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Summary 

This thesis describes the development of a hierarchical control archi
tecture which allows control systems to be built for manufacturing 
systems having a job shop character. 

The control architecture is specified with the use of modelling and the 
Process-Interaction approach. The architecture is then developed and 
simulated in ProcessTalk with the aid of the ProcessTool. The total 

approach described permits a smooth transition to be made from 
modelling the system to its simulation and, fInally, to the implementation 
of the controller. 

A manufac turing system transfonns raw material into finished products. 
The control architecture takes the specification of the physical manu
facturing system as its starting point. The specification is written using 
the description of the operations, the material, the machines (= resources), 
and the manufacturing process (,." recipe). 

The job shop manufacturing system class is a complex system, it is 
characterized by universal resources and a transpon system having a 
high degree of route flexibility. The route of the material through the job 
shop is not constrained. The control architecture can also be applied to 
manufacturing system classes in which the route of the material through 
the system is less free, such as the flow shop, the parallel shop and the 

single shop. 

The job shop manufacturing systeooconsists of a controller, one Or more 
stores, transporters and processing resources, where the actual manu
facturing takes place. Repeating the control structure of a manufacturing 
system inside a processing resource allows the creation of a hierarchical 
control structure. Such a structure has at its top a factory controller, 
which communicates with the outside world (conswners and suppliers) 
and, as the bottom layer, one fmds controllers for the machines that 
execute the manufacturing process. 

The performance of a manufacturing system has to be measured, and 
performance graphs are introduced for this purpose. Plotting such 

graphs allows an impression to be gained of the behaviour of the 
manufacturing system and the quality of the control system. The graphs 
show the lead time and the throughput as a function of the inventory 
level within the manufacturing system. The graphs also assist the 
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designer in selecting a work point ("" inventory level) at which the 
manufacturing system should be operated. 

The control functions of planning, scheduling and monitoring are 
discussed. The decisions a controller has to take concern material 
exchange, transport and the processing of material. These decisions 
have to be taken at a certain point in time and they have to be 
communicated to the controlled resources. The consequences attached 
to the time at which a decision is taken, as well as the possible 
communication protocols between controller and resource, are dis
cussed. 

The architecture is developed in the fonn of a general control model, the 
data structure and process description of which are described. The 
model uses requests from controlled resources in order to signal to the 
controller that manufacturing capacity is free. A command that work is 
to be done is sent to the resources in the form of a job. The resources 
report the results of the jobs executed back to the controller (with 
reports). The class of the manufacturing system is discussed in relation 
to the strategies which may be adopted for the generation of requests. 

Finally, the control architecture is used to model an Integrated Circuit 
manufacturing system where wafers are fabricated by the diffusion 
process. Simulation studies, pe:rfonned with the model, are used to 
demonstrate the capabilities of the architecture. 

The control architecture makes the design of manufacturing systems 
and manufacturing controllers a more structured process, allowing the 
consttuction of hierarchical control systems. In combination with the 
performance graphs, the selection of a work point and the uSe of requests 
foneguiating the release of jobs, the architecture also clearly shows how 
even complex job shops can be controlled. 



Samenvatting 

Oit proefschrift beschrijft een hierarchische besturings-architectuur, die 
geschikt is voor het bouwen van besturingen voor "job shop" 
p~\U(tiesystenlen. 

Bij het specificeren van de besturings-architectuur is de Proces Interac~ 
tie Benadering gebruikt. De architectuur is ge'lmplementeerd in 
"ProcessTalk" en gesinluleerd met behulp van de "ProcessTooP'. Deze 
werkwijze maakt de overgang van modelleren naar simuleren en 
implementeren eenduidig. 

De specificatie van het fysieke produktiesysteem is het uitgangspunt 
voor de besturings-architectuur. Een produktiesysteem transfonneert 
grondstoffen in produkten. De specificatie is beschteven in de VOITIl van 
bewerkingen, materiaal, machines (= produktiemiddelen) en het pro
duktieproces ("" recepten voor produkten). 

