produktiesystemen behoren tot een klasse van zeer
complexe produktiesystemen. Ze worden gekenmerkt door het feit dat
'ZI! universe1emachines bevatten en <lathet transportsysteemhetmateriaal
van een willekeurige machine naar een willekeurige andere machine
kan vervoeren. Elke denk.bare route voor het materiaal door het
produktiesysteem is toegestaan. De besturings-architectuur lean ook
worden toegepast op meer eenvoudige klassen van produktiesystemen,
zoals de "flow shop'" de "parallel shop" en de ((single shop".

Het model van een "job shop" produktiesysteem OOs133t uit een bestuur
der, een maguijn, een transporteur en een of meer produktiemiddelen
waar de feitelijke produktie plaats vindt Ben produktieroiddel kan weer
zijn opgebouwd uit de hiervoorgenoemde elementen. De besturings
structuur wordt dan binnen een pl'Oduktiemidde1 herhaald. Op deze
manier is het mogelijk een hlerarchische besturing te maken. De

bovenste laag van deze besturing bestaat uit een fabrieksbestuurder. De
fabrieksbestuurder communiceert met de buitenwereld (consumenten
en leveranciers). De onderste laag van de besturing bestaatuit bestuurders
van produktiemachines.

Voor het beoordelen van het gedrag van het produktiesysteem en de
kwaliteit van de besturing is het noodzakelijk om de pl:estatie van een
produktiesysteem te meten. VOO! dit doel zijn prestatie-karakteristieken
ingevoerd. Deze karakteristieken geven in grafische vonnde doorloopti jd
en de doorzet als functie van de hoeveelheid onderhanden werk. De

x samenvatting

grafieken helpen de ontwerper ook bij het se1ecteren van een geschikt
werkpunt (gewenste hocveelheid onderhanden werk) voor het produk
tiesysteem.

De besturingsfuncties "planning", "scheduling" en "monitoring" wor
den behandeld. De beslissingen die een bestuurder mod nemen, de
consequenties verbonden met het tijdstip waarop een beslissing wordt
genomen en de mogelijke communicatieprotocollen worden nade!
bekeken. De beslissingen hebben betrekking op het ui twisselen, transport
en bewerken van materiaal.

De architectuur is beschreven in de vonn van een aigemeen besturings
model. Hiervan zijn de datastructuur en de procesbeschri jvingen gegeven.
Het besturingsmode1 gebruikt aanvragen van produktiemiddelen om
aan te geven dat er produktiecapaciteit beschikbaar is en dat er dus een
opdracht kan worden vrijgegeven. De produktiemiddelen sturen na het
uitvoeren van een opdracht een rapport waarin de resultaten vermeld
staan. De strategie waannee aanvragen worden gegenereerd hangt
samen met de kJasse van het produktiesysteem. Di t verband wordt nader
uitgelegd.

Tot slot wordt de architectuur gebruikt bij het modelleren van een
fabdck waarin het diffussieproces vON het vervaardigen van gdnte
greerde schakelingen plaatsvindt. Simulatiestudies die met dit model
zijn uitgevoerd demonstreren de mogelijk:beden van de architectuur.

De besturings-architectuur maakt het op een gestructureerde manier
ontwerpen van produktiesystemen met hun besturingen mogelijk. De
besturing kan zijn opgebouwd uit een hierarchie van bestuurders. In

combinatie met de prestatie~karakteristieken, de keuze van het werkpunt
en hyt gebruik van aanvragen voor het vri jgeven van opdrachten, laat de
architectuur zien hoe zelfs complexe "job shop" produktiesystemen
kunnen worden bestuurd_

Table of contents

Summary vii

Samenvatting ix

Chapter 1
Introduction

1.1 Historical background

1.2 Automation, the present situation 2

1.3 Objectives of the study 5

Chapter 2
Manufacturing systems 7

2.1 The life phases of a factory 7
2.2 Tenninology 9

2.3 The Process~lnteraction Approach 11

2.4 Systems 14

2.5 Hierarchies 15

2.6 Basic components of physical manufacturing systems 17

2.7 Classification of manufacturing systems 26

Chapter 3

Control of manufacturing systems 31

3-1 Control concepts 31

3.2 Control functions 38

3.3 Control configuration 46

3.4 Communication protocol 57

3.5 Problems related to parallelism 64

3.6 Summary 66

Chapter 4

The control architecture for manufacturing systems 69

4.1 The data structure 69

4.2 The control model 80

4.3 Single shop 93

4.4 Parallel shop 96

4.5 Flow shop 98

Xli

4.6 Job shop 103

4.7 Configuring a hierarchical control system 104

Chapter 5
A case: all IC manufacturing system 107

5.1 Introduction 107

5.2 The IC manufacturing system 108

5.3 Control of IC manufacturing systems 109

table of COntents

5.4 The control model of an Ie manufacturing system 113

5.5 Simulation experiments and results 123

Chapter 6

Conclusions 141

6.1 Review of the study 141

6.2 The advantages of hierarchical control 145

6.3 Recommendations for further research 148

References 151

Appendix A

An introduction to Smalltalk-80 159

A.l Basic Smalltalk-80 concepts 159

A.2 The Smalltalk-80 syntax 161

Appendix B
Basic task language methods 167

Appendix C
The hierarchical control model methods 171

C.l Interaction items 172

C.2 Material object 178

C.3 Administrative objects 179

C.4 Calculators 183

C.S Processors 187

Index 197

Curriculum Vitae 201

Chapter 1

Introduction

1.1 Historical background

From the time of his appearance on earth, man has made artifacts to
support his existence. In the beginning with his bare hands, and later

with the aid of tools that themselves developed from simple hand tools
into complex machinery. This notion of manufacturing - the making of
goods by hand or with the use of machinery - is therefore as old as
mankind itself. Historically, the trend has always been that work done
by human muscles becomes replaced, wholly or partially, by work done
by machines. This easing of the human workload by the uSe of machines
is the process of mechanization. This process brought with it further
changes: labour became divided into specific tasks and forms of
organization changed. Fonnerly the artisan did everything himself. He
ordered or collected raw, materials, made his goods, brought them to

market and sold them. The central issue at this time was material.

This changed with the coming of factories during the industrial revolu~
tion. Here, work was organized in stages, and the workers brought the
material to a machine, the machine perfonned an operation, and the
processed material was then taken to another machine or to a store.
Labour had become mechanized and the central issues were materials
and energy. It was at this time, too, that labour became divided into

. specialized tasks. The worker operated only one type of machine Or
perfonned only one type of action, such as the transport of material.

The introduction of the factory concept also saw a separation between
the owner~manager and the workers. The owner, who was usually also
the manager, decided how the factory should look, what products were
manufactured, what machines were bought, how many people were to

be employed, an so on. The manager also took care of the purchase of
raw material and the sale of products. He decided how much the factory

produced during a certain period. The workers had to carry out the
commands of the manager and had to tend the machines.

With the introduction of the assembly line in the early 19005, a new
phase in mechanization was introduced. Now not only the manufactur~
ing of goods that was done by machines; the transport of the goods was
also mechanized. Control of the manufacturing actions, however, was

2 introduction

still in the hands of the workers, but the speed with which these actions
had to be executed was partly fixed by the speed with which the products
were transported along the assembly line.

Mter the introduction of the assembly line the central issues remained
material and energy and it was with the introduction of the computer that
a new issue, infonnation, became important. From this point (about
1950), it became possible to automate the control of machines. At the
moment the first robots appeared it became easier to integrate the
material handling with the processing of material on machines. The
introduction of computers in factories also saw the start of the automa
tion of the tasks of the manager. Software packages became available for
such tasks as accountancy, material planning and production planning.
There was a further increase of specialization in the organizational
structure. Also, ownership and management was split between different
persons or groups of people, leading to a reduction of management tasks
and restrictions on managerial responsibility.

1.2 Automation, the present situation

The purpose of au tomation is to enable, Hghten Or replace human labour
by computer controlled machinery in order to increase the quality of life
of human beings and/or to increase the productivity of a company. There
are economic, social and technical reaSOnS for a company to automate.

The economic reasons have to do with increasing competition, which
demands an increase of productivity. The market that used to be a
sellers' market has changed into a buyers' market. The costs of human
labour increase steadily, which often makes it unattractive to hire a lot
of workers, so instead machines are used to manufacture products.
There are social reasonS to automate when the manufacturing process is
unhealthy, dangerous Or boring. As to technical reasons, automation will
allow an increased and more constant quality of the products to be
achieved.

What the manufacturer tries to achieve with automation is to manufac
ture at low costs and to deliver products of high quality. The change into
a buyers' market, too, has resulted in a short product life cycle, which

demands high manufacturing flexibility and small production runs. In
order to keep costs low the productivity has to be adjusted to the
consumer demand, the lead times have to be short and the inventories
small. Automation is seen to provide an interesting opportunity to
reduce costs illld to increase the quality of products. From the viewpoint
of flexibility, however, automation may also be a retrograde step,
because there is no machine that is as flexible as a human being.

introduction 3

The automation of factories has concentrated on two aspects: the real
time automation of machinery and the automation of the administrative
functions [Arentsen 1989].

Automation of machinery

The control of machinery is characterized by its short cycle times (in the
range of milliseconds to minutes), parallel algoritluns, simple and short
messages, small amounts of data, and real time execution.

A manufacturing process is split up into a sequence of operations. This
differentiation of the process into steps is often taken as a basis for
automation. A first attempt is made to automate machinery that per
fonns a single step, with material handling and transport following at a
later stage. But the control of the whole system is considered only at the
end of the process. This approach neglects the fact that the different
stages of production are not only related by the material stream, but also
by the technical and organizational aspects of the process. The result of
this approach is stand-alone automation of separate production units
with human beings taking care of the interfacing between the automated
elements, thus taking care of any inflexjbilities, failings, shortcomings
and imperfections in the process.

Another problem in the control of machines or aggregates of machines
is the fact that control systems are based on sequentially run programs.
But a manufacturing system consists of man and machines which
operate in a parallel way, and this requires a control system Or algoritlun
which is also based on parallelism [Rooda 1987].

Automation of administration

Administrative functions are characterized by a long cycle time (in the
range of days to years), large data bases and batch execution.

Accountancy tasks, financial management and materials management
are administrative functions. The automation of these functions often
concentrates on an efficient implementation of the function, rather than
considering the total system effectiveness. The result is a poor connec
tion between the different software packages.

System approach

Both cases above indicate that automation of elements of the whole
system results in a collection of subsystems that are difficult to couple

4 introduction

together. This automation of elements is called island automation. The
differences in the approaches to automation of machinery and adminis
tration have resulted in the automation gap: it is difficult to couple

automated machinery with automated administration.

When a system is going to be automated one has to consider all the

elements that make up the system and the relations between these

elements. When looking at the current state of automation, however, one

can see that it is characterized by island automation and an automation
gap. We may conclude that the control of the system as a whole is
important and that this calls for an integral concept that ensures that the
various parts interface with each other. FurtheImore, the control of
machines, and aggregates of machines and people, has to take account
of the fact that many actions take place simultaneously. A concept that

is appropriate for this pmpose is the Process-Interaction Approach

[Rooda 1987, Arentsen 1989, Rooda199 la, 1991b, 1991c, Rooda

Arentsen 1991, RoodaArentsen Smit 1992], which will be used in this
thesis and which is described further in Chapter 2.

Automation and factory layout

When looking at the layout of a factory, there are two important

alternatives: a very common layout is the process layout; another, more

complex, layout is me functional layout.

The process layout corresponds with the flow shop. Machines are
ordered in the sequence of the operations that have to be perfonned on
the materiaL The route of the material through the factory is fixed and
dedicated machines are used in the flow shop.

The functional layout corresponds with the job shop. Machines are
ordered in groups having the same functionality. The job shop is

characterized by a great route flexibility. In a job shop the machines are

of a much more universal type; and they are capable of executing many
different operations.

Arentsen's [1989] thesis, "Factory control architecture", describes a

control architecture for flow shop factories using the Processwlnterac

tion Approach. It was shown that island automation of factories can be
avoided, and that the automation gap can be bridged. Modern factories,
however, often have a job shop character. They contain many expensive

and complex machines. This has resulted in complex manufacturing
systems that arc capable of executing many manufacturing processes.
They are difficul t to control, often gi ving rise to very long lead times. No
control architecture for job shop factories has yet been described.

introduction 5

1.3 Objectives of the study

We have seen that there are pressing reaSons for industry to automate.
Modem factories are complex, they often have a job shop character,
together with a hierarchical layout and control structure. But presently
there is no structured method by which the control systems for such
factories can be built and so there is a need for a control architecture.
This architecture has to allow the building of control systems and the
automation of factories without creating island automation and an
automation gap. The control architecture presented in this thesis is
wrique in fulfilling such a need.

This study only considers control technology. The systems considered
have a discrete character, in which the controllers control discrete
manufacturing processes. As stated, the subject of this thesis is a control
architecture for factories, an architecture being defined as a framework
for the logical and functional implementation of a system [Flatau 1988].
A control architecture is a structure of algorithms and controllers that
drive the machines in a factory, together with the relationships and
interlaces between these algorithms, controllers and machines. The
architecture comprises the specification of a general control model. We
are here concerned with the programming of the algoritluns; the build
ing of control hardware is not dealt with, neither is the building of the
physical manufacturing system.

We use an integral approach to the building of controllers for manufac
turing systems having a great routing flexibility between universal
machines. Arentsen [1989] presented an architecture for flow shop
factories. Here we develop a comparable architecture for job shop
factories. However, since the job shop is the most complicated. the
architecture presented can also be used for other factory layouts.

The functions of the factory controller considered are capacity planning,
marketing, purchasing and manufacturing control. The emphasis lies on
the control of the manufacturing function; control of the other factory
functions is not considered so intensively, since these are implemented
in much the same way as in Arentsen's work.

In order to evaluate the quality of a controller we need measures by
which we can assess the performance of the system. The method we
present for the assessment of the behaviour of a manufacruring system
and its controller uses the concepts of mean lead time, mean tluoughput,

and mean inventory level and the relationship between them. One of the
major problems in the control of a job shop is the limitation of the lead
times in the shop. By using the developed architecture it is shown that

6 introduction

one good way of keeping the lead times down is to exert control on the
inventOI1' level within the shop.

The implemented control architecture is intended f".)r a manufacturing
system that has a configuration which remains unchanged: the products
are designed in advance, the manufacturing processes and the machines
by which the products are manufactured remain constant throughout the
manufacturing cycle.

Our approach to the specification of the architecture uses modelling
together with the Proc ess-Interaction Approach IRooda 1987, Overwater
1987]. This approach provides a language (ProcessTalk) and a tool
(ProcessTool) [Wortmann, Rooda 1990, Wortmann 1991] which are
used for the development and testing of the architecture. The use of
ProcessTool allows the models built with its aid to be validated by
simulation. The whole approach allows a smooth transition from mod
elling the system to its simulation and, finally, to the implementation of
the controller [Overwater 1987].

The builder of a control system uses information from design engineers
and production engineers, who specify the products, the manufacturing
processes, and the physical manufacturing system. These specifications
thus place constraints on the control architecture. Simplified general
models of the physical machines are used. These machines are com
manded to execute operations on material and to report when the
operations are finished. It is no part of Our present task to consider how
machines actually execute their operations. The control system devel
oped here is based on the idea that a hierarchical structure is useful, the
factory controller being at the top, machines at the bottom, and a variable
number of control layers in between. This hierarchy is constrained by
the specification of the given layout of the physical manufacturing
system.

Chapter 2 presents the tenninology, concepts of modelling; hierarchies,
the specification of physical manufacturing systems and a manufactur
ing system cla,>sification. Chapter 3 considers aspects of the control of
a manufacturing system. Chapter 4 presents the new concepts and the
resulting model of the general control architecture. The control architec
ture is illustrated in Chapter 5 by showing how it can be applied to a
factory for the manufacture of integrated circuits on wafers (IC wafers).
The uniqueness and a review of the new Iy developed architecture for job
shop systems is presented in Chapter 6. Finally conclusions are dis
cussed, together with suggestions as to the ways in which this present
work may be continued in the future.

Chapter 2
Manufacturing systems

The present chapter deals with some general considerations relevant to

all kinds of manufacturing systems, before going on to present the

terminology that will be used subsequently. Afterwards the Process
Interaction approach, systems and hierarchies are discussed. Finally a
description of the basic components of physical manufacturing systems

and the classification of manufacturing systems is·given.

2.1 The life phases of a factory

A factory passes through five life phases: orientation, specification,
realization, utilization and elimination [Rooda 1987, 1990]. In reality a
factory develops in a continuous way} the different phases are gone by
in an iterative way and different parts of the factory may be in different

phases. But by looking at the factory from one point of view, these

phases can always be distinguished. This process is governed by a
management system which sets goals for the factory. The main goal of

a factory usually is to insure its future existence by llUlking a. reasonable
profit. The factory will try to make a profit by selling the goods produced

to people Or to other companies. To sell goods the factory can either try

to create a need for its products (technology push) and/or it can
anticipate the existing needs of society (market pull).

In the life phases of a factory decisions about the total control and design
of a factory have to be taken. It is the task of management to take these

decisions and to check whether the decisions are executed in the way

planned. The different aspects are mentioned below.

The orientation phase is used to study whether it is interesting to develop

a factory. The consumers' needs and suppliers' offers are analysed.
Alternatives for products, technology and raw materials are considered.

The analysis of the economic expectations means that a decision has to

be taken On whether the factory should Or should not be built. This
decision is usually supported by market research.

The problem definition subphase (which is the first component of the

specification phase referred to above) includes decisions as to what ldnd
of products are to be manufactured and what the capacity of the factory

8 manufacturing systems

will be (number of workers, machines, stores). in most ca<;es these
decisions are taken by the Owner or the investor.

Because nature behaves in a causal way, it is possible for humans to look
for causes that result in a desired effect. In the specification process this
reverse causality is used to find a way to produce the new product
[Hubka and Eder 1988J. The main choices, in relation to the manu~
facturing process, are the raw material from which the product is made,

the transfonnation process that is used to transform the material, and the
type of machines that execute the manufacturing process. The transfor
mation process and type of the machines are based on the technology
that is considered to be most. suitable to transform the material.

The decision about which products a factory is to produce is called
'product planning' and is a task for the management. The specification
of a factory and the manufacturing process is an engineering design task
[Hubka and Eder 1988]. The design engineer decides what the product
looks like. How the product is produced is decided by the production
engineer [Kempf 1989].

Once the technology used in the factory has been chosen, the layout, the
material transport and storage still have to be specified, as does the
control system. These choices cannot be made independently of the
technology chosen. When specifying and realizing a control system the
specification of the physical system are considered as constraints on the
problem of specifying the control system. But, in order to obtain a
"good" control system when one is specifying the physical system, the
related control problem has to be considered and the specification of the
physical system should be adapted in such a way that the complex:ity of
the control system is reduced as much as possible.

The way the factory is to be controlled is also incorporated in the
specification of the factory. Is production to order or production for
inventory used? What performance criteria are important? What control
strategy is used, a fixed or changing product mix:, with the possibility of
producing new products, etc.

The profitability of a factory also depends on the control strategy. So the
market situation, the supplier relationship and the conSumer relation
ship are all likely to influence the control strategy and, through this, the
specification of the physical system.

The realization phase is considered to be the task of an external system,
the factory builder and the equipment supplier, called the realization
system. Here the management instructs the realization system about
how the factory is to be realized. The management checks the results and
compares them with the specifications.

manufacturing systems 9

The system starts to operate in the utilization phase. This is controlled
directly by the control system of the factory. This control system is also
implemented during the realization phase. The management checks the
perfonnance of the realized system., controlled by its local control
system. During the utilization phase the control system has to take care
of the creation of capacity plans, the marketing of products, the purchasing
of raw materials and the manufacturing of products. The factory control
system has the responsibility for translating the demand and/or the
predicted demand into commands for the machines. Here, too, the

conswner has to be negotiated with about the tenns under which a
product "Will be delivered: think, for instance, about the due date.

During the elim.ination phase the management instructs the destruction
system about the way the factory has to be disposed of.

2.2 Terminology

We will introduce in this section the terms and notions that are funda
mental to our subject

The transfonnation of natural means (such as raw material) into desired
means (products) is accomplished by a transformation system [Hubka
and Eder 1988]. One class of transformation systems is fonned by
industrial systems. In this thesis three forms of industrial systems are
distinguished: the factory, the manufacturing system and the machine.

To manufacture means "1) the making of goods, 2) the process of
making wares by hand or machinery" [Burbidge 1987]. When looking
at a manufacturing system one can draw a distinction between hardware
and software: the manufacturing process is considered as the sofuvare
and man or machine the hardware.

A process is "a set of consecutive operations which complete a signifi
cant stage in the manufacture of a component". An operation is "the
smallest unit of work taken into account for a particular planning or
control purpose". And "that which is necessary for the execution of an
operation" is called a resource. There are two types of resources: ex
panded resources and leaf resources. An expanded resource consists of
an aggregate of machines, a leaf resource is a machine. Material is the
operand that undergoes the process. "The materials used as input to a
manufacturing system" are called raw material, "an end item or output

from a manufacturing system" is the product. [BSI, 1975].

A factory is part of a bigger whole: the economy. It operates within a
market and it has to do with suppliers, consumers and competitors. A
factory is a system that sells products to consumers and that buys raw

10 manuj{lCturing systems

materials from suppliers. The products are manufactured from the raw
materials in one Or mOre resources of the factory.

A manufacturing system is a transformation system in which the
actual manufacturing of products takes place. Usually this is an aggregate
of machines. A manufacturing system is a part of a factory. A manufac
turing system consists of one or more resources and a control system,
which controls the resources. A manufacturing system transfOlTIlS one
or more types of input material (raw material) into one Or mOre type., .. of
output material (finished products). TIlls transfonnation is called the
manufacturing process.

A resource behaves in a causal way. Causes have three important
component'): there are conditions which have to be fulfilled in order to
let something happen, there is an internal chain of actions through which
something happens, and there is a trigger which starts things happening
[Hu bka and Eder 1988]. In manufacturing two areas of expertise may be
distinguished: the processing of materials (processing technology) and
the processing ofinfonnation (control technology) [Rooda 1987}. The

control system triggers the machines and is itself triggered by human
beings. It is supposed that a manufacturing system is split into machines

that transform material, which is called the physical manufacturing
system or the physical system, and a control system that triggers the
physical system, which is called the manufacturing control system or
just the control system.

The control system directs and regulates the physical system in such a
way that a predefined goal is achieved as closely as possible. A
distinction is drawn between factory control and machine control.
Factory control is on a mOre abstract level, it controls aggregates of
machines and people. It considers machines as equipment that is started
on a command and that gives a signal if the action is finished. Machine
control, on the other hand, regulates the internal operation of the
machine. The biggest difference between the two is the fonn of paral
lelism. In machine control the parallelism most often has a fme-grained
structure with a very close synchronization between the events. The
parallelism in factory control has a more coarsely grained structure with
many more Or Jess independent events.

Manufacturing control is comparable to factory control, except that it
contains fewer functions. Factory control comprises capacity planning,
marketing, purchasing and manufacturing. Manufacturing control
comprises manufacturing only. This difference is also found in the
commands that both types of controller receive. An order is a command
for a factory, which specifies an amount of a certain product type. Ajob
is a command for a manufacturing system, which specifies the material
and the manufacturing process.

manufacturing systems 11

The lead time is the time it takes to execute the manufacturing of a

product. In our case the manufacturing process starts with the arrival of
an order or a job and finishes when the finished products are available
for the requester. The process time is the minimum time necessary to
execute the manufacturing process. This is the sum of all times the

machines of the manufacturing system need to execute the operations of

the manufacturing process. The delivery time is the difference between
the date the ordered goods are delivered and the date the order arrived.

The due date is the date at which the sender of the order wants its goods

delivered. The througbput is the amount of products that are manufac
tured per unit of time. 'The input (rate) is the amount of products of

which the manufacturing process is started per unit time. The inventory

level is the number of products of which the manufacturing process is
started and not yet finished.

As we have seen above. five phases characterize the life cycle of an
industrial system: the orientation phase. the specification phase, the
realization phase, the utilization phase and the elimination phase [Rooda

1987, 1990]. In the orientation pbase the abstract objective of the
system is formulated. The specification pbase is divided into three

subphases: (1) the problem definition subpbase, where the function of
the system is set down in quantitative terms; (2) the operating method

determining subpbase, where structures are sought that are able to

fulfil the requirements; and (3) the design subphase. in which elements

of the system are chosen on the basis of the structure found in the former
subphase. In the realization pbase the system is actually constructed.

During the utilization pbase the system functions, if possible in the way

specified, and in the elimination phase the system is liquidated.

Just like the manufacturing system, the life cycle of a product is also split
into five phases. The phases of the product and the phases of the

manufacturing system are related to each other. The utilization phase of
the manufacnuing system coincides with the realization phase of the
product. How the specification phases of the two are related to each

other depends on which of the two was specified first With an existing
manufacturing system the specification phase of a product is related to

the specification of the manufacturing system. With an existing product

specification the manufacturing system specification depends on the
product specification.

2.3 The Process-Interaction Approach

The Process-Interaction approach is a method for the specification of

industrial systems and for the specification and realization of the

associated control system [Rooda 1987, Overwater 1987, Wortmann et

12 manufacturing systems

aL 1989]. The related language ProcessTalk can be used to make fonnal
and functional specifications of industrial systems [Wortmann 1991].
The ProcessTool supports the specification and realization phase of
industrial systems according to the Process-Interaction approach
[Wortmann 1991]. It is an interactive graphical environment for the
modelling and simulation of industrial systems.

In the Process-Interaction approach an industrial system is considered

to consist of a set of parallel processors connected to each other by
interaction paths. The representation of an jndustrial system as a
collection of processors, with interactions between them and with a
specification of the passive elements, is called a model of an industrial
system. The modelling is always done within the framework of a certain
problem de6nition. One of the main criteria by which a model may be
judged is the degree to which it represents the relevant aspects of the
industrial system. Simulation is used to evaluate the model. One of the
strong points of the approach is that it is possible to use the model of a
control system as the actual control system.

Top-down design is supported by the process interaction approach. The
design of a model usually starts, at a given level of abstraction, with the
definition of the processors and the interaction paths. The processor
executes certain functions, the functionality of a processor is determined
by the interaction ports. These ports connect the processor to the
enviwnment.

Processors

There are two types of processors: expanded processors and leaf
processors. When the model of the processor is described it may be
found that there is still some parallelism inside the processor. This
means that the model of the (expanded) processor consists of parallel

subprocessors with interaction paths between the internal processors
and interaction paths to the re:st of the model (the environment), through

the interaction ports of the processor. The process of expansion may be
repeated, which results in a tree of processors. At the end of such a tree
an unexpanded processor is found; this type of processor is called a leaf
processor. A subprocessor is also called a child processor and the
expanded processor is then its parent processor.

The structure language is the part of ProcessTalk: that describes ex
panded processors in a graphical fonn. A circle represents a processor,

while an arrow represents an interaction path. The name of a processor
is printed in the circle, while the name of an interaction port may be
attached to the corresponding end of an arrow.

manufacturing systems 13

Leaf processors are modelled by a process description. This description
lists the actions a processor has to execute and the conditions under
which these actions have to be executed.

The task language is the part of ProcessTalk that is used to describe the

leaf processors. It is based on the object oriented programming language

Smalltalk~80j which is further described in Appendix A. The task
language is able, among other things, to express: send actions, receive

actions and actions that take time but which are not detailed any further.

The task language is described in Appendix B.

A passive element is always inside a processor. A passive element may
have a value; if it does not, it is the presence of the element that counts.
It is transferred from one processor to another processor through an

interaction path. The state of the model depends on the passive elements

present in the model. A processor changes the state of the model by the
execution of actions. These actions consist of creating a passive element,
receiving a passive element, changing the value of a passive element,
sending a passive element, or deleting a passive element.

Interactions

The transfer of a passive element froID one processor to another

processor is called an interaction. The purpose of an interaction is

communication and/or synchronization. There are two types of inter
action: a send action and a receive action. A send action makes a passive
element available for interaction, a receive action takes a passive
element that is available for interaction.

The interaction (the transfer of the passive element) takes place through

an interaction path. An interaction path is connected to two different

processors. The connection to a processor is called a port. There are two

types of ports: a send port and a receive port. In order to be able to

distinguish between ports, every port has a name. The interaction path

is directed, it starts at a send port and it ends in a receive port. The transfer
of the passive element occurs in zero time.

The send and the receive action specify which port is involved in the

interaction. More than one interaction path may be connected to a send
or a receive port. H a send or receive action involves more than one
interaction path, then the interaction takes place along that path where

the other side was first in executing its receive or send action.

For further detail on the Process-Interaction representation of a model
see [Overwater 1987], and for further information on ProcessTalk (the

14 m.anufacturing systems

structure and task language) and ProcessTool (the modelling and
simulation environment), see [WorOllruill 1991].

2.4 Systems

There are three types of systems: real systems, conceptual systems and
formal systems. Real systems actually exist in the real world. Conceptual
systems are abstractions Or constructions created by the human mind.
Conceptual systems exist only on paper and point towards reality.
Formal system .. are systems that are used to create conceptual systems
[Nauta 1974]. The tenns for these three types of system that will be used
in this thesis are; 'system' for real system, 'model' for conceptual
system and 'language' for formal system [Rooda 1990].

A model is a representation of a system which contains the essential
properties of the system. The essential properties depend on the objective
for which the model is intended. The model can be used to examine and
to predict the behaviour of the system. The accuracy of a model depends
on the effort that is put into the construction of the model and on the
accuracy of the available data. These factors are influenced by the

accuracy that is required.

Modelling is a means to study and design real systems. Modelling is
considered to be an art, which means there are no specific guidelines
which lead to a good model; in fact it is a rather intuitive process.

The use of a model helps in structuring one's thoughts about the system,
in understanding the system's behaviour and in differentiating relevant
data. With a model it is possible to conduct experiments to test the
system's sensitivity to certain factors and to test the effect of changing
the system. It is often difficult or impossible to conduct these experiments
with the real system.

There are two kinds of models: iconic models, which are visual
representations of a system; and symbolic models, which represent the
properties of the system with help of mathematical symbols and relaw

tions [Smedinga 1988J.

Symbolic models are used to perform calculations. There are three kinds
of symbolic models, which are differentiated in terms of the way a

solution is constructed: analytical, numerical and simulation models
[Smedinga 1988 J. All models represent only part of reality and are used
to investigate some aspects of this reality. A disadvantage of simulation
models over analytical and numerical models is that jt is not possible to
prove the mathematical correctness of simulation results. For complex
models it is often impossible to find an analytical or numerical solution.

manufacturing systems 15

In that case simulation is the only possible way to solving the problem.

Before simulation is started, however, a model first has to be constructed;
this model is then transfonned into an algorithm which is run on a
computer.

Real systems are divided into two types: continuous time and discrete

time systems. In discrete time systems variables change discretely with

time while in continuous time systems variables change continuously

with time. Whether a system is discrete or continuous depends on the

view of the observer. Most systems are partly discrete and partly
continuous. In a manufacturing system, for instance, the changes
material undergoes inside a machine are of a continuous nature. On the
level of abstraction where the inside of the machine is not considered,
however, these changes can be viewed as having a discrete character.

In this thesis the systems are factories and manufacturing systems. The

language used is ProcessTalk, which is supported by a tool: ProcessTool.
Only the discrete nature of systems is considered and the model
presented in this thesis concentrates on the control context.

2.5 Hierarchies

Different kinds of hierarchies are found in the control context. Some of
these hierarchies coincide with each other, but most of them are not
completely coupled. This means that the levels of the different hierar

chies are usually intennixed. Much of the vagueness found in the
literature about the control of manufacturing systems is caused by the
fact that the different hierarchies are not distinguished.

Three fonus of hierarchy may be distinguished.

The frrst hierarchical form is the system hierarchy. A system

hierarchy is a control hierarchy. The system controls subsystems,

but the subsystems are not a part of the system. An example is found

in the anny, where a lieutenant commands sergeants, and a sergeant
commands soldiers.

The second form is the model hierarchy, which is a form of

aggregation and decomposition. The system is split into smaller

subsystems, and all subsystems together form the original system.
The subsystem is part of the system. An example is time. A week
is split into seven days, a day into 24 hours, etc.

The third form of hierarchy is the inheritance hierarchy. This

hierarchy classifies systems. An example is the taxonomy of
biological species.

16 manuj(Kturing systems

All tluee forms of hierarchy are found in manufacturing controL The
most striking hierarchy is the system hierarchy. The manufacturing
system consists of resources that are controlled by One (hierarchical)
controller. The manufacturing system executes one or more manufac
turing processes: a manufacturing process consists of operations that
have to be performed to transform the input material into the output
materiaL The resources of a manufacturing system are able to perlorm
these operations. The resource may consist of a central controller and
subresources. The invocation of a manufacturing process is also an
operation. As a consequence the manufacturing system itself is also a
reSOUrce-

Many decisions have to be taken by a controller. The controller often
takes these decisions in a step by step maImer. The control problem is
solved with the use of an algorithm having a hierarchical nature. For
instance, a piece of material can be transported to several resources and
there are more than a single transporter available. In this case the
controller might first allocate the material to one resource and afterwards
allocate the transport job to one of the transporters.

A manufacturing system is controlled by a hierarchical control system.
The manufacturing system also has a model hierarchy, which coincides
with the control hierarchy. The model hierarchy is related to the
configuration of the manufacturing system. The hierarchical levels that
are often distinguished are: factory, facility, shop, cell, station and
machine [Beukeboom et a1. 1989]. The related system hierarchy COn
tains the levels factory controller, facility controller, shop controller,
cell controller and station controller.

Other model hierarchies are concerned with aggregation: aggregated
information is used, especially during planning. 'The demand information
is aggregated and a coarse plan is calculated on the basis of this
information. In different phases, the infonnation is decomposed in order
finally to generate detailed manufacturing commands for the different
machines. Examples of aggregation are: consumers taken together in
consumer groups, products taken together in product families, machines
taken togetheT in machine groups, time intervals taken together to form
longer time periods. These are all examples of model hierarchies.

The product structure also has a hierarchical nature: this is true for both
the material structure and the operation structure. For the material
structme three forms are distinguished: (1) the assembly structure; a
product consists of one Or more parts; (2) the arborescence structure;
different products all are made of the same part; and (3) the general
product structure, which is a combination of the former two [Joensson
1983].

man.ufacturing systems 17

The operation structure of a product has a hierarchical nature, too. The
hierarchy of the manufacturing system (facility, shop, cell, etc.) is also
found in the operation structure. The operation of a facility is discharged
by the execution of operations for shops. The operation of a shop
consists of operations for cells, and so on. Both the product structure and
the operation structure form a. model hierarchy. These hierarchies are
related but do not necessarily correspond to each other on a one to one

basis.

Smalltalk-80, which forms the basis for the task language, uses the
inheritance mechanism and contains a class hierarchy. Every object in
Smalltalk-80 belongs to a certain class; as a consequence all objects in
the model belong to a class. These classes are part of the Smalltalk-80
inheritance hierarchy.

As has been illustrated above some hierarchies coincide with each other
even if they are of a different form. Other hierarchies do not coincide

although they are of the same fonn. In the rest of the thesis it has to born
in mind that two hierarchies do not necessarily coincide.

2.6 Basic components of physical manufacturing

systems

The physical manufacturing system is defined by the operations, the
material, the resources and the recipes. An operation is pelfonned on
material by a resource. The recipe describes the manufacturing process

as a sequence of operations. These concepts are all discussed below.

Operations

An operation is a unit of work that is executed by one resource. There

are operations that are specific to the manufacturing process (which is
determined by the processing technology and the manufacturing ma
chines) and there are operations that also depend on the status of the
manufacturing system. The first are called the processing or value
adding operations, while the second are supporting operations. An
inheritance hierarchy for operations is given in Figure 2.1.

The execution of an operation changes material; input material is
changed into output material. The change is related to the material
properties in the case of manufacturing operations. A verifying opera
tion changes the data about the material. A transport operation change
the spatial location of the material. The store operation is related to a

18 manufacturing systems

Operation

Supporting Operation

MaterialExchangeOperation

t Send Material

ROOeiveMaterlal

Store

Transport

ProcessingOperation

ManufacturingOperatlon

Shape

Transform

~;::
t Remove

Assemble

VerifyingOperation

C Inspect

Tesl

Figure 2.1. The operation inheritance hierarchy.

change of the time coordinate. The material exchange operations are
related to the directing of material interactions between processors.

The processing operations are manufacturing or verifying operations.
Transport, store and material exchange operations are supporting opera
tions. The two material exchange operations, receive material and send
material, are considered to be inherent actions which are perfonned
before and after the execution of another operation.

The processing operations only change jfthe manufacturing technology
changes. Processing operations are static and determined in advance_
The execution of supporting operations depends on the status of the
manufacturing system; for this reason supponing operations are not a
part of the manufacturing process description. Verification operations
are considered as processing operations because these operations usu
ally form an integral part of the manufacturing process.

Several classifications of manufacturing operations have been pub
lished [Spur and Stoeferle 1981, Ehrlenspiel 1985, Burna 1987J. Here

manufacturing systems 19

the following types are distinguished: shape, add, remove, form and

assemble. These operations transform material. For clarity two foons of
material are distinguished: discrete products and bulk goods. Bulk

goods are also considered to include small parts, fluids, gases and so on.

The control system is considered to direct only the manufacturing of

discrete products.

The shape operation creates a discrete product from bulk goods. An add
operation specifies the addition of some material to a discrete product.
This means that a discrete product and some bulk good is transfonned
into another discrete product. Remove means that some material is
removed from a discrete product: this results in waste (a bulk good) and

a discrete product. Form means the transfonnation of a discrete product
into another discrete product. The fonn operation is supposed to change

the geometrical properties or the internal material properties. The

assemble operation means the putting together of two or more discrete
products to fonn a new discrete product. Because bulk goods are
neglected, the operations add, remove and form are abstracted into the
general term. transfonn.

The verifying operations are necessary to achieve a specified quality.

The verification is split into two categories: test and inspect. The test
operation checks the functional performance of a piece of material.
while an inspect operation checks a piece of material in a visual manner
(surface and geometric properties) [Herroelen 1985]. A verifying
operation makes specific information about the state of material available.

The route of material through the manufacturing system may be influ
enced as a consequence of a verifying operation; for example the

material may be reworked, repaired or rejected. Rework means that the

material is processed once again on some resources it has already

passed; repair means some additional operations are exerted on the

material; reject means the material is removed from the manufacturing
system and not processed any further. Other uses of the verification

information are to modify the performance of an upstream resource
(feedback) or to modify the way the material will be processed in a
downstream resource (feedforward).

The transport operation is needed to move material from one resource

to another. The material route through the (physical) manufa.cturing

system is not part of the manufacturing process. The destination of the
material is determined by the controller. This way it is possible to let the

controller decide which resource executes an operation and to realize
dynamic material routes.

The store operation is in fact not a real operation: it is the passage of time

between the receive operation and the send operation. So every resource

20 mtlnujacturirl8 systems

can store material. During a store operation (in general) the material
does not change.

The manufacturing operations assemble, transform and shape com
pletely specify the product. The technology chosen, and the resource
types inside the manufacturing system, dictate which operations are
used to manufacture a product. These operations add value to the
product. The verifying operations are necessary to achieve a certain
quality standard. The verifying operations and the manufacturing opera
tions together fonn the processing operations. These operations form
the recipe and describe the manufacturing process. Material transport is
needed in order to execute a manufacturing process. S tore operations are
used to allow the ma.nufacturing process to proceed in a smoother Or
optimum manner. Material exchange operations command the exchange
of material between processors. The transport, the store and the material
exchange operations are not part of the manufacturing process descrip
tion (the recipe), they depend on the status of the manufacturing system.

Material

A manufacturing system transforms raw material into finished prod
ucts. A resource performs a part of the total transformation. Both raw
material and finished products are called material. The material in the
manufacturing system has a discrete nature. Materials having a non
discrete nature, such as small parts, bulk goods, fluids, gases and waste,
are not modelled; it is supposed that they are taken from an unlimited
supply, or placed in an I.Ullimited store.

Every resource has the same material interface. It is supposed there is a
unit load that is the same in the whole manufacturing system. All
resource batch sizes and capacities are expressed in tenns of this unit;
all material fits into this wlit load.

For a piece of material, a material unit; there is a route through the
resource, which is expressed in terms of operations. The operation that
a material unit has to undergo indicates which type of resource the
material unit needs for dle execution of the next operation. It forms the
basis On which the destination of the material unit is determined. The
status of th~ matelial depends on the progress of the manufacturing
process; the operations that have been exerted on the material, and on the
quality of the material; the way the operations have been exerted on the
material.

manufacturing systems 21

Resources

A resource is a system that executes operations. In a manufacturing
system the operation is pelfonned on a load of material. When the
resource is to execute an operation, the material on which this operation
has to be performed must also be specified. A resource perfonns three

basic actions: receive material, process material and send material. The
process material action is the actual execution of a store, transport or
processing operation. Receive and send material actions are theex.ecution

of a material exchange operation.

Resources are divided into expanded and leaf resources, leaf resources
being machines. Another classification of resources is into processing
resources and supporting resources. Stores and transporters are support

ingresources; all other resources (shaper, transfonner, verifier, assembler
and expanded resources) are processing resources. The resource in
heritance hierarchy is described in Figure 2.2.

The machine is characterized by the fact that it consists of a physical
system (the device) and a control system (the machine controller)
[Rooda 1990]. The machine controller is not considered; only the
interface of the machine with the control system is of interest. The ca~
pabilities of a machine are the operations a machine can execute. The
status of a machine is either idle, receiving, processing, sending or

Resource

Leaf Resource

Store

Transporter

Shaper

TranSfOnner

LVerifler

Assembler

Expanded Resource

Factory

Facility

ShOp

Cell

Station

Figure 2.2. The resource inheritance hierarchy.