De "job shop!! produktiesystemen behoren tot een klasse van zeer 
complexe produktiesystemen. Ze worden gekenmerkt door het feit dat 
'ZI! universe1emachines bevatten en <lathet transportsysteemhetmateriaal 
van een willekeurige machine naar een willekeurige andere machine 
kan vervoeren. Elke denk.bare route voor het materiaal door het 
produktiesysteem is toegestaan. De besturings-architectuur lean ook 
worden toegepast op meer eenvoudige klassen van produktiesystemen, 
zoals de "flow shop'" de "parallel shop" en de ((single shop". 

Het model van een "job shop" produktiesysteem OOs133t uit een bestuur
der, een maguijn, een transporteur en een of meer produktiemiddelen 
waar de feitelijke produktie plaats vindt Ben produktieroiddel kan weer 
zijn opgebouwd uit de hiervoorgenoemde elementen. De besturings 
structuur wordt dan binnen een pl'Oduktiemidde1 herhaald. Op deze 
manier is het mogelijk een hlerarchische besturing te maken. De 

bovenste laag van deze besturing bestaat uit een fabrieksbestuurder. De 
fabrieksbestuurder communiceert met de buitenwereld (consumenten 
en leveranciers). De onderste laag van de besturing bestaatuit bestuurders 
van produktiemachines. 

Voor het beoordelen van het gedrag van het produktiesysteem en de 
kwaliteit van de besturing is het noodzakelijk om de pl:estatie van een 
produktiesysteem te meten. VOO! dit doel zijn prestatie-karakteristieken 
ingevoerd. Deze karakteristieken geven in grafische vonnde doorloopti jd 
en de doorzet als functie van de hoeveelheid onderhanden werk. De 
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grafieken helpen de ontwerper ook bij het se1ecteren van een geschikt 
werkpunt (gewenste hocveelheid onderhanden werk) voor het produk
tiesysteem. 

De besturingsfuncties "planning", "scheduling" en "monitoring" wor
den behandeld. De beslissingen die een bestuurder mod nemen, de 
consequenties verbonden met het tijdstip waarop een beslissing wordt 
genomen en de mogelijke communicatieprotocollen worden nade! 
bekeken. De beslissingen hebben betrekking op het ui twisselen, transport 
en bewerken van materiaal. 

De architectuur is beschreven in de vonn van een aigemeen besturings
model. Hiervan zijn de datastructuur en de procesbeschri jvingen gegeven. 
Het besturingsmode1 gebruikt aanvragen van produktiemiddelen om 
aan te geven dat er produktiecapaciteit beschikbaar is en dat er dus een 
opdracht kan worden vrijgegeven. De produktiemiddelen sturen na het 
uitvoeren van een opdracht een rapport waarin de resultaten vermeld 
staan. De strategie waannee aanvragen worden gegenereerd hangt 
samen met de kJasse van het produktiesysteem. Di t verband wordt nader 
uitgelegd. 

Tot slot wordt de architectuur gebruikt bij het modelleren van een 
fabdck waarin het diffussieproces vON het vervaardigen van gdnte
greerde schakelingen plaatsvindt. Simulatiestudies die met dit model 
zijn uitgevoerd demonstreren de mogelijk:beden van de architectuur. 

De besturings-architectuur maakt het op een gestructureerde manier 
ontwerpen van produktiesystemen met hun besturingen mogelijk. De 
besturing kan zijn opgebouwd uit een hierarchie van bestuurders. In 

combinatie met de prestatie~karakteristieken, de keuze van het werkpunt 
en hyt gebruik van aanvragen voor het vri jgeven van opdrachten, laat de 
architectuur zien hoe zelfs complexe "job shop" produktiesystemen 
kunnen worden bestuurd_ 
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Chapter 1 

Introduction 

1.1 Historical background 

From the time of his appearance on earth, man has made artifacts to 
support his existence. In the beginning with his bare hands, and later 

with the aid of tools that themselves developed from simple hand tools 
into complex machinery. This notion of manufacturing - the making of 
goods by hand or with the use of machinery - is therefore as old as 
mankind itself. Historically, the trend has always been that work done 
by human muscles becomes replaced, wholly or partially, by work done 
by machines. This easing of the human workload by the uSe of machines 
is the process of mechanization. This process brought with it further 
changes: labour became divided into specific tasks and forms of 
organization changed. Fonnerly the artisan did everything himself. He 
ordered or collected raw, materials, made his goods, brought them to 

market and sold them. The central issue at this time was material. 

This changed with the coming of factories during the industrial revolu~ 
tion. Here, work was organized in stages, and the workers brought the 
material to a machine, the machine perfonned an operation, and the 
processed material was then taken to another machine or to a store. 
Labour had become mechanized and the central issues were materials 
and energy. It was at this time, too, that labour became divided into 

. specialized tasks. The worker operated only one type of machine Or 
perfonned only one type of action, such as the transport of material. 

The introduction of the factory concept also saw a separation between 
the owner~manager and the workers. The owner, who was usually also 
the manager, decided how the factory should look, what products were 
manufactured, what machines were bought, how many people were to 

be employed, an so on. The manager also took care of the purchase of 
raw material and the sale of products. He decided how much the factory 

produced during a certain period. The workers had to carry out the 
commands of the manager and had to tend the machines. 

With the introduction of the assembly line in the early 19005, a new 
phase in mechanization was introduced. Now not only the manufactur~ 
ing of goods that was done by machines; the transport of the goods was 
also mechanized. Control of the manufacturing actions, however, was 
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still in the hands of the workers, but the speed with which these actions 
had to be executed was partly fixed by the speed with which the products 
were transported along the assembly line. 

Mter the introduction of the assembly line the central issues remained 
material and energy and it was with the introduction of the computer that 
a new issue, infonnation, became important. From this point (about 
1950), it became possible to automate the control of machines. At the 
moment the first robots appeared it became easier to integrate the 
material handling with the processing of material on machines. The 
introduction of computers in factories also saw the start of the automa
tion of the tasks of the manager. Software packages became available for 
such tasks as accountancy, material planning and production planning. 
There was a further increase of specialization in the organizational 
structure. Also, ownership and management was split between different 
persons or groups of people, leading to a reduction of management tasks 
and restrictions on managerial responsibility. 

1.2 Automation, the present situation 

The purpose of au tomation is to enable, Hghten Or replace human labour 
by computer controlled machinery in order to increase the quality of life 
of human beings and/or to increase the productivity of a company. There 
are economic, social and technical reaSOnS for a company to automate. 

The economic reasons have to do with increasing competition, which 
demands an increase of productivity. The market that used to be a 
sellers' market has changed into a buyers' market. The costs of human 
labour increase steadily, which often makes it unattractive to hire a lot 
of workers, so instead machines are used to manufacture products. 
There are social reasonS to automate when the manufacturing process is 
unhealthy, dangerous Or boring. As to technical reasons, automation will 
allow an increased and more constant quality of the products to be 
achieved. 

What the manufacturer tries to achieve with automation is to manufac
ture at low costs and to deliver products of high quality. The change into 
a buyers' market, too, has resulted in a short product life cycle, which 

demands high manufacturing flexibility and small production runs. In 
order to keep costs low the productivity has to be adjusted to the 
consumer demand, the lead times have to be short and the inventories 
small. Automation is seen to provide an interesting opportunity to 
reduce costs illld to increase the quality of products. From the viewpoint 
of flexibility, however, automation may also be a retrograde step, 
because there is no machine that is as flexible as a human being. 
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The automation of factories has concentrated on two aspects: the real 
time automation of machinery and the automation of the administrative 
functions [Arentsen 1989]. 

Automation of machinery 

The control of machinery is characterized by its short cycle times (in the 
range of milliseconds to minutes), parallel algoritluns, simple and short 
messages, small amounts of data, and real time execution. 

A manufacturing process is split up into a sequence of operations. This 
differentiation of the process into steps is often taken as a basis for 
automation. A first attempt is made to automate machinery that per
fonns a single step, with material handling and transport following at a 
later stage. But the control of the whole system is considered only at the 
end of the process. This approach neglects the fact that the different 
stages of production are not only related by the material stream, but also 
by the technical and organizational aspects of the process. The result of 
this approach is stand-alone automation of separate production units 
with human beings taking care of the interfacing between the automated 
elements, thus taking care of any inflexjbilities, failings, shortcomings 
and imperfections in the process. 