22 manufacturing systems

down. The amount of material in a machine is also a detenninant of its
status. All machine types are characterized by a maximum amount of
unit loads they can contain. Another characteristic of the processing
machines is their batch size. Processing machines are able to process
loads of material and this load is characterized by a minimwn and
maximum amount. The maximum amount of material a machine can
contain is equal to its (maximum) batch size. The capacity of a machine
is the amoWlt of material a machine can process per unit of time.

The fWlction of a store can be manifold. A store is used to store goods
before and after processing in order to compensate fluctuations in the
arrival and departure of goods, caused by down times, stochastic
variations in process times and so on. A store is used to prevent deadlock
(see Section 3.5). It is used as an interface between transport systems and
it is used to collect material in order to manufacture a load of material
as a batch. The model of a store is described in Figure 2.3. A resource
of type store only performs the actions receive material and send
material. A send material action is invoked by a send material operation
(material request), the receive material is not invoked by an operation.
The store is connected to an internal transport system (with the ports
inside) and to an external transport system (with the ports outside)

Store> body

I material I
self rec:elveFromOneOI; #('ouISide' 'inSide' 'controller') do:

I :portName ;item r
(item isKindOf: MaterialRequast)

IfTrue:

[material ;m self removeFromBuffer: Item.

self send: material to: item desUnatlon).
(item isKindOf: Material)

ifTrue:

[salf addToBuffer; [tern]]

Figure 2.3. The model of a store.

manufacturing systems 23

A machine of the transporter type moves material from one place to
another without changing the properties of the material. The model of
a transporter is described in Figure 2.4.

A machine of the transformer type changes the material it is processing
and delivers it in a new state. The model of a transformer is shown in
Figure 2.5. A machine of type verifier does not transfonn material, it
collects information about the state of the material it is verifying. Its
model, however, is the same as the model of a transformer.

A machine of the shaper type creates new discrete pieces of material. Its
model is similar to that of the transformer, with the exception that it does
not receive material from the transporter before the execution of a job.

A machine of the assembler type combines two or more pieces of
material and delivers it as one piece. Its model is also similar to the
transfonner, an assembler only receives more pieces of raw material.

Transporter)0 bOdy
I request transportJob origination destination matelialData material report I
request : .. sa" formulateRaquest.
self send: requeslto: 'controller'.
transporwob :~ self recelveFrom; 'controller'.
origination :: transportJob origination.
destination :: transportJob destination.
material Data :: transportJOb material.
self moveTo: origination.

material :- self pick: maieriaiData 'rom: origination.
self moveTo; desUnation.

seH place: material at: destination.

report :~ seH fonnulateReportFrom: transportJob and: material.

self send: report to: 'controller'

Figure 2,4. The model of a transporter.

24 numufacturing systems

outside

Transformer ;>0 body

I request rawMaterlal Job operation finished Material report I
request := sell formuJateRequest.

self send; request to: 'controller',

rawMa.terial :m self recaivaMateriaJFrom: 'outside'.

job :D self racelveFrom; 'controller'.
operation ; .. jOb operation.
finished Material ;a selt execute: operation on; rawMaterial.
report ;m self formulateRepottFrom: jOb and; tinishedMaterial.

san send; repon to: 'controller',
self send Material: tlnlshedMaterisl to; 'outside'

Figure 2.5. The model of a trans/onner,

Recipes

The product structure describes a product, either in the form of an
operation structure or a material structure. The operation structure, or
the 'recipe', is a list of operations that have to be executed in order to

make the product. The material structure is a list of parts that make up
the product. In this study only the recipe is used to specify products.

The operation structure describes the manufacturing process. The
description varies from very simple to very complex and is called a
recipe. A list of sequential operations is a relatively simple form, the
assembling of subassemblies followed by a series of operations on the
assembly is already more difficult. In the following a nwnber of recipe
fonns are discussed: sequence, concurrency, alternative and block. The
inheritance hierarchy of recipes is printed in Figure 2.6. These recipe
forms may be nested to realize complex operation structures. A recipe
consists of a collection of recipe steps; a recipe step is either an operation
or a recipe. A recipe indicates which operations have to be perfonned,

manufacturing systems

Recipe

Sequence

concurrency

Alternative

BloCk

Figure 2.6. The inheritance hierarchy oJrecipes-

25

what type of material is involved and in which sequence these opera
tions have to be executed.

The two basic recipe structures are the sequence and the concurrency. A
sequence is a Ust of recipe steps that have to be executed one after the
other (sequentially). A sequence usually refers to one type of material.
An example is

Sequence
(transform (1) material of type A,
transform (2) material of type A,
transform (3) material of type A).

A concurrency means that all the recipe steps of the recipe may be
executed at the same moment, but also at different times, for instance:

Concurrency
(transform (1) material of type A,

transform (2) material of type B,
transform (3) material of type C).

A concurrency, most of the time, refers to different types of material. If
a concurrency refers to one type of material, the recipe steps of the
concurrency are executed one after the other in a random sequence.
These two recipe structures allow the description of the assembling of
a product, for example:

Sequence
(Concurrency

(Sequence
. (transform (1) material of type X,

transform (2) material of type X,
transform (3) material of type X),

Sequence
(transform (4) material of type Y,
transfonn (5) material of type Y),

assemble (6) material of type X and Y into Z,
transform (7) material of type Z,
transform (8) material of type Z)

26 numu!acturing systems

Other recipe structures permit mOre sophisticated operation sequences
to be implemented. The alternative indicates that only one of the recipe
steps in the list has to be executed. If, for instance, a product can be
manufactured in two ways (way I and way II) then the recipe is as
follows:

Alternative
(recipe specifying way I,

recipe specifying way II)

The block is meant to indicate that more operations have to be executed
simultaneously. All the recipe steps of a block have to be executed at the
same moment. The recipe steps of a block have to be operations, 1llllike
in other recipes the steps may not fonn a recipe themselves. TIlls kind
of structure is necessary in some control situations in order to prevent
deadlock (see Section 3.5) of resources; all the resources involved have
to be ready before the execution of a block may start.

A second situation in which the block is useful is when the second
operation has to start directly after the fmishing of the first operation. A
block mostly refers to one type of material, which means that the
operations of tlle block are executed one after the other. If the recipe
steps of the block refer to different types of material the recipe steps are
executed simultaneously. An example:

Block
(transfonn (1) material of type A,
transform (2) material of type A)

The basic components presented in this section -operations, material,
reSOUrces and recipes M are used to specify the physical manufacturing
system and manufacturing process. The leaf resources, the material, the
operations of the leaf resources, and the recipe with these operations
form the parameters for the control architecture.

2.7 Classification of manufacturing systems

The control architecture is intended for the control of manufacturing
systems. The following classification of manufacturing systems will be
used to discover demands which the architecture has to fulfil. A rough

distinction between manufactming systems is made by considering the
universality of the reSOllTces and the route flexibility inside the system;
this results in the classes flow shop and job shop. A flow shop is
characterized by dedicated reSOurces and a fixed route, while in a job

shop there are universal resources which can be used for many different
operations and many possible routes. For a mOre complete classification

manufacturing systems 27

of manufa.cturing systems there are mOre factors to be taken into

account.

Several classifications of manufacturing systems have been presented
in the literature [Kittel 1982, Van Rijn 1986, Van Rijn 1988]. The
following parameters are distinguished: the material in a manufacturing
system) the recipes of the manufacturing system, the resources of the
manufacturing system (with which the universality of resources and
flexibility of material routes are meant) and the control situation of the
manufacturing system. These parameters are explained below.

The material in a manufacturing system is split into the categories raw
material and finished products. For classification purposes the
commonality ofraw material, the assortment offinished products, the
standardization of fmished products and the material structure of the

finished products are distinguished. On One hand there are manufacturing
systems which use only a few types of raw material for the manufacturing
of their products (large commonality) while, on the other hand, there are
manufacturing systems that use many different types of raw material in
their products (small commonality). The assortment gives an indication
of whether the manufacturing system makes many or few types of
products. The standardization of products plays a role in an assortment,
too: do the products differ only in colour or are they manufactured in
completely different ways? The products of a manufacturing system
also vary in the complexity of the material structure. There are manu

facturing systems that assemble complex products and there are
manufacturing systems that simply transform the raw material.

The control architecture has to be capable of handling the different
categories of material flow in the manufacturing system. Only the effort
required to implement the architecture will differ: a small commonality
and hig assortment result in the need for a lot of data, which makes it a
hig effort to implement the architecture.

The recipes classify manufacturing systems in two ways: (1) the number
of recipes the manufacturing system is capable of executing; and (2)
complexity of the recipes. There are manufacturing systems having a
few recipes and those with many recipes. This classification parameter
is related to the product assortment. The complexity of a recipe has to
do with the nesting structure of the recipes and with the number of
operations that have to be executed to make the product. This parameter
may be related to the complexity of the material structure, but there are

also products that contain no assemblies but that still have a lot of
operations involved in their manuiacrnring. Further in this section a
distinction is made between recipes with a single operation and recipes
with multiple operations.

28 manufacturing systems

The control architecture has to be capable of handling all kinds of recipe
structures: the nwnber of operations in a recipe is limited only by the
computer power. The number of recipes in a manufacturing system is
also only limited by the capacity of the control computer. The architecture,
however, starts from the static situation, where the recipes are known in
advance. Even for situations where many different product types are
manufactured in small series, the architecture will be applicable, if these
recipes are available in advance.

The classification of manufacturing systems with the help of the
reSOlITces allows uS to distinguish two related topics: the universality of
resources and the flexibility of the transport system. On the one hand
there are dedicated reSOlITces that are capable of only one operation and
On the other hand there are resources that can execute a lot of different
operations. The flexibility of the transport system influences the route
flexibility in the manufacturing system. If the transport system is only
capable of transporting material from one reSOlITce to the next, the route
is fixed. If the transport system is capable of transporting material from
any resource to any reSOlITce, then one has maximum route flex.ibility.
The route flexibility also depends on the decoupling of resources, by
which is meant the possibility of processing material in a different
sequences on different reSOUl'ces.

The universality of machines and the route flexibility are usually
related. Dedicated machines mostly form part of manufacturing systems
with a small route flexibility, for instance the flow shop where the route
of the material through the manufacturing system is fixed. Universal
machines often fonn part of manufacturing systems with a large route
flexibility, which then results in a job shop.

The control architecture is intended for the job shop situation, but the
flow shop and other manufacturing configurations having a lower
degree of route flexibility or which contain less universal machines are
in fact simplifications of the job shop and also will be handled with this
control architecture.

The control situation delivers classifying parameters, such as the
uncertainty in the market situation, manufacturing job sequencing
strategy, the production rate and series sizes. The uncertainty in the
market situation is composed of the uncertainty in demand and the
uncertainty in delivery. The uncertainty in the market situation is an
important factor for determining the production strategy, which can be
based on consumer orders, on a fixed production program or on
production for inventory. Production rate and series sizes are usually
related. Production rate is the number of products manufactured in unit
time; series size is the number of products of the same type, manufac
tured consecutively.

manufacturing systems 29

single r"e$ouroo

pa.rallel resources C:=J rasoul'CEl

- material route

resources with fixed route (line)

resources with universal routes

Figure 2.7. The basic resource layouts of a manufacturing system.

The control architecture focuses on manufacturing control and pays

little attention to the interactions with consumers and suppliers. These
interactions are part of the factory controller; all control situations have
to be handled by adapting the control algorithms of the factory controller,

without the need to change the rest of the control architecture.

Up to now we have seen four parameters that classify manufacturing
systems. In the next part only the recipe and the resources of the system

are used to distinguish four classes of manufacturing systems, which are

of interest for the control situation. For the recipe two categories are

distinguished: recipes consisting of a single operation and recipes
containing more than one operation. The resources in the manufacturing

system are characterized by the resource layout. The resource layout is

a function of the number and types of processing resources and the

material routes that can be realized by the transport system.

There are four basic layouts; single resource, parallel resources, re

sources with a fixed route and resources with universal routes. The

layouts are represented in Figure 2.7. The reSOurces with a fixed material
route form a line. It is supposed that in a line material is allowed to pass
a resource on its route without being processed on the specific resource
(skipping). Many layouts forms exist between resources with a fixed

rouk and resources with universal routes. These fonns are all consid

ered to belong to the universal route case.

The recipe is based on the manufacturing process, the recipe has to

correspond with the resource layout. The recipes with a single operation

30 manufaauring systems

Table 2.1. The relation between resource layout, recipe and

manufacturing system classes.

resource

layout

single resource

parallel resources

reSOurces with

fi)(ed rOUte (line)

resources with

universal routes

reCipe

single operation multiple operations

single shop

parallel ShOp flow shop

parallel shop Job ShOp

can be executed by all four resource layouts, but the resources with a
fixed route and the reSources with universal routes behave as parallel
reSOurces to the recipe with a single operation. This results in two
different manufacturing classes: the single shop and the parallel shop.
The recipes with multiple operations can only be executed by the
resources with a fixed route and by resources with universal routes. This
results in the flow shop and the job shop, respectively.

Four basic manufacturing system classes are considered in the rest of
this thesis. These are the single shop, the parallel shop, the flow shop and
the job shop. The classes in relation to reSOurce layout and recipe are
represented in Table 2.1. The parallel shop can be equipped with
identical or different resources, the flow shop may be a pure flow shop
(no skipping) or a flow shop with skipping. A manufacturing system

which does not belong to the classes single shop, parallel shop and flow
shop is al ways regarded as a job shop. In the job shop the same resource
may be visited more than once by a piece of material, which means
cyclic material routes are allowed. This view of the manufacturing
configuration has not considered the stores. The stores are supposed to
be placed at the interface of the manufacturing system with the outside
world, and inside the resources if these are expanded.

Chapter 3

Control of manufacturing systems

3.1 Control concepts

A distinction is drawn between the control system and the controlled
system.. The control system regulates the actions of the controlled
system.. To do this the control system has to have some conception of the
goal that has to be reached. In order to control, there have to be
interactions between the control system and the controlled system. The
control system influences the controlled system with stimuli and it

needs to know the status of the controlled system and the response of the
controlled system to a stimulus. By comparing the response and the
status of the controlled system with the goal, the control system
determines the stimuli for the controlled system. These stimuli are also
influenced by the stimuli the control system receives from the outside
world, called the environment.

The activities in a discrete system have to be triggered and coordinated.
These activities are themselves triggered by signals from the environ
ment. The triggering of the internal actions as a response to stimuli from
the environment is the task of the control system. In some cases the
control system sends stimuli to the environment in order to influence
constraints imposed by the environment and to influence the stimuli the
environment sends to the control system.

The goal of a control system is often defined as a value Or criterion that
has to be optimized. The control system uses a strategy, which describes
the way the goal should be achieved. The way the control system and the
controlled system react to the stimuli from the environment is called the
behaviour of the system. The behaviour of the system is determined by
the goal and the strategy of the control system, by the capability and the
capacity of the controlled system and by the constraints and stimuli from
the environment.

In manufacturing the control system processes information and the
controlled system processes material. The control system directs the
material flow through the controlled system. In the leaf resources, or
machines, the information and material meet each other. Before the
working of the manufacturing controller is elaborated further, we
discuss the jnformation in a manufacturing system.

32 control of ffu11'Iufacturing systems

The types of information in a manufacturing system are configuration
information, the system status, the system history and objects that are
used for communication. The control system has knowledge about the
configuration: the resources that it controls, the physical layout of the
resources and the manufacturing process that is perfonned by the
reSOurCes (the recipes). These data about the configuration are considered
to be unchanged during the control of the manufacturing system.

In order to be able to take its control decisions, the control system needs
to keep a record of the status of the physical manufacturing system. This
record includes information about the material in the manufacturing
system, which operations have been performed on the material, which
operations are being performed on the material by which resources, and
which operations still have to be pedonned on the material. To be able
to evaluate the perfonnance of the manufacturing system, the controller
has to keep track of the history of the manufacturing system. Things like
the up, down and idle times of resources, the process time and the wait
time of material are represented in the form of statistical excerpts.
Records of the events that happen in the manufactwing system are kept
in logs to be able to replay events in order to trace cauSes of errors_ The

statistical excerpts and the logs change over time.

The control system of the manufacturing system regulates the manu
facturing of products: this is done by commanding the resources in the
physical manufacturing system and collecting data from these resources
and sending data to the environment. With the help of the resources the
material is directed through the manufacturing system. The control task
is divided into planning, scheduling and monitoring. These subtasks

result in actions taken by the control system. The control system starts
the manufacturing process, distributes the work to the resources, takes
care of the progress of the manufacturing process and signals the
finishing of the manufacturing process. The controller of a manufac
turing system commands the resources of the manufacturing system and
in this way it directs the material through the system.

The monitoring of the manufacturing system is split into three functions.
The first function is the momentary recording of the progress of the
manufacturing process: the recording of the status of the material that is
being processed. The second function is the recording of the activities
of the resources. Related to these functions is the signalling to the
environment about the status of the manufacturing system and the
process. In the third place, the control has to record and check the overall
performance of the manufacturing system over a longer time interval.

Factories and manufacturing systems have a certain capability and
capacity. They are able to manufacture products, they are designed for
a certain throughput, the manufacrnre of a product has a more or less

control of manufacturing systems 33

defined lead time. These things are fixed in the configuration of the
systems (resources; layout and recipes). The control of the systems has
to fulfil certain criteria concerning such matters as costs and quality. And
the systems have to react to stimuli. The control system uses the system,
with its fixed capability and capacity, by reacting to the stimuli while
optimizing the criteria.

The stimuli for factories are orders for amounts of products; the stimuli

for manufacturing systems are jobs describing loads of work to be
executed. The goals of factories and manufacturing systems differ. A
factory tries to secure its future existence by fulfilling orders as com
pletely and as well as possible, while a manufacturing system has to
execute jobs as rapidly and as well as possible. These goals are translated
into criteria like lead time, throughput and due date reliability. The

factory is an independently operating system; a manufacturing system
is a kind of slave system which is part of the factory. TIlis makes the
factory controller more complex than the manufacturing controller.

A factory receives stimuli: the orders from consumers and material from
suppliers. The factory sends stimuli to its environment: ordexs for
suppliers and, perhaps, advertisements to consumers. The factory control
system has to adjust the petformance of the factory to the market
demand. The capacity of the factory is fixed at the moment the factory
is built, the capacity is based on market forecasts. If the demand deviates
from the forecast it may be impossible for the control system to fulfil the

demand. If demand is higher than supposed; the factory is overloaded
with orders or orders have to be refused. If demand is lower than
predicted the factory is underutilized and this leads to a lower return on
jnvestment. Another difficulty arises from the purchasing of material
from suppliers. If suppliers are unable to deliver or deliver too late, it
may also be impossible for the factOlj' to satisfy the demand.

The manufacturing system receives stimuli from its master. This is a
control system, which sends jobs to the manufacturing system and takes
care of the supply of material necessary for the ex.ecution of the jobs. The
manufacturing system sends stimuli to this master in the form of signals

that it wants work. The capacity of a manufacruring system is fixed,
which means that the manufacturing control system has to ensure that
the system is neither overloaded nor underutilized. But, to a large
degree, this is the responsibility of the master. The manufacturing
controller has to signal to its master that it needs more or less work. It
is the responsibility of the master to use the manufacturing system in the
way it was designed to be used. The manufacturing controller has to
enable the master to do this by realizing a behaviour that is easy to

understand and to predict, so that the master can observe the consequences
of proper or improper usage of the manufacturing system.

34 control of manufacturing systems

Measures of performance

In order to use reSOurCeS efficiently it is necessary to attune the work
load to the capacity. An ideal factory and an ideal manufacturing system
are perfectly balanced (see below), which means that the resoW'ce
capacity is adjusted to a certain throughput level. At this throughput
level it is possible to match the work load perfectly to the reSOurce
capacity. The inventory level is decisive for the work load of the system:
the ideal work point of an ideal manufacturing system is an inventory
level which is equal to the sum of the batch sizes of all machines. In the
ideal manufacturing system, operating at its ideal work point, reSOurceS
are never idle and material never has to wait to be processed. In the ideal
case the work load is equal to the capacity all the time.

The work load, however, is not exactly known in advance: neither the
work load nor the capacity are constant in time. A factory is confronted
with fluctuations in demand, uncertainties in purchasing raw material
and variations during manufacturing. The demanded products, amounts,
order times and due dates required by the consumer vary in time. The
delivery dates of material from suppliers usually are difficult to predict
in advance. The manufacturing process itself is also confronted with
disturbances; capacity fluctuations caused by machine failures, mainte
nance and repair, and yield fluctuations which result in rework, repair
and rejection of material. These disturbances cause the manufacturing
times to vary. Other factors that contribute to variations are differences
in process time for operations, differences in recipes for products,
differences in batch size of machines, differences in batch quantities for
jobs, variations in the product mix that a factory or a manufacturing
system manufactures, and variations in the amount of work a factory or
a manufacturing system is processing.

The perlormance of a factory is related to the amount of products that
the factory manufactures, the costs that are incW'Ied in the manufacturing
of those products, and the prices received for the manufactured prod
ucts. This periormance has to result in (positive) profits, because
otherwise the existence of the factory is jeopardized. The perfonnance
of a manufacturing system, on the other hand, has to do with the relation
between the specified behaviour and the actual behaviour. A manu
facturing system is designed to be able to manufacture a certain amount
of product per hour in a certain process time, under defined constraints
(throughput, lead time, inventory level)_ If the manufacturing system is
operated in the way specified, the performance has to be close to the
specification.

control of manufacturing systems 35

There are three meaSUI'es that are frequently used to assess the perfonn
ance of a factory: due date reliability, mean lead times of products and
utilization degree of machines-

Due date reliability is a difficult measurement, because due dates are
usually created in a negotiation process between the factory and its
consumer. Whether due dates are realizable depends on the agreed due
date (whether it is a realistic due date), on the work available in the

factory, and the due dates of all of the jobs in the factory.

The lead time of products as a performance measure is not trivial.
Different products usually have different process times. If, within a
period of time, many products with short process times are produced, the

mean lead time is smaller than in a period in which most of the
manufactured products have long process times. Another important
influence on lead time is the inventory level within the manufacturing
system. The bigger the inventory level of a manufacturing system, the
longer the mean lead time.

Utilization is a difficult perfonnance measure because it concentrates on
the performance of single machines. The utilization is a function of the
available capacity and load (the amount of orders) assigned to the
factory. If the available capacity is fixed and the load is adapted to the
capacity, the scheduling algorithm has to ensure that the resources are

utilized as efficiently as possible: this means that idle times of resources
have to be minimized, just like set up times.

In order to measure the performance of a manufacturing system, the
intention of the manufacturer has to be hom in mind. The maximum
throughput of a manufacturing system is fixed, a manufacturer wants his
system to manufacture close to the maximum throughput, with short
lead times) small inventories and reliable due dates. In the ideal system,

as we have seen, the wait times of products are zero) as also are the idle
times of resources. The inventory level is equal to the amount of material
all resources in the system are able to process simultaneously. The
performance of the manufacturing system is found by studying the
relationships between lead time, throughput and inventory level.

The lead time as a function of the inventory level is shown in Figure 3.1.
The throughput as function of the inventory level is shown in Figure 3.2.
These relations are found if the manufacturing system is in a steady

state. The steady state is reached if the input rate and the output rate of
the manufacturing system, measured over a period of time, are equal.
This means that during the meaSUI'ement the: inventory level is more or
less constant. There is a relation between throughput, inventory level
and lead time [Little 1961, WiendahI1987]:

36 control of manufacturing systems

Ideal manufacturing YttiOm

r9al manufacturing system

o ~---- __ ~ __ ~~ __ ~ ____ ~ __ L-______ ~ ______ __

o

Figure 3.1. Mean lead time as a junction of the mean inventory level.

an thr h t
mean inventory level

me oug pu ="~ ---------"-------
mean lead time

In an ideal manufacturing system the throughput and the lead time as
function of the inventory level arelike the dotted lines in Figures 3.1 and
32. The lead time is equal to the nominal process time until the system
is saturated. This happens when the inventory level is equal to the sum
of the batch sizes of the machines. From here on the lead time increases
linearly with the inventory level. The throughput, on the other hand,
increases linearly with the inventory level until the system is saturated;
from the saturation point on the throughput remains constant and is
equal to the maximum throughput.

The behaviour of less ideal systems is shown as solid line in Figure 3.1
and 3.2. In such systems the lead time always increases with the increase
of the inventory level but, from a certain point of inventory level, this
increase is linear. This linear increase is equal to the inverse of the
maximum throughput per piece of inventory. The throughput of the
system does not increase linearly but more smoothly, and from a certain
point it remains constant. This saturation point coincides with the point
from where the lead time increases linearly_

The work point of a manufacturing system is determined by the choice
of the mean inventory level. The control system has to try to minimize
the difference between the ideal perfonnance and the real performance.
But the lead time and throughput performance measures depend for the
biggest part on the chosen work point. So, for instance, it makes little

control ofmanu!acturing systems 37

- - - - - ~- ;.-----~----

ideal manufacturing syst.m

real rnanufac:ruring system

o ~~ __ ~ __ ~ ____ ~ ____ L-_____ ~~ __ __

o
m9Qfl InvMlory lov,,1

Figure 3.2. Mean throughput as a junction of the mean inventory

level.

sense to increase the inventory level any further if the system has
reached its maximum throughput. The point where the ideal factory
reaches its maximum throughput at minimum lead time is called the
ideal work point. The representations of the lead time and the throughput

against the inventory level are called the performance graphs. It depends

on the market situation whether the work point for a manufacturing
system is chosen on the "left side' or on the "right side" of the

perlormance graph. On the left side the lead time is relatively short at the
cost of idle machines. On the: right side the machines are intensively
utilized at the cost of long lead times. The control system tries to keep
the inventory level close to a work point. The quality of the controller

is determined by the difference between the ideal lead time at the work

point and the measured lead time at that work point. The best controller

minimizes the difference between these values.

The control system of a manufacturing system tries to operate at the

work point it was designed for. H, however, the master has too few jobs,
this results in an inventory level that lies below the work point, which

means that the mean lead time is also lower than that at the work point.

If there are mOre jobs than are allowed by the work point, these jobs will
have to wait at a higher level (in the master), thus introducing wait

queues at that higher leveL 'The lead time of jobs in the system remains

equal to the lead time given in the perfonnance graph. If the manufac

turing system allows hot jobs Uobs having a higher priority) I this results
in a transfer of the mean lead time. The mean lead time at the work point
will become longer. Thus, the throughput will become lower. The hot

38 control 0/ manufacturing systems

jobs disturb the manufacture of the other jobs so much that the mean lead
time increases [Conway et aL 1967].

Balancing

The process of determining the capacity of a factory Or a manufacturing
system in relation to an expected work load is called balancing. The
balancing of a factory states goals for throughput levels and determines
the necessary resources in a factory. The recipes and the throughput
levels are used to calculate the static work load of the resources. These
static loads are used to calculate the number of resources needed to

achieve the tlrroughput level. These calculations allow the ideal work
point to be defined. By constructing the ideal perfonnance graph, an
impression of the real behaviour of the manufacturing system at the
different inventory levels can be obtained_

3.2 Control functions

The control system is often divided into subsystems that are related to
the functions that have to be perl'onned. Some functions exist as separate

subsystems while others are incorporated in more than one subsystem.
The factory controller incorporates capacity planning, marketing, pur
chasing and manufacturing control. Design, accounting and quality
control are not incorporated in this study. These functions increase the
complexity of the model, wi thout adding to our insight. If need be, these
functions can be added in the future.

To coordinate the activi ty of the resources in the manufacturing system,
the controller has to take decisions on what actions have to be perfonned
by what resources. The tasks of the controller are split into the subtasks
of planning, scheduling and monitoring.

The difficulties associated with planning and scheduling are the combi
natorial nature of the problems, their size and complexity and the
uncertainty in the data, all of which cause deviations between the
generated plan or schedule and reality. Because of the size of the
planning problem it is usual to aggregate information, in order not to

have to consider every detail of the manufacturing process. The possible
aggregations are many. Aggregation of time, aggregation of products,

aggregation of resources, aggregation of operations, aggregation of
consumers, aggregation of suppliers. Aggregation helps in certain ways
to overcome uncertainties; the demand of a group of consumers behaves
less unpredictably than the demand of one consumer. But aggregation

control a/manufacturing systems 39

also introduces new uncertainties: the decomposition process cannot

always be executed in a way that is consistent with the aggregated data.

Aggregation is closely related to the notion of hierarchy. In hierarchical
planning more than one aggregation is applied. A popular hierarchy in
planning is the division into strategic, tactical and operational levels.
These levels have different time horizons, but often also consider
different details for material or products, operations and resources [Hax

and Candea 1984, Joensson 1983]. The hierarchical planning will not
coincide with the control hierarchy presented here. The control archi

tecmre does not contain a hierarchical planning algorithm, if it is to be

implemented in the future it will have to be implemented in one

controller; probably the factory controller.

Planning

The term planning} as it is used in the literamre, has a lot of different
meanings. Here we use the definition given in Hax. and eandea [1984]:
the manufacturing process and the capacity of the resources are supposed

to be fixed and planning is related to the optimal utilization of the

resources under the constraints of fluctuating demand requirements.

The term capacity planning will also be used. In Burbidge [1987}
planning is defmed as the function that provides the control system with
the infonnation to be used to manufacture products, it is related. to the

design of the manufacturing process and the provision and arrangement

of production resources (layout). This is considered to be part of the
specification phase of the system. In the controller a process planning
function is implemented that generates process plans (which are called

tasks) on the basis of the command the system has received and the
capabilities (recipes) of the system. Kempf [1989] relates planning to

the decisions concerning the use of capabilities of resources in order to

manufacture products which are described by design engineers. Kempf's
[1989] definition is used here for the term balancing.

In this thesis planning is divided into subfunctions: capacity planning,
purchasing, process planning and process interpreting. Capacity plan

ning ensures that the resources are utilized on a more or less constant

level in time. This function is only found in the factory controller, it
decides whether a new order is accepted Or refused and it generates, if
necessary, manufacturing jobs for which no orders have yet been
received. The purchasing function takes care of the ordering of raw

material from the suppliers. The purchasing function is also only found

in the factory controller. The process planning function, with help of the

recipes, defmes the way material is manufactured. The process inter
preting function is needed to detennine the next operation a piece of

40 control a/manufacturing systems

material has to undergo. This new operation is determined from the
process plan and the infonnation about the status of the material.

In this thesis the planning of the recipes is not considered. It is related
to the product and the technology that is used to manufacture the product
and lies outside the scope of the present work. The balancing problem
is concerned with the attuning of the production capacity of a factory to
the expected market demand. The balancing of a factory states goals for
production levels and considers the necessary capacity of the factory.
Because the configuration of the factory is supposed to be static, this
function is performed before the control system starts to operate and it
is not considered as a part of factory control.

The term capacity planning is used for the function of the factory
controller that states norms for the manufacturing system, which are
based on expected and real demand. Capacity planning tries to satisfy
demand as well and as far as possible and to utilize the system as well
as possible. Problems in satisfying consumer demand have two aspects.
Demand is characterized by its random character, with peaks that are
often bigger than the maximum production rate of the manufacturing
system. On the other hand, the consumer demands delivery times that
are often not realizable with. production to order. The means by which
the capacity planning can absorb demand fluctuation are the variation
of production rate by adding production capacity Or introducing idle
times, Or the spreading of production over time and introducing in

ventories. If these do not work, management has to negotiate with the
consumer to introduce delays and backlogs, or has to refuse orders. The
means by which delivery times are reduced are based on the same
principles.

Scheduling

Scheduling is the assigning of a start time and a completion time to an
operation, together with the specification of the material and the
resoW'ce involved. This assignment depends on the operations the
material has to undergo, on the operations the resource is able to execute,
and on the capacity available for operations in the manufacturing

system.

The scheduling problem is classified in the literature [Graves 1981] as
being either dynamic or static and either detenninistic Or stochastic. In
practice a manufacturing system is dynamic and stochastic. 'Dynamic'
means that jobs anive during the time considered, 'stochastic' means
that some events in the system have a random nature. These events are
the demand of jobs, the process time of a job, the breakdown of

control of manufacturing systems 41

machines, and errOrS during the execution of an operation which lead to

rework, repair or rejection of material.

In a manufacturing system material is directed aCross the resources as
efficiently as possible. The efficiency is usually realized by the opti
mization of a measure of performance (the optimization criterion) that
is related to the resources or to the material in the manufacturing system.
Scheduling analyses the future in order to take decisions that are to be

executed in the future. The optimization attempts to maximize the

perlonnance of a manufacturing system. Unlike planning; scheduling is

not concerned with negotiations with consumers, but rather with the

work that has to be executed. by the resources. Scheduling receives its
jobs from planning or from a master controller.

Scheduling is about taking decisions concerning the sequence in which
operations are executed wheIl; and on what resources. The subfunctions

of scheduling are releasing~ allocating, sequencing and dispatching.

Releasing has to do with the moment of release of new material in a
manufacturing system. In order to do this the controller has to take

decisions and to communicate. The allocating function decides on
which resource material is processed. The sequencing function decides
on the sequence in which material is processed on a resource. Both
allocating and sequencing are related to taking decisions. The dispatch
ing function takes care of the sending of a command to a resource.
Dispatchlng has to do with the communication; no decisions are

involved.

The releasing of a command or material in the manufacturing system is

very important. The material that is released has to be processed on the
necessary resources. If too much material is released into the manu
facturing system, the system becomes overloaded. An overload results
in extremely long lead times of the material, and in high inventory

levels.

In the literature the sequencing of commands to resources has been more

extensively researched than the releasing of jobs to a system. But recent
findings show that a releasing strategy is as important as, if not more

important than the sequencing strategy [Lou and Kager 1989, Lozinski
and Glassey 1988, Glassey and Resende 1988, Wein 1988; Wiendahl
1987].

When looking at scheduling (especially the subfunctions releasing~

allocating and sequencing) one finds that there are two extreme ap

proaches: predictive scheduling and reactive scheduling [Kempf 1989].

But both methods have thei.: disadvantages: predictive - the future is

never the way you planned it; and reactive - if you had known things in

advance you always could have done better. A purely predictive schedule

42 control of manufacturing systems

is difficult to calculate and has to be recalculated every time something
goes wrong. With big, complex systems in particular, this results in a lot
of useless calculations, which is why a reactive approach is preferred.
This means that a decision is taken at the moment the actual choice
oCcurs. If system performance can be increased by including prediction
this may be done by signalling future choices. But lhis signalling, or
claiming, has to be kept to a minimum.

Predictive scheduling is characterized by the fact that the scheduler
calculates a schedule in advance. This schedule states the time at which
a resource has to perform operations on material. The calculation of an
optimal schedule is in practice not possible, it takes too much time. Even
the calculation of semi-optimal schedules, with reasonable scheduling
problems, requires long computation times. Large problems often
remain impossible to solve. Once a schedule has been calculated it is
used to strut all action on time. But small disruptions make the rest of the
schedule invalid, precautions have to be taken so that the deviation
between the reality and the schedule is kept to a minimum, Or a new
schedule is calculated with the disruption included. A schedule is~ fot

instance j only valid for the static case if no new jobs arrive during the
processing of the jobs in this schedule.

A different approach to calculating a schedule in advance is to take
decisions when a choice problem appears: reactive scheduling. TIris
approach is used in this study. When considering a reactive algorithm
two kinds of decisions have to be taken. Material becomes available and
has to be allocated to a resource and there is more than one resource idle
and capable of processing the material; the allocating problem. Or a
resource comes available and there is more than one piece of material
waiting to be processed. Some material is chosen: the sequencing
problem. In this case sequencing rules are used to differentiate between
the different possibilities. The use of sequencing roles results in non
delay schedules. A lot of sequencing rules have been described in the
literature l Pan walker and Iskander 1977, Montazeri 1987] but no simple
rule has been found that functions well in all situations. Every case has
to be considered separately to find good sequencing rules. The effec
tiveness of a sequencing rule depends, among other things, on the
optimization criterion that is used, On the resource configuration and on
the manufacturing process.

The dispatching function is concemed with communicating the deci
sions of the controller to the resources. Because of this, dispatching
strategy is closely related to the allocating and sequencing strategy of
the controller. The dispatching algorithm of a controller has to be
consistent with the releasing algorithm of the resources in the manu-

control of rru.lnujacturing systems 43

factoring system. The releasing algorithm of a controller has to be
consistent with the dispatching algorithm of the master controller.

In order to solve the scheduling problem the controller may want to
know what the performance of the resources is. Estimations of process
times, down times and yield are needed. These data are recorded during
the functioning of the manufacturing system. If the recorded data are
used for scheduling purposes, great care has to be exercised because this

recording results in a feedback loop which may lead to instabilities.

Release strategies

A conunon release strategy is the use of unifonn starts, where new work

into the manufacturing system is released at a constant rate equal to the
desired throughput. The unifonn starts rule is an open loop strategy, the
release rate is independent of the status of the manufacturing system
(e.g. the inventory level). Another release strategy is the fixed-work-in
process rule (Fixed-WIP), new work is released at the moment the
manufacturing of a product is finished. The work load regulating input
policy [Wein 1988] releases new work in the manufacturing system if
the total amount of remaining work for the bottleneck resource falls
below a prescribed level. The release rate is derived from the throughput
of the bottleneck. The starvation avoidance (SA) rule [Glassey and

Resende 1988, Lozinski and Glassey 1988] is similar to the work load
regulating input policy, but it uses a virtual work load which is the wOrk

content expected to anive at the bottleneck within a given time. New
work is released if the virtual work load falls below a given level. Work
load oriented job release [WiendahI1987] uses a fixed plan period for
which planned values of throughput, lead time and inventory level are
detennined. Work is released in such a way that the start inventory plus
the released work (both expressed in hours) is equal to the sum of

planned mean inventory and the planned finished work. Per reSOurCe an
estimate of the work load is made and if this work load exceeds a
predetermined limit, the release of work in the planning period is
stopped.

Priority rules

Some priority rules and their classification are mentioned below. All
these rules are intended for the sequencing problem: the allocating
problem is usually solved on a first-come-first~served basis or ran

domly. Of course it is possible to use other priority rules to solve the
allocating problem.

control a/manufacturing systems

Priority rules related to processing time use the process time of a
command or the process time of the supercommand (the command from
the master) Or the order to which the command belongs, to discrim.inate
between commands. The SPT rule (shortest-process-time) gives the
highest priority to the command with the shortest process time. The
SRPf rule (shortest-remaining-process-time) gives the highest priority
to the command that belongs to the supercommand that needs the least
process time to finish.

Priority rules related to due dates base their choice on the due date of the
command or of the supercommand or the order to which the command
belongs. In the first case a due date for every command is derived from

the due date of the supercommand or order. Examples of priority rules
are the EDD rule (earliest-due-date) which gives the highest priority to
the command which belongs to the supercommand or order with the
earliest due date. The OPNDD rule (earliest~operationa1-due-date) uses
the due date of the conunand.

Priority rules related to arrival times and random rules use the sequence

of arrival of commands to discriminate between them. A very well
known rule is the FIFO rule (first-in-first-out) Or PCPS rule (first-come
first-served). The command that arrives first has the highest priority.
LIFO (lastmin-first-out) or LCFS (last-come-frrst-served) gives the
highest priority to the command that arrived last. Instead of the arrival

time of the command the arrival time of the order or superconunand can
also be used. The RANDOM rule chooses a command from the queue
at random.

Other priority rules are related to the nwnber of operations or are related
to costs, for instance by using the economic value of commands to

discriminate between them. Priority rules related to slack use the
difference between the time needed to execute a conunand and the time
available to execute the command to assign a priority to a command.
Priority rules related to resources use the work in the queue of the
resource which is to be visited after this reSource by the command, in
order to discriminate between commands.

Simulation

Besides priority rules, simulation may also be used to decide which
material has to be processed first. In this case the different possible
choices are simulated in a model. The simulation resul ts in a performance
report for a number of possible choices. The choice that leads to the best
perfonnance report is chosen. Por the simulation an exact status of the
system has to be fed to the simulator in order to obtain a reliable result
[Doulgeri 1987, Doulgeri ct at 1987, Steyns 1991]. Simulation is used

control of manufacturing systems 45

to determine differences between the transforming of one piece of
material and the transforming of other pieces of material. The simula
tion uses priority rules and the material used in the simulation with the
best result is also used for the real command.

Monitoring

Monitoring is concerned with the processing of information from

resources. When we speak about the job progress recording subfunction
we mean the recording of the progress of a job that informs the process

inteIpreting function about the new status of the material and that signals
the finishing of a job. The resource activity recording function keeps
track of the momentary status of resources in order to be able to allocate
new jobs to resources. The perfonnance measuring function collects
statistical excerpts of the resources to be able to keep track of the
perfonnance of the system.

The events in the manufacturing system are recorded. To be able to
direct the material through the manufacturing system information on the
material is kept (job progress recording). This information contains the
operations that are perfonned (past), the operation that js being performed,
together with the resource involved (present), and the operations that
have to be perfonned (future). Further information needed for sched~
uling is the due date and the arrival date of the material and information
related to processing time: the process time (left to be executed), the wait
time and the lead time of the material.

To be able to command the resources infonnation is kept about the
material processed by the resources (past), the material in progress in the
resource (present) and the material waiting for the resource (future)
(resource activity recording). Because the material processed by a
resource increases in time, it is possible to keep only statistical excerpts
about the past or to record only the m.aterial that was processed the last
24 hours. It also has to be known of a reSource whether there is still free
capacity and, perhaps, when this capacity became available. To evaluate
the perfonnance of a manufacturing system information per resource is
collected and infonnation about the way jobs from the master are

executed is collected.

When considering the manufacturing system perfonnance (perform
ance measuring) the mean lead time, the mean input, the mean throughput,
the mean inventory level, the due date reliability and the yield are most

interesting. Because not all jobs have the same work contents, the
parameters lead time, input, throughput and inventory level are also kept
in a weighted fonn, with their process time (;;;;;; work contents) as their
w!:ight. The due date reliability plays an important role at the factory

46 control of manufacturing systems

level; the other measures are important at all control levels. Every
resource has to record these values. For leaf resources the idle time, the
busy time and down time are also of interest. Looking at the jobs from
the master, the process time, the wait time and the lead time per type of
job are of interest. The type of a job is determined by the operation.

Part of the pedormance measuring is a logging function for material and
for reSOurces. These lists are used to replay the events in the manufacturing
system. This information is especially interesting for an analysis of the
behaviour of the manufacturing system in relation toerrofS thatoccUITed.

3.3 Control configuration

In this section we discuss the factors that influence the control con
figuration, dealing in turn with the controller hierarchy, the possible
classification of controllers by distinguishing the stimulator (consumer
or supercontroller) and the controlled reSOUIces (expanded or leaf
resources). This results in four controller categories, which are applied
one or more times to obtain a hierarchical controller. The distribution of
the control tasks in relation to the availability of information is discussed,
just like the kind of decisions that have to be taken and when these
decisions have to be taken.

(X>ntroll/t,

oLJt&ido

outBidlii

Expanded
Resource

Figllf'e 3.3. The system and model hierarchy of a manufactw·ing

system with one expanded resource.

control o/manufacturing systems 47

The relation between recipe structure, system hierarchy and the influ
ence of the controller is discussed with reference to an example,
followed by a discussion of the controller decisions. These decisions are
related to material exchange, transport and the processing of material.
The generation of thege operations and the time at which the commands
are sent will be described.

Here, a manufacturing system is considered to be a system with one
central controller, one transporter, one store and one or more processing
or expanded resources (Figure 3.3). A manufacturing system itself
fonTIS an expanded resource. The control system of a manufacturing
system has a tree structure; the nodes are formed by the controllers, the
branches by the connection between the controllers, the leaves are
formed by the leaf resources (= machines). Two controllers which are

connected by a branch have a super/sub relation. The highest of the two
is the supercontroller (master), the other the subcontroller. The topmost
node is the central controller (the factory controller). this controller has
no supercontroller. Controllers that are equally distant from the central
controller (which means the number of branches between the central
controller and the controllers is equal) form a so-called control layer.
The vertical direction is related to the super/sub connection between
controllers. The horizontal direction has to do with controllers of the

same layer.

The processors of a manufacturing system exchange two kind of

objects: information and material. In the machines the material and the
infonnation meet. Controllers process only information. The material is
transported by transport systems, the stores of resources constitute
interlaces between the different transport systems. Material is exchanged
between resources and there are always machines involved

A disadvantage of an extra control layer is the introduction of extra
transport systems and stores. This complicates the material route and it
increases the material handling time and the material waiting time. It is
possible to share transponers and stores between expanded resources;
this, however, complicates the control problem substantially, and from

that point of view it has to be avoided as far as possible. In this study a
controller will always be associated with its own private transporter and
store.

The character of the control system is determined by two factors. First,

the controller is either independent and receives its stimuli from the
consumer, or else the controller is a slave and receives its stimuli from
a supercontroller. Second, the controller controls expanded resources
which are decoupled by their internal stores, or the controller controls
leaf (processing) resources which are coupled. Leaf (processing) re
sources Or machines are coupled because these do not contain intemal

48 control a/manufacturing systems

Table 3.1. Controller categories.

stimulator

resources

decouplad
processing
resources

coupled
processing
resources

consumer

factory controller
controlling

expanded resources

factory controller
controlling

leaf resources

superoontroller

manufacturing cootroller
controlling

expanded resoul'OOS

manufacturing controller
controlling

leaf resources

stores (see Section 2.6), which means that a leaf resource cannot start

receiving and processing new material until the processed material has
been removed. This leads to four controller categories, as shown in

Table 3.1.

The (independent) factory controJ1er is concerned with the interaction

of the factory with consumers and suppliers. The interest is directed at

the allocation of work to capacities; here the goal is to meet consumer

demands as welJ as possible. Factors like lead time, throughput and due

date playa rok. The factory controller accepts Or rejects orders, with the

help of the configuration information, the status infonnation of the

resources and the already accepted orders. The capacity planning plays

a key role in the acceptance of orders. The (slave) manufacturing

controller has to execute the work it is offered; the goal is to minimize
the lead time at a given throughput. The controller has no possibility to

refuse the execution of work, it has to allocate material to resources and

to sequence material on resources. The process planning specifies with

help of the recipes how the material is to be manufactured, and is found

in both types of controllers, just like the other functions) scheduling and

monitoring.

The controller of leaf processing resources has to avoid a system

deadlock. A machine has no intemal store, it is necessary to remove the

material at the moment a machine has finished processing and the

destination machine has room for the material and has not started

processing. The problem of deadlock is not considered for the controller
of expanded resources: it is supposed that the stores are big enough to

store the material that is waiting to be processed. The actions that have

to be directed have a much more parallel character, many actions are
independent of each other, in some circlUllstances the actions disturb

each other.

control of manufacturing systems 49

In the hierarchical control system, the responsibility for material is
transferred from one controller to another controller or to machines. The
control strategy specifies when the responsibility is delegated. By using
more control layers it is possible to distribute the control of a manu
facturing system. The control task of the highest controller is more
general. A controller in a high layer processes aggregated data. The
decisions that have to be taken are spread more widely in time and
concem less details.ln the sub layer only a subset of the control problems

is concerned, but in greater detail and also in smaller time ranges. As a

consequence there are more but simpler controllers and the control tasks
are distributed over several controllers. A disadvantage of more hier
archical layers is that a controller not only has to take more general
decisions, these decisions are also based on more general information.
TItis can only be avoided with a heavy increase of the conununication
volume between controllers.

Sometimes detailed data that allow the best decision to be taken are not
available to the responsible controller. This information is either present
inside one of the resources, Or else outside the system. In the flIst case
extra conununication is necessary to make the information available to

this controller. fu the second case two situations are distinguished. First,
the infonnation is available at a higher level, which means that the
decision has to be taken at that higher level. Second the information is
available in the same layer or in a lower layer, in which case the
information has to be transferred to a higher common controller. This

controller also has to take the decision.

Information is exchanged in the vertical direction, status information
from bottom to top and commands from top to bottom. Decisions that
involve global information have to be taken at the top. If information
from inside the resource only is needed, the decision can be taken in the
resource controller. AcontroUer may know what happens in the resources
or in the expansion of resources. Information from resources that are not
downward connected is not present in a controller.

Resources do not necessarily process material from their store in a first

come-flIst~served order. This is one of the reasons why a resource has
stores. The sequence in which material is processed is a responsibility
of the resource controller. This has the disadvantage that the sequence
depends only on the status inside the resource. If status information from
outside the resource is necessary to determine the sequence then this
decision has to be taken at the level where this status inforrnation is
available. On the other hand the suboptimization by a controller may
disturb the optimization that the supercontroller intended to reach.

The optimization of the performance of a manufacturing system de
pends to a degree on the scheduling. In order to realize a global

50 control of manufacturing systems

optimization, scheduling decisions have to be taken at the top level,
taking into account all detailed status information at the lower levels. or
else the resources have to execute operations in a determined time. The
first situation leads to controllers between the top and the machines that
merely pass on information. In the second case the resources have to be
inflexible with no scheduling possibilities for the controllers below the
top controller. In the ideal case (to reach global optimization) scheduling
problems are solved as far as possible in the top layer of the controller
structure, the number of control layers is kept as small as possible, and
the lower layers are increasinglY inflexible with decreasing uncertainty
in their behaviour.

The hierarchical structure found in the control system is also found in
the description of the manufacturing process: the recipes. A recipe is
started or invoked by an operation and the manufacturing system is the
resource that executes this operation. Usually the recipe contains a
number of sub (processing) operations that have to be executed on the

Resource (mOdel) hierarchy

Shop1

L-Celll

I-- Station1

LSlalion2

Recipe (model) hierarchy

Shopl capabilities:

ShopOperation 1 -" sequence (celiOperation 1 on ce1l1)
CeUl capabilities:

celiOper'ation1 -> sequence (statlonOperatiool on station 1 ,

stationOperatlon2 on station2)

Stationl capabilities:

stationOperatlon1 -> ... (2 hours)

Station2 capabilities:

stationOperation2 "> ... (4 houts)

II Shopl capabilities:

shopOpera1ion1 "> sequence (celiOperationl on cam,
celiOperation2 on cell 1)

Celll capabilities:

celiOperation 1 -" sequenCfij (stationOperation 1 on station 1)
celiOperatlon2 -:;. sequence (stationOperatlon2 on station2)

Stationl capabilities:
stationOperation1 -> .. , (2 hours)

Station2 capabilities;
stationOperation2 "> ... (4 hOur'S)

Figure 3.4. Example of relation between system configuration hierarchy

and recipe hierarchy.

control oj manufacturing systems 51

resources in the manufacturing system. The recipe hierarchy and the
control system hierarchy, however, do not necessarily correspond in a
one-to-one relation. There may be fewer resources than operations or
fewer operations than resources.

The recipe cOnfiguration influences the scheduling poSSibilities of a
controller. The next example illustrates this problem. A shop contains
one cell and the cell contains two stations. The factory control level is
omitted in this case because it does not add any value to this control
aspect. The manufacturing process consists of an operation on stationl
followed by an operation on station2 (Figure 3.4).

In situation I the shop controller starts the manufacturing process with
the sending of operation cellOperatonl to the cell. The cell controller
sends first stationOperationl to stationl and afterwardS it sends
stationOperation2 to stationl. In situation II the shop controller first
sends ceUOperationl to the cell, the cell controller sends in reaction
stationOperationl to station!. Mterwards the shop controller sends
cellOperation2 to the cell and the cell controller then sends
stationOperation2 to station2.

It is seen that the influence of the shop controller on the progress of the
manufacturing process differs for both recipe configurations. In sima
tion I the cell controller decides the start of operations on the stations.
The shop controller is able to influence the start of stationOperationl,
by delaying the dispatching of cellOperationl. If, for the execution of
shopOperationl, it is important that the shop controller is able to
influence the start of operation stationOperation2, the recipe configura
tion of situation II has to be used. The shop controller needs the status
of the two stations and the commands from the shop have to be sent
straight away to the stations. Both pass via the cell controller. This
situation II degrades the cell controller to an information passer, the
transport between the two station operations now becomes a responsi
bility of both the shop and the cell controller. The shop controller has two
consecutive operations without transport in between. This is an wlUsual
situation, most of the times between two operations the material has to
be transported from one resource to another. Material flows from cell
store to stationl, to the cell store, to station2 and back to the cell store.

Types of operations

To control the manufacturing process three kinds of operations are used:
processing operations, transport operations and material exchange
operations (see Section 2.6). These operations are defined before the
start of the manufacturing process or on line during the execution of the
manufacturing process_ All operations the material has to undergo may

52 control of man.ufacturing systems

be fixed beforehand. A second possibility is to fix only the processing
and the transport operations and generate the material exchange opera
tions on line. The third possibility is to generate both the transport and
the material exchange operations on line. This means that only the
processing operations are fixed. The most complex situation arises lithe
processing operations are also variable and depend on the way the
manufacturing process is executed and the manufacturing system sta~
tus. Verifying introduces the possibility of changing the COurse of the
manufacturing process.

The processing operations are deduced from the manufacturing technoJ
ogy that is chosen, and from the resources that are applied in the
manufacturing system. The freedom of choice for these operations is
restricted. The support operations (transport and material exchange),
too, depend on the operational status of the manufacturing system.
Because of this it is prefen-ed to leave the support operations out of the
manufacturing process description (the recipe) and let the controller
generate the appropriate support operations on line. It also means that
the recipes are usable for all manufacturing systems that are based on the
same manufacturing technology.

When commands are issued

The controller directs the actions in the manufacturing system; there are
several strategies possible for the perfonnance of this task. In this
section we discuss the moment at which a command is issued. The
commands are divided into the categories: material exchange, transport
and processing.

Material exchange commands

The material exchange is considered first. With material exchange a
transporter is always involved. The moment to issue a material exchange
command is evident. This has to happen when both sender and receiver
of material are physicaJly connected and ready to pass material. The
send orreceive material command is given at the moment the transporter
has arrived. An exchange command may only be given to a resource if
the material is present in the resource. If material exchange commands
are given in an earlier stage reSOurces become blocked, which disables
further material exchange with the resources involved.

The send and receive material commands may be send by the controller
to the transporter and another resource. The other resource is either a
store, an expanded reSource or a processing machine. If the resource is

control of manufacturing systems 53

expanded the subcontroller has to pass the exchange command to the
store involved.

Material exchange commands are needed because material does not
necessarily leave stores and processing machines in the sequence it
entered. The simplest way to control material exchange is by letting the
transporter send infonnation about the material it want .. to receive from
a resource (send material command). The receive material command is

superl1uous, it is incorporated in the sending of material} under the
condition that the material receiver (a store Or a processing machine) is
ready and able to receive and identify the material. This solution makes
storage independent of the manufacturing controller. The rnanufacN.r
ing controller only invokes the transport connnand and, after the
executionoftheconunand,itreceivesatransportreport, whichconfinns

that the material is stored in the destination resource. As a consequence
the manufacturing controller does not know what material has arrived
in and has left its store. In our model the transporter will send "send
material" commands (or material requests) to stores and processing
machines and "receive material" commands will not be issued.

Transportcolnnnands

A transport command is issued after the material has become available
for transport. There are two extreme moments in time to send these
transportcoromands. Start transportation at the earliest possible moment}
when a processing resource has completed its operation or when
material arrives at a manufacturing system (early transport). Or start
transportation at the latest possible moment when the destination
processing resource is ready to start a new operation (late transport). The
transport command is sent by the controller to the transporter.

With early transport the controller has to know what the destination of
the material is at the moment a processing operation is finished. In case
of multiple destinations, a choice between destinations may have to be
made before the resource is available. This disadvantage can be over

COme by avoiding the possibility of multiple destinations; by configuring
resources in such a way that resources which perform the same operation
have a common input store, for instance. An advantage of early transport
is the good overview that results. All material is waiting in the store of
the resource that is going to process the material.

With late transport material always anives too late, the transport starts
when the processing resource becomes idle. The resource remains idle
during the transport of the material. The overview of the manufacturing
system decreases. The material that has to be processed on a resource is
waiting in expanded or processing resources that just have processed the

54 control oj manufacturing systems

Table 3.2. The activities as a/unction of material position and

rCJponsible control level /01' early transport.

position
responsible control level

of material
manufacturing

controller resource

store Schedule transport capacity

transporter transport material

resource1 SChedule resource1 capacity

process material

SChedule transport capacity

transporter transport material

resource2 schedule resource2 capacity

process material

etc.

material or it is in the store of the manufacturing system. Multiple
destinations, however, do not cause any problems.

Tables 3.2 and 3.3 show at what material position control decisions are
taken. With early transport the material arrives in the store, here the
controller schedules the material to the transport capacity. The material
is transported to the resource. Mter the material has arrived in the
resource, the controller schedules the material to the resource capacity.
The process command is sent to the resource and the material is
pwcessed in the resource. After the material has been processed the
material is scheduled to the transporter again illld so on. From Table 3.2
it is clear that it is impossible to use early transport for the control of
(coupled) leaf resources. It is impossible to put material into a busy leaf
resource and schedule it to dIe leaf resource afterwards. The capacity of
a leaf resource has to be available before the material is transported to
it. With late transport the material is scheduled to reSource capacity and
afterwards the material is scheduled to transport capacity. Then the
material is transported, the process command is sent and the material is
processed. This cycle repeats until the manufacturing process is fin
ished. Only after the last processing operation the material is scheduled
right away for transport to the store. Other strategies for sending
transport commands are possible: use late transport for the operations

control o!mtmu!acturing systems

Table 3.3. The activities as a/unction o/material position and.

responsible controllevelfor late transport.

responsible control level
position

of material manufacturing
controller resource

store schedule resource1 capacity

schedule transport capacity

transporter transport material

resourw1 process material

schedule resource2 capclty

schedule transport capadty

transporter transport material

I'EIsourC92 process material

etc.

S5

that can take place on multiple resources and early transport for
operations that take place on unique resources, or start transportation a
short time before the destination resource becomes idle. In Our model
(factory and manufacturing) controllers of leaf resources apply a late
transport strategy. For controllers of expanded resources either an early
or a late transport strategy may be chosen. The late transport strategy is
implemented in such a way that it is possible to start transportation
before capacity is available in the destination resource.

Processing commands

A reSOurce cannot process material for which it did not receive a
command or execute a command for which the material has not arrived.
The issuing of processing commands leads to two extreme strategies:
material driven and command driven manufacturing. The earliest mo
ment to issue processing commands is when the manufacturing process
is started. This way of issuing commands leads to a material driven
manufacturing system. The other possibility is to issue processing
commands in order to start the processing of the material. This is a
command driven manufacturing system.

controt of manufacturing systems

In a material driven manufacturing system the route of the material is
fi xed at the start of the manufacturing process. The fixing of the material
route has a big disadvantage, it reduces the on line route flexibility. In
case of machine failure, for instance, it is impossible to change the route
to a resource that has not broken down. The arrival of material at a
resource triggers the execution of the manufacturing process. The
bottom controller (of the leaf resources) has to collect all processing
operations and is able to schedule these, thus realizing local optimiza
tion. The scheduling of transport operations is the only way to enable
some global optimization. One way to implement a material driven
strategy is by connecting the recipe to the material, and to use this for the
control of the resources_

A command driven strategy sends a command at the moment that an
operation has to be started on a reSOurce. This means that the controller
decides at the; latest possible moment which resource is to be used to
process what materiaL Global optimization is possible and material
routes are determined during the manufacturing process. The controller
needs the status of the resources to start operations, so the resources have
to send their status information to the controller. The command driven
manufacturing system has to take care of transport before the actual
process command is issued. Our model is based on a command driven
control strategy.

The configuration of the controller is influenced by the. way in which it
is stimulated and by the type of the resources controlled. Two categories
of control configuration may be distinguished on the basis of the
stimulator: the factory controller and the manufacturing controller. The
factory controller implements the following functions: capacity plan
ning, marketing, purchasing, process planning, process interpretation,
allocating, sequencing; dispatching order progress registration, resource
activity registration and perfonnance measurement. The IllaIlufacturing
controller implements the functions of process planning, process in
terpretation, releasing, allocating, sequencing, dispatching, job progress
registration, reSOurce activity registration and performance measure
ment. Other factors influencing the controller configuration are the
strategies chosen for commanding the material exchange, the transport
and the processing. The total control system configuration is determined
by manufacturing process constraints, resource constraints and control
constraints. Here factors such as the nwnber of control layers required,
the need fol' infonnation, the availability of information, the need for
global optimization and the way the recipes are built up playa role. In
the next section the communication between controllers is considered.

control oj manufacturing systems 57

3.4 Communication protocol

The controller of a manufacturing system communicates with its master
(superconttoller) and its resources. The pUIpose of communication is

the exchange of information and the synchronization of actions. The

communication provides infonnation from and to the supercontroller to

and from the controller, to enable the controller to receive commands for
executing a manufacturing process (releasing), and it provides informa

tion to resources, to start the execution of operations in the resources

(dispatching). The communication takes place with the exchange of

objects, which are either commands from the controller or statuses and
results from the resources. The commands for resources start the
processing of material or request infonnation. The results are responses

to commands, while statuses are not necessarily related to a command.
The status or result contains information about the status of material

and/or information about the status of resources: information about the
available resource capacity is of particular interest to the controller. The
resource status infonnation is used to decide what new work has to be
done by a resource (allocating and sequencing). Material status infor
mation is used to discover what new operation has to be perlonned on

material (process interpretation). Status information is also used for the
monitoring function.

The way the communication takes place is defined by a communication

protocoL The communication protocol defines the contents of the

messages and at what point in time the messages are sent. The com
munication protocol has to be able to control all kinds of manufacturing
classes (job shop, flow shop, parallel shop and single shop). The

contents of the messages have to be limited and the number of messages
sent has to be limited.

Usually information is exchanged between a controller and its

supercontroller and between a controller and its resources. The resource
is either a machine or an expanded resource; in the latter case the

information is sent to a subcontroller. The exchange of information in

this fashion is in the vertical direction. Sometimes the volume of
communication can be restricted by letting resources communicate with

each other, rather than using a common controller. Such interactions

carry with them the risk that interaction paths between resources have

to be introduced which depend on the specific manufacturing process.

For this reason resources are not connected to each other. The only

exception is the transporter. The transporter is physically connected to

other resources in order to ex.change material; to control the material
exchange an information exchange from the transporter to the involved
processing machine or store is also allowed.

58 control afmanufacturing systems

A controller of a manufacturing system, which knows the exact status
of all the resources, is able to control the whole manufacturing system
in the best way. But it has to deal with every signal and control all

activity) which means a lot of communication and calculation. The
reSources send excerpts of their status to the controller, in order to reduce
the communication volwne. The controller is able to use these excerpts
to help allocate and sequence material. The status of a resource is
represented at two places, the status representation in the manufacturing
controller has to be correct and consistent with the status of the resource.
This places certain demands on the communication protocol. The
sophistication of the communication protocol has to be weighed against
the commllllication volume. Complex communication protocols allow
the controller to acquire more infonnation and to control on a more
detailed leveL Simpler communication protocols go hand in hand with
smaller communication volumes and the delegation of detailed control
decisions.

Four communication protocols are considered for the execution of work
on a resource. These protocols use three different sets of messages:

1 command, result (protocol 1)

2 status, command, result (protocol 2)
3 statusRequest, status, command, result (protocol 3 and 4)

The messages arc sent in the sequence that they are mentioned. The
manufacturing controller uses the protocol for the release of work from
the supercontrolIer_ The supercontroller also has to use the same
protocoL StatusRequests and commands are sent to the controller; status
and result are sent from the controller to the supercontroller. The
manufacturing controller also uses the protocol to dispatch work to
resources; the controllers of the resources use a matching protoco1.

supercontroUar controller resource

command "-

subcommand

subresult

-_.

subcommand ...

subresult --. result time

!
Figure 3.5. Messages between control levels as/unction o/time/or

protocol!_

control of manufacturing systems 59

Subcommands and substatusRequests are sent to the resources;
substatuses and subresults are sent from the resources to the controller.

In the first protocol (see Figure 3.5), the manufacturing process is
invoked by the command. The subcommand dispatches work to the
resources. The subresults are used to infonn the controller about the
capacity of the resource and the progress of the manufacturing process.
The finishing of the manufacturing process is confinned by a result. The
result also signals the capacity of the manufacturing system. A com
mand results in a subcommand. The subresult is used to generate a new
subcommand or a result.

In protocol two (Figure 3.6) the status is used to signal the capacity of
the manufacturing system to the supercontroller. The status or the
capacity available is calculated with help of the substatuses and/or the
subresults of the resources, which give indications about the capacity of
the resources. The work for the manufacturing system is sent with the
command. The dispatching of work to resources is done with help of the
substatuses. The work is sent with the subcommands. The subresults
indicate the progress of the manufacturing process. The completion of
the manufacturing process is announced with a result. In protocol two
substatuses are used for two purposes, to generate a status and to
generate a subcommand.

SUpercontrolier controller resource

'""'-
substatus

.""
substatus

.....
status

command ...
-- substatus

subcommand
p

subresult
"""

substatus
....

subcommand

subresult
....

time result

l
Figure 3.6. Messages between control levels as function o/time/or

protocol 2.

60 cmural of manufacturing systems

supercontroller controller resource

statusRequE!st

subslatUsRequest ~

substalUSRequest ...

. --
substatus -
$ubstatus

....
status -

command
p

subCommand

subcommand

".

Subresult
....
.... subresult

result
.....

time

1

Figure 3.7. Messages between control levels as function of time for

protocol 3-

The set of messages statusRequest, status, command and result leads to

two different protocols. The first (protocol 3 is printed in Figure 3.7)
uses the messages statusRequest and status for the determination of the:
capacity planning function of the factory controller. The second (pro
tocol 4 is printed in Figure 3.8) uses the messages statusRequest and
st.atus for the on-line allocation and sequencing of work on resources.

The statusRequest is used to test whether it is possible to execute work.
The stat.usRequest generates substatusRequests; the substatuses answer
these subrequests, they give information about the capacity of the
resources and are used for the generation of the status which declares the
capacity available in the manufacturing system. The work the manufac
turing system receives depends on the status sent and comes in the fonn
of a command. The work is distributed in the fonn of subcomroands.
This has to be done upon the arrival of the command to infonn the
resources about the work they have to execute. The resources need to
know their work load in order to be able to answer future
substatusRequests concerning their capacity. The progress of the
manufacturing process is regulated by the material transport and recorded
by the subresults. The completion of the manufacturing process is
reported with a result. This manner of control leads to a material driven
manufacturing system, where the load of the manufacturing system is

control of manufacturing systems 61

superconlrolier controller resource

slatusAeQuest

status
cornmaod •

subslatusRaquest

substatus

subcommand

- subresult

."
............... RRoon.-t

subStatus

subcommand -
subr&sult

result tlma

t
Figure 3.8. Messages heMleen control levels as junction of time for

protocol 4_

controlled with help of a question/answer protocol preceding the start of
the manufacturing process.

In protocol 4 the statusRequest and status are used for the on-line
releasing of work in the manufacturing system. The statusRequest is
answered by the controller with help of the information available,
without consulting the resources. The status indicates the capacity of the
manufacturing system and influences the work released in the manu
facturing system. The manufacturing process is started with a com
mand. To allocate and sequence the work the controller consults the
resources with help of substatusRequests. The answers of the resources,
the substatuses, are used to allocate and sequence the work and to
dispatch it to the resources in the form of sUbcommands. The progress
of the manufacturing process is recorded by the subresults and the
completion of the manufacturing process is signalled with a result.

The choice of a protocol

Protocol 1 allows no separate communication about material status and
resource capacity. In expanded resources this is a particularly severe
drawback, which is why protocoll has been rejected. Protocol 3 leads
to a material driven manufacturing system and the decisions about
resource capacity are always based on the infonnation available in the
resource, which leads to local optimization. Unforeseen problems may

62

status

command

9uparcontroller

-

- Substatus -subcommand

control o/manufacturing systems

release;

sand available capacity

I'eOOive work

-~

dispatd1:

receive available capacity

sand work

controller resource

Figure 3.9. The releasing and the dispatching o/work in protocol 2_

arise during the execution of the manufacturing process. On the basis of
these disadvantages protocol 3 has to be rejected.

Protocols 2 and 4 are more closely comparable. A possible implemen
tation of protocol 4 sends all available work as potential work to the
resource (= a statusRequest). The resource filters out the infeasible work
and accepts a part of the potential work (= a status). The controller uses
the accepted work to decide what work the resource has to execute ("" a
command). In protocol 2 the resource requests for work by sending all
possible work it can execu tc to the controller (= a status), the controller
matches this with the available work and decides what work the resource
has to do (a command).

For both protocols both the releasing and the dispatching of work is
schematically reproduced in Figure 3.9 and Figure 3.10.

status Request

status

command --"'

su"""", ... ~_

... subs1atus

subcommand -

release:

receive work load

send executable work lOad

receive WQrk

dispatch:

send work load

receive executable work load

Send work

suparoontroller controller feSource

Figure 3.10. The releasing and the dispatching o/work in protocol 4 ,

control of manufacturing systems

Table 3.4. Examples oj expression medium/or protocol 4_

expression medium

statUSRaquest

status

command

expression medium

status Request

status

command

expression medium

statusRaquest

slarus

command

expression medium

statusRequest

status

command

expression medium

status Request

status

command

jObS

10 potential jobs

five accepted jobs

one jOb

operation

a job with any operations

a job with a set of possible operations

a job with one operation

amount of material

a job with any amount of material

a job with a I'\'lInImUm of one and a maxilun (1/10 ~

a job with four pieces

due date

a lob to be executed as fast as possible

a job which can be finished within one or t'W'o months

a job that has to be finished within six weeKs

resource

a job to avery reSource

jObs from the resources that can execute the job

a job for one resource

63

64 control of manufacturing systems

In protocol 4 potential work is sent to the resource. Here the work is
filtered and accepted work is sent back to the controller. This work is
filtered again and real work is sent to the reSOurce. This work can be
expressed in many forms. Table 3.4 shows different means of expres
sion. A job contains an operation, material, a due date and is intended for
a resource. With protocol 2 it is possible to use the SaIne manner of
expression without the uSe of a statusRequest, under the condition that
the freedom with which the status can be expressed can be restricted in
meaningful way (as is the case for at least operation and resource as
expression mediUll1).

Protocol 4 has the disadvantage that all available work has to be
communicated to the resources, which leads to a lot of communication.
In protocol 2 the resources have to express all possible work or available
capacity to the controller; with flexible and universal resources this may
be a difficult task. Protocol 2, however, confers a double function on the
status messages: they can be used both for the signalling of capacity to
a higher controller and for the distribution of work to the resources. This
means that the use of protocol 2 supports releasing of work with help of
information send by the resources. A relatively uncomplicated version
of protocol 4 will support releasing only on the basis of information
available information in the controller. Because of this, protocol 2 will
serve as the basis for cOIIlIl1unication between controllers and between
controller and resource in the control architecture.

3.5 Problems related to parallelism

The physical manufacturing system consists of parallel machines. The
control system consists of parallel controllers: there is a single controller
only if the con trol system consists of one layer. The parallel controllers
are implemented on parallel computers and/or as parallel processes on
one computer. The controllers and machines are both called processors.
Problems related to interacting parallel processors discussed are; dead
lock, starvation, combining messages, data consistency and the model~
ling of the controller.

Problems of deadlock or starvation may arise between synchronized
cOIIlIl1unicating processors. In case of deadlock or starvation one or
more processors become blocked indefinitely. These problems have
been addressed in the literature on operating systems [Maekawa et al.
1987, Peterson and Silberschatz 1986]. A deadlock simation occurs
when two Or more processors are waiting for an event that can only be
caused by one of the waiting processors. The starvation problem occurs
if a processor is indefirutely waiting for an event to happen. In contrast
to deadlock, this event happens regularly, but it is always allocated to

control of manufacturing systems 65

another processor. There are two levels of interaction between the

processors: the infonnation level and the material level. The deadlock
and starv ation problem occur on both levels. The cause of starvation has

to do with the scheduling policy. Here no further attention is paid to this
aspect.

Three policies are used to handle deadlock: prevention, avoidance and

detection [Meakawa et al. 1987]. With prevention the system design

excludes deadlock. With avoidance the behaviour of the processors is

restricted in such a way that deadlock does not occur; to accomplish this

one needs to have a knowledge of the future processor behaviour. In the
third case a detection algorithm is used to identify a group of deadlocked
processors. The system is recovered by breaking the deadlock.

Deadlock on the information level is prevented by blocking the control
lers only in a receive action; any processor can send an object to a
controller, which the controller is always able to handle. The controller
is willing to receive any object. The handling of the received object is

never blocked. This is done by using the asynchronous send and by

disallowing receive actions in the handling of received objects.

The manufacturing system becomes deadlocked on the material level

when two or mOre resources want to exchange material and none of the
resources involved can store new material before the old material is
removed. On the material level deadlock cannot be prevented, since this
would constrain the recipes of a manufacturing system. So deadlock on

the material level has to be avoided, or detected and recovered from.

Deadlock is avoided by only releasing new jobs that will not cause any

circular wait. The use of an avoidance policy may lead to a less efficient
usage of resources. If one ensures that the stores in the manufacturing
system are large enough, then the occurrence of deadlock is less
probable and recovery from deadlock is always possible. With sufficient

storage space the transporter is always able to empty itself andlor to
remove the material from on of the blocked resources.

The problem of combining messages that arrive at a processor is
discussed next. In parallel processor systems communication may take

place simultaneously, but a processor handles a single message at a time.

In some cases a choice has to be made between handling messages
separately or together even if they arrive after each other. As stated

above the controller handles an object without blocking, Le. without

waiting for the next object. If objects have to be combined, they have to

be stored until the combination is complete. If an object may be handled
either alone or in combination with an object that is still to arrive, the
disadvantages of waiting for the next object or handling the object at
once, have to be weighed against each other.

66 control a/man.ufacturing systems

In parallel processor systems infonnation is sometimes stored in mOre
than one processor. A problem is to keep the data consistent. A control
ler, for instance, records the status of its resources. The controller can
change the status of a resource by sending it a command, so that the
controller may update the status record. The status kept in the controller
is also changed by the status message from the resource. This means that

the status is kept in two processors and is changed by two processors.
Attention has to be paid to the way the status record is changed, in order

that it stays consistent with the starns of the resource.

The controller may be modelled as an expanded processor or as a leaf
processor. A rule of thumb is that processors that contain parallelism
should be expanded. In our case, however, we have chosen not to expand
the controller even though there is still some form of parallelism. A
controller, as defined above, receives objects and handles these objects.
These objects stem from different ports and can in many cases be
handled in parallel. In order to handle these objects, however, common
data are used. So, if the objects are handled in parallel, there has to be
a central data base processor. This data base processor will in some sense
have the same structure as the controller with parallelism. This will
mean a shift of the parallelism from. the controller to the data base. This
is why we have chosen not to expand the controller in parallel processors.
Another form of parallelism in the control algorithm has to do wi th the
sending of objects after a delay. The task language of the ProcessTool

has a messages for this kind of interaction. Because of this we have
chosen not to use a separate processor that delays objects.

3.6 Summary

Chapter 2 has revealed the way in which the physical manufacturing
system is specified. This is done using the operations, the material, the
resources and the recipes. The various manufacturing classes, too, have
been introduced: single shop, parallel shop, flow shop, and job shop. A
manufacturing system consist.s of a controller, one store, one trans
porter, and a number of processing resources. The resource layout
together with the recipe corresponds with one of the classes mentioned
above. Because resources may be expanded, it is possible to create

control layers. There are four controller categories. These are based on
whether the controller communicates with consumers and suppliers (""
factory controller), or if it is commanded by a supercontroller ('"
manufacturing controller) and on whether the controller controls ex
panded resources or machines (leaf resources).

Performance graphs have been introduced to measure the performance
of a manufacturing system. These represent the lead time and through-

control of manufacturing systems 67

put as a function of the inventory leveL The use of these graphs allows
the ideal performance and the ideal work point of a manufacturing
system to be detennined. The control functions planning, scheduling
and monitoring have been discussed. It has been seen that the releasing
strategy is the most important aspect of scheduling.

As described in Section 3.3 the configuring of the control systems and
the distribution of control decisions depends on the availability of
information, the decisions that a controller has to take, control transport
and processing. The material exchange is commanded by the transport
system. The control configuration is influenced by the moment at which
operations are transferred. Two strategies have been mentioned for the
sending of transport commands: early and late transport. Likewise,
cormnand driven and material driven manufacturing are distinguished

for the sending of the processing commands.

Section 3.4 discusses the different communication protocols more
closely. Finally, the problems related to parallelism ate discussed. Here
factors such as deadlock, starvation, combining messages, data con
sistency and the modelling of the controller in ProcessTalk playa role.

In the next chapter a model of a general control architecture will be
presented. This is intended for a job shop manufacturing system, but it
is also suitable for the other classes that have been discussed. Both
communication with consumers and suppliers, as well as with a
supercontroUer are considered. Processing operations are generated at
the start of the manufacturing process, and the controller uses a com
mand driven manufacturing strategy. Transport operations are generated
on line by the controller. The controller of leaf resources applies a late
transport strategy, while controllers of expanded resources may use
either late or early transport. Material exchange operations are gener
ated on line by the transporter.

The communication protocol between the controllers of different layers
use status, command and result messages. A request is used as status, it
expresses in terms of operations the momentary capacity of a resource.
A job is used as command and a report is used as result. The release
strategy of the manufacturing controller is implemented with the send
ing of requests to the supercontroller. Release may be delayed by the
supercontroller by not answering a request inunediately. The controller
uses the su brequests from the resources to take allocation and sequencing
decisions and dispatches the work in the fonn of a job. The allocation
and sequencing is done on the basis of reactive scheduling and simple
priority rules are used.

Chapter 4

The control architecture for

manufacturing systems

In this chapter the ideas developed in the previous chapters are applied

in the control architecture. It presents the data structure which is used to

represent the objects in the model, together with the model itself,
defined according to the Process-futeraction Approach. The model
gives an insight into the workings of the manufacturing controller. The
final sections discuss the application of the model to four different
manufacturing system classes: single shop, parallel shop flow shop and
job shop. Here we describe how they are to be controlled and how

requests have to be generated. The last section goes further into the

matter of configuring a controller hierarchy.

The total model can be used in the design of manufacturing systems, to

test their control systems and to simulate their beha iour. If the simu~
lation shows that the perfonnance of the manufacturing system is

satisfactory, then the model can be used to control the actual system;

either an existing one, or one which still has to be constructed. The most
imponant parameters that can be changed in this model are the opera
tions, the material, the resources and the recipes which specify the

physical manufacturing system. Other parameters influence the control

configuration: the control layers with the different types of controllers,
the recipes and the manufacturing system class of every expanded
resource, and the control strategy (panicularly the releasing and the
sequencing strategy).

4.1 The data structure

In order to implement the model of a manufacturing system, we need

data objects. These, together with the data structure, are described in
what follows. The model of the factory is constructed using the
ProcessTool [Wortmann 1991]. The process descriptions of the leaf

processors are written in ProcessTalk., a Sroalltalk.-80 based language

used by the modelling tool. As a consequence, the data structure is also

written in Smalltalk.-80. In Smalltalk -80, class names start with a capital
letter; by convention, instances of a class receive the same name as their
class or superdass, but they start with a small letter.

70 rhe control anhirecture for mamifacturing systems

r- l-- .l¢b (1 ..) II
fflAOU((:1I!I- I~ -- -- _- 1--- f-.I Re..,u,~.lY!><o .
due-Date rlJ¢ip,e~ (. -~ lO..quenoe (...)

_ -> Saq~.n()(o (...)

, ·~$~.n~e (_.))

I 1

! Pf't>¢tJ~8Unit

~f<\ti"" Ope,-ati<m

m .. ~"Un~ .:opefmtion Typo

ta5k r_UfC$~ 10- J.....-
"

po8itiQ;f1 p!"OI;'D3.Tlm~

d ... Ollt& pArl\l1letolf .. ", ,., -
"chedul.[hM

! f\!~I..n"'Unil I ,
J .. bP!'01jreooForm r I MIll'> 11
inl1tan~~¢1' 1--
I ... k. (t· .) I

1 ,
T .. ok (1 ..)

prog~Form -I-
l"'Im1ainingPro~:(I.$'"r1m$

r (oub)pro/; ••• Unlt

"perlllion (~ub)Opw.1ion

I rna!oriolUnil - __ Twa

(.ub)J~ (l . .) t ... k -I-- ~"""",T)'l'G

rltoourct' 1 po.ilion Pt'¢eeIloTlma

dultDo.tlt I dIleo...ta parwrlet ... _.,, .. _-_. --
.~t"tedIJ"'D .. te

Figure 4.1. Data structure: job - subjob relation_ The blocks are

objects with their instance variables. A solid line ending in the left

corner of an object reflects the relation is contained by. A dotted

line ending in the left corner reflects the relation is of type.

Several types of objects are distinguished in the model. A short overview
of the objects in the data structure is given below. Subsequently these
objects are treated more elaborately. The processors of the model are
instances of the classes Resource, ManufacturingController, Consumer
and Supplier Or subclasses of these classes. The processors are part of
the model and are not treated extensively in this section.

The processors communicate with the help of objects. The objects that
are transferred between Factory, Consumer and Supplier are instances
of Potential Order, Quotation, RealOrder and Invoice.

Between controllers and between controller and processing resources
instances of Request, Job and Report are transferred. These will also be
called ProcessRequest, ProcessJob and ProcessReport.

the control architecture for manufacturing systems

r- f- O<dtor

p_ I ~b¢I
amount r-=--l

.u~1o&t' ------- ~. R.",u Type

~llIumer "p" lIon. (-~ ,
,tl[UlDlll" , -> ,

du.O-. . -,..)

pn>gre~~ ~pI.9 (, -> s.q.,.""". (...)

, ->S-..- (...)

">~" (..))

~ ~F~ U
IIl'IWld~ -

tuka (.. I
""""'uoo 0ptiatI0n

me_(" openatlonType - (" ,) .--oeType -I"'-
_t.,;l proc:tHlS 11m.

pokJ'Ml~1H'

r
r- TQk (1 ..) I M_a1UnII.

pMgJW ... Fonn -I-- - I I nl;tl11" I
"""alnlngP TI'n"

- ~ (lI.Ib)~ •• UniI

~tI>n (oub)Opon'aUOI'I

m_alUnit _IIIIo<'1Typo!I

taok !-:-- ~Typoo

poeIIIon
_ ... nt1.

_Dtlt. p~.t.

.d1~",o.t.

I
(oub)Job (J . .)
relOOUrotlO

dullDaIII

Figure 4.2 Data structure: order - subjob relation,The blocks are

objects with their instance variables. A solid line ending in the left

corner of an object reflects the relation is contained by. A dotted

line ending in the left corner reflects the relation is of type.

71

I

Between controllers and transporters instances of TransportRequest,
TransportJob and TransportReport are communicated.

Transporters exchange objects of the class Material and MaterialRequest
with stores and leafResources.

72 the con.trol architecture for man.ufacturing systems

The objects of type ProcessJob and TransportJob are collections. A
processJob contains instances of ProcessUnit, a transportJob instances
ofTransportUnit. Both ProcessUnit and TransportUnit have a common
superclass: WorkUnit.

A workUnit contains an instance of MaterialUnit and illl instance of
Operation. A process U nit contains a processOperation and a materiaIU nit,
a transportUnit contains a transportOperation and a materialUnit.

Also the classes Material and MaterialRequest are collections, they
contain instances of the class MateriaIUnit.

Other categories of objects are used in the controller to record the
progress of orders and jobs. The progress of orders is recorded in
instances of OrderProgressFonn, the progress of jobs is done with
JobProgressForm, OrderProgressForm and JobProgressFonn are sub
classes of ProgressFonn,

The manufacturing process is specified with objects of class Sequence
which is a subclass of Recipe. The model only contains sequential
recipes_ The sequence is a collection of instances of ProcessOperation.
The ProcessOperation is a subclass of Operation.