Another problem in the control of machines or aggregates of machines 
is the fact that control systems are based on sequentially run programs. 
But a manufacturing system consists of man and machines which 
operate in a parallel way, and this requires a control system Or algoritlun 
which is also based on parallelism [Rooda 1987]. 

Automation of administration 

Administrative functions are characterized by a long cycle time (in the 
range of days to years), large data bases and batch execution. 

Accountancy tasks, financial management and materials management 
are administrative functions. The automation of these functions often 
concentrates on an efficient implementation of the function, rather than 
considering the total system effectiveness. The result is a poor connec
tion between the different software packages. 

System approach 

Both cases above indicate that automation of elements of the whole 
system results in a collection of subsystems that are difficult to couple 
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together. This automation of elements is called island automation. The 
differences in the approaches to automation of machinery and adminis
tration have resulted in the automation gap: it is difficult to couple 

automated machinery with automated administration. 

When a system is going to be automated one has to consider all the 

elements that make up the system and the relations between these 

elements. When looking at the current state of automation, however, one 

can see that it is characterized by island automation and an automation 
gap. We may conclude that the control of the system as a whole is 
important and that this calls for an integral concept that ensures that the 
various parts interface with each other. FurtheImore, the control of 
machines, and aggregates of machines and people, has to take account 
of the fact that many actions take place simultaneously. A concept that 

is appropriate for this pmpose is the Process-Interaction Approach 

[Rooda 1987, Arentsen 1989, Rooda199 la, 1991b, 1991c, Rooda 

Arentsen 1991, RoodaArentsen Smit 1992], which will be used in this 
thesis and which is described further in Chapter 2. 

Automation and factory layout 

When looking at the layout of a factory, there are two important 

alternatives: a very common layout is the process layout; another, more 

complex, layout is me functional layout. 

The process layout corresponds with the flow shop. Machines are 
ordered in the sequence of the operations that have to be perfonned on 
the materiaL The route of the material through the factory is fixed and 
dedicated machines are used in the flow shop. 

The functional layout corresponds with the job shop. Machines are 
ordered in groups having the same functionality. The job shop is 

characterized by a great route flexibility. In a job shop the machines are 

of a much more universal type; and they are capable of executing many 
different operations. 

Arentsen's [1989] thesis, "Factory control architecture", describes a 

control architecture for flow shop factories using the Processwlnterac

tion Approach. It was shown that island automation of factories can be 
avoided, and that the automation gap can be bridged. Modern factories, 
however, often have a job shop character. They contain many expensive 

and complex machines. This has resulted in complex manufacturing 
systems that arc capable of executing many manufacturing processes. 
They are difficul t to control, often gi ving rise to very long lead times. No 
control architecture for job shop factories has yet been described. 
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1.3 Objectives of the study 

We have seen that there are pressing reaSons for industry to automate. 
Modem factories are complex, they often have a job shop character, 
together with a hierarchical layout and control structure. But presently 
there is no structured method by which the control systems for such 
factories can be built and so there is a need for a control architecture. 
This architecture has to allow the building of control systems and the 
automation of factories without creating island automation and an 
automation gap. The control architecture presented in this thesis is 
wrique in fulfilling such a need. 

This study only considers control technology. The systems considered 
have a discrete character, in which the controllers control discrete 
manufacturing processes. As stated, the subject of this thesis is a control 
architecture for factories, an architecture being defined as a framework 
for the logical and functional implementation of a system [Flatau 1988]. 
A control architecture is a structure of algorithms and controllers that 
drive the machines in a factory, together with the relationships and 
interlaces between these algorithms, controllers and machines. The 
architecture comprises the specification of a general control model. We 
are here concerned with the programming of the algoritluns; the build
ing of control hardware is not dealt with, neither is the building of the 
physical manufacturing system. 

We use an integral approach to the building of controllers for manufac
turing systems having a great routing flexibility between universal 
machines. Arentsen [1989] presented an architecture for flow shop 
factories. Here we develop a comparable architecture for job shop 
factories. However, since the job shop is the most complicated. the 
architecture presented can also be used for other factory layouts. 