The actual process plan for the manufacturing of a product is kept in the
controller. The process plan is an instance of Task. Because the recipes
are always sequential, a task is also sequential. It contains a collection
of proc~ssUnits.

The controller contains objects which do the calculating and deciding.
These objects implement the functions of planning, scheduling and
monitoring. In the manufacturing controller an instance of the class
ProcessPlanner makes the process plans (tasks with processUnits) and
monitors the manufacturing process. In the factory controller this is
done by an instance of FactoryPlanner. The factoryPlanner does the
same as the processPlanner and it incorporates the capacity planning
function. The sequencing and allocating functions for resources of the
same type are implemented by instances of the class JobScheduler. The
total sequencing and allocating in a controller, and the generation of
transportU nits, is done by instances ofLateScheduler and EarlyScheduler.
Where the first one uses a late transport strategy and the second an early
transport strategy. Both Late Scheduler and EarlyScheduler use instances
of the class JobScheduler to take sequencing and allocating decisions.

The communication between controllers and between controller and
resource, is based On the communication protocol that uses status,
command and result (protocol 2 described in Section 3.5). These are
implemented with the objects request, job and report, respectively. The

the control architecture for numujacturing systems 73

communication protocol between the factoryController and the envi
ronment (Consumer and Supplier) is implemented with the help of
potentialOrders (consumer enquiries); quotations (responses to a con
sumer enquiry). realOrders and invoices. This way it is possible to

achieve an interface between these processors, where the refusal of
orders is possible. An order represents a command for the

factory Controller. The manufacturingController receives jobs as com

mands.

Both the order and the job invoke the manufacturing process. Below we
first describe the way the different objects are related for the job (Figure

4.1) and the order (Figure 4.2). After that a more detailed description of

the different classes is given.

The job invokes a manufacturing process. The job is a collection of
processUnits. A processUnit is an operation associated with a
materialUnit. The operation of the processUnit points to a recipe. The

recipe is a collection of operations and a specification of the materialType.

The materialType of the recipe has to correspond with the class of the

materialUnit. This recipe is used, together with the materialUnit; for the

creation of the task. The task is the process plan, it administrates the
progress of the manufacturing process. The task is kept in a controller

and it is not sent to other controllers. The task consists of a collection of
process Units. The processUnits of the task are used for the creation of

subjobs. The task is linked to the job with help of a jobProgressFonn (see
Figure 4.1).

The order also invokes a manufacturing process. The order contains,

among other things, a product name and an amount. The
orderProgressFonn contains all orders that have to be delivered in order
to purchase the raw material needed to manufacture the product. The
product name is used to fmd an operation that points to a recipe for the
manufacturing process. The operation and the material rue kept in the

orderProgressFonn. These two are used to create the task for the
manufacturing of the products. The task is linked to the order with help
of an orderProgressForm (see Figure 4.2).

Now follows a detailed description of the objects in the manufacturing
model. All processors of the model are instances of subclasses of the
class ProcessorObject. The objects transferred between processorObjects
are either instances of a subclass of InteractionObject or of

InteractionCollection. An interactionCollection is a collection of ob

jects. These objects need not be instances of a subclass of
InteractionObject. An interactionObject and an interactionCollection

contain the address (the processorObject for which it is intended), and
the arrival time (the time it arrives at the intended processorObject). A

processorObject only receives an interactionObject or an

74 the control architecture/or manufacturing systems

interactionCollection if it is addressed to itself. When sending an
mteractionObject or an interactionCoIlection, the processorObject ad
dresses the object for the appropriate processorObject. A processorObject
records the arrival time of an interactionObject or an
interactionCollection; as a consequence these objects know the time
during which they stay in a processorObject.

In a manufacturing system there is a distinction drawn between material

and infonnation. All pieces of material in the model are instances of a
subclass of the class MaterialUnit. These instances refer to a piece of
physical material. This is used to model the physical material flow and
to model the reference to a piece of material in the information flow. This
means that a processor can identify a piece of physical material. Every
piece of material has a unique name. To transfer material between
processorObjects, material is sent as a collection ofmaterialUnits. 'This
collection contains one Or more instances of MateriaJUnit. In this way
it is easy to send different batch sizes of material to a resource. A material
collection only exists for a short while and has no special name. The
collection is an instance of the class Material, which is a subclass of
lnteractionCollection.

The class Material is not intended for the creation of hierarchical
material structures. In the model it is supposed that all material Units are
of the same type. If a hierarchical material structure is needed, this has
to be created by adding insUUlce variables to subclasses of the class
materialU ni t.

Example of a hierarchical material structure. A cassette with 0 to 25
wafers is built with the classes Wafer and Cassette.

class name: Wafer
superc1ass: MaterialUnit
class name: Cassette
superclass: MaterialUnit
instance variable names: wafers

The instance variable wafers is an instance of the class Array (a
Smalltalk-80 class) of size 25 and contains 0 to 25 instances of Wafer.

In order to be able to draw material from a store, the store has to know
which material is to be withdrawn, and the processor to which the
material has to be sent. An instance of MaterialRequest commands a
Store to send the specified material to the destination. The class
MaterialRequest is a subclass ofJnteractionCollection. AmaterialRequest
contains materialUnits, and has an instance variable that specifies the
processorObject to which the material has to be sent (the destination).

the control architecture for manufacturing systems 75

The instances of the class Operation are used to tell a resource which
recipe has to be executed. There are two kinds of operations: the
TransportOperation, which specifies a transport movement for a trans

porter; and the ProcessOperation, which specifies arecipe of a processing

resource. The processOperation is of a certain type and has a specific

parameter. 1\vo processOperations of the same type with different
parameters refer to the same recipe, but with different adjusttnents of the

resource. The processOperation is executed on a resource of a certain
type. This resourCe type is specified in the process Operation. The

processOpetation knows the time it takes to execute the related manu

facturing process. This time, the process time, refers to the nominal time

required to execute the processing suboperations. The actual time
needed to execute the process Operation is increased by waiting times
and by the transport. The instances of the class TransportOperation
specify the origin and destination of materiaL

The work a resource has to perform is specified by an operation and a
piece of material on which the operation has to be performed. TIlis

combination is part of a Task, which specifies the complete manufactur

ing process plan on the material Unit in the manufacturing system. The

combination of operation and materialUnit is called a workUnit. The

workUnit contains a reference to the task to which it belongs. For the

purposes of administration, the workUnit has an instance variable

arrivalTime. Like operations, there are also two types of workUnit:

TransportUnit and ProcessUnit. For scheduling purposes it is possible
to assign a startDate, a due Date and a priority to a workUnit.ln order to
keep a record of the position of the material, the workUnit keeps the
position in the instance variable position.

The class TransportUnit has two methods by which it can access the
origin and the destination ofthetnaterialUnit. A1though the transportUnit

belongs to a task, it is not placed in the task. when the task is created;

rather, it is created at the moment the material Unit of the task has to be

transported. In this way it is possible to choose the route of the

materialUnit at the latest possible moment.

The manufacturing process that the material has to undergo is specified

by a task, which consists of a collection of process Units. A task belongs
to a progressFoITIl. The task is related to material) which is specified in
the processUnits. The task is derived from a recipe. The task contains
process Units, the recipe contains operations. The materialUnits) together

with the operations from the recipe, form these processUnits. The

materialUnits are specified in the processUnit(s) of the job that invoked
the task. Tasks are not transferred between processors, they stay inside
the controller. From a task subjobs are derived, which are transferred to

resources. The task structures are equivalent to the recipe stnlctures.

76 the control architecture for manufacturing systems

Only sequential tasks are implemented in the model. In a sequential task
all processUnits have to be executed one after the other (in sequence),
and all processUnits are related to the same piece of material. The

material and position are represented in the processUnit because, in
other types of task, more than one piece of material can fonn part of the
task.

A fmished processUnit is removed from the task. In the case where the

last processUnit of a task has been executed, the resulting materialUnit
has to be transported to a store. For scheduling pwposes a record of the

remaining process time ofa task is kept. Atask contains only processUnits.
The transportUnits are dynamically created by the controller during the

execution of the task. The processUnits are created upon the anival of
the job that invokes the task.

A progressFonn is used to administrate the execution of an order or a
job. The reception of an order or a job is a signal for a controller to start
certain actions. A record of the progress of these actions is kept in the
instances of OrderProgressFOIm and JobProgressForrn, respectively.

Both are subclasses of ProgressForm. The class ProgressFonn imple

ments the common messages of Order Progress Form and

J obProgressForm.

The class ProgressFoIm has an instance variable for the instantiator of

the progressFoTIll. This is either an order or a job. To execute the order
or the job the reSOurces have to execute one Or more tasks. These tasks
are kept in an instance variable. To be able to administrate the perlormance
of the manufacturing system, the time when the execution of the tasks
started and finished is kept in instance variables.

The material content of a progressFonn is equal to the number of

materialUnits that are manufactured in the tasks. The work content of a

progressFonn is thus the material content multiplied by the manufac
turing time of one materialUnit.

The instances of class JobProgressForrn register the progress of the

execution of a job. At the start the jobProgressFonu is created with the

help of a job. Mter the finishing of the tasks the jobProgressFonn
delivers a report on request.

The factory has no supercontroller that dispatches jobs associated with
operations; rather, it has consumers that dispatch orders associated with
products. This means the progress of orders in the factory has to be
recorded differently from the progress of jobs in the manufacturing
system (see Figure 4.1 and 4.2). The instances of OrderProgressForm

are used to record the progress of the execution of an order. The progress

of the purchasing and of the manufacturing process are kept in the

the control architecture for manufacturing systems 77

orderProgressForm, in the instance variables orders and tasks, respec
tively. Because the relation between a task and an order differs from the
relation between a task and a job, an orderProgressForm contains some

extra instance variables in comparison with the jobProgressFrom. A job
contains the material that has to be processed and the operation that

points to the recipe that has to be used to create the task. An order

contains a product name and the amount that is wanted. Raw material has
to be ordered in order to manufacture the products. The orders are kept
in the instance variable orders. The material that has to be transformed

is kept in the instance variable materiaL The operation that represents

the interface between the product name and recipe is kept in the instance

variable operation. This operation is introduced in order to be able to
represent the recipes in the factory in the same) as in a manufacturing
system..

For the ordering of products a protocol with potentialOrders, quotations,
realOrders and invoices is used. The consumer enquires whether it is

possible to deliver products; the quotation states whether the

potentialOrder is feasible or not. A quotation that accepts a potential Order

may be answered with a realOrder by the consumer. The realOrder is

answered with an invoice (after delivery of the products). The

orderProgressFonn is used for potentialOrders as well as for realOrders.
Fot a potential order, the orders sent to the suppliers are also potentiaL

With the help of the quotations from the suppliers, the controller decides
whether the potential order of the consumer is acceptable. A potential
order is only acceptable if all potential orders are accepted by the
suppliers.

The instance variable orders keeps track of all orders that have not yet
been responded to. The instance variable accepted keeps track of

whether the received quotations have accepted or rejected the

potentialOrders that have been sent. If the collection orders is empty, all

outstanding orders have been answered and the instance variable

accepted contains whether the potential consumer order is acceptable or

not.

In the case where the orderProgressForm belongs to a realOrder, the
collection orders is empty if all the raw material that has been ordered

has actually been delivered. In this situation the manufacturing of the

products starts.

Instances of the class Order specify the product and the amount of

products that a consumer wants from a supplier. An order contains its

sender in the instance variable consumer and its receiver in the instance
variable supplier. The order contains a dueDate, which is the date before

which the products have to be delivered. For administrative reasons the

order also contains a reference to the progressFonn to which it belongs.

78 the control architecmre for manufacturing systems

The class Order has two subclasses: Potential Order and RealOrder, to
be able to distinguish between both types of orders.

The response to a potentialOrder is an inst.ance of the class Quotation.
The quotation contains the order to which it is related. A quotation also
has an instance variable that indicates whether the order is accepted or
rejected.

Mter the manufacturing and the distribution of the products for an order,
an instance of Inyoice is smt. An invoice contains a reference to the
order that invoked the manufacturing of the products and a reference to
the material that. has been delivered to the consumer.

A job is a collection of work Units that have to be executed (simultane
ously) by a resource. There are two kinds of jobs: the processJob and the
transportJob. The class TransportJob is a subclass of (Process)Job. All
the work Units of a job have to comprise the same operation. This means
thatthe operation type and operation parameter of the process Operations
have to be the same, or in case of a transportJob the origin and the
destination of the transportOperations have to be the same. A job is
destined for a certain resource, so the job has a reference to the resource
for which it is intended. The job specifies an amount of material and an
operation that has to be performed on the material. Although the
process Units of a processJob have each their own dueDate, these dates
do not necessarily have to be the same. For this reason a processJob has
its own dueDate. The class TransportJob has two methods by which it
can access the transport origin and destination.

An instance of Request specifies the conditions which a new job for the
reSOurce has to fulfiL A requests gives information about the
operationTypes a resource is willing to execute. The minimum and
maximwn batch size of the job is specified and a request contains
infonnation about the resource from which the requests stems. A request
has to be answered by exactly one job. This may occur immediately, or
after a time interval.

Mter ajob has been executed, an instance of Report is sent to the sender
of the job. A report contains the job that has been executed. There are two
types of Report: the (Process)Report and the TransportReport. A
transportReport belongs to a transportJob. Because a task always
finishes with a transportJob, the transportReport has a method to
investigate whether it belongs to a finished task.

The class Resource is used to specify which behaviour and properties a
Resource has. A resource is an instance of a subclass of the class
Resource. The class Resource is a subclass of ProcessorObject- The
behaviour specified by the instance protocol of Resource are methods

the control architecture for manufacturing systems 79

every resource knows. All resources have different names. An expanded
resourCe consists of subresources. The resource knows its subresources
and it knows the type of the subresoutCes.

A resource has properties that are the same for all resources of the same
type. These properties are specified in the class protocol of Resource.
Every resource is of a certain type: the resourceType. The resourceType
corresponds with the class name of the resource. A resource type has a
minBatchSize and a maxBatchSize which specifies the number of
materialUnits the resource expects in one job. A resource has a limit to
the amount of material and amount of work it can process simultane
ously. In the case where the resource is of type machine the
maxInventoryLevel is the same as the maxBatchSiu. A resourceType
has a dictionary of recipes, which lists, for every operation, the
suboperations that have to be executed by the subresources. The recipe
for a certain operation is used by the resource controller to construct the
task that specifies the manufacturing process the resource has to
perfonn in order to execute a job. For the resourceType there is also a
set of operationTypes that specifies which operationTypes the resource
is capable of executing. An operationType can only be executed on one

type of resource.

The controller uses objects to perform calculations and decisions. The
planner is one of these objects. There exist two types of planners. A
planner for the manufacturing controller and a planner for the factory

controller. The first is of the class ProcessPlanner, the second is of the
class FactoryPlanner, which is a subclass of ProcessPlanner.

A processPlanner makes process plans for the jobs the controller
receives. These process plans are represented in tasks, and are coupled
to jobs via progressFonns. When a task is finished the processPlanner
receives a transportReport which is used to see whether a report for ajob
has to be generated. These reports may be requested from the
processPlanner. The processPlanner also keeps track of the perfonnance
of the manufacturing system. It monitors the input, the throughput, the
inventory Level and the leadTime.

The factoryPlanner plans the available capacity in the controller, it
records the progress of the purchasing of material for orders and it makes
process plans for the received orders. The factory Planner may be asked
whether there is still capacity available to manufacture an order. The
purchasing is done both for potentialOrders and for real Orders. From a
potentialOrder the factoryPlanner creates potentialOrders for the sup
plier. From a real Order it creates realOrders for the supplier. From
quotations it formulates quotations for the consumer. From invoices
from the supplier it fonnulates tasks for the manufacturing of products.
From a transportReport, which signals the completion of a task, an

80 the control architecture for manufacturing systems

invoke is formulated for the consumer. The factoryPlanner also keeps
track of the capacity available in the factory. Just like the processPlanner,
the factory planner monitors the input, the throughput, theinventoryLevel
and the leadTime.

Three classes are responsible for the allocating and sequencing functions:
there is a class that allocates and sequences the work for one type of
resource, called the JobScheduler; and there are two classes that

schedule all work for the processing resources, called the LateScheduler
and the EarlyScheduler. The last two classes differ only in the way the
transport takes place: late transport or early transport.

The jobScheduler schedules requests (allocating) and it schedules
workUnits (sequencing). The jobScheduler uses these objects to fonnu
late new jobs for the resources of one type. A request is related to a
resource, a workUnit is rdated to material. The resource and the
workUnit are combined with help of the operationTypes mentioned in
the request and the operation mentioned in the workUnit. The
job Scheduler is used for both processingResources and for transporters.

The jobScheduler implements sequencing and allocating. For these it
uSes simple sequencing rules.

The class Early Scheduler is a subclass of LateScheduler. Both have the
same message interface but differ in their implementations and are used
in different ways. Here only the message interface is discussed and only
the lateScheduler is mentioned further. The lateScheduler takes care of
the scheduling of work on the processing resources, which is done by
formulating new transportJobs and processJobs. The late Scheduler uses
one jobSchcdukr for every resourceType in the manufacturing system.
The lateScheduler schedules requests and it schedules tasks; as a
response it fonnulates new transportUnits. The controller lets the

transportScheduler (which is an instance of JobScheduler) schedule
these. The lateScheduler treats processReports, which also result in new
transportUnits. The lateScheduler fonnulates new proccssJobs for the
resources from transportReports.

4.2 The control model

The environment in which a factory operates is called the market. The
market is characterized by a sequence of consumers and suppliers. The
market model contains a consumer, a factory and a supplier (Figure 4. 3).

The factory behaves as a consumer to the supplier and as a supplier to
the consumer. The factory receives orders for products from the COn
sumer, and it orders raw material from the supplier. The supplier delivers
raw material to the factory. The factory manufactures products from the
raw material and delivers the products to the consumer.

the con.trol architecture for manufacturing systems 81

Market model

Figure 4.3. Market model,

In the model the protocol of ordering and delivering between a con

sumer, factory and supplier is similar to the protocol 4 mentioned in
section 3.4. The supercontroller corresponds to the consumer, the
controller corresponds to the factory controller and the subcontroller to
the supplier, The messages statusRequest, status, command and result
are replaced by respectively potentialOrder, quotation, realOrder and

invoice.

The factory model consists of a factory controller and factory reSOurces

(Figure 4.4 a, b and c). The factory controller conunands the factory
resources and it handles the administrati ve interactions with the supplier

and the consumer. The factory controller's task consists of capacity

planning, marketing which is about handling consumer orders, purchas
ing of raw materials. manufacturing control and distributing control. In
Figure 4.4 d the process description of a factory controller is given, it

Factory model

Figure 4.4. Model o/the/actory. a) Factory model_

82 the control architecture for nu:mufacturing systems

Factory8$sources model

controller cootroller oonlroller controller ~Mtr'Oli"r oonlroll .. ,

Figure 4.4. Model oj the factory. b) FactoryResources model.

FactoryProcasslngResources model

controller eomroller COrilrolk>; oorilr'Oli$f

outoid.. oul!iid"

Figure 4.4. Model of the factory. c) FactoryProcessingResources

model.

handles orders in a sequential fashion, One at a time. The actual process
description of the factory controller is shown in Appendix C.

If the factory controller recdves a potentialOrder, it checks whether
there is capacity available to manufacture the products. IT there is
capacity free to manufacture the products before the due date demanded,
the factory controller formulates a potential Order for the supplier. The
potentialOrder is sent to the supplier to check whether the supplier can
deliver the needed raw material in time. Only if the supplier accepts the
potentialOrder of the factory, does the factory accept the potentialOrder
of the consumer, In all other cases the potentialOrder is rejected by the

factory controller. 'When the conswner receives a quotation that accepts
the potential Order, it decides whether it wants to place a real order.

The consumer sends the reaIOrder to the factory controller. The factory
controller formulates a real Order for raw material and sends it to the

the control architecture for mo.nufacturing systems

FactoryControlier :> body

I order I
order := self receiveOrder,
order IS Potential

ifrrue:
[(planner hasCapaCity'=:or: order)

IITrue:
[self handlePotentialOrder: order,

self sendPotentialOrder.

self handleQuotation: self recelveQuotation],

self sendQuotationJ
itFaJse:

(selt handle Real Order; order.

salf sendRealOrder.
self handle Invoice: self receivelnl/Olee.
self handleSubrequest: self racelveSubreques1.
self handleTransportRequest: self racelveTransportRequest.

self sendTransportJob.
self handleTransportReport: self reooiveTransportReport.
self sendSubjob,
self handlaSubreport: self receive$ubreport.

self handleTransportRaquest: self receiveTransportRequest.
self sendTransportJOb,
self handleLastTransportRaport: self receivaTransportReport.
self send Invoice]

Figure 4.4. Model of the factory. d) Process description of a

simplified FactoryController.

83

supplier. The factory controller also reserves capacity for the manufac
turing of the products. After the receipt of the raw material and the
invoice from the supplier, the controller commands the factory re
sources to manufacture the products. The description of the control of
the manufacturing process by the factory controller is analogous to the
control in a manufacturing system controller and is described below.
Mter the manufacturing process is completed, the factory controller
sends a distribution command to the factory store and an invoice to the
consumer. The factory store sends the products to the consumer.

This model does not contain a transport system between factories. The
exchange of material between the supplier and factory and between
factory and consumer is modelled as an interaction path between
processors.

The factory model is based on the factory control architecture described
by Arentsen [1989]. It is possible to connect more than one supplier Or
more than one consumer to the factory, and it is possible to use a forecast
controller to realize different ordering strategies. In Arentsen's model
the processor FactoryResources is modelled as a single processing
machine; in the present model it is modelled as a factory store, a
transporter and processing resources (Figure 4.4b),

84 the control architecture for manufal.'furing systems

Manulac1I,JfingSystern model

controlier eo,ltrolle.

Q\.IIside outllide

Figure 4.5. The model of a manufacturing system.

a) ManufacturingSystem model.

ManufacturingResourCflS model

(;ontrolJor oontroll~r oQl1\rolier controller

or.rtsir;le

orkoide

Figure 4.5. The model of a manufacturing system.

b) ManufacturingResources model.

<;oril",lIo, ool1\rolklr

The processing reSources in a factory are either leaf resources or
expanded resources (Figure 4Ac). A leaf reSOillce (a machine) performs
one operation on aU the material in the machine and it has no capability
to store other material. If the processing resource in a factory is an ex
panded resource, it consist of a group of processing machines. An
expanded resource is also called a manufacturing system; it does have
the capability to store material that is not being processed.

the control architecture for manufacturing systertUi

Manu1acturingProcessingAesources model

conb'oll&r con\rQllDt

oulsldQ outsidEo

Figure 4.5. The model of a manufacturing system.

c) ProcessingResources model.

85

A manufacturing system (Figure 4.5a) and a processing machine have
the same interactions with their environment. A manufacturing system
contains at least one store and one transporter (Figure 4.Sb). The
processing resources of a manufacturing system are leaf resources or
expanded resources (Figure 4.5c). It is possible to repeat the control
structure of the manufacturing system recursively in the expanded
processing resources. The recursion starts with a factory controller at the

top and ends with a processing machine at the bottom. The number of
control layers between the factory controller and the processing ma
chine is a design parameter.

In the next part a distinction is made between job, subjob, request,
subrequest etc. The meaning of these tenns are given in Figure 4.6.

Supercontroller

l ~ 1
request report

subrequest subreport transport Request transportReport

Resource Transporter

Figure 4.6. The names of objects sent between the different

processors.

86 the control architecture for manufacturing systems

ManutacturingCon1roUer > bOdy

self handleSubrequest: self receiveSubrequest.
saH send Request.
self handleJob: self receiveJOb.
self handleTransportRaquest; self recelveTransportfiequest.
self sendTransportJob.
self handleTransportReport: self recelveT~anaportRepon.
self sandSubjOb.
self handlaSubreport: self recelveSUb~eport.
self handleTransportRequast: salf receiveTransportRaqueSI.
self sendTransportJob.
self handleLastTransponReport; self receiveTransportReport.
self sendRepon

Figure 4.7. Process description of a simplified (sequential)

manufacturing controller.

We now go on to explain the description of the execution of a job in a
simple manufacturing system, which executes jobs sequentially one
after the other. The related process plan (a task) consists of a single
process Unit, which means a job leads to one subjob. This manufacturing
system has One processing resource. The controller handles only one job
at a time. The process description of this controller is printed ill Figure
4.7.

The manufacturing controller starts with the receipt of the subrequest of
the processing resource. The subrequest is given to the process scheduler.
The subrequest is also used to generate a request for a job from the
supercontroller. The request is sent to the supercontroller. The
supercontroller takes care of transport of material to the store. The
transportation of material to the system store is either a reaction to the
request from the system, or else the material is already available ill the
store. The processJob for the manufacturing controller is a response to
the request. This means that the material always arrives before the
processJob and the processJob always arrives after a request has been
sent.

The controller lets the process planner create the description of the
manufacturing process (the process plan) that has to be executed in order
to execute the processJoh. The process plan or the task is here a
collection of One processUnits. The process planner records what jobs
are in progress. The process planner administrates the new processJob
and generates a progressFonn that contains the task that has to be
executed.

The processUnit of the task is scheduled. For this purpose the process
scheduler uSes the subrequestfrom the processing resource. The process
scheduler monitors the status of the processing resources (with help of
sUbrequests) and generates subjobs for processing resources with the

the control architecture for manufacturing systems 87

process plan (from the process planner). The process scheduler uses the
process plan to create transportUnits and to dispatch the processUnits to

the processing resources. The scheduler in this controller uses a late
transport strategy. This means that the transportU nits are generated after
the sequencing of the processUnits.

The processUnit and the subrequest taken together result in a
subprocessJob for the processing resource. Before the subprocessJob is
sent to the processing resource, the material has to be transported to the
processing resource. The process scheduler generates from the
subprocessJob the transponU nit that specifies the transport of material
to the processing resource. The transport scheduler uses this transponU nit
and waits for a transportRequest from the transporter to generate a
transportJob. TIlls transportJob is sent to the transporter and the trans
porter moves the material to the processing resource. When the trans
porter has finished its transportJob it sends a transportReport to the
controller. The ttansportReport is a sign to the process scheduler that the
subprocessJob may be sent to the processing resource. The controller
dispatches the subprocessJob to the processing resource.

When the processing resource has finished the processing of the
material, it sends a subprocessReport to the controller. The process
scheduler uses the subprocessReport to generate a new transportUnit.
TIlis unit specifies the material that has to be moved from the processing
resource to the store. The transport scheduler waits for a transportRequest,
then generates a new transportJob from the transportUnit and the
request. This transportJob is sent to the transporter. The transporter
picks the material from the processing resOurce and places it in the store.
After the completion of the transport, the transporter sends a
transportReport to the controller. The transportReport belongs to a
fInished job. For this reason the transportReport is given to the process
planner that administrates the finished processJob and delivers a
processReport. This processReport is sent to the supercontroller. The
supercontroller has to take care of the removal of the material from the
store of the manufacturing system.

Mter the processJob has been finished the controller waits for a new
subrequest and sends a request for anew processJob to the supercontroller.
In the case where the manufacturing process is controlled by a factory
controller, the factory controller has to take care of the material flow
itself and no requests are sent to get jobs: the jobs stem from the supplier
and the capacity planner.

The model of a sequential manufacturing controller has been described
above. However, the manufacturing controller has to handle some
complications. Fi:rst., it has to control more than one processing resource
and to execute more than one processJob at a time. This IS handled by

88 the control architecture for manufacturing systems

ManufacturlngControlier > body
s91f

receiveFromOn90f: #('controller' 'resource')

before; self requestSendTIme
do:

[:portName :lIem I
portName : 'controller'

IfTrue:

[self handleJob: It9m.

self sendAvallableTransportJobsl

portNam9 = 'resource'
IfTrue:

[Item iSReq:U5St
ifTrue;

[self handleSubrequast; item.

self sendAvaliableTransportJobsl.
item isReport

ifTrue:

[self handleSubreport: Item.
self sendAvailable TransportJobS).

item IsTransportRequ9st
IfTrue;

[self handleTransportRequest: Item.
self s9ndAvallableTransportJobsJ.

item isTransportReport
ifTrue:

[Item belongsToFlnlshedTask
ifTrue:

[self handleLaStTransportR9port: item.
self sendAvailableReports]

if False:
[S91f handleTransportReport: Item.

S91f sendAvaiiableSubJobsJIII
ifTimedOut: [self send Request]

Figure 4.8. Process description of the manufacturing controller.

using a parallel algorithm where the execution of all tasks is progressed

by the events that happen. Second, a task can consist of more than one
process Unit. 11lis means that the control algorithm has to repeat the
execution of processUnits until the task is finished. Third, the manufac
turing controller has to handle batch size differences between process~
lng reSOurces. In order to do this material has to be split and/or to be
combined. The splitting of material is made possible by allowing mOre
tasks for one processJob. Thus the material can be processed in smaller
quantitks. To process material of different tasks on one processing
resoW'ce, processUnits have to be combined. This is possible because a
sobprocessJob may consist of more than one processUnit. The fourth
complication is the generating and the sending of the request, which will
be handled in the next sections.

The control algorithm of the manufacturing system has been described
in a purely sequential fashion. By rewriting the algorithm in a parallel
version, in our case an event driven controller it possible to control all

the control architecture for manufacturing systems 89

kinds of manufacturing systems. The controller is event driven: the
reception of an object (an event) precedes a part of the manufacturing

process. The parallelism of the control algorithm results in a controller

that is continuously waiting to receive objects. As a response to these

objects it sends, if possible, other objects. The objects a manufacturing

controller can receive are: a processJob) a subrequest, a subprocessReport,
a transportR.equest or a transportReport (Figure 4.6). The objects a

controller sends are: a request, a processReport. a subprocessJob and a

transportJob. The sending of the requests is coupled to a timer in order
to be able to send requests after some delay. The process description of

the manufacturing controller is given in Figure 4.8. Hereafter the

parallel control algorithm is discussed) i.e. the different actions to be
undertaken after the receiving of an object.

If the potential actions cannot be executed because other objects are
missing) the received object or derived objects are stored by one of the

schedulers. The scheduler stores processUnits and requests, the trans

port scheduler stores transportUnits and transportRequests.

processJob

The process planner generates a progressForm for the processJob and

specifies the task that has to be ex.ecuted in order to execute the

processJob. The task is scheduled by the process scheduler. The process

scheduler uses subrequests from the processing resources to find which

resource is able to execute the processUnit from the task. The process
scheduler generates the transportUnits. Because material may be split,
the arrival of a processJob may lead to more than one transportUnit. It
has been chosen to let the process scheduler plan the route of the
material, because this way fixed routes and flexible routes are handled
in the same way. This is not possible if the process planner generates the

routes.

The transportUnits from the scheduler are scheduled by the transport

scheduler. ff the transport scheduler has a transportRequest which can

execute the transportUnit, this results in a transportJob, which is sent to
the transporter.

subrequest

If the controller receives a subrequest) this may enable the process
scheduler to sequence a processUnit On a processing resource. As a

consequence the process scheduler generates a transportUnit. Together

with a transportRequest this resul ts in a transportJob for the transporter.

90 the control architecture for manufacturing systems

subprocessReport

The controller receives a subprocessReport if a processing resource has

processed the material. As a consequence the material from the resource
has to be transported to the next processing resource. To do so the
process scheduler has tInd out the next operation to be executed on the
material (process interpreting) and to allocate material to a processing
reSOurce. If the task (process plan) is finished, there are nO more
process Units to be executed by any processing resource and dle material

has to be transported to the store. The process scheduler that handles the
subprocessReport tries to generate the transportUnits. This is only
possible if the task is finished or if there is a subrequest from the resource
to which the next processUnit can be allocated. A consequence of
combining material is the fact that a subprocessReport may lead to more
than One transportUnit.1f the transport scheduler has transportRequests,
the transport scheduler generates a transportJob.

transportRequest

The transportRequest is used by the transport scheduler to generate
transportJobs. If there are transportUnits the receiving of a

transportRequest results in the sending of a transportJob. Because of
combining of material a transportJob may transport more materialUnits
at one time.

transportR eport

With the arrival of a transportReport at the controller two cases have to
be distinguished. The material has been transported to a processing
resource where a process Unit has to be executed, or the manufacturing
process on the material is finished and the material has been transported
to the store. If the material has been transported to a processing resource;

dlen the process scheduler allocates the subproccssJob for that resource
and it is sent to the resource. Because of the combining of material a
transportReport does not automatically lead to the allocating of a
subprocessJoh. The subprocessJob has to be sent if aU material of the
subprocessJob has been transported to the resource. Transport of the
material to the store means the manufacturing process of the material is
finished. A report has to be generated only after the arrival of the last
piece of material of a processJob, this is a consequence of the splitting
of material. The planner generates a process Report for the processJob
and the processReport is sent to the supercontroller.

the control architecture for TIUlnufacturing systems 91

In many cases the process scheduler knows the material route before
hand. This enables the early generation of transportUnits. With early
transport, the process scheduler generates the transportUniton arrival of

the processUnit. The transportReport releases processUnits and the
process scheduler schedules these with subrequests from the processing
resources. The transport is executed before the scheduling. A manu
facturing controller with such a process scheduler behaves differently
fromthecontrollerwithlatetransport,andthesedifferencesarediscussed
below.

The differences are found in the process scheduler and in the actions
taken after the reception of a processJob, a subrequest and of a
transportReport. Mter the reception of the processJob the process
scheduler always generates a transportUnit and, if there is a
transportRequest available, the transport scheduler generates a
transportJob. Mter a transportReport material has to be allocated to the
resource, it depends on the received subrequests whether a subjob has
to be sent or not. After the reception of a subrequest no transportUnit is
generated but material has to be sequenced on the resource, if material
present in the resource, a sub job is created and this is sent to the resource.

A transportReport of a fInished task is handled in the same way as by the
late scheduler.

The request send strategy implements the release strategy. The actual
release of jobs is equal to the sending of a request Of, if no jobs are
available, it is worse than the request send strategy. The sending of
requests depends on the status of the manufacturing system. The
sending of a request may be strongly coupled to the sending of subrequests,
or not coupled by using a fixed time interval for sending a request (open
loop). A simple request send strategy is to send a request for every
subrequest. This only works if every processJob results in one
subprocessJoh. Then there is the possibility to use the subrequest of one
specific processing resource of the manufacturing system to send a new
request, or a combination of subrequests of different processing resources.
The progress of process Jobs can be used for the generation of subrequests.
For imtance: send a request if a job is finished. TIlls seeks to achieve a
fixed number of jobs in progress (Fixed-WIP). Another way is to send

a request after the start of a specific subprocessJob, it is also possible to
delay such a request, which results in a so-called request generation with
delay. To send a request some time interval after the last request is a so
called uniform starts strategy. This strategy uses no status information
of jobs and resources. It sends a new request after a time interval. The
fixed time interval has to be adapted in advance to the capacity of the

manufacturing system. A possibility to use dynamic time intervals is
presented by Mommers [1990]. He calculates the time interval using

92 the control architecture for manufacturing systems

MlIllngShop model

Figure 4.9. Model o/the single milling shop.

a) The MilIingShop model.

Resources mOdel

oonlr'OllAI cQO\rolier oontrcllbl <lQntrolll3r

Figure 4.9. Model oj the single milling shop.

b) The Resources model.

cootloU... QQntroUer

performance indicators such as lead time and inventory level, thus
establishing a closed-loop strategy.

A manufacturing system with processing machines has to avoid block
age of resources (deadlock). To avoid deadlock complex simulators may
be used which only generate a request if the execution of the job will

never block the system.

the control architecture for manufacturing systems

ProcessingRasources modal

GOtltroiler <;<)"ltcllllf

Figure 4.9. Model a/the single milling shop.

e) The ProcessingResources model.

93

The next sections discuss the relation between request generation and
the class of the manufacturing system. In the last section the relation
between the request generation and multiple control layers is discussed.

4.3 Single shop

In this section the model of a single shop is presented, followed by its
recipe table, which consists of operations the shop is able to execute,
coupled. to recipes. Mtel' that the request generation strategy is discussed
and the performance graphs of a single shop are studied. The example
starts from an ideal single shop in which all recipes take the same time.
Finally, the consequences of deviations in process times are discussed.

In this example a single milling shop contains one milling machine. Its
model is illustrated in Figure 4.9. The shop consists of a controller and
resources. The resources consists of a store, a transporter and processing
resources. The processing resources consistof a single milling machine.
The milling machine processes one piece of material at a time. The
manufacturing jobs for the shop have to contain only one piece of
material The manufacturing processes in the shop consist of one
operation on the milling machine. The recipe table is given below.

recipes:
millProductA 1 -> Sequence (milll)
millProductBl -> Sequence (mi112)

The shop is capable of executing the operations millProductAl and
millProductB 1. The milling machine executes the operations mill I and
mi1l2. The total manufacturing process in the shop consists of transport-

the control architecture for manufacturing systems

0

0 2 3 4

mean Invantol)' level
[Places]

0.04

0.03

!~
I;»t=
~.-

e~ 0.02
iO

S
~.~
eB

0.01

0

0 2

maao inventory Ie-val
[Piecesl

Figure 4.10. The peiformance graph of the milling single shop. The

mean lead time as afunction o/mean inventory level and the mean

throughput as a function of mean inventory level.

iog material from store to the milling machine, milling the piece of
material and transporting the material from milling machine to store. It
is supposed that the transport takes 5 minutes per movement and the
milling takes 60 minutes. This means the total manufacturing process
takes 70 minutes. The shop controls a machine, so a late transport
strategy has to be used (see Section 3.3).

Several possibilities exist for the generation of requests. The fIrst is to
use the subrequest from the milling machine for the generation of a new

request for the supercontroller. This works well if the supercontroller is

the con.trol architectu.re for mtlnujacturing systems 95

immediately capable of sending a new job for the shop (if the

supercontroller uses the early transport strategy) else the shop has to
wait a while before a new job is available: during this period oftime the

milling machine remains idle. Let us suppose it takes 15 minutes before

the supercontroller is able to send a new job in response to a request. In
this case the request strategy should try to make SUI'e the new job arrives
at the shop at the moment the manufacturing process is finished. The
manufacturing process in the shop is ready 65 minutes after the milling

machine starts processing. So a new request should be send 65 ~ 15 = 50

minutes after the sending of the subjob to the milling machine. Thus the
controller sends the subjob and uses this event to start a timer which
signals the moment to send a request to the supercontroller. This manner
of requesting is called request generation with delay. A simpler way to

request would be to request a new job 70 - 15 = 55 minutes after the

arrival of a job. However. this is an open~ loop policy: the arrival of a job

at the milling shop is no guarantee that the current job for the milling

shop is finished within a certain time. The request of a single shop

contains all operation types for which the single shop has recipes. In the

example the request contains the operation types millProductA and
millProductB.

The milling machine is idle during the transport of material (loading and

unloading). TIlis is due to technological constraints. In order to reduce

this idle time the transport time has to be reduced, Or else another way
of transporting has to be implemented. No attention has been paid to this
problem.

The performance graphs of the milling single shop are printed in Figure

4.10. The lead time of a job is always 70 minutes or more. If the shop
always contains exactly one job the maximum throughput of one piece
of material pet 70 minutes is reached. H the mean inventory level

becomes larger the lead time increases by 70 minutes per piece of

material. It is clear that an inventory level of exactly one is the best work

point for the controller. If the time between the sending of a request and
the receipt of a job varies, a smaller delay may be chosen to be sure the

job has arrived before the machine runs idle. This smaller delay results

in an inventory level that becomes larger than one and a lead time that

becomes larger than 70 minutes. If the delay is too big the lead time
remains 70 minutes but the throughput of 1 piece of material per 70
minutes is not reached.

The consequences of variable process rimes are restricted to the per

fonnance graph and the length of the delay. The delay is equal to the
process time minus a safety margin. If the process time is known, the

delay can be calculated, and material is requested in time. If the process

time is not exactly known an estimation has to be made, and the

96 the control architecture fOT manufacturing systems

perronnance will depend on the estimation. The controller behaviour, in
principle, remains the same and the lead time does not necessarily have
to be larger than the (detenninistic) process time of the jobs together
with the transport time.

Two ways to generate requests have been discussed above. One was
based on the use of subrequests, the other On the use of a delay, which
started at the sending of a subjob to a resource. In both request
mechanisms the resource influences the controller in requesting new
jobs. The lead time of a job for a single shop is known exactly if the
behaviour of the resource in the shop is known. If process times are
random, then lead time has to be weighed against throughput. A high
inventory level reduces the chance that the resource becomes idle at the
cost of an increase in lead time. The controller of the single shop tries
to keep the inventory level at exactly the batch size of the resource,
because this minimizes the lead time in the single shop.

4.4 Parallel shop

The parallel shop is in many ways simjlar to the single shop. The parallel
shop presented here is a parallel milling shop which consists of a
controller and resources (Figure 4.11). The resources consist of a store,
a transporter and processing resources. This time, the processing re
sources are two equivalent milling machines. These milling machines
have the Same characteristics as in the single shop.

ProcassingResourc8s modal

()(> ... ItoI~r controller

outside otJI~ide

Figure 4.11. Model o/the processing resources of the parallel

milling shop. The controller, store and transporter are modelled

according to Figure 4.9 a and b.

the control architecture for manufacturing system')

0

0-04

0.Q3

'8.'m
-'='5
~~

~~ 0.02

i·~
E.e.

0.01

0 2 3

mean Inventory lavel
(pIeces}

milan inventory level
(pIeces}

4

Figure 4.12. Performance graphs of the parallel milling shop.

97

The most important characteristic of the parallel shop is the fact that all
manufacturing processes in the shop consist of one processing opera
tion, perfonned on one processing resource. The manufacturing process
consists in this case of transport from store to one of the mining
machines, processing of the material on the milling machine, and
transport from the milling machine to the store. The recipe table of the
shop is equivalent to that of the single milling shop. The recipe table of
the shop is printed below.

recipes:
millProductAl ~> Sequence (milll)
rnillProductB 1 -> Sequence (mi1l2)

98 the control architecture for man.ufacturing systems

The controller of the shop is able to process two pieces of material in two
different resources; these resources are in fact independent capacities.
So if one resource sends a subrequest, the controller sends a request that
states the capabilities and capacities of that resource. If, in our case for
example, one milling machine can only execute the mill1 operation and
the other only the mi1l2 operation, a subrequest of the first machine
results in a request from the controller for a job with a millProductAl
operation. The shop controller sends as many requests as it has capacity
in its processing resources. This capacity of the processing resources is
stated by the subrequests from these resources, so one subrequest is
equal to one request. Just like the single shop, the parallel shop may also
use a delay before sending a request in order to reduce the idle times of
the machines. The sending of a subjob lS a reasonable reference pointfor
the start of the delay.

The performance graphs of the parallel milling shop are printed in
Figure 4.12. The mean lead time remains 70 minutes, as long as the
inventory level remains below tvvo pieces of material. With a mean

material level above the two pieces the mean lead time increases by 35
minutes per piece of material. The mean throughput of the shop is at a
maximum if the inventory level is two pieces Or more. The maximwn
throughput is equal to one piece of material every 35 minutes.

The parallel milling shop has the transporter as a common resource. If
two machines receive a job at the same moment one job has to wait for
the transport of the material of the other job. To prevent this it seems
logical not to request two jobs at the same time, but rather to force a delay

between two requests equal to the time it takes to load the material of a
job.

The request generation in a parallel shop is analogous to the generation
of requests in a single shop. A possible refinement to the request
generation mechanism is the introduction of a minimwn time interval
between the sending of two requests. This time interval is equal to the
load time of material and prevents wait times due to transport in the

shop.

4.5 Flow shop

Two working methods can be followed to model a flow shop. The flow
line can be built by coupling a number of factories with a single
processing resource behind One another. This is in fact the factory
control architecture proposed by Arentsen [Arentsen, 1989]. Because
Arentsen's factory control architecture is compatible with the architec
ture presented in this thesis, it follows thatArentsen 's theory is also valid
for this architecture. The disadvantages of the use of the architecture in

the control architecture for manufacturing systems 99

ProcessingRasources modal

Figure 4.13. Model of the processing resources of the milling flow

shop_ The controller, store and transporter are modelled according to

Figure 4.9 a and h.

this way is that, with a change of the manufacturing process, the control
structure of the manufacturing system has to be changed and that every
resource is involved in the capacity planning.

The other way to model the flow shop is with the help of multiple
processing resources. It is modelled as a manufacturing system with a
central controller; all the recipes consist of a number of operations,
which are executed in sequence on the resources. TIlls method is
illustrated below.

The milling flow shop has two milling machines: a coarse milling
machine and a fine milling machine. The model of the shop is found in
Figure 4.13. The milling parallel shop has similar structure as the
milling single shop and the milling parallel shop. 'The resources of the
shop are a store, a transporter and processing resources. The processing
resources are fonned by a coarse milling machine and a fine milling
machine.

The recipes of the flow shop differ from the single and parallel shop. The
manufacturing of a product is now done by executing two processing
operations. The recipe is shown in the recipe table below.

recipes:
millProductA1 -> Sequence (coarseMill1 fineMilll)
millProductB 1 M> Sequence (coarseMi1l2 fineMill2)

The manufacturing process consists of transporting material from store
to the coarse milling machine, the coarse milling of material, transport
from the coarse milling machine to the fine milling machine, fme

100 the control architecture for manufacturing systems

milling of material, and transport from the fine milling machine to the
store. It is supposed that both the coarse and the fine milling take 30

minutes, the transport of a piece of material takes 5 minutes. The

transporter is modelled as one common resource which executes all

transport in the station. This is not a necessity: other solutions, e.g. a

distributed transport system, are also possible.

The request generation of a flow shop differs from that of the single and

parallel shop. Not every subrequest leads to a request for the
supercontroller. This is not possible because One job of the supercontroller
is executed on two resources. There are two subrequests needed for the
execution of one job. So only half as many requests have to be generated

as there are subrequests received. One way of generating requests is to

use subrequest<; of the frrst resource in the manufacturing process, in this

case the coarse milling machine. The flow shop will not request more

than one job at a time because the first milling machine can only process
one piece of material at a time. Just as in the single shop a delay may be
used to request a new job in order to be sure the material arrives in time

at the flow shop. For the start time of the delay the sending of a job to

the first resource is a good reference.

If the first m.achine is not a bottleneck, this manner of request generation
does not work: it leads to an everlasting increase of inventory in the flow
shop, because the input rate of jobs becomes bigger than the throughput
of the flow shop. The start of a subjob at the bottleneck station is a
reference point, which circumvents this problem. Now the length of the

delay has to be adapted in such a way that jobs anive in time at the
bottleneck resource. This time depends on the jobs that are in process on
the resources in front of the bottleneck and on the process time of these
jobs. The maximum time interval between two requests is equal to the

inverse of the maximum throughput (in this example 40 minutes; see

below). This is a maximum length, which has to be used if the inventory

level of the flow shop is equal to the desired work point. In some cases
(e.g. with the start up of the shop) it makes sense to increase the

inventory level of the flow shop. In order to do this the length of the time
interval has to be smaller than the inverse of the maximum throughput.

To make the time interval smaller than the process time of the subjob on
the first resource has little use, because it would introduce a wait queue
in front of the first resource_

By using the start time of a subjob on the bottleneck resource for

generating a new request, establishes a link between the behaviour of the

resources and the generation of requests (closed loop). If, for instance,
a resource in front of the bottleneck goes down, the bottleneck resource
does not receive a new subjob. If subjobs arrive too early at the
bottleneck, they have to wait until the bottleneck is idle. In both cases

the control architecture for mLlnufacturing systems 101

the bottleneck will not generate new subrequests and, because of this,

the controller will not send any new requests.

Another way of generating requests is to start by generating so many

requests that the flow shop becomes filled to the work point. From then

on the finishing of a job can be used to generate a new request This leads

to the Fixed-WIP release strategy (see Section 3.2). In the milling flow
shop this means two requests are sent at the beginning and afterwards,

after the finishing of a job, a new request is sent. Another possible

request generating mechanism is the use of a constant time interval. The
interval should be equal to the inverse of the desired thxoughpul This
leads to the so~called unifonn-starts release strategy, where every so
many minutes a new job is started in a manufacturing system. In our
example a request has to be generated every 40 minutes. TIri"S m.echa
nism is an open-loop policy and bears the disadvantage that no coupling

exists between the execution of subjobs on the resources and the sending
of requests.

The request of a flow shop nonnally contains all operation types that the

flow shop is capable of executing. A fixed product mix may be realized

by altematingly sending requests with different capabilities.

To calculate the performance graph of the milling flow shop a possible
optimal behaviour of the shop is given. 'This is the behaviour of a filled
shop and repeats every 40 minutes, although the operations on both the
coarse and the fine milling machine take only 30 minutes. At time 0 the
fine milling machine has finished a product and the transporter trans
ports the fInished piece of material from the fine milling machine to the

store. At time 5 the coarse milling machine finishes its operation and the

transporter transports the piece of material from the coarse milling

machine to the fine milling machine. At time 10 the material arrives at
the fine milling machine and the [me milling is started. The fine milling

finishes at time 40, the start of the new cycle. At time 10 the transporter

also transports a new piece of material from the store to the coarse
milling machine. At time 15 the material arrives at the coarse milling
machine and coarse milling is started. The coarse milling will be

finished at time 45, just in time for the material to be transported to the
fine milling machine.

The capacity of the machines is one product every 30 minutes, the extra
time being due to the transport of products. Once again, this can be

reduced with another implementation of the transport system.

The minimum lead time of a job is equal to 75 minutes, and the

maximum throughput is equal to one piece of material every 40 minutes.

The flow shop inventory level, however, is not two pieces of material all

the time. During a period of five minutes, when the material from the

102

III

E
+S'Oi'
alQl
Q)'S
-.S

280

ffi §. 140
III

E

0

0.04

0.03

II
r;;r)t=
;;;1'-

e~ 0.02

;5~
m·-eB

0.01

0

the control architecture for manufacturing systems

2 3

mean inventory level
[PIeces}

mean Inventory lavel
[Plecesl

4

Figure 4.14. Performance graphs of the milling flow shop.

coarse ruilling machine is transported to the fine milling machine, there
is onl y One piece of material in the shop. The mean material contents at
the ideal work point is therefore 1.875. The performance graph of the
tlow shop is given in Figure 4.14. An inventory level above the ideal
work point causes the lead time to increase by 40 minutes per piece of
material.

The example above mentions new mechanisms for the generation of

request. The subrequestfrom the bottleneck resource may be used or the
sending of a subjob to the bottleneck may be a reference for a delayed
request. Then there is the possibility to use the fInishing of a job to send

the control architecture for manufacturing systems 103

a request (Fixed-WIP). The last mechanism mentioned uses a fix.ed time
interval between the sending of requests (uniform starts).

4.6 Job shop

The most complex manufacturing system is a job shop. The job shop is

characterized by great route flexibility and universal resources. In a job

shop there are nO constraints to the route of the material through the shop

and there is no limit to the number of times a resource is visited, thus
cyclic routes ate allowed.

The propagation of requests from resources through the manufacturing
controller to the supercontroller in a job shop is difficult. Because the

recipes consist of more than one operation, it is not possible to send a

request for every subrequest received from the resources. There is also

not necessarily one bottleneck that is always visited and that can be used

as a trigger for the requesting of new jobs from the supercontroller. A
way to request new jobs in a job shop is the use of the inventory level

in the manufacturing system. This leads to the generation of requests
when a job finishes, and a filling mechanism for loading the shop

(Fixed-WIP, as discussed in Section 4.5). The bigger the job shop the

smaller the influence of one job on the behaviour of the manufacturing

system, and the better general observers, such as inventory level, can be
used as a request generating mechanism. The work point is related to the
sum of the batch sizes of the machines in the manufacturing system.1'h.is
mechanism only gives satisfactory results if the execution of the jobs is
distributed smoothly over all resources in the manufacturing system.

The mechanism mentioned above does not function well if the work

contents of the different jobs show large variations. In this case the use

of work content may work better. The work content is the sum of the

process times of all the jobs in the system. Manufacturing control with

the use of work content is discussed in [Wiendahl1987]. A disadvantage
of the use of work content is the difficulty of finding a relation between
the batch size of the machines, which is expressed in material units, and
the optimal work content of the manufacturing system, which has to be

expressed in hours. Here also the jobs have to be distributed evenly over

the total manufacturing system.

An even more loosely coupled request mechanism is the use of a fixed
time interval between the sending of two requests (unifonn starts). If, for

instance, the manufacturing system has been designed to manufacture

a product every two hours, then the controller may send a request every

mo hours. A disadvantage of this open-loop mechanism is the lack of

feedback between the actual capacity of the manufacturing system and
the loading request of the controller.

104 the control architecture for manufacturing systems

The time interval between two requests also has to be related to the input
rate. It is no use to request two jobs at the same time Or shortly after each
other, if there is no capacity available to process these jobs at that

moment. The example of a job shop is presented in the next chapter, so
no further example is given here.

The single shop and the parallel shop are able to guarantee a certain lead
time, when they request a job. The flow shop also, under certain
conditions, guarantees a deterministic lead time. For the job shop,
however, the lead time tends to vary. By operating the job shop with a
controlled inventory level (Fixed-WIP) at a work point, this variation in
lead time is often kept within limits.

The resources of a job shop should not be leaf resources in order to

prevent deadlock and long idle times. On the other hand resources with
a job shop structure in a job shop seems also unwise. This increases
uncertainty and lead times, with bad throughput figures. It is best if all
job shop decisions are taken at one level, as high in the hierarchy as
possible, so that one controller has a view of the total scheduling

problem and is able to keep the total system at a work point which is
determined in advance.

4.7 Configuring a hierarchical control system

The integration of the concepts treated above results in the new hierar
chical control architecture. This architecture allows a structured approach
to the design of manufacturing control systems, especially for manu
facturing systems having a job shop character.

Foul' manufacturing system classes have been presented in Chapter

Two: a single shop, a parallel shop, a flow shop) and a job shop. In
Chapter Three four controller categories have been described: a factory
con troller controlling expanded resources, one controlling leaf resources,
a manufacturing controller controlling expanded resources, and one
controlling leaf resources.

This chapter has discussed the data structure, the general control model
and the strategies for the generation of requests. The following six
request generation strategies have been described: a subrequest causes
a new request, a subrequest of the bottleneck causes a new request, start

of the first subjob of a task causes a new request after a time interval or
delay, start of a subjob On a bottleneck cauSes a new request after a time
interval or delay, the completion of a job causes a new request (Fixed
WIP), or a new request is sent at fixed time interval (unifonn-starts). In
the last four sections the relation between request generation and the
manufacturing system class has been discussed.

the control architecture for manufacturing systems 105

The controller of the described architecture controls processing re

sources, a transporter and a store. It has been shown that the processing
resource may be expanded, itself containing a controller, processing

resources, a transporter and a store. In this way a hierarchical control

system is built up.

A controller belongs to a certain category, and a manufacturing system

class has to be determined. Arequest generation strategy and a transport

strategy have to be chosen for every controller. These aspects are related.

The nwnber of control layers is adjustable. The top of the hierarchy is

formed by a factory controller. The bottom is formed by (leaf) processing
resources controlled by a manufacturing controller controlling leaf
resources. If there is only one layer, then the controller is a factory
controller controlling leaf resources.

A controller that controls leaf resources has to use late transport, because
a leaf resource has no way to store material that is not being processed.

In order to avoid deadlock and to reduce idle times the single shop, the

parallel shop and, perhaps, a well balanced flow shop are the most

obvious classes to use for a manufacturing system with leaf resources.

These classes are associated with few sequencing problems: a scheduler

using the FIFO sequencing rule is nonna1ly sufficient. In case of a job
shop extra attention will have to be paid to deadlock avoidance.

The factory controller has to take care of capacity planning. To do this
it needs a clear view of the behaviour of the resources it controls. In order
to achieve such insight, one should use a relatively simple class of
manufacturing system. The most obvious classes here are also the single
shop, the parallel shop, or perhaps a flow shop, if it is well balanced. A

job shop manufacturing system class on this level would introduce a lot

of complications. On this level, one tries to keep the scheduling

problems to a minimum: calculations are concentrated on the capacity

planning problem. A necessary condition is that the behaviour of the

resources in the factory behave reasonably predictably. Asimple scheduler

using a FIFO sequencing rule or a rule for due date control (e.g. EDD)
is used on the factory level.

In controllers of expanded resources, early transport reduces the idle
times of resources and increases the clarity of the manufacturing system.
But it reduces the allocating possibilities at an early stage because
material is allocated to a machine before the material is transported.

Requests sent after a time interval may be used to request material before

a job is finished, to prevent the idleness due to late transport. The job is

requested too early, where the interval between request and actual
finishing of the job is a safety margin. This margin is, if possible, only

used by the controller that controls leaf resources. The margins used by
this controller may settle transport times in more than one supercontrol

106 the con.trol architecture for manufacturing systems

layer. The transport times of more layers can only be incorporated in one
margin if the supercontrollers generate requests on the basis of
subrequests. If in one of the supercontrollers requests arC not generated
with help of subrequests (e.g. unifonn starts or Fixed-WIP); only the
transport delays up to this supedayer are accounted for in the margin.
Here delays in layers above this superlayer can not be accounted for.
This problem may arise in controllers of a flow shop Or a job shop class.

If a controller controls expanded resources and there are no duplicate
resources of one type, then early transport is an interesting strategy to
use. A controller of a parallel shop class may be inserted in order to
prevent duplicate resources. A problem that has to be solved with any
transport strategy is the level at which material in the factory is stored.
In the manufacturing controller the material is considered to form the
inventory of the controller only if a job for the material has been
received. Nonnally the material is stored in the resources of the
controller where the sequencing and allocating decisions have to be
taken. This sequencing and allocating has to be done in a layer where a
global survey of the necessary system information is available. This is
usually one of the highest layers. The lower layers use late transport and
are of a simple manufacturing system class in order to keep the internal
inventory small and to achieve deterministic lead times, which enables
st~quencing and allocating decisions to be made on the basis of relatively
certain data. This layer, where sequencing and allocating problems are
solved, may be of a job shop or an (unbalanced) flow shop class-

The control architecture which has been presented in this chapter takes
as its starting point the specification of the machines and the recipes.
Together with the specification, one may also give a rough sketch of the
controller configuration and the number of the hierarchical layers. The
control architecture applied to this infonnation results in the controller
configuration. The control architecture asSumes that the transport capacity
of the transport system is over-dimensioned. The control configuration,
and especially the transport systems and the stores, have to be adapted
to each other. The designer of the physical manufacturing system has to
detennine the transport systems and the stores in concert with the
designer of the control system. The control configuration is created On
the basis of the insights presented above. This leads to a specific model.
The uSe of simulation allows one to check the behaviour of the control
system. The simulation also generates performance graphs, which may
be used to determine a suitable work point for the factory.

This approach is used in Chapter Five. With help of the control
architecture a hierarchical control system is developed for a complex IC
factory with a job shop character. The unique properties of the hierar
chical control architecture are discussed in Chapter Six.

Chapter 5

A case: an Ie manufacturing system

5.1 Introduction

The architecture presented in the previous chapters will now be applied
to an example, in OTder to illu:strate the architecture in practice. In this
chapter an Integrated Circuit (IC) manufacturing system is modelled
and the perfonnance of the system i:s studied with help of simulation
experiments. The diffusion proce:ss is used in the factory to produce
wafers containing les. The factory applies the CMOS (Complementary
Metal Oxide Semiconductor) technology [Sze 1983].

The manufacturing of les is difficult for many reasons. The p:rocess
consists of hundreds of steps (manufacturing operations). Many process
:steps have to be performed on the same machine. The durations of the
process steps vary from less than one hour to almost one day. The factory
has a job shop character. The machines have a poor reliability and the
process is subject to random yield crashes. Operator availability and
unpredictable repair times further complicate the manufacturing proc r

eSS [Lorlnsky, Glassey, 1988]. The nominal time required to manufacture
an Ie can be up to several weeks and, in practice, average lead times of
more than six times the nominal process time are no exception [Miller,
1990].

IC manufacturers have put a great deal of effort into the development of
new technologies and the improvement of the manufacturing process,
in order to increase the scale of integration ofles. Nowadays, they have
started to realize that, in order to reduce the cost, attention has also to be
paid to the control of the manufacturing system.

In the future factories will contain cell orientated manufacmring systems
and automated material handling systems, in order to reduce the number
of processing steps and to exclude contact between operator and
processing materiaL Computers will control the material flow and the
manufacturing process to reduce lead times [Warnecke, 1990].

108 a case .. an Ie manufacturing system

5.2 The Ie manufacturing system

The Ie manufacturing process to be dealt with is described briefly

below. More extensive descriptions can be found in the literature [Sze
1983, Burman et aL 1986, Kessler 1988].

The manufacturing of an Ie is split into four parts: the manufacturing of
the raw wafers; the wafer fabrication; a probe and dice operation; and
packaging and testing. The first two parts are also called the front end,
the last two the back end. To produce raw wafers, molten silicon is
transfonned into crystalline ingots which are sawn into wafers. The
wafer fabrication is the part with which this chapter deals, and is
explained in brief below. The wafer fabrication is done in an Ie
manufacmring system, often called a wafer fab. Mter the wafer fabri~
cation the ICs on the wafer are tested, and sawn into individual chips.
The approved chips are encapsulated into packages and tested again
before shipping.

The basic building block of an CMOS Ie is the MOS transistor. An Ie
contains up to millions of these transistors. The way to make an Ie is by
depositing Or growing layers of material on the wafer. With help of a
photol ithographic process a pattem is applied on this layer and with help
of an etch process the layer is partially removed, the photoresist being
removed afterwards. By repeating these steps several layers are grown
on the wafer. Another process used is ion implantation, where ions are
shot into the wafer and introduce so-called dopants into the silicon.
These dopants diffuse through the silicon by heating the wafer. In order
to manufacture an Ie hundreds of process steps have to be executed.
Many of these steps are executed On the same resources, which makes
the process cyclic, i.e. it is a job shop.

The machines of a wafer fab are usually divided into five categories:
lithographic equipment, diffusion-CVD (Chemical Vapour Deposition)
equipment, etch equipment, implantation equipment and metalization
equipment. A step in the manufacturing process is usually preceded by
a clean step and followed by an inspection step. Etch steps are not
preceded by a clean step, and implantation steps are neither preceded by
a clean step nor followed by an inspection step.

The lithographic machines put patterns On the wafer. The wafer is first
coated with a light-sensitive photoresist. The stepper exposes the
wafers, which are then developed. The coater, stepper and developer are

usually integrated into one machine.

The diffusion-CVD machines grow or deposit layers of material on the
wafer. This happens by putting the wafers in a furnace, heating it and

a case: an Ie manufacturing system 109

leading gases through the furnace. Because of the long setup times

furnaces are used for only a limited number of process steps.

The etchers remove material from the wafet. The developed photoresist
protects a part of the wafer and the uncovered areas are removed. This

is usually done with a dry etch process. An etcher is also used to strip the
photoresist from the wafer.

In the implanter charged ions of the right dopant are fired at the wafer.

This is a low temperature process. Mter the implantation the swface of
the wafer may be damaged. This damage is healed by heating the wafer

for a short while, so-called thennal annealing. To diffuse the implanted
ions into a larger doped region the wafers are heated in a furnace (one

of the diffusion-CVD machines).

The metalization machines deposit metal on the wafer. The process
m.etalization or sputtering is done to connect the components of the Ie
with each other and to provide bonding pads, were the Ie is connected

to the outside world (pins of the encapsulation).

Besides to the process machines (steppers, furnaces, etchers, implanters

and sputterefs), the chip fab also contains cleaners, inspectors, stores

and transporters. The material in the factory consists of cassettes with

wafers. These cassettes usually contain 25 wafers. The machines in the

IC factory have different batch sizes, some process single wafers such
as the steppers. Fumaces process up to two, three or four cassettes at one
time.

5.3 Control of Ie manufacturing systems

The control of Ie manufacturing systems is the subject of much

research. Several control, releasing and sequencing strategies have been

described and tested with help of simulation. Work load regulation

[Wein 1988, Lawton et at 1990] uses the work load in front of the
bottleneck to decide when to introduce a new job in the manufacturing

system. Starvation avoidance [Glassey and Resende 1988, Lozinski and

Glassey 1988] tries to start new jobs as late as possible, in order to let

material anive at the bottleneck station just before the bottleneck runs
idle and to minimize work in progress levels. An important conclusion
of such studies is that scheduling influences the average lead time
significantly, where larger improvem.ents are obtained with job release

than with subjob sequencing. Flow rate control [Kager and Lou 1989,

Lou and Kager 1989] calculates loading rates at each job step in the
wafer manufacturing system by comparing inventory levels and surplus

levels with predetermined values. The shifting bottleneck approach

[Uzsoy et aI. 1989] approximates the general job-shop problem by

110 a case: an Ie manufacturing system

Table 5.1. Manufacturing process o/CMOS (process time 207

hours).

machine
process

number operation pa~ameter
type

time
{hours]

1 Inti Diffusion CMOS1 Dflntl 6
2 Mask CMOS2 StePt'er 1
3 CF4 Etch CMOS3 Etch F4 1
4 HCurrlrnplant CMOS4 HCurr 1
5 02Etch CMOS5 Etch02 1
6 DrlvDiHusion CMOS6 DfD~iv 15
7 CF4 Etch CMOS7 EtchCF4 1
S Mask CMOSS Stepper 1
9 MCurrlrnplant CMOS9 MCurr 1
10 02Etch CMOS10 Etcl'102 1
11 OryDiffuslon CMOS11 DfDI)' 4
12 NtrdDeposition CMOS12 LPNtrd 2
13 Mask CMOS13 Stepper 1
14 CF4Etch CMOS14 EtchCF4 1
15 02Etch CMOS15 Etch02 1
16 MCurrlmplant CMOS16 MCurr 1
17 WetDiffusion CMOS17 otwet 12
18 CF4 Etch CMOS18 EtchCF4 1
19 GateDiffusion CMOS19 OfGate 4
20 DPolDeposition CMOS20 LPDPol 3
21 Mask CMOS21 Stepper 1
Z2 CI2Etch CMOS22 EtchCI2 1
23 02Etch CMOS23 Etch02 1
24 Mask CMOS24 Stepper 1
25 MCurrlrnplant CMOS.25 MCurr 1
26 02EtCh CMOS26 Etch02 1
27 TEOSDeposition CMOS27 LPTEOS 2
28 CF4Etch CMOS28 EtchCF4 1
29 TEOSDeposltion CMOS29 LPiEOS 2
30 Mask OMOS30 Stepper 1
31 MCuITlmplant OMOS31 MCu~~ 1
32 02Etch OMOS32 Etch02 1
33 Anneal CMOS33 DfAnnl 4

34 Mask CMOS34 Steppe~ 1
35 MCurrlrnplant CMOS35 MOurr 1
36 02EtCh OMOS36 Etch02 1
37 Anneal CMOS37 DfAnnl 3
38 L TOOeposition OMOS38 LPLTO 3
39 Mask CMOS39 Stepper 1
40 CF4Etch OM0840 EtChOF4 1
41 02Etch CMOS41 Etch02 1
42 AIDeposltion CMOS42 LPAI 2
43 Mask CMOS43 Stepper 1
44 BCI3EtCh CMOS44 EtchBCI3 1
45 02Etch CMO$45 Etch02 1
46 OxldDeposition CMOS46 PEOxid 3
47 ResistOeposltlon CMOS47 Coater 1
48 CF402E1ch CMOS48 EtchCF4 1
49 OxidDepoSition CMOS49 PEOxld 2
50 Mask CMOS50 Stepm 1
51 Cf:'4Etch CMOS51 Etch 1=4 1
52 02Etch OMOS52 Etch02 1
53 AIDepo$ition OMOS53 LPAI 2
54 Mask CMOS54 Ste~r 1
55 BCI3Etch CMOS55 Etch CI3 1
56 02Etch CMOS56 Etch02 1
57 OxidDeposltion CMOS57 PEOxid 3
58 MaSk CMOS58 Stepper 1
59 CF4Etch CMOS59 EtchOF4 1
60 02Etch CMOS60 Etch02 1

a case: an Ie manufacturing system III

Table 5.2. Manufacturing process of SRAM (process time 197 hours,

this process time is inclusive cleaning, inspecting and transporting).

number operallon parameter
machine ~

type [hOu'S]

1 IntlDiffuslon CMOS1 Of Inti 6
2 Mask SRAM2 Stepper 1
3 CF4 Etch CMOS3 EtchCf4 1
4 HCurrlmplant OMOS4 HOurr 1
5 02Etch aMOS5 Etch02 1
6 OrivOlffusion OMOSS DfDriv 15
7 Of4Etch CMOS7 EtchCF4 1
8 Mask SRAMS Stegper 1
9 MCurrlnlplant CMOS9 M urr 1
10 02Etch CMOS10 Etch02 1
11 DryDlffusion CMOS11 DfOry 4
12 NtrdOepositlon CMOS12 LPNtrd 2
13 Mask SRAM13 Ste~r 1
14 CF4Etch CMOS14 Etch F4 1
15 02Etch CMOS15 E1ch02 1
16 MCurrimplant CMOS16 MCurr 1
17 WetOlffusion CMOS17 DfWet 12
18 CF4 Etch CMOS18 EtchCF4 1
19 GateDIffuSion OMOS19 OfGate 4
20 MGurrlmplant SRAM20 MCurr 1
21 DPoiOeposition SRAM21 LPDPOI 3
22 TaSl2Deposition SRAM22 SpTaSI2 1
23 Mask SRAM23 Stepper 1
24 CI2EtCh SRAM24 EtdlCI2 1
25 02Etch SRAM25 EtCh02 1
26 TEOSDeposltlon SRAM26 L.PTEOS 2
27 CF4Etch SRAM27 EtchOf4 1
28 Mask SRAM28 Ste6per 1
29 MCurrlmplant SRAM29 M urr 1
30 02Etch SAAM3Q Etch02 1
31 Mask SRAM31 Ste~er 1
32 MCurrlmplant SRAM32 M rr 1
33 02Etc:h SRAM33 EtCh02 1
34 TEOSDepoSition SRAM34 LPTEOS 2
35 Mask SRAM35 Stepger 1
36 Cf4Etch SRAM36 Etch F4 1
37 02Etch SRAM37 Etd'l02 1
38 Poly Deposition SAAM38 LPPoly 2
39 Mask SRAM39

S:hper 1
40 CI2Etch SRAM40 Etc CI2 1
41 02Etdl SRAM41 EtdlO2 1
4.2 NtrdDeposltion SRAM42 LPNtrd 2
43 Mask SAAM43 stepter 1
44 CF4Etch SRAM44 Etch F4 1
45 02Etdl SAAM45 Etch02 1
46 Hourrimpiant SRAM46 HCurr 1
47 PSG DepositiOn SRAM47 LPPSG 3
48 flowOiffuslon SRAM48 Dfflow 3
49 Mask SRAM49 SteP~er 1
50 GF4Etch SRAM50 Etch F4 1
51 02Etch SMM51 Etch02 1
52 AIDepOsition SRAM52 LPAI 2
53 Mask SRAM53 Stepper 1
54 BCI3Etcn SRAM54 EtchBCIS 1
55 02Etdl SRAM55 Etch02 1
56 OxidOeposltlon SRAM56 PEO>:id 3
57 Mask SRAM57 Stepper 1
58 CF4Etch SRAM58 EtchCf4 1
59 02Etch SRAM59 Etch02 1

112 a case: an Ie manufacturing system

solving a sequence of single machine problems and using a disjunctive
graph representation to capture interactions between machines. EUeby
et aL [1989] introduce a constraint-based framework with an adaptive
mechanism to allow the operator to express interactively its criteria and
with a least conunitment approach to prevent supedluous scheduling
activities. An application of the ill manufacturing management phi
losophy in an etch shop is presented by Martin-Vega et al. [1988].

The simulation ofIe manufacturing systems has received an increasing
amount of attention in the literature [Miller 1990, Tullis et aL 1990,
Oenekamp et al. 1990, Matuyama and Atherton 1990, BUIman et al.
1986,AthertonetaL 1989 , Atherton 1988,Atherton 1987, Pollak 1989].
Simulation has been used to gain an insight into the behaviour of the
manufacturing system, both performance and dynamic capacity having
been analysed. Simulation results have also been used to take control
decisions and to design future factories. Simulation programs are
mostly used in combination with a material tracking system, which
delivers input information for the simulation program. To validate the
model, simulation output is compared with information from the tracking
system. Attempts are being made to integrate output results with the
tracking or control system in order to use simulation as a tool for
scheduling and control [Tullis et aL 1990].

In all these studies, the most important performance measure of an IC
manufactUIing system is the lead time of jobs. This is the time between
the start of a job in the wafer manufacturing system and the fmishing of
the job. The lead time influences the yield, inventory costs and time to
market. Long lead times influence the yield negatively [Miller 1990].
Yield is the percentage of products manufactured, that fulfil the re
quirements. The lead time influences the time during which foreign
particles have a chance to contaminate wafers. Variations in lead times
and in times between processing steps cause process variability. Lead
times determine learning time, and thus the time required to solve
manufacturing problems. Long lead times go with high work in progress
levels. Witll high inventories, the capital invested in the partially
processed wafers is large, there is much space needed for storage and
extra resources for product tracking. Long lead times result in long times
before a new product comes on the market, which influences the
competitive capability of the company.

On the other hand Ie manufacturing systems are expensive and, to keep
costs per wafer low, high throughputs are required. The relation between
lead time, throughput and inventory is found in the perfonnance chart,
mentioned in Chapter three. The model ofllie Ie factory is shown in the
next section. The capability of the model is shown in the last section of
this chapter, together with the calculation of some performance charts

a case: an Ie manufacturing system 113

for different configurations and different control, releasing and
sequencing strategies.

5.4 The control model of an Ie manufacturing

system

The ICmanufactwing system we model here is based on data taken from
the literature, compiled by Denekamp [Denekamp 1989]. It is based on

parts of an existing factory, so that the process has all the properties of

a real Ie manufacturing process and can probably be used for a real IC
manufacturing system without mnch alteration.

The facility manufactures two product types, both being manufactured

with CMOS technology. One is called CMOS, the other SRAM. Both

processes are described in Tables 5.1 and 5.2. These tables only contain

the processing steps. the cleaning steps and the inspection steps having
been omitted.

The figures accompanying this chapter represent schematically the
model of the important parts of the chip factory. The complete model

contains 792 processors, 582 leaf processors and 210 expanded proc
essors. The model will be presented in a bottom up manner. The

StepparStation1 model

eontrolililf ~OI'IIfolier

Figure 5.1. A station model. a) StepperStation] model.

114 a case: an Ie manufacturing syStem

StepperSaliooResources model

controllElr CC/(]\ionA' contfollo; ~on'roller

Figure 5.1. A station model. b) StepperStationResources model.

StepperTrans'o~merS mode'

Figure 5.1. A station model. c) StepperTransJormers model.

hierarchical control layout of the factory has five control levels: station,
cell, shop, facility and factory.

Station

"The lowest level controls machines. These are the cleaners, the process
ing machines and the inspectors. A machine, together with a store and
a transporter, fonus a station. An example of a station (the StepperStation)
is shown in Figure 5.1. A station is of a single shop class.

a case,' an Ie manufacturing system 115

Cell

The stations are put together in a flow shop manufacturing system class,

the celL A cell is a line with a cleaning station at its head, then the

processing station and fmally the inspection station (Figure 5.2). The
cells in the etch shop do not contain cleaning stations. and the cells in the
implant shop contain no cleaning and no inspection station. A cell also

contains a store and a transporter.

StepperCell1 model

outside outside

Figure 5.2. A cell model. a) StepperCelil model.

StepperCeliResources model

Figure 5.2. A cell model. b) StepperCelLResources model.

116 a caSe: an Ie manufacturing system

StapperSlatiOr'lS model

oonl,ol~r conlrollo, cOntroll~ cont,oll<tr controller oo~tl'Oll"'r

Figure 5.2. A cell model. c) StepperStations model.

Shop

The cells are grouped in a parallel shop manufacturing system class:
shops (Figure 5.3). This means that, in the shop, material visits one cell
and leaves the shop aftelwards. Besides the cells, a shop contains, of
course, One store and one transporter_

UthOShop 1 model

oQnlrtlller ~onlrQII"'r

Ql,II3ide outsidA

Figure 5.3. A shop model. a) LithoShopl model.

a case: an Ie manufacturin.g system 117

LithoShopResou!'CeS model

Figure 5.3. A shop model. b) LithoShopResources model.

Facility

The facility is of a job shop class. The cells that use the same technology
and the same chemicals are grouped together. This leads to five shops
in the facility: litho~shop; diff-CVD-shop, etch-shop, implant-shop and
metal-shop. These shops, together with a transporter and a store, fonn
the entire facility (Figure 5.4).

Factory

The Ie factory contains one facility, a store and a transporter (Figures
5.5). The factory has a single shop configuration.

From the control point of view we can say that the factory is a single
shop, the facility is a job shop, the shop is a parallel shop. the cell is a
flow shop, and the station is a single shop.

The material in the Ie factory consists of cassettes of wafers. The
material unit is one cassette containing 25 wafers. All machines in the
factory have batch sizes of one or more cassettes. The maximum batch
size is four cassettes. The process times of the material on the machines
is supposed to be known and to be detenninistic. The process times
mentioned in Tables 5.1 and 5.2 refer to one batch size. The machines
do not fail, the facility operates 24 hours a day and no (scheduled)
maintenance takes place. Yield losses during manufacruring are in the
first instance not considered. 'This means that, during the processing of
a cassette, no wafers are reworked j no wafers are damaged and, after the
execution of an order, the specified number of products are manufac
tured. Operator availability is also not included in the model: every
operation on a machine starts at the moment the material arrives at the
idle machine. Tools are also not considered and setup times are part of

118 a case .. an Ie manufacturing system

LlthoCelis model

controll .. , <x>ntrolie(~Qntrollill col'lltoll .. , controll", ~ontr(ll~r

clmtroller cOl'ltrolliO' "on/I"I;>II"" ~ontfolleJ

oontrollot ="II"I;>I~r

Figure 5.3. A shop model. c) LithoCells model.

the process time. Machine failure, yield loss and operator availability
are left out of account, because the intention of this study is to gain an
impression of how to configure the control of a complex factory, and
how useful the described control architecture is. At this stage these
factors only Serve to confuse the issue. Afterwards, when the control
theory of an ideal factory has been established, these factors will, of
course, have to be taken into account.

a case: an. Ie manufacturing system 119

ChipFacilityl model

~Or'Itrotier ~o~trotler

Figure 5.4. A model of the facility. a) ChipF acilityl model.

ChipFacilltyResources model

Figure 5.4. A model of the facility. b) ChipF acilityResources model.

The factory is to produce 0.5 cassettes per hour (= throughput). The load
of the different processing machines can be calculated from Tables 5.1
and 5.2, as is explained below. The target throughput is used to calculate
the necessary number of processing machines. With the number of
machines and the load for the machine for both product types, the
utilization of the machines is calculated for three product mixes. The
fjrst mix produces 0.5 cassette CMOS per hour and no SRAM
(CMOS:SRAM = 1:0). The second mix produces 0.25 cassette CMOS
and 0.25 cassette SRAM per hour (CMOS:SRAM;;;;;; 1:1). In the third

120 a case.' an Ie manufacturin.g system

ChipShops model

~onlJ'ol~r ~ontrolle~ ronlroUQ~ <;QntroUer <;Qnlroller ~nlrollqr

QI.Itslde oulsidl;l

controUeI" eOl\lrol1ef controller ~ol'lll'1JlI"'r

o~ out$ide

Figure 5.4. A model of the facility. c) ChipShops model.

situation 0.5 cassette SRAM and no CMOS is manufactured per hour
(CMOS:SRAM ~ 0:1).

The loads for the different processing machines are represented in Table
5.3, the cleaners and inspectors of each cell being omitted. A cleaning
step and an inspection step are supposed to last one hour. All cleaners
and inspectors of a cell have a batch size that is equal to the processing
machine in the cell, so the capacity of the cleaner and the inspector is the
Same as the capacity of the processing machine. Because the load is
equal to or less then the load of the processing machine, the utilization
of the cleaner and the inspector is also equal to or less than the utilization
of the processing machine.

To calculate the values of Table 5.3 the following fonnulas are used:

~y

lxy"'= L Pxyz
~l

a case: an Ie manufacturing system 121

ChipFactory model

Figu1"e 5.5. A model of the factory. a) ChipF actory model.

ChlpFactoryResouroos model

controller ~Ioj

oUlslde

Figure 5.5. A model of the factory. b) ChipFactoryResources model.

ChlpFadllties modal

comroller QQnIr"Uat

outside O~id9

FigU1"t 5.5. A model of the factory. c) ChipFacilities model.

122 a case: an Ie manufacturing system

Table 5.3. Load and utilization of the different machine types for

different product mixes (CMOS.-SRAM) 1 :0,1:1 and 0:1.

machln& ~<i b.!>.l<;Jh load \JtI1I~IIQn
shop Q~cily typ_ ~ size CMOS SRAM 1;0 1;1

UlhoShQP $biopper 6 6 1:2 12 1 1
C08.ler 1 1 1 0 0.5 O.2S

DIfCVOShop Of Ann I 1 4 4 7 0 0.00 0.44
DfDriv& 2 4 8 15 15 0.94 0,94

D10ry 1 4 4 4 4 0.5 0.5
DfFlow 1 4 4 0 3 0 0.19
DfGate 1 4 4 4 4 0.5 0,5

Dflntl 1 4 4 G 6 0.75 0.75
DfWel 2 4 8 1:;! 12 0.75 0.7S

LPOPI)I 1 :;: 2 3 3 0,75 0.75
LPLTO 1 2 2 3 0 0.75 0.38
LPNtrd 1 2 2 2 4 0.5 0.75

LPP<;>iy 1 .: 2 0 :2 0 0.25
LPPSG 1 2 2 0 a 0 0.38

LPTEOS 1 :2 2 4 4 1 1
Pf:Oxid 2 3 6 a a 0.S7 0.46

E:lo=.i'lSht;!p IOlchBCI3 1 1 2 1 1 0.75

EWlCF4 5 5 9 9 0.9 0.9

~1(;hCI2 1 1 1 :2 0,5 0.75
Elch02 6 6 12 12 1 1

ImplanlShop HOurr 1 :2 2 1 2 0.25 O.as
MCurr :2 2 4 5 5 0.63 0.63

MetalShop LPAI :2 2 4 :2 1 0.75
SpTaSi2 1 1 0 1 0 0.25

pn

L lxy· 7
~ = first namral number bigger than

y",l

bx

pn

L lxy. ty

cx=~· bx and
y-l

Ox=-
ex

with:x = type of machine, y =-: product and z = operation,

CP = number of operations, p'l ~ number of products,

:M? = number of machines of a type,

0:1

1

0

0
0.94
0.5
0,$
0,5
0.7S
0,75
0.75
0
1
0.5
0.75
1
0,25

0.5
0.9
1
1

0.5
0.63

0.5
0.5

p = process time of operation of a product on a type of machine,

I "" load of a type of machine due to a product,

t ~ throughput of a product,

b = batch size and c = capacity of a type of machine,

a case: an Ie manufacturing system 123

The controllers of the hierarchica1layers generate requests according to

different strategies. The station controller sends a request shortly before
the machine has finished processing. A cell controller sends a request

shortly before the bottleneck station has finished processing. The
bottleneck station is most of the time the station where the actual
processing takes place. Only if the processing step lasts 1 hour are the
stations in the cell perfectly balanced, and the first station is used as
bottleneck. A shop controller sends a request when it receives a cell

request. The shop requests only work that can be executed by the cell

which sent the cell request. The facility controller sends a request when
its inventory level is below a certain level and there is no request
outstanding (Fixed-WIP). The facility request is either sent when the

facility receives a job or when the facility has finished a job. The cells

and stations request a material amount that is equal to their (maximum)

batch size. The shop requests the same amount as was requested by the

cell. The job for the facility always contains four cassettes. This is done

because there are many furnaces that process batches of four cassettes
or common dividers of four. Only the PEOxidCell (a furnace in the
diff-CVD shop) has a batch size of three. By letting this cell request 1
to 3 cassettes, instead of its maximum batch size, a batch of four

cassettes can be processed by all stations without the station having to
wait for cassettes from another job.