The functions of the factory controller considered are capacity planning, 
marketing, purchasing and manufacturing control. The emphasis lies on 
the control of the manufacturing function; control of the other factory 
functions is not considered so intensively, since these are implemented 
in much the same way as in Arentsen's work. 

In order to evaluate the quality of a controller we need measures by 
which we can assess the performance of the system. The method we 
present for the assessment of the behaviour of a manufacruring system 
and its controller uses the concepts of mean lead time, mean tluoughput, 

and mean inventory level and the relationship between them. One of the 
major problems in the control of a job shop is the limitation of the lead 
times in the shop. By using the developed architecture it is shown that 
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one good way of keeping the lead times down is to exert control on the 
inventOI1' level within the shop. 

The implemented control architecture is intended f".)r a manufacturing 
system that has a configuration which remains unchanged: the products 
are designed in advance, the manufacturing processes and the machines 
by which the products are manufactured remain constant throughout the 
manufacturing cycle. 

Our approach to the specification of the architecture uses modelling 
together with the Proc ess-Interaction Approach IRooda 1987, Overwater 
1987]. This approach provides a language (ProcessTalk) and a tool 
(ProcessTool) [Wortmann, Rooda 1990, Wortmann 1991] which are 
used for the development and testing of the architecture. The use of 
ProcessTool allows the models built with its aid to be validated by 
simulation. The whole approach allows a smooth transition from mod
elling the system to its simulation and, finally, to the implementation of 
the controller [Overwater 1987]. 

The builder of a control system uses information from design engineers 
and production engineers, who specify the products, the manufacturing 
processes, and the physical manufacturing system. These specifications 
thus place constraints on the control architecture. Simplified general 
models of the physical machines are used. These machines are com
manded to execute operations on material and to report when the 
operations are finished. It is no part of Our present task to consider how 
machines actually execute their operations. The control system devel
oped here is based on the idea that a hierarchical structure is useful, the 
factory controller being at the top, machines at the bottom, and a variable 
number of control layers in between. This hierarchy is constrained by 
the specification of the given layout of the physical manufacturing 
system. 

Chapter 2 presents the tenninology, concepts of modelling; hierarchies, 
the specification of physical manufacturing systems and a manufactur
ing system cla,>sification. Chapter 3 considers aspects of the control of 
a manufacturing system. Chapter 4 presents the new concepts and the 
resulting model of the general control architecture. The control architec
ture is illustrated in Chapter 5 by showing how it can be applied to a 
factory for the manufacture of integrated circuits on wafers (IC wafers). 
The uniqueness and a review of the new Iy developed architecture for job 
shop systems is presented in Chapter 6. Finally conclusions are dis
cussed, together with suggestions as to the ways in which this present 
work may be continued in the future. 



Chapter 2 
Manufacturing systems 

The present chapter deals with some general considerations relevant to 

all kinds of manufacturing systems, before going on to present the 

terminology that will be used subsequently. Afterwards the Process
Interaction approach, systems and hierarchies are discussed. Finally a 
description of the basic components of physical manufacturing systems 

and the classification of manufacturing systems is·given. 

2.1 The life phases of a factory 

A factory passes through five life phases: orientation, specification, 
realization, utilization and elimination [Rooda 1987, 1990]. In reality a 
factory develops in a continuous way} the different phases are gone by 
in an iterative way and different parts of the factory may be in different 

phases. But by looking at the factory from one point of view, these 

phases can always be distinguished. This process is governed by a 
management system which sets goals for the factory. The main goal of 

a factory usually is to insure its future existence by llUlking a. reasonable 
profit. The factory will try to make a profit by selling the goods produced 

to people Or to other companies. To sell goods the factory can either try 

to create a need for its products (technology push) and/or it can 
anticipate the existing needs of society (market pull). 

In the life phases of a factory decisions about the total control and design 
of a factory have to be taken. It is the task of management to take these 

decisions and to check whether the decisions are executed in the way 

planned. The different aspects are mentioned below. 

The orientation phase is used to study whether it is interesting to develop 

a factory. The consumers' needs and suppliers' offers are analysed. 
Alternatives for products, technology and raw materials are considered. 

The analysis of the economic expectations means that a decision has to 

be taken On whether the factory should Or should not be built. This 
decision is usually supported by market research. 

The problem definition subphase (which is the first component of the 

specification phase referred to above) includes decisions as to what ldnd 
of products are to be manufactured and what the capacity of the factory 
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will be (number of workers, machines, stores). in most ca<;es these 
decisions are taken by the Owner or the investor. 

Because nature behaves in a causal way, it is possible for humans to look 
for causes that result in a desired effect. In the specification process this 
reverse causality is used to find a way to produce the new product 
[Hubka and Eder 1988J. The main choices, in relation to the manu~ 
facturing process, are the raw material from which the product is made, 

the transfonnation process that is used to transform the material, and the 
type of machines that execute the manufacturing process. The transfor
mation process and type of the machines are based on the technology 
that is considered to be most. suitable to transform the material. 

The decision about which products a factory is to produce is called 
'product planning' and is a task for the management. The specification 
of a factory and the manufacturing process is an engineering design task 
[Hubka and Eder 1988]. The design engineer decides what the product 
looks like. How the product is produced is decided by the production 
engineer [Kempf 1989]. 

Once the technology used in the factory has been chosen, the layout, the 
material transport and storage still have to be specified, as does the 
control system. These choices cannot be made independently of the 
technology chosen. When specifying and realizing a control system the 
specification of the physical system are considered as constraints on the 
problem of specifying the control system. But, in order to obtain a 
"good" control system when one is specifying the physical system, the 
related control problem has to be considered and the specification of the 
physical system should be adapted in such a way that the complex:ity of 
the control system is reduced as much as possible. 

The way the factory is to be controlled is also incorporated in the 
specification of the factory. Is production to order or production for 
inventory used? What performance criteria are important? What control 
strategy is used, a fixed or changing product mix:, with the possibility of 
producing new products, etc. 

The profitability of a factory also depends on the control strategy. So the 
market situation, the supplier relationship and the conSumer relation
ship are all likely to influence the control strategy and, through this, the 
specification of the physical system. 

The realization phase is considered to be the task of an external system, 
the factory builder and the equipment supplier, called the realization 
system. Here the management instructs the realization system about 
how the factory is to be realized. The management checks the results and 
compares them with the specifications. 
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The system starts to operate in the utilization phase. This is controlled 
directly by the control system of the factory. This control system is also 
implemented during the realization phase. The management checks the 
perfonnance of the realized system., controlled by its local control 
system. During the utilization phase the control system has to take care 
of the creation of capacity plans, the marketing of products, the purchasing 
of raw materials and the manufacturing of products. The factory control 
system has the responsibility for translating the demand and/or the 
predicted demand into commands for the machines. Here, too, the 

conswner has to be negotiated with about the tenns under which a 
product "Will be delivered: think, for instance, about the due date. 

During the elim.ination phase the management instructs the destruction 
system about the way the factory has to be disposed of. 

2.2 Terminology 

We will introduce in this section the terms and notions that are funda
mental to our subject 

The transfonnation of natural means (such as raw material) into desired 
means (products) is accomplished by a transformation system [Hubka 
and Eder 1988]. One class of transformation systems is fonned by 
industrial systems. In this thesis three forms of industrial systems are 
distinguished: the factory, the manufacturing system and the machine. 

To manufacture means "1) the making of goods, 2) the process of 
making wares by hand or machinery" [Burbidge 1987]. When looking 
at a manufacturing system one can draw a distinction between hardware 
and software: the manufacturing process is considered as the sofuvare 
and man or machine the hardware. 

A process is "a set of consecutive operations which complete a signifi
cant stage in the manufacture of a component". An operation is "the 
smallest unit of work taken into account for a particular planning or 
control purpose". And "that which is necessary for the execution of an 
operation" is called a resource. There are two types of resources: ex
panded resources and leaf resources. An expanded resource consists of 
an aggregate of machines, a leaf resource is a machine. Material is the 
operand that undergoes the process. "The materials used as input to a 
manufacturing system" are called raw material, "an end item or output 

from a manufacturing system" is the product. [BSI, 1975]. 