5.5 Simulation experiments and results

To demonstrate some possibilities of the control architecture, the model

of the Ie manufacturing system is used for different experiments. The
experiments consider the following aspects: the product mix, the
transport time, the batch size, the request generating strategy and the

sequencing strategy. 'The performance of the facilities is emphasized

during these experiments. The influence of the market is not considered.
To decouple the behaviour of the consumer and the supplier from the
perfonnance of the facility, the factory controller ensures that an excess
amount of blank wafers and product ordc:rs are available. The consumer
demand is bigger than the maximum throughput of the factory and the

supplier delivery time is very short. Because of these conditions the
factory controller is able to answer all requests from the facility with a

job.

To judge the quality of the model, it has to be verified and validated first.

The verification is used to ascertain whether the model functions as
intended. The validation is then used to investigate the correcOless of the

model in relation to the modelled system. The verification is done with

the help of modular progranuning and testing of the different modules

(in this case the processors of the model). The model is executed in steps

124 a case: an Ie manufacturing system

in order to check its behaviour. With the complete model some extreme
experiment,; are perfonned. These experiments do not need to be

realistic, but they do serve to reveal the robustness of the model. If the
model seems to be reliable, Some simple experiments are executed. The
results of these experiments may be deduced analytically. The results of
the experiments are compared with the analytical solution. The last
check is to collect redundant data during the simulation experiments and
to test whether the collected data are consistent. The validation of the
model is in this case not possible because the modelled system does not
exist in reality. The only possible validation is by comparison of the
results with results reported in the literature for comparable experi
ments.

Simulation runs have been done with the complete model and once it
was found to be correct, it was simplified in order to save execution time.
The simplification was possible because the cells of the model behaved
in a predictable way. The cells were flow shops containing a minimum
of One and a maximum of three stations~ all having the same batch size.
The control of the cell and the stations is adjusted in such a way that a
request is generated when the cassette can be processed directly after
each other on all stations. The lead time of the cassette is easy to predict,
the only insecurity being related to the transport time. The compressed
model contains 80 processors: 66 leaf processors and 14 expanded
processors. The model runs more than six times faster. The compressed
model is validated with help of the complete model.

The performance of the facility has been studied with the compressed
model. The results of the experiments are recorded in the form of graphs.
The lead time and the throughput are set out against the inventory level.
These are called perfonnance graphs (see Section 3.1). The perform~
ance graphs contain redundant infonnation. In most cases both graphs
are reproduced because they give insights from different viewpoints.
The perfonnance graphs only have validity if the material input rate is
equal to the throughput. To get truthful results this condition has to be
fulfilled. A performance graph is made for every experiment. To
construct performance graphs an experiment consists of runs with
different inventory levels_ A measurement at a certain inventory level

gives only one point on the perfonnance graph. For the complete graph
usually 10 measurements are perfonned.

The simulation model is detenninistic, but nonetheless the results of the
simulation behave in some sense stochastically. The experiments involve

non-tenninating experiments, where the lead time and the throughput of
the facility is determined at a more or less constant value of the inventory

level. Before the measuring of these values is started, the facility has to
be in a steady state situation. This state is achieved only after the elapse

a case; al1lC manufacturing system 125

of a certain time, called the start-up interval: the model is then in a
transient state. To determine the length of the transient state the change
in the distribution of the observations is studied by plotting the obser
vations against time, and by comparing histograms of different sets of
observations. When the distribution of the observations remains constant,
the steady state has been reached.

The observations generated by a deterministic model show a regularity;
the measurement of one cycle is enough to obtain a reliable result.
Sometimes the cycle is difficult to distinguish, and then the model seems
to behave stochastically. In these caseS the run is split into subruns. The

measurements of the different subruns is determined by looking at the
sample autocorrelation function; the size of the confidence interval

depends on the number of subruns.

The purpose of the experiments is to reveal the possibilities of the
control architecture. Because an extended statistical analysis of the
simulation output calls for many simulation runS and because the time
to perlorm these runs is limited, for most runs only one subrun is done

and, in case the observations showed large variances, three subruns are
perfonned. The size of the 90% confidence interval is always less then
10% of the measured value. A more extensive analysis of the results is
to be found in De Jonge [De Jonge 1991].

An experiment is done to detennine a perfonnance graph. The experiment
starts with an empty facility, whereupon the facility is filled with
material up to a certain level. The loading of material is distributed over
a time interval, the length of the interval is equal to the avernge lead time
at that moment. Mter the loading one waits until the steady state is

Table 5.4. The default setting of the facility.

product mix (CMOS:SRAM) 1 :0

transport time 1 minute

batch sizes 1,2.3 and 4

minimum amount requested equal to maximum batch slIa

minimum amount PEOxid equal to 1

shop requesting strategy shop request derived from cell request

facility requesting strategy Fixad-WIP

sequencing I\Ile FIFO

126 a case: an lC manufacturing system

reached. During the waiting at least all material in the facility has to be
processed. This lasts at least as long as the average lead time. After the
waiting the measuring starts.

Five aspects are investigated: the product mix, the transport times, the
batch sizes of the machines, the request generating strategy and the
sequencing strategy. A default experiment is perfonned to compare the
different experiments. The default factory manufactures only CMOS at
a throughput of 0.5 cassettes per hour. All transporter movements in the
factory take one minute. The machines have batch sizes ranging from 1
to 4 cassettes. The number of cassettes requested by a machine is equal
to its maximum batch size, except for the PEOxid fumace, which
requests 1 to 3 cassettes. The shop controller sends the requests from the
cells immediately to the facility controller. The facility controller uses
a Fixed-WIP strategy to generate requests. The facility controller (and
all other controllers) use a FIFO sequencing rule. The default settings of
the facility are shown in Table 5.4. These settings have been varied
during the different experiments. With product mix and transport time
the settings of product mix and transport time are changed. With batch
size the munber and batch size of machines and the minimwn batch size
of a request is varied. With the request generating strategy, three ways
of generating requests by the shop controller are studied. With the
sequencing strategy different sequencing rules are used by the facility
controller.

Product mix

The first experiment concernS the product mix. The facility is capable
of manufacturing CMOS and SRAM. The capacity of the facility is
independent of the product mix; 0.5 cassettes per hour. The two products
have different process times: CMOS 199 (inclusive transport 207) hours
and SRAM 189 (inclusive transport 197) hours. The lead time of a
product consists of its process time and a wait time:

1CMOS == PCMOS + WCMOS

lSRAM ~ PSRAM + WSRAM

PeMOS = 207 [hours]

PSRAM "" 197 [hours]

with: 1 the lead time, p the proces time and w the wait time.

From the fommla: 1 = !
t

(i = inventory level, t = throughput)

a case,' an Ie manufacturing system

500

400

300

o

Ideal facility

----+-'-' 1:0
_ 1:1

,00 200

mean Inventory level
[cassettes]

127

aoo

Figure 5.6. Performance graphs of the facility for different product

mixes (CMOS:SRAM = 1 :0,1:1 and 0;1). a) Mean lead time of

CMOS cassettes versus the mean inventory level.

400

300

o

ideal facUlty
--q.-... 1:1
____ 0;1

100 200 300

mean inventory level
[cassettes)

Figure 5.6. Performance graphs of the facility for different product

mixes (CMOS:SRAM = 1:0, 1:1 and 0:1). b) Mean lead time of

SRAM cassettes versus the mean inventory level.

128

0,10

0,5

'S~

.@-5 0.4

~i ,sIP

ia 0.3

E-

0,2

0.1

0

a caSe: an Ie manufacturing system

100

ideal faCility
- .. -., .. 1;0
._., .-0 .. _- 1;1

---+- 0:1

200

mean inventory lavel
[cassettes]

300

Figure 5.6. Performance graphs of the facility for different product

mixes (CMOS_'SRAM = 1:0, 1:1 and 0_'1). c) Mean throughput versus

the mean inventory level-

one can derive the average lead time independently of the product mix.
Another expression for this lead time is:

I = a. lCMos + (1 - a) , I SRAM

with a being the proportion of CMOS manufactured in the facility. It is
supposed that the wait time is equally distributed over the two products,
so:

wCMQS = WSRAM :;;;;; w

This leads to the following expression for the wait time:

w"" U- - PSRAM) - a , (PCMOS -PSRAM)
t

The value of the wait time depends on the product mix, With
ProcessTimeCMOS being larger than ProcessTimeSRAM it follows
that with an increase of the CMOS ratio (a) the wait time becomes
smaller, so with an increase of the CMOS ratio the lead times of the two
product types also become smaller.

To see the influence of a change in the product mix on the throughput
and the lead time, runs with CMOS: SRAM equal to LO, 1: 1 and 0: 1 are
compared. The results are shown in Figure 5.6:

a case: an Ie manufacturing system 129

The CMOS lead time graph (Figure 5.6a) shows that at the higher
inventory levels the mean lead time of CMOS cassettes decreases if the
percentage CMOS produced increases. The SRAM lead time graph give
a similar result. This confirms our expectations. The throughput graph
show only small differences.

Transport time

All moves of the transporters in the (default) model take one minute. A
transport job takes either one or two minutes. depending on the start
position of the transporter. If the transporter is at the place were the
material has to be removed, it takes one minute. In all other cases it takes
two minutes. A transporter is supposed to be able to carry up to eight
cassettes. The utilization (u) of a transporter (= percentage of the time

the transporter is busy) is calculated from the load for the manufacturing
of one cassette expressed in hours ("" mOve time (m) times the number
of moves (n» divided by the batch size (b) (= number of cassettes the
transporter carries per transport movement); times the throughput (t) ("'"
number of cassettes manufactured per hour). 'This leads to the following
expression:

u =!!........ill... t
b

The maximum utilization is calculated with a move time of two minutes
and an inventory level of one cassette. The desired throughput is equal
to 0.5 cassette per 60 minutes. Both the worst case and the observed
(after simulation) utilization of the transporter are represented in Table
5.5.

From this table it appears that in worst case the facility has a heavily
loaded transport system, but because the transporter can transport

Table 5.5. Utilization of the transporters for eM os manufacturing.

number worst case observed
of trans-

resourca pon time batrnsize utili- time batch size utill-
moves [minute] [cassette] satlon [minute] [cassette] satlon

ChipFac:fllty 61 2 1.02 1.73 1.27 0.69

UlhoShop 26 2 0.43 1.59 1.00 0.34

DifCVDShop 30 2 0.50 1.62 2.60 0.16

ElchShop 48 2 0.80 1.65 1.00 0.66

ImplantShop 12 2 0.20 1.52 2.00 0.08

MetalShop 4 2 0.07 1.00 1.00 0.03

130

soo

200

o

a case: an Ie manufacturing system

----I>--------,."'., ..
I -----e-"

I

100 200

mean inventory level
[cassettes]

Ideal facility

Smin
2mln
1 min
0.2 min

300

Figure 5.7. Perjonnanee graphs of the facility for different transport

times. a) Mean lead time versus the mean inventory level.

0.';

o.s

~g 0.4

g''$
2m
.c:j=:

-~ 0.3 I!
0.2

0.1

0 100

ideal fadlity
.. - 5min

- .•. ~ 2mln

-- 1mln
---e-- 0.2 min

mean Inventory level
[cassettes]

900

Figure 5.7. Performance graphs of the facility for different transport

times. b) Mean throughput versus the mean inventory level.

a case: an Ie manufacturing system 131

batches of more than one cassette in less than two minutes, the actual
capacity of the facility is bigger than the worst case capacity. The
transporter in the etch shop, however, has nO possibility to move more
than one cassette at a time: all etch cells have a batch size of one. The
only way to improve the capacity of the etch transporter would be the use
of a scheduling strategy that increases the chance that the transporter

waits in the right start position. With the increase of the transport time

the transporter in the etch cell is expected to become a bottleneck.

Experiments have been perlormed with four different transport times:
0.2, 1.0,2.0 and 5.0 minutes. The expected utilization of the transporter

of the etch shop for the four transport times is calculated. The average
transport time is calculated by multiplying the transport time by 1.65

(the mean time a transport movement in the etcher last according to

simulation results). If the utilization of the transporter comes out to be
greater than 1, it is the bottleneck and the throughput is limited by the
transporter. Then the throughput wanted has to be divided by the
utilization of the transporter to find the expected throughput. These

values are given in Table 5.6.

The differences in transport time influence the lead time graph in two

ways. An increase of the transport time increases the process time and,
if the transporter is the bottleneck, the increasing sloping line becomes

steeper. The change in throughput is deducible from the change in lead

time.

The results of the change in transport time are reproduced in the Figure
5.7. The lead time graph shows that, if the transporter is not a bottleneck,

an increase in transport rime influences the lead time only for small
inventory levels. If the transporter is a bottleneck the increase in lead

time is dramatic. The throughput levels observed in the throughput
graph at high inventory levels correspond with the ex.pected values in
Table 5.6.

Table 5.6. Expected utilitarion of the transporter of the etch shop and

expected throughput of the facility.

lransport
utilization throughput lime

0_2 0.132 0.5

1.0 0.66 0-5

2_0 1-32 0.38

5.0 3.3 0_15

132

500

E
400

.""
-gF
.Sl~

!ijl
m
E $00

200

o

a case: an Ie manufacturing system

ideal facility
-.. batch size ~ 1
--e-- minimum amount ~ batch size
.. -+- minimum amount ~ 1

100

mean inventory level
{cassettes}

300

Figure 5.S. Performance graphs offacility with machines with batch

sizes of one cassette and for different values of the minimum bach

size of a request. a) Mean lead time versus the mean inventory level.

0.6

o,~

:3'1:"
~5 0,4

g>~
2m

..c::j::
-11\

~~
0.3

E-

0.2

0.1

0 100

... ~-~ i ,.

ideal facility
batd! size a 1

minimum amount - bald! size
minimum amount = 1

200

mean inventory level
[cassel1es)

900

Figure 5.8. Performance graphs offadlity with machines with batch

sizes of one cassette and/or different values of the minimum bach

size of a request. b) Mean throughput versus the mean inventory

level.

a case: an Ie manufacturing system 133

Batch size

The facility contains machines with batch sizes that vary from one to
four cassettes. The machines with the biggest batch size also have, in
general, the longest process time. Despite this, many machines with a
big batch size are underutilized. Two effects have been studied in
relation to the batch size: what happens if all machines have a batch size
of one? And what is the influence of the minimum amount of material
that is requested by a machine?

In the first e~periment the capacity of all cell types is kept the same, by
replacing a cell with the number of cells equal to its batch size. Thus, the
cell consists of a flow shop with stations, a stations is of class single shop
and contains a machine with a batch size of one cassette. The existing
overcapacity is kept the same. In the second ex.periment the batch sizes
are put back to the default values and the minimum amount of cassettes
requested by a cell is changed. The new minimum amount is one cassette
instead of the usual maximum batch size. The minimum amount of
PEOxid is always kept at one cassette.

The results of the experiments are plotted in Figure 5.8. It appears that
the facility where all transfonners have a batch size of one, comes close
to the ideal facility. Differences are now mainly caused by process time
differences. The consequence of requesting a minimum of one cassette
causes a worse performance in the low inventory level area. This
situation often leads to the processing of one cassette while, shortly
afterwards more cassettes arrive, which have to wait for the finishing of
the first cassette. This wait time appears to be longer than the wait time
that arises if machines have to wait until a batch is complete. This also
has to do with the fact that a facility job contains four cassettes.

Request send strategy

It has been shown above that it is possible, using the control architecture,
to manufacture different product types, to vary transport times, to

change the cOnfiguration by adding machines, and to change the control
parameters of resources (minimum batch size requested). In the next
example the behaviour of the shop controllers is changed. Up to now a
shop request has been sent after the reception of a cell request (the cell
request strategy). This situation is compared to generating shop requests
depending on the inventory level in the shop (a Fixed-WIP request
strategy). The control strategy variants used in these cases refer to the
request send strategy of the five shops. As stated in Section 4.4 for a
manufacturing system of class parallel shop, which the shop in the Ie
factory is, the request generation is best based on the requests of the

134

500

400

300

200

(I

a case; an Ie manufacturing system

---+--

----e--, -,.-,
I

100 200

mean Inventory level
[cassettes)

ideal facility

cell request

varIable limit
constanlllmi1

300

Figure 5.9. Performance graphs of the facility for different shop

request strategies. The constant and the variable material limit

strategy are compared with the cell request strategy. a) Mean lead

time versus the mean inventory level.

0,6

0.6

So::'
2-5 0.4

[~ =<l)
!ij~ a,s

e-
o,;;:

0.1

0

Ideal facility
--+-- call request
-----0 .. ,.- variable IImll

--. ,,"-- constanl limit

100

mean inventory level
[cassettesJ

300

Figure 5.9. Performance graphs of the facility for different shop

request strategies. The constant and the variable material limit

strategy are compared with the cell requ.est strategy. b) Mean

throughput versus the mean inventory level.

a Case: an Ie manufacturing system 135

resources (the cells). So these experiments may show if this assumption

is correct

The Fixed-WIP strategy uses two kinds of limits: a limit that remains the
same during the experiment (constant limit) and a limit that depends on
the inventory level during the measurement (variable limit). In both

cases the Fixed-WIP level is constant during the simulation run. The
constant limit is calculated using the work load of the shop. The division

of the material depends on this work load. This is based on the

assumption that the facility is perfectly balanced and every shop needs

its processing time share of the material. The share is increased by one

cassettej to also allow a load for the transporter of the shop. The load per
shop is calculated with the formula:

load = total process time in shop. maximum throughput

Thus the sum of the process times of all operations that have to be
perfonned in a shop times the wanted throughput is the amount of the
inventory that the shop should contain. Table 5.7 shows the inventory
limits that result for the maximum wanted throughput in the constant
limit case. In the variable limit case the material limit in the shop during

a measurement is found by multiplying the maximum inventory level of

the facility and the ratio given in Table 5.7. The constant limits are equal

to the variable limits at the ideal work point. The ideal work point is

equal to the nominal lead time times the maximum throughput: this is

207 x 0.5 = 103.5 cassettes.

The sending of requests according to a Fixed-WIP release strategyj uses
less information than the sending of request based on cell requests. A
shop request based on a cell request asks only for jobs the cell is able to
execute. A request based on the inventory level (Fixed-WIP) asks for
jobs that the shop is able to execute. As a consequence the facility

controller might send a job to the shop for a cell that is not idle. This job

takes the place of a job for the idle cell. So material in the shop blocks

material waiting on the facility level. With the variable limit, all material

Table 5.7. Work loads of the. different shops for one CMOS cassette.

shop
process load limit

ratio lime [hour] [cassette] [cassette]

lithO 39 20 21 0.196

dilCVO 98 49 50 0.492

etch 48 24 25 0.241

implant 6 3 4 0,030

metal 8 4 5 0.040

136

500

400

300

o 100

a case: anlC manufacturing system

Ideal facility
--+- FIFO

----e----. SRPT

-- RANDOM

200 300

mean inventory laval
[cassettes]

Figure 5.10. The performance graphs of the/aGility for different

sequ.encing rules. a) Mean lead time versus the mean inventory level.

0.6

0.6

s..::'
Q.=:\

g~
0.4

~~
1iiU}

el
0.3

0.2

0.1

a 100

ideal facility
____ FIFO

---a--- SRPT

----+- RANDOM

200 aoo

mean inventory Ie-val
[cassenes)

Figure 5.10. The peiformance graphs of the facility for different

sequencing rules. b) Mean throu.ghput versus the mean inventory

level.

a case: an Ie manufacturing system 137

is divided over the shops in a proportional way. If the facility is
reasonably balanced all material will be waiting in the shops. With the
constant limit the shop only contains the amount of material it is
supposed to be able to process. Below the ideal work point all material
is probably waiting in the shops; above this work point part of the
material is waiting at the shop level and another part at facility level.
With the cell request strategy the shop only contains material that is
being processed in the resources of the shop; the rest of the material is
waiting on facility level. The last control strategy ensures that the right

jobs are sent to the shop and there is a view of the material that is waiting

to be processed. The results show that the perlonnance of this strategy
is better than the use of a material limit. Besides this, the strategy also
offers the biggest opportunity to schedule material in the facility.

The results in Figure 5.9 show that the cell request strategy is best.
Below the ideal work point the Fixed-WIP request strategy using
constant limits behaves the same as the one using variable limits. Above
the ideal work point the experiments with variable limit approach the
cell request strategy while the experiments with a constant limit clearly
show a diminution in throughput. This shows that a parallel shop can use
a request generation strategy, where the requests are generated at the
moment when they are received from the resource. However, this is only
true if delays due to transport of material have been accounted for in the
requests of these resources.

Sequencing strategy

The last example shows that it is possible to apply different sequencing
rules in the control architecture. The sequencing of jobs in the facility
is examined. Three sequencing rules are applied. FIFO (first-in-first~
out), SRPT (shortest-remaining-process-time) and RANDOM. A rule
like SPT (shortest ~process-time) has no use in the facility because there
are only a few operations which have to be executed on different

resources and which also have different process times. And if one is
interested in other sequencing rules, they can easily be implemented and
tested with help of simulation.

Because some shops request jobs with more than one cassette, the
sequencing rule is combined with an algorithm to join cassettes. Ajob
always contains the cassette with the highes t priority and if necessary it
contains more than one cassette. So sometimes the situation arises that
the cassette with the highest priority cannot form a complete batch,
while other waiting cassettes do fonn a batch. The cassette with the

highest priority now blocks these other cassettes and no job is sent In
case of FIFO, the cassette with the highest priority (the frrstcassette) is

138

ID

~E
'Oel
j£

eoo

000

~I)O

~oo

o

a case.' an Ie manufacturing system

time
[hours]

Figuf'e 5.11. Observations of the lead time of cassettes in the facility

agai1l8l time for different sequencing rules. a) Lead time against

time/or FIFO.

600

~U) .. ~ -"DO
M.J:!
~-

zeo

400

time
[hours]

L-

eoo

Figure 5.11. Observations of the lead time 0/ cassettes in the facility

against time for different sequencing rules. b) Lead time against time

forSRPT.

a case: an Ie manufacturing system

800

800

ill

~~

jl
400

200

time
[I'toursl

139

1000

Figure 5.11. Observations of the lead time of cassettes in the facility

against time for different sequencing rules- c) Lead time against time

for RANDOM.

probably also the frrst batch. With SRPT, and especially with RAN~
DOM, it is less probable that the cassette with the highest priority will
form the first batch. The results in Figure 5.10 show that FIFO performs
best, even a little better than SRPT and much better than RANDOM.

The Figures 5.11 a, b, and c show the lead time of the jobs and the time
at which the specific job was finished. The figures show the lead times
for an inventory level of 240, but the behaviour found is also valid for
other inventory levels. These figures show that SRPT and RANDOM
cause a bigger variation in the lead time than FlFO. Not only the lead
time varies more, the time between the fmishing of two jobs also shows
a bigger variation. It appears that especially RANDOM sequencing
causes the facility to oscillate. This oscillation is also related to the
Fixed-WIP release strategy, where a new job is started when a job is
finished. So if many jobs finish shortly after each other, many jobs are

also started during a short interval.

This chapter has illustrated how a hierarchical control system can be
built using the control architecture. The constructed factory contains
five control layers, where the second layer has a job shop character. The
factory contains 1 facility, 5 shops, 43 cells, 110 stations, 110 transfonn
ers, 160 stores, 160 transporters and 160 controllers. With the help of
simulation experiments the use of performance graphs and a number of
possibilities of the control model have been demonstrated.

Chapter 6

Conclusions

6.1 Review of the study

The study presents a new hierarchical control architectme and a structured
method by which it is possible to specify, simulate and implement
controllers for actual or planned manufacturing systems having a job
shop character. A job shop is characterized by universal machines
having great flexibility in terms of material routes. A property related to
job shop manufacturing systems are the serious problems in controlling
throughput and lead time.

The investigation was initiated in view of the increasing need for
automation, coupled with the problems associated with the automation
solutions currently available. Two current automation problems have
been signalled by Arentsen [1989]: the gap between the automation of

machinery and the automation of administration, and the island auto
mation which results in stand alone solutions of automated elements
which are difficult to combine into an efficient system. With the advance
of technology the functionality of machines has increased, which makes
the complexity of manufacturing systems greater and the control of
manufacturing systems more difficult. One of these control problems is
the long lead times that are often encountered in manufacturing systems
with a job shop character. There is a clearly perceived need for computer
control of these manufacturing systems. But the results of research into
manufacturing controllers for such systems, as these have been presented
in the literature to date, are very vague, and the research into sequencing,

which is a part of the control problem and is thought to be able to reduce
the long lead times, often lacks any close relation with practical
application in manufacturing systems.

Arentsen's [l989} work demonstrated the value of modelling and
simulation in the building of control systems, as well as how to avoid
island automation and the automation gap. His factory control architecture
concentrates on the highest control level of a factory and on the
interactions between factories. It consists of a chain of transformers
which are controlled by their own controller. It is, however, only
applicable to manufacturing systems with a flow shop character. This
study presents a control architecture that is applicable to the much more

142 conclusions

compkxjob shop manufacturing systems. It uses recipes to specify the

manufacturing process. The conu'ol architecture is constructed in such

a way that it can be used for any manufacturing system for which the

manufacturing processes are expressible in (sequential) recipes. The

architecture is a framework that can be used when building and/or

automating manufacturing systems.

The starting point for building controllers for industrial systems is

modelling. The modelling is performed according to the Process

Interaction approach [Rooda 1987, Overwater 1987]. This approach

provides a language (ProcessTalk) and a tool (ProcessTool) [Wortmann,

Rooda 1990, Wortmann 1991], which have been used for specifying,

developing and testing the architecture. The approach and the tool

together allow a smooth transition from modelling the system to

simulation of the system and finally to implementation of the controller.
The building blocks of the control architecture are implemented in

software in the tool. In this way it is easy to simulate future manufac

turing systems, and to use the (simulated) controller in the itnplemen
tation of the manufacturing system.

Modelling involves the setting of boundaries for the system and con

centrating on those aspects of the system that are of interest to the

modeller. In this case the flow of discrete pieces of material, the

machines that manipulate the material, the controllers that drive the
machines and the interactions necessary for directing the material

through the factory are modelled, together with the necessary data
structures and the control algorithms_ Energy, gases, liquids and small
parts such as screws are not modelled. Operator availability, tools, the
set up of machines, their maintenance and repair are not part of the

model, just like machine breakdown and yield losses. The industrial

system that results is an idealized and simplified system in which the

main material flow is represented. The study is based on static manu

facturing systems, by which is meant that the configuration of the
manufacturing system and the manufacturing process remain constant

in time.

In this study a classification of hierarchies is introduced (Section 2.5).

The architecture is based on a hierarchical approach. The centralization

of control enables a decoupling between the controller structure and the

manufacturing process. This decoupling is realized with help of recipes,

which can be executed by a controller. Centralized control also opens the
possibility to let all resources aim at the same goal. Multiple hierarchical

layers correspond with layouts of factories and allow the distribution of

the control effort. The unique feature of the control architecture is the

fact that the controllers of the different hierarchical levels all have an

conclusions 143

equivalent model, which is recursively repeatable. As a result of this the
number of hierarchical layers can be adjusted arbitrarily.

The building of a manufacturing system starts with the specification of
the physical system configuration and the specification of the manufac
turing process. These specifications are used in the control system. The
architecttIre uses standardized models of the physical manufacturing
machines, which are presented in Chapter Two. These are the basic

physical building blocks. Machines are called leaf resources. There are
two categories: processing leaf resources (shapers, transformers and

assemblers), and supporting leaf resources (transporters and stores). A
multi-layer control system comprises aggregates of machines. An
aggrega~ of machines and a control system is called an ex.panded
resource. An expanded resource is also a processing resource. Opera
tions are used for the specification of the manufacturing process steps.
Resources execute operations by transforming material. The list of
operations that have to be executed by a group of processing resources
to manufacture a product is called a recipe and is the representation of
the manufacturing process. In this thesis new structures for recipes have

been presented.

A manufacturing class is the strocture of the top layer of a manufacturing
system. The class of a manufacturing system depends on the physical
layout of the resources and on the recipes that the system can execute.
Four classes of manufacturing system are introduced: single shop,
parallel shop, flow shop and job shop. The control architecture is
especially suitable for the control of a job shop, but because the other
three layouts are simpler variants of the job shop, the architecture can
also be applied in the other cases. An expanded resource also belongs
to a certain manufacturing class, so the total factory may contain
different types of manufacturing classes.

The controller has to direct resources and material, and to monitor their

status. Decisions are taken as late as possible in order to minimize the
differences between reality and anticipated reality. The decisions are
subdivided into categories concerning material exchange, transport and
processing. The moment to take a decision depends on the decision
freedom and the time at which information becomes available. In
relation to this the strategies of early and late transport are distinguished,
just like material driven and command driven manufacturing. The place
where information is available is an indication of the level at which
decisions have to be taken. To make information available, the control

ler communicates with the resources- In this study four communication
protocols between the controller and the resource are introduced and

looked at. The aspects related to control are more extensively handled
in Chapter Three.

144 conclusions

In order to be able to judge the performance of the manufacturing
controlJer, performance graphs have been used (Section 3.1). The
behaviour of a manufacturing system is recorded by simulating the
model of the manufacturing system and measuring the mean lead time,
mean throughput and mean inventory leveL The performance graphs
plot lead time against inventory level, and also throughput against
inventory level. In a balanced system these three variables are related to
each other. An essential addition to the performance graphs are the lines
describing the ideal factory. By plotting both the actual performance and
the ideal performance, a clear insight is gained into the behaviour of the
manufacturing system in relation to the ideal, best attainable perfonn
ance.

The divergence between reality and anticipated reality is kept to a
minimum by making use of a reactive scheduling strategy. This means
that a decision is taken at the moment the actual choice occurs.
Scheduling is divided into subfunctions: releasing, allocating, sequencing
and dispatching (Section 3.2).

Chapter Four presents the development of the hierarchical control
architecture in the form of the data structure and the control model. A
manufacturing system consists of processing resources, a transporter, a
store and a central controller. The release strategy, which defmes the
way new jobs are started in a manufacturing system, is implemented
with the help of requests. A request from a resource asks for work. In fact
the request indicates free capacity in the resource_ In the control
architecture the momentary capacity is calculated from bottom to top.
Resources send requests to the central controller. The requests are used
to allocate and sequence manufacturing jobs and to calculate momen
tary capacity, and thus for the generation of requests for the control level
above, which influences the release of jobs. In this way a new for

maHzation for the releasing of jobs in a hierarchical controlled manu
facturing system is given. By controlling the release of manufacturing
jobs, the jobs are executed with lead times that fall within predictable
limits.

The control architecture js illustrated in Chapter Five) where an IC
factory is modelled. Here it is seen that the new I y developed architecture
and the control model present a structured method for the implementation
of a hierarchical control system for a complex job shop manufacturing
system. The experiments show that the perfonnance of the manufacturing
system can be controlled within acceptable limits.

conclusions 145

6 .. 2 The advantages of hierarchical control

The thesis presents a detailed description of the control architecture. The

architecture enables manufacturing control system builders to model,
simulate and implement controllers for manufacruring systems. It is
suitable for any kind of manufacturing system, ranging from a single

shop to a job shop. It contains building blocks for the modelling of
manufacturing systems, and it makes the design of manufacturing
systems and manufacturing controllers a more structured process,

allowing the construction of hierarchical control systems.

The control problem of many manufacturing systems calls for solutions
that are only valid for the specific situation. The architecture presented
here does not offer a general solution wi th which every specific problem

can be tackled, but it does offer a framework which can be adapted to
most situations, which takes account of the whole system. and which
offers a possibility to adjust the different controllers to a common goaL

This architecture for control systems eases the task of the control system
builder, in that it offers a structured approach and building blocks with

which systems can be designed in shorter times.

The integration of new concepts has resulted in this control architecture.

One of these concept is the use of the same controller model in the

different hierarchlcallayers. The control architecture uses the concept

of recipes to specify the manufacturing process. The recipes allow a

decoupling between controller structure and the manufacturing process:
a necessary condition to be able to control job shop manufacturing
systems. Recipes are a type of software which instructs the manufacturing
controller. The behaviour of the manufacturing system and the control
system is measured with the help of the concept of perfonnance graphs.
The resources influence the work load. due to this concept the progress

of the manufacturing of products is influenced in a bottom-up manner.

In the literature manufacturing systems are usually controlled in a top

down manner. The progress of the manufacturing process is regulated

with help of the request concept. This has resulted in a new fonnalization

of the release of jobs in a hierarchically controlled manufacturing
system.

The repeatability of the control model in hierarchical layers. tht:;

decoupling between controller structure and manufacturing process, the
use ofperfonnance graphs and the fonnalization of hierarchical releasing
with help of requests, are unique to this control architecture. These

concepts make the control architecture fit for the control of job shop
manufacturing systems.

146 conclusions

Useful new ideas have been developed during the realization of the
control architecture. The three hierarchical fonns n system hierarchy,
model hierarchy and inheritance hierarchy - are a new contribution to
the architecture. The specification of a manufacturing process with help
of the four recipe structures (sequence, concurrency, alternative and
block) is a new idea. The classes single shop, parallel shop, flow shop
and job shop are introduced to classify manufacturing systems.

Perfonnance graphs have been used in more places in the literature, but
the idea of introducing the line of the best attainable behaviour of a
manufacturing system in the performance graph is new. This addition
gives a much clearer insight into the behaviour of the actual manufac
turing system. For simple manufacturing systems the graphs have a
trivial character, but for large, complex manufacturing systems the
performance graphs are useful for the assessment of the control system
and for setting out control strategies.

In considering controllerdecisions and decision moments, new control
strategies have been found. First the early and late transport strategies
which are related to the transport decisions. Second the command driven
and material driven manufacturing which are related to the way processing
decisions are taken.

The study of communication between controllers and beween controller
and resources has resulted in four new communication protocols. The
formalization of these protocols and the different possibilities and
implementations of these protocols are new notions.

It is seen that long lead times are caused by high inventory levels. To
reduce lead times it is not so much a new sequencing strategy that is
needed as a better control of the inventory level. The work point of ajob
shop manufacturing system is adjusted by controlling the inventory
leveL With a simple releasing strategy (Fixed-WIP releasing) the
inventory level can be kept constant. As regards sequencing, first-in
first-out seems to be an excellent strategy: it is fair, every piece of
material flows in a natural way through the manufacturing system, and
it causes small deviations in the lead time.

The control problem has to do with the divergence between reality (the
status of the factory) and the anticipated reality (the production plans
and schedules for the factory)_ This divergence makes corrective actions
necessary, which makes the control problem complicated, and this
divergence should be kept to an absolute minimum. The divergences
between reality and anticipated reality are caused by uncertainties in
consumer demands, supplier deliveries and manufacturing system
behaviour.

conclusions 147

The capacity of a manufacturing system is based on a forecast of

demand. As long as the capacity of a manufacturing system is constant)

the performance of the manufacturing system should not be related to its

ability to fulfil the demand. Market demand has to be responded to in
such a way that the manufacturing capacity is not exceeded. This is a
problem that has to be solved on the factory level. It seems better to avoid
the manufacturing control having to absorb demand fluctuations, since

this obscures both demand uncertainty and manufacturing system
performance. The manufactwing control has to minimize the uncertainty

in the manufacturing system's behaviour. A manufacturing system that

behaves in a predictable way enables the capacity planning function in

the factory controller to see the consequences of its decisions.

The control is not based on the idea of executing detailed production

plans, which are jmplemented from top to bottom. In the control
architecture the momentary capacity, which is calculated from bottom
to top, is used to progress production. Control decisions are taken on a
reactive basis. This way, any divergence between reality and anticipated
reality is minimal.

To control a hierarchical manufacturing system, it is required that the
uncertainty in the behavjour in a layer is small, as small as possible, and

that the momentary capacity of a layer is clearly expressed. For single
shop and parallel shop layers, these conditions are easily fulfilled. For

layers with a flow shop structure some constraints are needed in order

to fulfil these conditions. In job shop structures, however, the instanta
neous capacity is the result of changes and often cannot be unambigu
ously expressed. For this reason it seems to be advisable to avoid a job
shop structure as far as possible in the control layers. The example of the

Ie factory showed that the architecture does work for a job shop
structure. In case a job shop is implemented within a multi-layer control
system, the architecture allows ajob shop structure in every layer. From

the control point of view and for efficiency purposes) the job shop

structure should be implemented in as few layers as possible, and

preferably only in one of the top layers) with little uncertainty in the

layers below. This allows scheduling decisions to be centralized and the

behaviour to be optimized on a global basis.

Although there is no maximum to the number of hierarchical layers, it
is advisable to limit their number. Every layer includes extra transport

systems, mechanical interfaces between transport systems, and extra
stores. The sharing of stores and transport systems is possible in the

control architecture, but because this complicates the control problem

considerably, it seems to be a undesirable solution.

Decentralization of the control problem can be viewed as the moving of

responsibility from top controllers to controllers in lower hierarchical

148 conclusions

layers. A conunon goal and consistent data inside a factory will not

allow a totally distributed control system: a central controller remains
necessary, even if it might be reduced to something like a central
database.

Planning and scheduling research is of little use without a uniform

perl'onnance measure, a general control strategy and a control frame
work. Thecontrol architecture presented in this thesis offers the possibility

to fit such research in with the whole. To improve perlonnance, in most

cases it is not the control strategy or algorithm which has to be changed;
rather, it is the physical manufacturing system which will have to be
adapted. The batch size of reSOillces and the process times of operations,
in particular, should be attuned to each other.

The strength of the control architecture has been demonstrated by the
simulation of an Ie manufacturing system. This is considered to be a
complex system, containing five hierarchical layers and more than one
hundred processing machines. No simulations found in the literature
have considered the hierarchical control levels in such detail. The

simulation demonstrated the capabilities of the control architecture. In

the example, the product mix, the transport times, the batch sizes, the

request generating strategy and the sequencing strategy have all been
varied.

The performance graphs of the Ie facility show that, when the inventory
level is low, the choke of a sequencing strategy is not interesting; all
sequencing strategies behave more or less the same, because there are
only very short queues with no or few options. When the inventory level

is very high the sequencing strategy is also not very interesting; the
manufacturing system in this case is saturated and manufactures at its

maximum leveL

6.3 Recommendations for further research

The architecture is versatile, and may be adapted to a great variety of
control situations. It allows the systematic design, modelling and

simulation of manufacturing control systems, and can be used directly

to implement control, when a factory is built. Nevertheless, a fully
integrated and automated manufacturing system has not been realized.
Neither has it been demonstrated that the control architecture may
resol ve every control situation. The archi tecture is, however, a firm base
to which many additions are possible. Some of these additions are

discussed in this section.

A Jot of aspects of manufacturing control still remain to be investigated.

Functions like quality control, product development, investment policy

conclusions 149

and accountancy will have to be dealt with. Deadlock is at present
circumvented by using stores with large enough space for material. If
deadlock cannot be solved in this way, the controller has to incorporate

calculation before requesting a new job to see whether a new job will

cause deadlock or not. Capacity is only available if deadlock is excluded.

The architecture does not contain complex planners and schedulers. A

plea has been entered for simple reactive schedulers. In some cases new

scheduling techniques, based on artificial intelligence research or on

neural networks, seem to offer opportunities jn controlling manufacturing

systems.

The petfonnance graphs shown in the example refer to a few product

types with small differences in work content. The significance of these
perfonnance graphs. in the; case of jobs with large differences in work
contents, is the subject of ongoing research which is also considering

other perfonnance criteria.

The control architecture manages the discrete material which undergoes

the manufacturing process. In a later stage the architecture will have to
be ex.tended to take care of the management of bulk materials (e.g. gases
and screws), scrap and energy. 'The simulation model did not consider
tools and machine breakdown. The control of ideal manufacturing
systems has to be understood before these aspects can be considered

more closely. Extensions, which have to do with tools, setup of machines,

maintenance and repair, will have to be integrated in the future, if they
are not avoidable.

In order to get closer to a totally automated manufacturing system

further development of the data structure and the control structure are
necessary. The recipes used in the ex.ample did not contain assembly
operations. To include these operations in the manufacturing processes,
the data structure has to be extended with parallel recipes and with

parallel tasks. Furthennore, the interpreting function of the IIWlufacturing

controller might also have to change. Another extension in this area is

the possibility to change material routes; as a consequence of test results.

The control architecture js applicable to non-changing manufacturing

systems. An interesting extension to the architecture is the possibility to
handle changes in the manufacturing processes and changes in the
configuration of the manufacturing system. Such extensions will increase

the applicability of the control architecture considerably. The control
architecture represents the manufacturing process independently of the
control structure. If the manufacturing system contains a transport

system that is able to realize general material routes, the control

architecture is suitable for dynamic manufacturing processes: only

functions like manufacturing process specification and the distribution

150 con.clusions

of the infonnation of the manufacturing process specification (the
recipes) to the different controllers have to be incorporated in the
arcru tecture.

The change of the manufacturing system configuration is probably easy
to incorporate because of the request mechanism. A newly connected
resource only has to send requests to state its capacity and to receive
jobs. The controller initialization may have to be changed, but the
control algorithm remains the same.

The results of this study have not been implemented in an existing
factory; to do this it will be necessary to perfonn a closer study of
organizational structures and management tasks. Some of these may
have to be incorporated in the architecture. The implementation of a
control architecture in a new or existing organization is probably worthy
of a study in its own right.

During the development of the control architecture ideas for further
research into manufacturing control became available. Students have
explored some of these ideas, of which three are mentioned here. The
cOIIllllunication protocols between the controller and the resources offer
so many opportunities that further research on the different protocols
seems justified [De Jonge 1991]. The implementation of the control
architecture without the use of computers, but with cards, looks possible

and interesting fVincenten 1991]. During the control of a manufacturing
system simulation can be used to take allocating and sequencing
decisions. A further investigation of the possibilities of simulation as a
tool for controlling and decision support seems to offer great opportunities
[Steyns 1991].

The architecture developed here can handle very complex factory
configurations ~ job shops - and thus formes an important contribution
to the theory of factory and manufacturing control. The architecture has

proved to be reliable and robust. It has given rise to a great number of
new ideas, SOme of which are the subject of ongoing research, and it

promises well for the future: extensions are likely to make it even more
powerful.

References

Arends N. W. A., Taminiau D. A.,
Een aanzet tot het modelleren van de produktiebesturing van

chipfabrieken (in Dutch),
Memorandum, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1989).

Arentsen J. H. A.,
Factory control architecture, A systems approach.

Dissertation,
Eindhoven University of Technology, Eindhoven (1989).

Atberton R. W.,
Factory scheduling using simulation models,
Proceedings of the Third Symposium on Automated Integrated

Circuit Manufacturing,
Electrochemical Society 333-345 (1988).

Atherton R. W.,
Dynamic capacity planning using simulation models.

Proceedings of the Fourth Symposium on Automated Integrated
Circuit Manufacturing,
Electrochemical Society (1989).

Atberton R. W., Dayboff J. E.,
Signature analysis; simulation of inventory, cycle time and

throughput trade~offs in wafer fabrication,

IEEE Transactions on Components, Hybrids and Manufacturing
Technology, 9 (4) 498-507 (Dec 1986).

Atherton R. W.; Pool M. A., Mukberjee S., Hodgeman R.,
Validated simulation models for factory control,
Inel Semiconductor Manufacturing Science Symposium,
Proceedings, 118-122 (1989).

Baker K. R.,
Introduction. to sequencing and scheduling.
John Wiley & Sons) New York (1974).

Bertrand J. W. M., Wortmann J.e.,
Production control and information systemsfor component

manufacturing shops,

Elsevier Scientific Publishing Company, Amsterdam (1981).
Beukeboom J. J. A. J., Biemans F. P. M., Hebl C. J. G.,
Sjoerdsma. S., Veell H. J. van,

CAM reference model,

eFT Report 01/89,
Philips, Eindhoven (1989).

152 references

Biemans F. P. M.~
A refe:rence model for manufacturing planning and control.
Dissertation,
University of 1\vente, Enschede (1989).

Bitran G. R., Tirupati D.~

BST

Development and implementation of a scheduling systemjor a
wafer !ab1"ication facility,
Operations Research, 36 (3) 377-395 (1988).

Glossary of production planning and control terms,
BS 5191: February 1975,

British Standards Institution, London (1975).
Buffa E. S., Sarin R. K.,

Modern production/operations management.
John Wiley & Sons, London (1987).

Burna J. T.,
Materialen onderzoek in een stroomversnelling (in Dutch),
De ingenieur, (1), 13-21 (1987).

Burbidge J. L.,
IF IP glossary of terms used in production control.
North-Holland, Amsterdam (1987).

Burman D. Y., Gurruola-Gal F. J., Nozari A., Sathaye S.,
Sitarik J. P.,

P eiformance analysis techniques Jor Ie manufacturing lines.
AT&T Technical Joumal, 65 (4) 46~57 (Jul/Aug 1986).

Conway R. W., Maxwell W. L., Miller L. W.,
Theory of scheduling,

Addison-Wesley, Reading MA (1967).
Dal J. C. H. M. van,

'Automated Guided Vehicles' in wafer-fabrieken (in Dutch),
Master's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1989),

Denekamp B. R.,
ChipPab recipes,
Personal communication (1989).

Oenekamp B. R., Rooda J. E., Wortmann A. M., Smit G. H.,
How to model and simulate a wajer processingjacility.
Semiconductor International, 13 (10) 109-111 (1990).

Doulgerie Z.,
Production scheduling policy for flexible manufacturing
.rystems.
Dissertation,
Imperial College, London (1987).

Doulgerie Z., Hibberd R. D., Husband T. M.,
The scheduling offlexible manufacturing systems,
Annals of the eIRP, 36 (1),343-346 (1987).

references

Elleby P., Fargher H. E., Addis T. R.,
A constraint-based scheduling system/or VLSl wafer

fabrication,

153

In: Knowledge Based Production Management Systems, Brown
J. (Editor),
Elsevier Science Publishers, North-Holland (1989).

Ehrlenspiel K.,
Kostengunstig Konstruieren - Kostenwissen, Kosteneinflusse,

Kostensenkung (in German),

Konstruktionsbucher Band 35; Springer-Verlag, Berlin (1985).
Flatau U.,

Designing an information system for integrated manufacturing

systems,

In: Design and Analysis of Integrated Manufacturing Systems,
Compton W. D. (Editor),
National Academy Press, Washington DC (1988).

French S.,
Sequencing and scheduling.

John Wlley & SODS; New York (1986).
Glassey C. R., Res:ende M. G. C.,

Closed-loop job release control for VLSl circuit manufacturing,

IEEE Transactions on Semiconductor Manufacturing 1 (1), 36-
46 (1988).

Goldberg A.,
Smalltalk-80, The interactive programming environment,

Addison-Wesley; Reading MA (1984).
Goldberg A., Robson D.,

Smalltalk-80, The language,

Addison-Wesley, Reading MA (1989).
Graves S. C.,

A review a/production scheduling,

Operations Research 29 (4), 646-675 (1981).
Groover M. P.,

Automation. production systems, and computer integrated

manufacturing.

Prentice-Halllntemational, Englewood Cliffs NJ (1987).
Hax A. C., Candea D.,

Production and Inventory Management,

Prentice-Hall; Englewood Cliffs NJ (1984).
Herroelen W.,

Computergeintegreerde produktie.: my the ofwerkelijkheid? (in

Dutch),

Inforrnatie 27 (1), 336-341 (1985).
Hubka V., Eder W. E.,

Theory o/Technical Systems.

Springer-Verlag, Berlin (1988).

154 references

Janssen J. H. J.,
Een besturingsconcept voor een lithoshop-controller (in Dutch),

Master's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1989).

Joeossoo H.;
Simulation studies of hierarchical systems in production and

inventory control,
Dissertation,
Linkoeping University, Linkoeping (1983).

Jonge M. A. C. de,
Modellen voor hierarchische fabrieksbesturingssystemen (in

Dutch),

Master's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1991).

Kager P., Lou S. X. C.,
Wafer fabrication scheduling using flow rate control strategy,

Int'l Semiconductor Manufacturing Science Symposium, Pro
ceedings, 21-24 (1989).

Kelton W. D.,
Statistical analysis methods enhance usefulness, reliability of

simulation models.
IE (Industrial Engineering), 74-84, September (1986).

KempfK.G.,
Manufacturing planning and scheduling: where We are and

where we need to be.

lEEE-89, Artificial Intelligence Applications, Proceedings, 13-
19 (1989).

Kessler A.,
Semiconductor and semiconductor equipment industries,

Paine Webber, (NoY 1988).
Kittel Th.,

Produktionsplanung und -steuerung im Klein- und

M lite/be/deb,

Chancen und Risiken des EDV-Einsatzes (in Gennan),
Dissertation,
Expert Verlag, Grafenau (1982).

Lawton W. L., Drake A., Henderson R., Wein L. M., Whitney R.,
Zuanich D.,

Workload regulating wafer release in a GaAs fab facility,
Int'l Semiconductor Manufacturing Science Symposium,
Proceedings, 33-38 (1990).

Law M. D., Kelton W. D.,
Simulation modelling and analysis

McGraw-Hill Book Company, New York, (1982).

references

Little J. D. C.~
A proof for the queueing formula: L =: lambda W,
Operations Research 19 (3), (1961).

Lou S. X. C.~ Kager P. W.,

155

A robust production control policy for VLSI wafer fabrication,

IEEE Transactions on Semiconductor Manufacturing 2 (4), 159-

164 (1989).
Lozinski C~ Glassey C. R.,

Bottleneck starvation indicators for shop floor control,

IEEE Transactions on Semiconductor Manufacturing 1 (4), 147-

153 (1988).
Maekawa M., Oldehoeft A. E., Oldehoeft R. R.~

Operating systems. Advanced concepts,

The Benjamin/Cummings Publishing Company, Menlo Park CA
(1987)

Martin-Vega L. A., Pippin M., Gerdon E., Burcham R.,
Applying just-in-time in a wafer fab: a caSe study,

IEEE Transactions on Semiconductor Manufacrnring 2 (1), 16-
22 (1988).

Matsuyama A., Atherton R. W.,
Experience in simulating wafer fabs in the USA and Japan,

Int'] Semiconductor Manufacturing Science Symposium,
Proceedings, 113-118 (1990).

Miller D. J.,
Simulation of a semiconductor manufacturing line,

Communications of the ACM 33 (10), 98-108 (Oct 1990)

MODllllers E. P. M.~
Ben regelaar voor het besturen van discrete produktiesystemen

(in DUICh),
Master's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1990).

MooweriM.~

A modular simulator for design, planning, and control of

flexible manufacturing systems,

Dissertation,
Katholieke Universiteit Leuven, Leuven (1987).

Nauta D.,
Logica en model (in Dutch),

Wetenschappeli jke Uitgeveri j. Amsterdam (1974).

Overwater R.,
Processes and interactions, An approach to the modelling of

industrial systems,

Dissertation,
Eindhoven University of Technology, Eindhoven (1987).

156 references

Panwalker S. S., lskander W.,
A survey of scheduling rules.
Operations Research 25 (1) 45-61 (1977).

Penning W.,
VergeJijkend onderzoek naar de invloed van een automatisch

transportsysteem op het logistiek gedrag van een etN,'el (in
Dutch),
Master's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1991).

Peterson J. L., Silbersehatz A.,
Operating system concepts,

Addison-Wesley Publishing Company, Reading MA (1986).
Pollak S.,

Wafer fabrication factory simulation language.

Int'l Semiconductor Manufacturing Science Symposium,
Proceedings, 114-116 (1989).

Rij 0 Th. M. J. van,
Produceren door inJormeren. InJormatie~eisen VOO1"

verschillende produktie situaties (in Dutch),

Kluwer, Deventer (1986).
Rij nTh. M. J. van,

Hel ontwerpen van een sysleem voor produktiebeheersing; een

balancerings-vraagstuk (in Dutch),

Besturingsconcepten wat zijn ze uw bedrijf waard?, Themadag
Nevem, v.V.W.,
Proceedings, (Sep 1988).

Rodammer F. A., White K. P. sr.,
A recent suntey o/production. scheduling,
IEEE Transactions on Systems, Man, and Cybernetics 18 (6)
841-851 (1988).

Rooda J. E.,
De kunst van he! automatiseren (in Dutch).

Inaugural Address,
Eindhoven University of Technology, Eindhoven (1987).

Rooda J. E.,
The modelling o/industrial systems,

Eindhoven University of Technology, Eindhoven (1990).
Rooda J. E.,

Procescalculus, [ndeting van industriele systemen (in Dutch).
12 Werktuigbouwkunde 7 (5) 13~15 (1991a).

Rooda J. E.,
Pmcescalculus, Systemen, model/en en geschiedenis (in Dutch),
I2 Werktuigbouwkunde 7 (8) 36-39 (1991b).

Rooda J. E.,
Procescalculus, De/inities en begrippen (in Dutch),

U Werktuigbouwkunde 7 (10) 35-40 (1991c).

references

Rooda J. E., Arentseo J. H. A.~
Procescalculus bij model/eren vanflow-shQp fabrieken (in

Dutch),

Mechanische Technologie 1 (1) 10-20 (1991).

Rooda J. E., Arentsen J. H. A., Smit G. H.~
Procescalculus bi} model/eren van job-shop Jabrieken (in

Dutch),
Mechanische Techno1ogie 2 (2) (1992).

Ruissen E. M.,
Het besturen vanJlexibele produktiesystemen (in Dutch),

Master's thesis, Faculty of Mechanical Engineering,

Eindhoven University of Technology, Emdhoven (1986).

Smedinga R.,
Simulatie en implementatie (in Dutch),

Addison-Wesley, Amsterdam (1988).

Smit G. H.,
De besturing van waferfabs (in Dutch),

Memorandum. Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1988).

Smit G. H.~ Vaes H. J., Rooda J. E.,
Control of an Ie production facility,

Posters for IOP-FOM days,

IC-EWT89.041 (1989).
Spur G., Stoeferle Th.,

Handbuch der Fertigungstechnik (in German),

BD. 1- 5,
Carl Hanser Verlag, Munchen (1981).

Steijns E. M. H.,
Besturing van een hierarchische job shop met behulp van

simuJatiescheduling (in Dutch),

Master's thesis, Faculty of Mechanical Engineering,

Eindhoven University of Tecbnology, Eindhoven (1991).

Stokey R. J.~
AlJactory scheduling: multiple problem formulations,

Sigart Newsletter, (110) 27-30 (1989).

Sle S. M.,
VLSI technology,

McGraw-Hill Book Company, Singapore (1983).

Tullis B., Mehrotra V.~ Zuauicb D.~
Successful modeling of a semiconductor R&D facility,

Int'l Semiconductor Manufacturing Science Symposium,

Proceedings, 26-32 (1990).

157

158 references

Uzsoy R., Martin-Vega L. A., Brown S. M., Leonard P. A.,
Production scheduling algorithms for a semiconductor test
facility,

Int'! Semiconductor Manufacturing Science Symposium,
Proceedings, 25-31 (1989).

Vaes H. J.,
Vertex en scheduling (in Dutch),
Mastel' 's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1989).

Verhoef H. A.,
Onderzoek naar de verbetering vanjobscheduling op celniveau

binnen een wafe:ifabriek (in Dutch),

Memorandum, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1989).

Vincenten J. F. P. M.,
Besturing van een job shop fabriek met behulp van een op het

Kanban-principe gebaseerd besturingssysteem (in Dutch),

Master's thesis, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1991).

Warnecke, H. -.T., FruehaufW., Schmutz W.,
New manufacturing concepts for the production oj integrated
circuits,

Semicon/Europa '90 Teclmical Conference,
Proceedings, 169-179 (Mar 1990).

Wein L. M.,
Scheduling semiconductor wafer fabrication,

IEEE Transactions on Semiconductor Manufacturing 1 (3), 115-
130 (1988).

Wiendahl H. -P.,
B elastungsorientie:rte F ertigungsste.uerung :Grundlagen,
Verfahrensaufbau, Realisierung (in German),

Carl Hanser Verlag, Munchen (1987).
Wortmann A. M., Rooda J. E., Boot W. C.,

Basisbegrippen van de process-interactie benadering (in
Dutch),

Memorandum, Faculty of Mechanical Engineering,
Eindhoven University of Technology, Eindhoven (1989).

Wortmann A. M., Rooda J. E.,
The process-interaction environment user manual,

Memorandum; Faculty of Mechanical Engineering,
Eindhoven University of Teclmology, Eindhoven (1990).

Wortmann A. M.,
Modelling and simulation a/industrial systems,

Dissertation,
Eindhoven University of Technoiogy, Eindhoven (1991).

AppendixA

An introduction to Smalltalk-80

The Xerox Palo Alto Research Center started in the early 1970's a
project to create a powerful information system; which made it possible
to use computing power effectively and easy. This research resulted in

the Smalltalk-80 system which is described in Goldberg and Robson

[1989] and Goldberg [1984]. This appendix is based on the first text.

The Smalltalk-80 system is more than a programming language. The
researchers at Palo Alto concentrated on two areas: a programming

language in which a human can describe the models he has in his mind,

and that can be executed on a computer) and a user interface which
enables the hUIllilll to communicate with the computer in a user friendly
way.

The Smalltalk-80 system is an interactive programming environment.
In this environment every component can be observed and manipulated.
In order to use the Smalltalk-80 system a high resolution graphical
display screen and a pointing device (such as a mouse) are essential.

The Smallta1k.-80 system is a large system) that includes objects that can
perform functions which are usually provided by the computer operat

ing system. The system is based on the concepts object, class, message,
method and inheritance. Smalltalk. consists of communicating objects.

The interaction between objects is viewed the same way on every level

of complexity. Because the functioning of objects does not depend on

the internal details of other objects, modularity is supported. The
complexity is reduced by minimizing of interdependencies between
objects and by grouping similar objects together in classes. The
subclassing mechanism supports inheritance which avoids repetition of
the same code in different places. Classes and instances are units for

organizing and sharing information. Subclassing is a means to inherit
and to refine existing capabilties.

A.l Basic Smalltalk-80 concepts

Progranuning in Sm.alltalk-80 is facilitated by the fact the user can use

everything that is already in the system. In order to write a new program

the programmer has to find out what existing concepts he can use and

160 an introduction to SmaUtalk-80

which new situation he wants to model, then establishing the new
situation means programming the difference.

Before introducing the syntax of the Smalltalk -80 language an overview
of the main concepts will be presented.

Object

The SmalltaJk-80 programming language is an object oriented program
ming language. Every component in Sma1ltalk -80 is an object. TIris may

be a representation of something physical or non-physical. An object

consists of some private memory and a set of operations. This set of
operations represent the functions that an object can perfonn. The
private memory represents the data structure of an object.

Class

If every single object in Smalltalk would have a description of its
properties the system would not be manageable. To avoid this problem
abstraction is used. Objects with equal properties get a generalised
description: a class. The concept class is comparable to the type
definition concept in Pascal. In a Smalltalk class the implementation of
the private memory and the set of operations of objects of the same kind
are described. Every object in Smalltalk belongs to a class. An object
which is described by a class is called an instance of th~t class.

Message

Most objects have a contents, the private memory. The contents of an
object is not directly available to other objects. The contents of an object
can only be manipulated with the help of messages. A message tells the
object what operation it should perform. The object can react in an
appropriate way by executing the requested operation. A message does
not tell how to perfonn an operation. A message can be accompanied by
argwnents. Messages are the only way to access the operations of an
object (encapsulation) and operations are the only way to acces the

private memory of an object (data hiding). Because of the message
mechanism, the implementation of operations an object can perfonn,
remain private to the object, just like the data structure of its internal
memory. All messages an object understands are called its interface.

an introduction to Smalltalk-80 161

Method

An object knows for every message it can perfonn a method that
describes the way in which the requested operation has to be executed.
A method is a procedure abstraction comparable to a function in Pascal.
A method may specify changes of the object's private memory or it may
contain messages for other objects. The methods an object knows
belong to the class. which the object is an instance of, or to a superclass
of this class.

Inheritance

A class is a specialization of another class: it is a subclass. On the other
hand it may be a generalization of another class: then it is a superclass.
A property of the subc1assing mechanism is called inheritance. Inherit"
ance means that every object of a certain class will have all properties
of that class and all the properties of all superclasses of that class. This
inheritance mechanism counts both for the methods and the private
memory of a superclass. An object understands the messages defined in
its class and those defined in its superclasses. The correct execution of
the method that belongs to a message is handled by the language
mechanism.

Polymorphism and late binding

A variable may refer to an instance of any class, this is called

polymorphism. The method, that is to be executed when a message is
sent to an object, is selected at ron-time. The concept is called late
binding.

A.2 The Smalltalk-80 syntax

'The Smalltalk-80 system components are represented by objects. These
objects, which are instances of classes, interact with each other with the
help of messages. A message causes a method to be executed. Now the
syntax for describing objects and messages will be presented.

An object is described by a sequence of characters this is called an
expression, the object is called the value of the expression. In the

Smalltalk-80 programming language there are four types of expres
sions: literal expressions, variable names, message expressions and
block epressions.

162 an introduction to Smalltalk-80

Literal expressions

Literals describe constant objects. There are five kinds of objects that
can be referred to by a literal expression: nwnbers, individual charac
ters, strings of characters, symbols and arrays of literal expressions.

Examples of numbers:

1 -103.57.893

individual characters:

$a $b $c

strings of characters:

abc' 'defghi'

symbols:

#idle#busy

arrays of literal expressions:

#($a bc)

#(#(#a 11 #a12) #(#a21 #"0122))

Variable names

The private memory of an object consists of variables (instance vari
ables). Most of these variables have names. Each variable remembers a

single object and the variable's name can be used as an expression
referring to that object. A variable name is a simple identifier, a sequece
of letters and digits beginning with a letter.

There are two kinds of variables in the system) distinguished by how
widely they are accessible. Private variables are accessible only to a
single object. Instance variables are private. Shared variables can be
accessed by more than one object. Private variable names are required
to have lowercase initial letters; shared variable names are required to
have uppercase initial letters.

Examples of variable names:

contents, name

shared variable names:

Pi

A literal constant will always refer to the same object, but a variable
name may refer to different objects at different times. The object
referred to by a variable is changed when an assignment expression is
evaluated. Any expression can become an assignment by including an
assignment prefix . .An assignment prefix is composed of the name of the

an introduction to Smalltalk-80 163

variable whose value will be changed followed by a colon and an equal

sign.

Example

asignment expression:

name ;. 'Charles'

A pseudo-variable name is an identifier that refers to an object, a
pseudo-variable name is different from a variable name in that its value
cannot be changed with an assignment expression. Some of the pseudo

variables in the system are constants; they always refer to the same
objects. Three important pseudo-variable names are nil, true and falSe.

Message expressions

Messages represent interactions between components of the Smalltalk-
80 system. A message requests an operation on the part of the object
which gets the message.

A message expression describes an object, which should pedorm the
message, a selector and possibly some arguments. The object and
arguments are described by other expressions. The selector is specified
literally. Amessage 's selector is a name for the type of interaction which
is requested from the object. The selector of a message determines which

operation will be invoked. The arguments are other objects that are
involved in the selected operation.

Example of message expression:

aCollection add; anObjact

where aColiection should perform the message, add: anObject is a message,
add; is a selector and anObject is an argument

Unary messages are messages without arguments.

Example of unary message:

size

The general type of message with one or more arguments is the keyword
message. The selector of a keyword message is composed of one or more
keywords, one preceding each argument. A keyword is a simple iden
tifier with a trailing colon. When the selector of a multiple keyword

message is referred to indepently, the keywords are concatenated.

Example of keyword message:

a.t: Index put anObject

where at:put: is a selector, at: is a keyword, put: is a keyword

164 an introduction to Smalltalk·80

There is one other type of message expression that takes a single
argument, the binary message. A binary message selector is composed
of one or two non alphanumeric characters.

Example of binary message:

<10

Smalltalk-80 messages provide two-way communication. The selector
and argument transmit information to the object about what type of
response to make. The object transmits information back by returning

an object that becomes the value of the message expression. If a message

expression includes an assignment prefix, the object returned by the

object that performs the message, will become the new object referred

to by the variable. Even if no information needs to be communicated

back, an object always returns a value for the message expression.

Parsing rules:

1. Unary expressions parse left to right.

For instance 2 sin sqrt evaluates as: (2 sin) sqrt.

2. Binary expressions parse left to right.

For instance 1 + 2' 3 evaluates as: (1 + 2)·3.

3. Binary expressions take precedence over keyword expressions.

For instance 1 + 2 raisedTo: 0.5 evaluates as: (1 + 2) raisedTo: 0.5.

4. Unary expressions take precedence over binary expressions.

For instance 1 + 2 sqrt evaluates as: 1 + (2 sqrt).

There is one special syntactic fonn called cascading that specifies
multiple messages to the same object. A cascaded message expression
consists of one description of the object which should perform the
messages, followed by several messages separated by semicolons.

Example of cascading:

aCollactlon add: objectOne; add: objeclTwo; add: objectThree

Block expressions

Blocks are objects used in many of the control structures in the
Smalltalk -80 system. A block represents a deferred sequence of actions.
A block expression consists of a sequence of expressions separated by

an introduction to Smalltalk·80 165

periods and delimited by square brackets. When a block expression is
encountered) the statement enclosed in the brackets are not executed
immediatly. The value ofa block expression is an object that can execute
these enclosed expressions at a later time, when requested to do so. The
sequence of actions will take place when the block receives the unary
message value.

Example of block:

Ii :-1 + 1. sum:- sum + II

A control structure determines the order of some activities. The funda
mental control structure in the Smalltalk-80 language provides that a
sequence of expressions will be evaluated sequentially. Many non
sequential control structures are invoked either by sending a message to

a block or by sending a message with one or more blocks as arguments.
The response to one of these control structure messages determines the
order of activities with the pattern of value messages it sends to the
hlock(s).

An example of a control structure implemented with blocks is simple
repetition, represented by a message to an integer with tlmesRepeat: as the
selector and a block as the argument. The integer will respond by
sending the block as many value messages as its own value indicates.

Example of simple repetition:

I :- O. sum :_ O.

10 UmesRepeat: [i : .. i + 1. sum : .. sum + a
Two common control structures implemented with blocks are condi
tional selection and conditional repetition. Conditional selection is
similar to the if-then-else statement in Pascal and conditional repetition
is similar to the while-do and repeat-until statements in this language.
These conditional control structures use two Boolean objects named true
and false. Booleans are returned from messages that ask simple yes-no
questions (for example, the magnitude comparison messages: ., <, <_, >,

>., :m)~

The conditional selection of an activity is provided by a message to a
boolean with the selector IfTrue:lfFalse: and two blocks as arguments. The
only objects that understand ifTrue:ifFalse: messages are tl\le and false. They
have opposite responses: true sends value to the first argument block and
ignores the second; false sends value to the second argument block and
ignores the fIrst. The value returned from IfTl\Ie:ltFalse: is the value of the
block that was executed.

Example of conditional selection:

x> max
iITrue: (y :- max]

166 an introduction to Smalltalk·80

if False; [y ;~ xl

Other conditional selections are: ifTrue:, if False; and ifFalse:ifTrue:.

The conditional repetition of an activity is provided by a message to a
block with the selector whileTrue: and another block as an argwnent. The
receiver block sends itself the message value and if the response is true,

it sends the other block value and then starts over, sending itself value

again. When the receiver's response to value becomes false, it stops the
repetition and returns from the whlleTrue: message.

E:1C:ample of conditional repetition:

I :: O. sum ;- O.
[i.e 10]

whileTrue:

[i := 1 + 1. sum :- sum + i]

Other message for conditional repetition is: whileFalse:.

In order to make some nonsequential control structures easy to express,
blocks may take one or more argwnents. Block arguments are specified
by including identifiers preceded by colons at the beginning of a block.
The block arguments are separated from the expressions that make up
the block by a vertical bar.

A common use of blocks with argum.ents is to implement functions to

be applied to all elements of a data structure. For example many objects
representing different kinds of data structures respond to the message
do:, which takes a single-argument block as its argument. The object that
performs a do: message evaluates the block once for each of the elements
contained in the data structure. Each element is made the value of the
block argwnent for one evaluation of the block.

Example of enumeration over an array:

sum ;.0.

#(1 2345678910) do: [:11 sum:: sum + I)

where #(1 23456739 10) is an array that can perfonn a do; message, [;i I
sum ;c sum + i] is a single argument block, I is a block argument, sum :- sum

+ i is the expression in the block.

Other enumeration messages are: collect:, select:, reJect:, detect: and InjeC1:lnto:.

The objects that implement these control structures supply the values of
the block arguments by sending the block the message value;. A block
with one block argument responds to valve: by setting the block arglUllent
to the argument of valva: and then executing the expressions in the block.

Appendix B

Basic task language methods

This appendix lists the most important methods of the task language. It
is based on Wortmann [1991].

Bubble> task frame

Inltle;llzeTIUIkii
"This method is called before any prOCBssar 8x6CUteS initJa/ActJons or body. It should

not contain any send or racelve actions, as the Pf0C8SS9S are not Itmnfng yet. It Is
mainly Intended to inltJ8IIz6 instance variables .•

Inltl.IActiona
"ThIs mBthod is called once b6fore the first f1X6GUtion of body .•

body
"TnJs method is caJlBd r8p8a.tedly during simulation. It must b8 md9fined by all

subclasses. Calling stapPrcc8ss prevents further calls af this method .•

haltSlmulatlon
"Stop th9 pteS9flt sImulation. The eff8ct is analogous ta pushing the stop-button 01'1
the control panel .•

stopProc8N
·Prevent this bubbl6 from eX9CUting any I/,Inher actions during me Pf9S9flt
simulatIon .•

Bubble> activity

These methods are used to simulate an activity in no more detail than the

fact that it takes a certain amount of time.
workDurlng: tlmeDelay

"7he process wfll b8 busy for timeOelay tfm9 units. Th6 status asSocJst9d with this
activity Is busy .•

worttDurtng: tlmeOelay fOrReaaOn; workStatus
"The prOCBSs will be bUSy fOr tJmeDelay time units. ThB status assoc;afG(1 with this
acrIvity Is workstatus.·

workDurtng: time Delay fOrRee80n: workStatus InterruptFrom: pO/1NemG
"ThB process will be bl.JSy far tJmeDBlay rime units, unless an ;tem is reooiV9d from

ponName b6fom timeDelay Is explfBd. The status associated with the activity Is

provided by workStatus. Return wherher thB activity tsrminated without fnte"upt .•

workDurlng: time Delay forReason: WOrkstatU8 InterruptFrom: portName If:
eOndHlon

'The process will b8 buSy for tlmeDelay lime units. unless an it8m tha.t satisfies

condition is reoolved from portName befom timeDelay is expired. condition is 8. block

that will be evaluated with candidate itBms as the single argument. It should have no

slde-l1ffects. ThB status associated with the activity is provided by womStatus.

Return whether too activity terminated without Interrupt. "

168 basic task language methods

Bubble> sending objects

send: ObjeCt to: portName

"The most basic s~nd action. S~nds object synchronously to the port specified by

portName. Th~ proCBss blocks until a matching receive Is performed by another

processor. "

send: Object ImmedlamTo: portNama

"Behaves exactly like a normal send when sending at this moment is possible. If it
block.s, which Is detected a little latet', an et'l'Ot'message appflars in the console .•

send: object ImmedlamTo: ponName then: then BlOCk; (lIse: (llseBlock
"Try to sBnd Object to portName at thIs moment. II that succeedS. evaluate the

thenBlock, if it does not succeed, evaluate else810ck. Thus this send cannot block .•

send: Object before: aTime 10: portName 1hen: thenBloCk el9&: elSeBlock
"Try to send objflct to portName bBfofB aTimB. If that succeeds, evaluate the

thens/oak. if it does not succ8~. Bvaluate else Block . •

send: Object to: portName1 then: block1 orTo: portName2 then: block2

"Try to send object to portName1 or podName2. Block until sending to one of the

ports succeeds. If sending to both POrtnatn8S would bB possiblB, use the one that

has the longest waiting rBC8i~. Evaluat@ the correspondIng block when sending
has succeeded .•

send: Obj toOne01: portNanHIs
"portNames is a collection of send port names. Try to send to one of thesB. Wlum

there are waiting receival'S. the longest waiting is used. otherwise the first receiver

that becomes available will be used. Aft8r a succesful send thB method returns. the

processor will not try to sBnd to the other ports as W611. Retum the portName that
was used for tile send .•

sen(l: Obj toOneOf: portNames then: acllon81ock
"actionS/Oak is a one argument block. th~ argumBnt specifies the portName to whIch
the selld succeeded .•

sand: object con1lnuousTo: ponName
"Send object to portName. It will be avai/able for an unlimited number of receivers

until it is rBplac~ by a new call to this method. This selld does never block, H

send: Object asynchronousTo: portName

"Send object to portName. object will be buffered until a raceiver is availabl8. 50 this

processor will not block.. The size of the buffer is unlimitBd. "

Bubble> receiving objects

rec(llveFrom: portNal118
"Receive from tile spBcified port. Block. until some sendtlr Is avaJlal;Jle let'

communication. Return the ICBm rBCllived .•

recelveFrom: portName If: condHlon81ock
"condition Block is a on8-argumMt block. It Is fJvaJuatfJd with the candidate Item as

argument. Evaluation should have no sldB BffBCts and must return a Boolean. The

condition must not involYfj valu@s which change on their own, such as the simulatIon

timB. This message retums the Item received. H

racelvelmmedlateFrom: ponName If: condition BloCk
"Behaves exactly likB a normal rBC8ivB when receiving at this moment Is possible. If

it blocks, this blocking is only detBcted a little later, then an error message appeal'S in

the console. "

recelvalmmedlateFrom: portName 11: condition BloCk then: thenBlock 6188:
elseBlock

'7ry to receive an objBCt that has beBn sent at an earlier moment and that sat/sfles

conditionBlock. If there Is such an object. execute thenS/oak with the received object

as the single argument. Otherwise execute else8l0ak (no arguments}."

recelveFrom: portNama b&tOI'&; tlma tnen: 1nenBIocI!. lfTlmedOut: tlmeOutBloek
"If an Item is received before time. thenBlock is evaluated with that itBm as the single

basic task language methods

argum8nt. Otherwis8, timeOut81ock is 8valuated (no arguments) .•

receive From: pOI1Name before: time If: condition Block then: thenBlock
IfTlmedOut: tlmeOutBlock

"If an Item Is f8c8ived that satisfieS condftlonBlock bafOra time, then Black is

8valuated with that it8m as the single argument. Otherwise, timeOutBlack Is

evaluated."
recelveFrom: pOI1NBme within: anlnterval then: thenBlock IfTlmedOut:

tlmeOutBlock

169

"If an item is f800iVed within anlntefYal, thenBlock is evaluated with that item as the

single argutrlBnt. Otherwise, timeOutSfock Is evaluated .•

reeelveFrom: portName within: Bnlntervallf: condltlonBlock then: thenBlock
IfTlmedOut: tlmeOutBlock

"If an it8m is receiVBd that sat/sfles conditiOn8/ock within anlntefYai, thenBlock is
evaJuatBd with that item as the slngfB BTgument OtherwiSB, timeOutBloclc is
evaluated, •

recelveFrom: portNamel then: blockl or: pol1Name2 then: block2
"ReCBiv8 an Item from either one of two ports. Evafuate the corresponding blOCk with

th9 fBDBiv8d Item as the singl9 argument .•

recelveFromOne01: portNamea
"partNames is 8 collection of rBC8iv8 port names. Try to receIve from 01'18 of these_

When there are waiting s9/'lders, the longest waiting Is used, othelWlse the first

sender that b8c0m9S avaiiabl8 wl1l be used- AftBr the succesful ret:8iV9 the method

rBtums th9 Item rBCSived; the proct!ISSOf will not try to rBC8i1/9 from /tie other ports as
w8ff .•

l8CelveFromOneOt: portNames do: action Block
"actionBfOCk Is a two·arglJment bfock. Wh8n an Item Is avaifabfe, actionB/ock is

evaluated with the name of the ponlnvolved as the ffrst argument and the item as
thB second argUtrlBnt "

recfllveFfomOneOf: portNames If: condition Block do: actlonBlock
"W11en an Item that satisfies condition BlaCk is availabl8, actionBlock Is evaluated

witf! /tie name of the port InvolvEid as the filSt argufflBnt and the item as tfIB second
argument. •

Bubble> special communications

send: Item to: sendPol1 then: 8endBIOck orRec:elveFrom: recelVePOl1lf: cond
tlMtn: recelveBlock

"Send the item to the sendPort, or receive an item from the receivBPort tf'Iat satisfies

ccnd, depBnding on which communication SUCCBBds first. Th9 ccnd/f/on Is either nil

(no cctldltlon) or a one argument bfoCk. "

send: Item to: sendPort then: send BlOCk orRecaweFrom: recelvePort If: cond
then: recelveBlock wHhln: tlmelntervallmmedOut: tlmeOutBloCk

"S8nd the item to the s8ndPort, or receive an itBm from the recelvePort that Satisfies

cond, dependirtg on which commlJtlication sUCC8flds first. "communication dD6s not
succeed withitl timelnmrval, evaluate tfmeOutBloCk. "

send: Item toOneOf: sendPorta do: sendBlock orRecelveFromOneOf:
l'8CelvePOrt8 If: c:ond do: receive Block

"S8nd the item to one of the sandPorts, or f8c@ive an item that satisfies cond from

one of the raceivePorts, dBpBnding an which communication succeeds ffrst

sandSiock is a one argument bfock; the argument specifies tM portnam9 at which

sending succeeded. reooiveBlock is a two argument block; the arguments are the
partname and the rBCBivad object. •

send: Item toOneOf~ sendPona do: sendBlock orR8celveFromOneOf:
recelvePorts If: cond do: receive Block within: tlmelntervallmmedOut:
tlmeOutBlock

"Send thB item to one of the sBndPorts, or receive an item that satisfi9S oond from

01'16 of the rBCBiWlPorts, depending on which communication $uCCBBds first. If
communication dOBS not succeed within lftrlBlnterval, ev.;Wate tlmeOJ,ltBfock •

170 basic task language methods

Bubble> accessing

The following messages do not implement an action but provide control
or access to the modeL
Children

"Return a collection with all fhe processors of my expansion·

narne
"Retum my name, a String"

newName: string
"Set the name of the receiver to the argument .•

parent
"Retut'tl the parent processor of the receiver .•

Bubble> testing

IsPartOiClsas: class
"Answer whether the receiver is 8. child (or a child of or child etc.) of a proct[JSsor of

the dass specified by thfl argument .•

IsPartOfPrOCG880rNamed: aName
"Answer whettler the receiver Is 9. child (or a child of 8. child etc.) of a p1'OC89S0r

named as the argument. "

Appendix C

The hierarchical control model

methods

This appendix lists the objects and the most important methods of the
data structure and the control model. The aim of this appendix. is to give
the interested reader a more detailed description of the hierarchical
control model and its data structure. It gives implementations of
interesting methods. Most of the objects have been discussed in Section
4.1 and 4.2.

The class hierarchy of the objects is given below.

The items that are exchanged between processors (Section C.l).

Objact

InteractlonObject

Order

RealOrder

PotentialOrder
Quotation

Invoice

Request

TransportRaquest

Report

TransportReport

Ordered Collection

Interac:tlonCollectlon

Job
TransportJob

Ma1erialRaquest

Material

The object for the representation of material (Section C.2).
Object

MaterialUnit

Items needed for the administration of the manufacturing process
(Section C.3).

Object

ProgressForm
JobPrograssFoll'n

OrderProgressForm

Operation

TransportOparation
Pr~ssOperation

172

WorkUnit

Process Unit

TransportUnit

OrderedCollection

Task

the hierarchical control model methods

The objects where the calculation for the different decisions is done
(Section CA).

Object

Proc9ssPIanner

FactoryPlanner

JobScheduler

LateScheduler
EartySchEl(lulEl(

The processors of the model (Section C.5).

Bubble

ProcessorObjeCl

ManufacturingController

FaCloryController

Resouroo

Leaf Resource

Transformer

Store
Transporter

Consumer
Supplier

EnvironmentProcess

Market

C.I Interaction items

InteractionObject - instance protocol

Object subclass: InteractionObject
instanceVariableNames: 'address arrivalDate'

accessing methods
address

"Return the address (processor to which this ooject has to be sent) of the object ..•
arrivalOa1e

"Return the time the object arrived at its address. "
stayTlme

"Return the time passed sines the arrival of the object.
lW1Address: aBubble

"Assign 8 value to the address af the objBct .•
setArrlvalOa1e: ."rlme

"Assign a valve to lfIe arrival date of the object, "

the hierarchical control model methods

Order - instance protocol

InteractionObject subclass: Order
instanceVariableNames: 'product amount supplier consumer

startDate dueDate progressForm'

accessing methods
amount
consumer
dueDate
product
progfQ.8FOrm
.nartDate
supplier

Order - class protocol

instance creation method

173

product: aproductNarne amount; aNumber supplier: aSuppllerName cOD$umer:
aColUJ,umerName startD81:e: stanTIrne duaDat8: dueTlme progreaaFonn:
aProg1888Form

~Crea.ts 8. new order. "

RealOrder - instance protocol

Order subclass: RealOrder
instance VariableN ames: .,

testing methods

18POtenUai
/\false

IsFktaI
iltr\l9

RealOrder - class protocol

instance creation method
from: aQuotatlon

"creat8 a new order from 8. quotation"

PotentialOrder - instance protocol

Order subclass: PotentialOl"der
instance VariableN ames: "

testing methods

18Potentlal

174 the hierarchical control model methods

"true
laReal

"false

Quotation - instance protocol

InteractionObject subclass: Quotation
instance VariableNames: • order accepted'

accessing methods
order
prograstlForm
testing methods
laAccepted

"accepted
181nvolce

lIialse

leQuotatlon
"tru@

Quotation - class protocol

instance creation methods
accept: anOroor

·create a quotation that a.ccepts the older"
reject: anOrder

'create a quotation that rejects the order"

Invoice - instance protocol

InteractionObject subclass: Invoice
instancc;VariableNames: 'order material'

accessing methods
dueDate
material
order
prograssForm

testing methods
Islnvolce

IItrua

IsQuotatlon
IIfalse

Invoice - class protocol

instance creation methods
order: anOrder material: anOrderedColleetlon

the hierarchical control model methods 175

·Create a new InvoiC8. The deUvered matBrial is mentlonBd in anOrderedColJectJon,
the order for the material in an Order .•

Request - instance protocol

InteractionObject subclass: Request
instanceVariableNames: 'resource operationTypes

minBatchSize roaxBatchSize'

accesssing methods

maxBatchSLze
mlnBatchSlze
re80urceName
resourceType
SCheduleDa.
newJOb

AJob for: resource

testing methods

laAbleToExecuta: aWortcUnH
A(operatlonTypas includes: aWornUnit operationType)

I.Report

"false
18Request

"true
IsTtall8ponReport

IIfalse

IsTninsportRequeet
Afalse

Request - class protocol

instance creation method

resource: aR880urce operationTypes: operatlonTypeSet mlnBatchSlze;
mlnlnteger mlxBatch$lze: maxlnteger

"Cream a new request .•

TransportRequest - instance protocol

Request variableSubclass: TransportRequest
instanceVariableNames: "

accesssing methods

newJob
"TransportJob for: resource

testing methods

IsReqll8st
Afalse

IsTransportReque8t

176

"true

Report - instance protocol

InteractionObject subclass: Report
instanceVariableNames: 'job'

accessing methods

Job

testing methods
18Report

111rua
ISReqIJ8at

flfalse

IsTransponRepon
flfalse

IsTransponRequest
Alalse

Report - class protocol

instance creation method
Job: aJob

"Create a report belong;ng to aJob. "

the hierarchical control model methods

TransportReport - instance protocol

Report subclass: TransportReport
instanceVariableNames: "

accessing method
destination
origination

testing method

belongsToFlnlshed'raSk

fljob destination - ·store'
IsRepon

IIlalse

IsTransponRepon

lI.rue

InteractionCollection - instance protocol

OrderedCollection variableSubclass: lnteractionCollection
instanceVariableNames: 'address anivalDate'

the hierarchical control model methods

accessing methods (see !nteractionObject)

address
1IoITlvalOate
aetAddress: aBubble
setAlTlvalOam: aN umber
8tayTime

Job - instance protocol

InteractionCollection variableSubclass: Job
instance VariableN ames: 'resource dueDate;

adding method

addWorkUnlt: aWOrkunlt
(dueDate isNII or: [aWorkUnll. due-Date < duaDate])

Iffrue: [due-Date : .. aWor1<;Unlt dueDate].

self add: aWorkUnlt

accessing methods

diMtDate
material

operation
oparationType
proce88T1me
resourceName

Job - class protocol

instance creation method
fOr: aResource

MCreat9 a new job for aResourcs .•

Transport.! ob - instance protocol

Job variableSubclass: TransportJob
instanceVariableNames: "

accessing method
destination
origination

MaterialRequest - instance protocol

InteractionCollection variableSubclass: MaterialRequest
instance VariableN ames: 'destination'

accessing method
destination

177

178 the hierarchical con.trol model methods

"deStination

MaterialRequest - class protocol

instance creation method
deStination: aBubble

"Create a new matetiafAequest, the d8stinat/on of the reqU6Sied material is
aBubbJe_'

Material - instance protocol

InteractionCollection variableSubclass: Material
instanceVarjableNames: "

C.2 Material object

Materia/Unit - instance protocol

Object subclass: MaterialUnit
instanceVariableNames: 'name'

Materia/Unit - class protocol

MaterialUnit class
instance VariableN ames: 'instanceCount'

class initialization method
Initialize

InSlanc:aCount ;= 0

instance creation method
nameForlnstance

Instanc:aCount ;m instance-Counl + 1 _

Aname, inStanceCount printStrlng

new
"Create a new instance of Materia/Unit with a unique name. "
Asuper new setName; self nameForlnstanoe

the hierarchical control model methods

C.3 Administrative objects

ProgressForm - instance protocol

Object subclass: ProgressFonn
instance VariableNames: 'instantiator tasks'

179

'The Instantiator is the obj6ct to which the progressForm belongs. The taSkS contain

the process plans which have to b8 9X8CUted in order to execute the InstantiHtor. "

tasks-accessing methods

addTask: aTask
il1aSks add: aTask

laFlnl8hed
"1asks IsEmpty

rernoveTask: aTask
"tasks remove: aTask

taak8

"taSkS

administrating methods

materialContenta
""lnstantiatoT materialConteots

wo!1(COntenta
Aself matertalContents • self operation processTlme

JobProgressForm - instance protocol

ProgressFonn subclass: J obProgressForm

instance VariableNames: "

accessing methods

Job
material
operation
report

"Create a new report whfln the job is execut9d. "

ilRepor1job: Instantlator

JobProgressForm - class protocol

instance creation methods

Job: aJob
·CfWlte a new Instance of JobProgf8ssForm. "

OrderProgressF arm - instance protocol

ProgressForm subclass: OrderProgressFonn
instanceVariableNames: 'operation material orders accepted'

180 the hierarchical control model methods

'The Instance variable operation contains the operation that has to be 8X@CUtBd in

order to pro(/l.Jce the prO(/vcts ordered. The instance variable material contains thB

raw material that is ordered for the matllJfSCh.Jring of the prodlJct. The instance

variablB Ord8rs contains the orders for raw materiai, accepted keeps the resvlts of

the orders in case thBSB ordBrs ar8 potential. "

accessmg methods
order
material
operation
Invoice

"Rerum a new invoice when the order is fv/filled."

"Invoice order: instaotiator material: material

orders accessing methods
addOrder: anOrder

orders add: anOrder
h8ndlelnvolce: anlnvolce

"Administrate the answer af the supplier to a reaJOrder .•

handleQuotatlon: aQuotatlon
"Admlnlstrate me answer af the stJPp/ier to a potentis/Order. "

IsAccepted
"wlf Is Delivered and: [acceplEldJ

IsDeltvered

"orders IsEmply
IsPotentl,1

"instantiator isPotantiai

OrderProgressF orm - class protocol

instance creation methods
order: anOrder operation: anape-ratlon

"create a nBW orderProgrBssForm"

Operation - instance protocol

Object subclass: Operation
instanceVariableNames: 'operationType resourceType

process Time '

accessing methods
operatlonType
processTime
resource-Type
8etProCGSsTlme: aTlme

processTlm9 :~ aTIme

TransportOperation - instance protocol

Operation subclass; TransportOperation
instance VariableN ames: 'origination destination'

the hierarchical cOf1trol model methods

accessing methods

destJnatlon
origination

TransportOperation - class protocol

instance creation method

from: anOrlglnation to: IiD&StInatlon In: aTIme
·Cr9ate a: new transportOperatlon.·

Proces~Operation - instance protocol

Operation subclass: ProcessOperation

instance VariableNames: 'parameter'

accessing method

parameter

ProcessOperation - class protocol

instance creation method

openrtlonType: anOperationType parameter: aParameter t88ourceType:
aClassName

·Create a new opersrJon .•

WorkU nit - instance protocol

Object subclass: WorkUnit

181

instanceVariableNames: 'operation materialUnit task position

dueDate scheduleDate'
"Thft Instanc8 variable scheduleDate Is used tor the ImplefTl6ntation of thtit fifo rule, it
contains the ,Imil a.t which too workUnit is added to a jobScheduler .•

accessing methods

dueDate
material Unit
opel'8tlon
operatlonType
position
proceSSTlme
reBoureeType
scheduleDate

bl$k
setPosltlon: aBubbleName

position :- aBubbleName
eetScfle<luleOate: an$cheduleDate

sCheduleOate; .. anScheduleDate
eetTask: aTask

182 the hierarchical control model methods

task :: aTask

WorkUnit - class protocol

instance creation methods

operation: anOperatlon materla!Unlt: aMaterlalUnlt pOSition: aBubbleName task:
aTask dueDate: 8DueDate

NGreate a new workUnJt"

ProcessU nit - instance protocol

WorkUnit subclass: ProcessUnit
instance VariableN ames: .,

ProcessU nit - class protocol

instance creation method
operation: anOperatlon mliterialUnlt: aMaterialUnlt dueDate: aTlrne

"Create a new instance of ProcessUnit H

TransportU nit - instance protocol

WorkUnit subclass: TransportUnit
instance VariableN ames: "

accessing method

destination
origination

Task - instance protocol

OrderedCollection variableSubclass: Task
instance VariableN ames: 'progressFonn remainingProcess1ime)

accessing methods

progreesForm
l'eIl1BlnlngPro<:tlssTlme
testing methods
IsFlnlShed

"self isEmpty

adding methods

addPrOC9ssUnlt: aProcessUnlt
super add; aProcessUnit.
aProcessUnit setTask; self.
ramainingP~ocassTima ;,. (remainingProoossTime + aP~ocessUnit procassnme)

the hierarchical control model methods

nnnoveProceasUnlt: aProcessUnlt
super remove: aProcessUnlt.
temalnlngProcessTime :_ (ramail'lingProoossTlme - aProcessUnit proc:essTlme)

Task - class protocol

instance creation method
progressFonn: aprogreasFonn

·Create a: new InstBnoo of task which Is part of aProgftlssForm .•

C.4 Calculators

ProcessPlanner - instance protocol

Object subclass: ProcessPlanner

183

instanceVariableNames: 'resource reports input weightedlnput
throughput weightedTIrroughput leadThne weightedLeadTune
inventoryLevel weightedInventoryLevel'

"The proC8ssPlanner creates PfOCBSS pla.ns for a particular resource. It Blso

gBrl6f8.t8S tM report II the processPIa.ns b8/tmging to a Job have ffnlshfHi. In thB

instanoo variables Input, we/ghtBdlnput, throughput, weightedThroughput, 188dTime,

weight8dLeadTlme, InventoryLBYB/ and waigfltedlnventoryLevel t1lB performancs of

the fBsour08 is administrated .•

handling methods

han<lleTransportReport: aTransponReport
MHandle a TransportReport, updats the finished task, update the relatBd

progressForm. If tha progressForm Is finished, a.dministrata the mady job and
generate a fft(XJrl for th8 finfsned job .•

makeProcessptansFor: aJob
·Create the tasks (prooess plans) that have to be executed In ordBr to executB aJOO.
aJob is also admlnlstratBd as a new job. •

reports
HRetum tIla reports of /he jobs that am roody .•

administrating methods
admlnl8trateNewJobWhh: aPrognt8SFOnn

"Admlnistmt8 tile incoming new Job- •
admlnlatrateRa8dyJobwtth: aProgressForm

"Administrate the leaving fBady jOb ••

ProcessPlanner - class protocol

instance creation method

for: aR980urce
"Create a new processPlllfIner .•

184 the hierarchical control model methods

FactoryPlanner - instance protocol

ProcessPlanner subclass: FactoryPlanner
instanceVariableNames; 'orders quotations invoices'

handling methods
handlePot&ntlaIOrder: aPot&ntlalOrder

"Create new potential orders for raw material. "

handleReatOrder: aRealOr<ler
"Create new real orders for raw material, and administrate the new aRealOrder .•

handleQuotatlon: aQuotatlon
''Administrate aQuotation and genBrate a new quotation if all potential orders arB

answered. "

hancUelnvolce: anlnvolce
"Administrate anlnvoice from /tie supplier. ff sf! msteri8/ is delivered, the tasks

(proC8SS plans) are created. "

handleTtansportRoport: aTransportReport
"HandlB aTransponRBpon, updatB thE! finlshE!d task, update thE! relattiJd

progr8SsForm. ff thB progrBssForm Is finished, administrate the rBBdy job and

gBnBfate an Involoo fOf the finished ofdBf. "

planning method
hasCapacl1yFor: aP01en1lalOrder

"Check if tna resouroo has capacity to manr.dacture the amount of prodrJOts

raquestad in aPotentialOrdar. "

accessing methods
Invoices

"RBturn the Involoos of the orders that are ready. "

orders
"Return /tie orders for tne supplier that are Cf6sted on the receipt of orders from the

consumer."

quotations
"Return the quotations to thE! ord8rs of thE! consumer. The quotations can be

answered If the capaclfy plannef has capacity and It thfJ potential orders for raw

material have been answered .•

administrating methods
admlnI8tra1eNewOl'(lerwI1h: anOrd&rProg ressFonn

"Administrate the incoming new order, •

admlnl8trateReadyOrdel'Wlth: anOrderProgrenForm
''Administrate thB leaving ready order .•

JobScheduler - instance protocol

Object subclass: JobScheduler
instanceVariableNames: 'controller resourceType requests

workUnits'

initialize method
setController: aBubble setResourceType: aAe80urceType

controller :: aBubble.
r@sourceType := aR@sourceType.

the hierarchical control model methods

requests ;c SortedColiection sonBlock: self fifo.

workUnits :: SortedColieClion sortBlock: self fifo

priority rule methods

e<ld
1I[:a :b I a dueDate <= b dueDate]

fifo
A[:a :b I a scheduleDate <= b scheduleDate]

srpt
A[;a :b I a task remalningProcessTime <- b task remainlngProcassTImel

adding methods

schedulBRequast: aRequest
requests add: aRequest

SCflGdu\eworkUnlt: aWorkUnlt
aWorkUnit setScheduleOate: controller lime.

workUnits add; awol'kunit

scheduling methods

executabkkJobS

185

"Find the combinations or workUnlts and requests that can be combiflfJd to new jobS

and create these. "
flnClRequeetf"or: aWorkUnlt

"Lock for requests that can execute aWorkUnit .•

formulateJobFor: aWorkUnlt and: aRequ89t
"Formulate a 11eW job from aWorkUnlt and aRequ8St. •

J obScheduler - class protocol

instance creation method
In: aBubbie for: aRG80urceType

"Create anew jobSchBduler .•

Aself new setController: aBubble setResourceType; aResourooTypa

LateScheduler - instance protocol

Object subclass: LateScheduler
instance VariableNames: 'controller schedulers

transportTaskSteps transportablelobs executablelobs reports'

handling methods

hand\eReport: aRepol1
aUpdat8 the tasks of whiCh .!it process Unit has been executed. If the task is finished,

then formulate transportUnits for transport to store, else schedule the task for the

execution of the next proCBssUnit of the task. "

scheduleTask: eTask
self SCheduleProcessUnit: aTask first

handIeTransportRepot1: aTranSpOnRepon
·Check if all material of the job has been transported to a resource If this is the case

thBn add the job to executablsJobs. "

scheduling methods

schedu IeProcessUnlt: aWorkUnlt

186 the hierarchical control model methods

I resourceType I
resourceType := aWOl'kunit teeOl.ltceTypa,

(schedulers at: resourceType) scheduleWOtkunit: aWorkUnit
SChedUle-Request: aRequ6st

I taSouroeType I
I'E!sourceType ;z aRequest resourceType.

(SChedulers at resourceTYI>6) sch@duleRequest: aRequest

accessing methods
executableJobs

"Retum all jObS that may be sent to their resourCB$.•

transponUnlts

"Return all transponUnlts of material that has to l;u;I trsflspOrtad. "

LateScheduler - class protocol

instance creation
for: anArrayOfResoureeTypes In: aCon1roUer

"Create a nBW schedulE!r for aConrroller. H

EarlyScheduler - instance protocol

LateScheduler subclass: EarlyScheduler

instance VariableN ames: • destinations'
'The public messages of thfJ class EarlySchedl,Jler are the same as thOS9 of

Lat8Scheduler only the Implementation dlff91'S and the sequence in whiCh thflyar8
sent .•

handling methods
handleAeport: aRepon

·Updatfl the tasks of which a proC8ssUnit has bB8n 8X8cuted. If thE! task Is finished,

then formulate transportUnits for transpon to store, Blse genBrate thE! rransponUnlts
for transpon of thB material to the next resOI,JrCE! .•

handleTransportReport: aTransportReport
'Try to sch9(f[J/e the process Units, belonging to transported material, on th8

resource, "

accessing methods
executableJObS

"Ret[Jm all jobS that may be sent to their resources, •

transponUnlts
"RBturn all transponUnlts of material thal has to be transported. H

EarlyScheduler - class protocol

instance creation
for: anArtayOfRosourceTypes In: aController

"GrBatB a new scheduler for aGontroller .•

the hierarchical control model methods

c.s Processors

ProcessorObject - instance protocol

Bubble subclass: ProcessorObject
instance VariableN ames: 'address Table portN ameTable •

187

"The Interactions to diHerent proOBssorObjBcts are multiplexed via one port. Below Is

illustrated with the send a.nd receive intl3racticn hOw the multlpl9xlng workS. me

instance variabll3 addressTaole Is a dlcrJonary. It contains associations with 8. name

and the linked address, The pcrtNameTable Is a dictionary which contains a name
and thl} portNam8 to which the IinklJd addf9SS is connect9d .•

initializing methods
InltlallzeTa8k9

addressTable:. Dictionary new.
ponNameTable:. Diction<lJ)l new.
self inltlallzeAddresSTabie

receiving methods
recelveFrom: portName

"Additional cede for multiplexing via onfJ port and for time stamping the rBC8JV8d

ooject .•

I item I
item :. super recelveFrom: portName if: [:item litem address:D self].
Item setAnivaiDate: self time.
/litem

Other receiving methods are reimplemented in similar ways.

sending methods
send: objeCt to: penName

"Additional COde for multiplexIng via one porr.·

/lsuper

send: (object setAddresS: (addressTable at: portName)}
to: (ponNameTable at portName)

Other sending methods are reimplemented in similar ways.

ManuJacturingController - instance protocol

ProcessorObject subclass: ManufacturingController
instanceVariableNames: 'planner scheduler transportScheduler

requestList'
"The plannBr is an instance of ProcessPlanner. The scheduler Is either an instanC/3

of /..4,te$chedulef or EarlyScheduler. The transportScheduler Is an fnstanOB of

JOI:JScheduler. The sending of requests is done with help of requestLlst. RequestLfst

containS requests assocIated with the time thB rBquest has to be 88nt. The

rsquestList is an instanoo of SonedCollection, the elements are sorted to Inelf time

they have to be sent. A request is placed In requestLfst with the next statement:

requestLfst add: S9/f formulat8R8quest -> (tim8ToSendRequest)

When this is done depends on the request send strategy, FOt in.stance with a 'Fixed·

188 the hierarchical control model methods

WIP'stfatBgy it is donB togBrhBf with rhB sBnding of a fBpon. With 'uniform sums' thB

sending of a request goes together with the addIng of the next request to
rBquestUsr. "

simulation control methods
Inltlalb:&TaSk&

requestList := SortedColieclion sortBlock: [:a :b I a value <~ b value].

bOdy
sell

reooiveFromOneOf: #('oontroller' 'resource')

before: self requestSendTIme
do:

I :pOl1Name :item ,

portName - 'controller'
ifTrue:

[self handleJob: Item.
self sendAvailableTransportJobs].

portName - 'resource'
ifTrue:

[item iSRequest
ifTrue:

[self handleSubrequest: item.
self sendAvailableTransportJobs].

Item IsReport
IfTrue:

[self handleSobfeport: ~em.

self SendAvailableTransportJObaJ.
item isTransportRequest

ifTrue:
[self handleTransportRequest: item.
self sendAvaliableTransportJobs].

Itam IsTransportAeport

ifTtl.le:

[item belongsToFinishedTask

ifTrue:
[selt handleL.astTransportReport: item.
self sendAvailablaRaportsl

if False:
[self handleTransportReport: item.
self sendAvailable$ubjobs]lll

IfTlmedOut: [self sendRequest]
h8ndleJob: aJob

'Iasl<$ I
taskS :- planner makeProCEtssPlansFot: aJob.

tasks do: [:task I scheduler scheduleTask: task].

self schadulaTranspOI1Unlts
nandleLastTransportReport: aTransportReport

plannaf handleltansportReport: aTfanspot1Raport

tlQnCUeSUbreport: QReport
scheduler handle-Report: a.Report.
self scheduleTransportUnits

handleSu brequest: aRequest
scheduler scheduleRaqu9st: aRequest.

self schadulaTranspot1Unlts
nQndlelransportAeport: aTransportAeport

scheduler handleTransportReport: aTransportReport

the hierarchical control model methods

handleTransportRequ8st: aTransportRequest

transportScheduler scheduleRequest: aTransportRequest

scheduleTranaportUnlts
schedular transportUnils do:

[:transportUnit I
transportScheduler sChadulaWorkUnlt: transponUnitl

request5endTlme
"Retum me time the next f9qUest has to be sent. "

sending methods
sendAvallableReporta

I reports I
reports : .. planner reports.

reports do: [:reportl self send: report asynduonousTo: 'controller']

8CIndAvallablflSubJObS

I subJobs I
subjobs :- scheduler flxecutableJobs.

SubjObS do:
[:subjob I self send: subJob asynchronousTo: subjob resourooName)

UndRequest

I request I
requestUst isEmpty

If False:
[request:= requestUst removeFirst key.
self send: request asynChronollsTo: 'controller']

8&ndAvallabl8TranaponJOb8

I transportJObS I
transportJobs :z transportSCheduler e;o;ecutableJobs.

transportJobs do:

[:transportJob I self send: transportJOb asynchronousTo: 'transporter']

F actoryC ontroller - instance protocol

ManufacturingController subclass: FactoryController
instanceVariableNames: ..

simulation control methods
body

self recelveFromOneOf: #('consumer' 'supplier' 'resource') do:

[:portName :hem I
portName - 'consumer'

iffrua:
[item isPotentiai

iffrue:
[(planner has Capacity For: item)

ifTrue:

[self handlePotentlalOrder: Ilem.

salf sandPotantialOrdars)

if False:

[self sendQuotationsll.

Item isReal

ifTrua:
[self handleRealOrdar: item.

self sendRealOrdersll.

port Name = 'supplier'

irrrua:

189

190 the hierarchical control model methods

[item isQuotation
IfTrua:

[self handleQuotation: Item.
self sendQuotatlons].

item islnyoice

ifTrue:
[self handlelnvoice: item.
self sendAvaliableTransportJobsll.

portName = 'resource'
IfTrue:

(Item isReql,lest
iflrlle:

[Self MndleSubrequest item.
self sendAvailableTransportJobs].

Item IsReport

IITrue:
[sail handleSobreport: item.

self sendAvailahleTransportJobS].
Item isTransportRequest

ifTrl,le:

(self handleTranspMReql,lest: item.
self sendAvaliableTransportJobs].

item isTransportAeport
ifTrue:

[item belongsToFinishedTask

ifTrue:
[self handleLastTransportReport: Item.

self send Invoices]
ifFalsa:

[self handleTransportReport: item.
self sendAvailableSubjobslIll

handlalnvolce~ anlnvolce
I tasks I
tasks :~ planner handleinvoice: anlnvoice.

taskS do: [:task I sChEKh.ller eChedl,lleiask: taSk)'
sel~ SChedl,lleTransportUnits

nandlep01entlaIOr<ler: ap01entlalOrder
(planner hasCapacityFor: aPotentialOrder)

ifTrue: [planner haOdlePotantialOrder: aPotentialOrder)
ilandleQuotatlon: suppUerQuotatlon

planner handleQuotation: supplierQuolation

handl8RealOrder: aRealOl'der
planner handleRealOrder: aReal Order

shipping methods
er,tpproducteF'or: anlnvolce

I shipJob I
shlpJob :~ MaterialRequest destina1ion: 'outside'.

shipJob addAII: anlnvoloe material.
$el~ send: ghipJob a.synchronol,lsTo: 'store'

sending methods
sendlnvolces

I Invoices I
invoices ~D planner invoices.

invoices do:
[:invoice I
self shipProdllctSFor: invoice.

the hierarchical control model methods

self send; invoice asynchronousTo: 'consumeq
sendPotentlalOl'ders

I supplierOrderS I
supplierOrders ;. planner orders.
supplierOrderS do;

(:order I self send: order asynchronousTo; order supplier)
sendQuotatJons

I consumerQuotations I
consumerQuotations ; .. planner quotations.
consumerQuotations do:

[:quotation I self sand; quotation asynchronousTo: 'consume()
s8ndRealOrders

I supplierOrders I
supplierOrders :a planner orders.
supplierOrders do:

[:order I self send; order asynchronousTo: order supplier)

Resource - instance protocol

ProcessorObject subclass: Resource
instance VariableN ames: "

accessing methods

resoufceName
resourc:eType

subr'e80Un:e8
controller
store
transporter

Resource - class protocol

Resource class
instance VariableNames: 'maxinventoryLevel minBatchSize

maxBatchSize recipes operationTypes'

191

"The variabfe recipes contains the recipes the resOtJ/W can execute. Every recipe is
8$sociat8d with the operatian that invokes the specific recipe. The operations of th9
recipe are in fact subOperatJcns of this operation. Tne variabfe operatfonTypes
cantains the oper8tionTypes tne resource is abfe to 9xecute.·

default setting methods
SlrtlnventotyL.8vel: anlnteger

max Inventory Level :: an Integer
aetMaxBa1chSIze: anlnteger

maxBatChSize;. anlnteger
setMlnBlitchSlze: anlnteger

minBatchSize: .. anlnteger

accessing methods
maxlnventorylevel
maxBatchSlze
mlnBlitchSlze

operatlonTypes

192

recipes
resourcelYpe

recipes methods

the hierarchical control model methods

atoparatlQn: anOparatlon putReclpe: aReclpe
''Add a recipe to r8Clp~s, "

InltlalizeReclpeFor: anOperatlon
"This methods calcula.tes the r8cipe that belongs to snOperatlon. It also calculates

the parameter and thEl proCElssTim€! of til€! operation, It inltiall:t9S all the

stJboperat/ons by sfJndlng the m8Ssa.g~ InitializeRecipeFor: snOperatlon to the

$vOre$ources. ThfJ mBthod d€!livers thEl initfa.liz8d anOperation as retvl'l1 value"

LeafResource - instance protocol

Resource subclass: LeafResou:rce
instance VariableN ames: .,

accessing methods
controller

"self
store

"self

Transformer - instance protocol

LeatResource subclass: Transfonner
instanceVariableNames: "

simulation control methods
body

I taquest taw Material job operation finishedMaterial report I
request : .. selllormulaleRequest.
self send; request to: 'con\l'oller'.
rawMaterial ;~ self ~ElCEliveMaterlaIFrom: 'outside',
jOb : .. self feceiveFrom: 'controller'.
oparation := job operation,
1inishedMateriai :m self execute: operation on; rawMatEirial.
report ;- self formulateReponFrom: job and; finishedMatadal.

self send; report to: 'oontroller'.
self send Material; finished Material to: 'outside'

execute: anOperatlon on: aMaterlalColiectlon
self workDuring: an Operation processTime forReason: 'processing'.

"aMaterialColiection
formUlateReportFrom: aJob and: aMaterlelColiectlon

"Return a rl6W report that contains the result of the exectJtion 01 the joo .•

10rmuiateRequest
"Return a new reqtJest tflat contains the capabilities of this /fHlfResotJrce, •

recelveMaterlalFrom: aPortNeme
I material I
material :~ self receiveFrom; aPortName.
"material

sendMaterlal: aMaterlalCollectlon to: aPortName
I material Request material]

the hierarchical control model methods

[aMaterlalCollection isEmptyj

whlleFalse:
[materialAequest :. selt recelveFrom: aPortName.

material :: Material new.

materialRequest do:

[:aMtlj

aMaterialCollection remove: aMtl.

material add: aMt~.
material setAddress; material Request destination.

self send: material to: aPonName]

Transformer - class protocol

recipes methods
InlUallz&ReclpeFor: anOperatlon

193

"This method CBlculat6S the parameter and ths proc-BssTIme I)f the operation. Ths

metllod rstums thB infti81iZ6d snOperation .•

Store - instance protocol

LeafResource subclass: Store
instanceVariableNames: 'buffer'

simulation control method

body
j mater1alj
self recelveFromOneOl: #('outside' 'Inside' 'controllsr') do;

[:portName :ltem I
(item IsKlndOf: MaterlalRequest)

ifTrue:
[material : .. selt removeFromBuffer; item.

selt send; ma1eriaI1o: Item destination].

(item IsKindOf: Material)

IfTrue;

[self 8ddToBuffer: Iteml1

adding methods
addToBuffer: aMatertalCollectlon

buffer addAlI: aMaterialColiection

removeFromBuffer: aMaterlalRequest

I material I
material :~ Material new.
aMatariaiRequest do:

[:aMtil
butter remove; aMtl.

material add: aMt~.
material setAddress: aMa1erialReql,lest destination.

~ma1erial

194 the hierarchical con.trol model mefhods

Transporter - instance protocol

LeafResource subclass: Transporter
instanceVariableNames: 'position'

simulation control method

bOdy
I request tmnsportJob origination destination material Data material report I
request :: salf formulataRequaS1.

self send: request to: 'controller'.
tr'ansportJob :- self rEtCeiveFrom; 'controller'.
origination :m lfansportJOb origination.
destination :- transportJOb destination.
matenarData ; .. transportJob ma.teria.1.
sell moveTo; origination.
material ; .. self PiCk; matena.IData from; origination.

se" moveTo; destination.
self place: material at: destination.

report := salf formulateRepo!1From: transportJob and: materiaL
self send: report to: 'controller'

lormulateMatenalRequestFOr: aMaterlalColiectlon from: aPonName
"Retvtn the material request to receive the material mentioned in
aMatenaICO/lactiOt'l. "

rormulateReponFrom: aJob anC!: aMatenalColleC1lon
"Return a report for the 8xeCilted aJob. "

formuiateRequ8st
"Return a new request. "

moveTo: aPortName
position. aPort Name

ilFalse;

[self workDuring: self transportTime forAea5on: 'moving'.
position := aPortName]

Pick: aMaterlalColiection from: aPortName
I request material I
request ;. self formulateMateriaJRequestFor; aMateriaiCollec1ion from: aPortName.

self send: request to: aPortName.
aPortName = 'store'

IfTrue: [material := self recelveFrom: 'SlOre')
If False: (malerlal := self recelveFrom: 'resource'].

~materlal

placo: aMatarialCol!ectlon at: ePortNama

self send: aMateriaiCollection to: aPortName.

Consumer - instance protocol

ProcessorObject subclass: Consumer
instance VariableN ames: • orderTimeDistribution orderTime

productTypeDistribution productAmountDistribution
dueDateDisu'ibution acceptionDistribution'

simulation control methods

bOdy
self

receiveFrom: 'supplier'

the hierarchical control model methods

before; orderTime
then: [:anltem 1 self handleSupplierltem: anlteml
immedOut; [selt generateOrder]

generateOrder
"Crea.te a n8W order. "

nandlelnvolce: anlnvolce
"Receive the material mBntioned in the invoice and updat8 the administration. •

handleQuotatlon: aQuotatlon

"Generate If nBC8SsaIY a new Real order and update the administration. n

handleSupplleritem: anHem
anltern isOuolation

ifTrue; [self handleQuotation; anlteml
if False: [self handlelnvoice; an Item]

Supplier - instance protocol

ProcessorObject subclass: Supplier
instance VariableNam.es: • acceptionDistribution orders'

simulation control methods
body

self
reooiveFl'Om: 'consumer'

before: self ne:<tOellveryTlme
then; [:anOrd9l' I self handleOrder: anOrdeJ']
iffimedOut: [self dellverNextProducts]

dellverNextPrOdUct8
"Deliver matBriBl to the consumer and send an invoic8. "

handleOruer: anOrder
"Adminfstrat9 anOrder, If It Is potBntial. a quotation is sent to the consumer. n

naxtDellveryTllOO
"Return the time the next order has to be dflfiv8red. "

Market - instance protocol

~v~nrnendProcesssubclass: ~arket

instance VariableN ames: "

195

index

Index

A

aggregation 16, 38
allocate 41. 67, 90
alternative 26

assemble 19

assembler 23

automation 2

of administration 3

of machinery 3
automation gap 4

B

balancing 38, 39, 40
batch si%e

22, 88, 109, 117, 123, 133

behaviour 31
block 26
bottleneck. 123

building blocks 143

C

capability 21
capacity 22, 33, 34, 38

capacity planning

39, 40. 48, 81, 87, 105

cassene 109
cell 115

cell request strategy 133

cleaner 109, 120

CMOS 107

combining material 88

combining messages 65

command 57, 59

command driven manufacturing

55, 56, 67, 146

communication protocol 57,

58-64, 72, 77, 81, 146. 150
communication volume 58

concurrency 25

constraint-based framework 112

conswner 9, 70, 80

control 31

197

control architecture 5

control configuration 46--56, 104

conn-ollayer 47, 50

control model 80--93

control system 10, 31, 47

controller categories 48, 104
criterion 33, 41

D

data consistency 66

data structure 69--80
deadlock 48, 65, 92, 104, 149

avoidance 65, 105
detection 65

prevention 65

decentta1~ation 147

decomposition 39
delivery time 11

design 11
deterministic 40
diffusion~CVD 108
discrete 5, 15

dispatching 41, 42

distributing 81
disrurbances 34

due date 11, 35

E

early transport
53, 54, 91, 106, 146

EarlyScheduler 72, 80

EDDrule 44

elimination 9, 11
etcher 109
event driven controller 88

expanded pocessor 12

expanded resource 9, 84, 106

experiment 124-126

F

facility 117

factory 9, 70, 80--83

factory control 10

factory controller 47, 48, 67,

81--83, 87, 105
FactoryPlanner 72, 79

PCPS rule 44

FIFO rule 44, 137, 146

198

Fixed-Wll'

43, 91, 103, 123, 133, 146

flow rate control 109

flow shop 4, 30, 98-103

framework 145

G

global optimization 49

goal 31, 33, 48

H

hierarchical control 49, 114

hierarchical layer 145, 147

hierarchy 15-17, 39, 142, 146

history 32

l

Ie manufacturing process 108-109
Ie manufacturing system

107-139, 117
ideal manufacturing system 34, 36

ideal work point 34, 135

implanter 109

implementation 6
industrial system 9
inheritance hierarchy 15

input 11

inspector 109, 120

interaction 13-14

receive action 13

send action 13
InteractionCollection 73

IntetactionObject 73

inventory level II, 35, 146

Invoice 70, 78, 83
island automation 4

J

Job 33, 67, 70, 73, 76,
77, 78, 86, 89

job progres..o; recording 45

job shop 4, 30, 103-104,

106, 117, 147

JobProgressFOIrn 72, 73, 76
JobScheduler 72, 80

L

language 14
late transport

53, 67, 87, 105, 146

LateSchcdulcr 72, 80

layout 29

LCFS rule 44

lead time

index

11, 35, 107, 112, 144, 146

leaf processor 12

leafresoutce 9, 47, 54, 84, 105

life phases 7-12, 11

UFO rule 44

lithographic 108

load 120, 129, 135

M

machine. See leaf resource

machine control 10
manufacture 9

manufacturing 1

manufacturing control 10

manufacturing controller

48, 53, 67, 70, 86--93
manufacturing process 10

manufacturing system

10, 47, 66, 85

manufacturing system class

29-30, 66, 104, 143, 146

market 80, 123

marketing 81
Material 9, 20, 71. 74

material content 76

material driven manufacturing

55. 56, 62, 146

material exchange 52-53, 57. 67

material structure 16, 24

MateriaIRequest 71. 74

MaterialUnit 72, 74

rruuBatchSize 79

mailnventoryLevel 79

mechanization I

metalization 109

minBatchSke 79

model 12. 14--15

model hierarchy 15

modelling 6, 141-142

monitoring 45-46

N

number of control layers 105

index

o
operating method detennining

subphase 11

Operation 9, 17-20, 72, 75, 79

operation structure 16, 24

OPNDD rule 44

Order 33, 73, 76, 77

OrderProgressPQnn 72, 73, 76

orientation 7, 11

P

parallel shop 30, 96-98, 137

perfonnance 34, 34-38, 43

pe1fonnance graphs

35, 67, 95, 98, 101-102,

124, 129, 131, 133, 137, 144,

145, 146, 148, 149

perfonnance measuring 45

planning 39--40

PotentialOrder 70, 78, 82

pniUctivescheduling 41,42

priority rule 43--44

problem detrition subphase 7, 11

process 9
process interpreting 39, 90

process planner 87, 89

process planning 39, 48

process scheduler 87

process time 11, 36, 75

Process-Interaction Approach 4, 6

Process-Interaction approach

11-14

processing operation

52, 55--56, 67

processing resource 86, 87

ProcessJob. SeeJob

ProcessOperation 72, 75

Processor 12-13

ProcessorObject 73

Process Planner 72, 79, 86

ProcessRcport. See Report

ProcessRequest. See Request

ProcessTaIk 6, 12, 69
ProcessTool 6, 12, 69

Process Unit 72, 75, 86

product 9, 80, 83

product mix 119, 126--129

product stnlcture 16, 24

ProgressForm 72, 76, 89

purchasing 39, 81

Q

Quotation 70, 78, 82

R

RANDOM rule 44, 137

raw material 9, 80. 83

reactive scheduling

41, 42, 67, 144

realization 8, II

RealOtdet 70. 78, 82
recipe 24-26, 50-51,

52, 56, 72, 75, 79, 143,
145, 146, 149

recipe configuration 51

release strategy

43, 67, 91, 109, 144, 145

releasing 41, 67

Report 70, 78, 87, 90

Request 67, 70, 78, 86, 87,
89, 144, 145

request generation.

See request send strategy

request send strategy

91, 94, 96, 98, 100--101,

102, 103--104,
105, 106, 123, 133

resource 9, 21-23, 70, 78. 79
resource activity recording 45

result 57, 59

S

sCheduling 40-43, 148, 149

sequence 25, 72, 89

sequencing 41, 67
sequencing rule 42

199

sequencing strategy 109, 137-139

shape 19

shaper 23
shifting bottleneck approach 109

shop 116

simulation 6, 106, lIZ, 124, 150

simulation run 124--125

single shop 30, 93--96

Smalltalk-80 69
specification 7, 11

splitting of material 88

SPT role 44, 137

200

SRPT rule 44, 137

starv ation 65

starvation avoidance 43, 109

station 114

status 32, 57, 59

statusRequests .58
stimulator 46

stimulus 31

stochastic 40
store 19, 22, 48, 49, 106, 109
StruCture language 12

super/sub relation 47

supercontrollet 47, 86

supplier 10, 70, 80

system 14-15

system approach 3-4

system hierarchy 15

T

Task 72, 75, 76, 77, 88, 89

task language 13

throughput 11, 34, t 19

transform 19

u:ansformation system 9
transfonnet 23

transport 19

transport operation 53-55, 67

transport scheduler 87, 90
transport time 129-131

transporter 23, 53, 54, 71,

83, 87, 106, 109
TransportJob 71, 78

TransportOperation 75

TransportRcport 71, 78, 87, 90

TransportRequest 71, 90

TransportUnit 72, 75, 87

U

uniform starts 43, 91, 103

utili2:ation 9, 11, 35, 120, 129

V

validation 123

verification 123

verifier 23

verify 19, 52

W

wafer 108

work load 38

index

work load oriented job release 43

work load regulating input 43

work load regulation 109

work point 36, 103, 104
WorkUnit 72, 75

Y

yield 112, 118

Curriculum Vitae

Henk. Smit werd geboren op 29 juli 1959 te Laren (GId.). Van 1971 tot
1977 volgde bij op de Rijks Scholen Gemeenschap te Lochem een VWO
opleiding. Van 1977 tot 1985 studeerde hij Electrotechniek aan de
Universiteit Twente. Hij studeerde af bij de vakgroep Besturings
Systemen en Computertechniek. Het onderwerp van zijn afstndeer
opdracht was het ontwikkelen van een robotann vocr het verplaatsen
van textieL Vanaf 1985 is hij werkzaam aan de Technische Universiteit
Eindhoven bij de vakgroep Produktierechnologie en -Automatisering
(WPA) van de faculteit Werkwigbouwkunde. Hier verzorgt hij onder
wijs en verricht bij onderwek. De eerste twee jaar had het onderzoek
betrekking op het ontwerpen en realizeren van robotbesturingen. Daarna
startte zijn promotieonderzoek zoals beschreven in <lit proefschrift.

STELLINGEN

behorende bij het proefschdft

A Hierarchical Control Architecture

for

Job-Shop Manufacturing systems

1. Onderzoek naar scheduling heeft aileen .tin als men beschikt

over een bestudngsarchitectuur waarbinnen het

schedulingsalgoribne wordt ge"implementeerd.

D:U p .. oefltchrtn.

2. De tegenstrijdige uitspraken over "sequencing" regels in de

literatuur worden O.a. veroorzaakt doordat de ondelwekers geen

eenduidige manier gebruiken om de plestaties van een

produktiesysteem te meten.

l\IIontlllzeri M.,

A modular simulator for de~lg ... , plAnning. and cont .. ol of nexlble mao;1uflllctu .. 1n1l
~y~tems,

DI!IlIIertatlon, J<lIItbolit"b Unh·enllelt Leuven (l987).

Vit proefsc:h.riR.

3. Met de keu~ van "release" regels kan cen grotere invloed op de

prestatie van cen produktiesysteem wonlen uitgeoefend dan met

de keuze van "sequencing" regels.

Wlendahlll:

8.,.~:!IhmgsorieDllerte Fertl~ung~steutJ"ung: Gnmdlallen, Verfahrungs.u.fbRu,

Reallslerung,

Cart Ha~r Verllllg, Munehm (1987).

WeinL.M.,

Schroullng ~emlcondue'or 'l'l'A-ft"t fllbdcatlon,
IEEE T ... msdions fin ~mlco ... duetOJ" Manufacturing 1 (J), lIS·130 (1988).

nit p-od'sebrlft.

4. Voor het specificeren van het produktieproces schiet het gebruik

van stukHjsten tekort.

nit p .. oett.chrin (Sec:tle ;U).

5. Het produceren van verschillende genera ties le's in 6Sn en

dezelfde {abriek heeft twee belang.-ijke nadelen: de onrust die

ontstaat bij het vervangen van apparatuut en de "job shop"

layout.

6. Bij het oplossen van problemen met de computer is de keuze

van een goede programmeertaal meer dan het halve werk.

SmitG.H.,
ne b(:sturilll van waferfabs,

MemOl"aodum, '!Io~ullell Werktui&b(luwkunde,

Tedu:d!ll::he UoiversUeU Elodboveo (1988).

Dlt .,roefsdlrif'l.

7. Veel communicatie leidt tot inflatie van infonnatie.

8. Met de introductie van krachtigere computers neemt de

gerniddelde tijdsduur van een Hsimulatierun" eerder toe dan at.

9. Gezien de huidige welvaartsverdeHng is een belc:id dat

onderscheid maakt tussen politieke en economische

vluchtelingen, onrechtvaardig.

to. Elk vak. zou naast de wetenschappe1ijke inhoud ook de ethische

aspecten van het vakgebied moeten behandelen.

11. Het is vreemd dat nonnale mensen vlees eten.

12. Het feit dat een stelling geen afbreuk mag doen aan de reputatie

van de TUE, doet afbreuk aan deze reputatie.

13. De rockgroep Normaal heeft een belangrijke bijdrage geleverd

aan het zelfbewustzijn van plattelandsjongeren.

Henk. Smit Eindhoven, 10 maart 1992

	Voorblad
	Summary
	Samenvatting
	Table of contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix A
	Appendix B
	Appendix C
	Index
	Cv
	Stellingen