A factory is part of a bigger whole: the economy. It operates within a 
market and it has to do with suppliers, consumers and competitors. A 
factory is a system that sells products to consumers and that buys raw 
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materials from suppliers. The products are manufactured from the raw 
materials in one Or mOre resources of the factory. 

A manufacturing system is a transformation system in which the 
actual manufacturing of products takes place. Usually this is an aggregate 
of machines. A manufacturing system is a part of a factory. A manufac
turing system consists of one or more resources and a control system, 
which controls the resources. A manufacturing system transfOlTIlS one 
or more types of input material (raw material) into one Or mOre type., .. of 
output material (finished products). TIlls transfonnation is called the 
manufacturing process. 

A resource behaves in a causal way. Causes have three important 
component'): there are conditions which have to be fulfilled in order to 
let something happen, there is an internal chain of actions through which 
something happens, and there is a trigger which starts things happening 
[Hu bka and Eder 1988]. In manufacturing two areas of expertise may be 
distinguished: the processing of materials (processing technology) and 
the processing ofinfonnation (control technology) [Rooda 1987}. The 

control system triggers the machines and is itself triggered by human 
beings. It is supposed that a manufacturing system is split into machines 

that transform material, which is called the physical manufacturing 
system or the physical system, and a control system that triggers the 
physical system, which is called the manufacturing control system or 
just the control system. 

The control system directs and regulates the physical system in such a 
way that a predefined goal is achieved as closely as possible. A 
distinction is drawn between factory control and machine control. 
Factory control is on a mOre abstract level, it controls aggregates of 
machines and people. It considers machines as equipment that is started 
on a command and that gives a signal if the action is finished. Machine 
control, on the other hand, regulates the internal operation of the 
machine. The biggest difference between the two is the fonn of paral
lelism. In machine control the parallelism most often has a fme-grained 
structure with a very close synchronization between the events. The 
parallelism in factory control has a more coarsely grained structure with 
many more Or Jess independent events. 

Manufacturing control is comparable to factory control, except that it 
contains fewer functions. Factory control comprises capacity planning, 
marketing, purchasing and manufacturing. Manufacturing control 
comprises manufacturing only. This difference is also found in the 
commands that both types of controller receive. An order is a command 
for a factory, which specifies an amount of a certain product type. Ajob 
is a command for a manufacturing system, which specifies the material 
and the manufacturing process. 
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The lead time is the time it takes to execute the manufacturing of a 

product. In our case the manufacturing process starts with the arrival of 
an order or a job and finishes when the finished products are available 
for the requester. The process time is the minimum time necessary to 
execute the manufacturing process. This is the sum of all times the 

machines of the manufacturing system need to execute the operations of 

the manufacturing process. The delivery time is the difference between 
the date the ordered goods are delivered and the date the order arrived. 

The due date is the date at which the sender of the order wants its goods 

delivered. The througbput is the amount of products that are manufac
tured per unit of time. 'The input (rate) is the amount of products of 

which the manufacturing process is started per unit time. The inventory 

level is the number of products of which the manufacturing process is 
started and not yet finished. 

As we have seen above. five phases characterize the life cycle of an 
industrial system: the orientation phase. the specification phase, the 
realization phase, the utilization phase and the elimination phase [Rooda 

1987, 1990]. In the orientation pbase the abstract objective of the 
system is formulated. The specification pbase is divided into three 

subphases: (1) the problem definition subpbase, where the function of 
the system is set down in quantitative terms; (2) the operating method 

determining subpbase, where structures are sought that are able to 

fulfil the requirements; and (3) the design subphase. in which elements 

of the system are chosen on the basis of the structure found in the former 
subphase. In the realization pbase the system is actually constructed. 

During the utilization pbase the system functions, if possible in the way 

specified, and in the elimination phase the system is liquidated. 

Just like the manufacturing system, the life cycle of a product is also split 
into five phases. The phases of the product and the phases of the 

manufacturing system are related to each other. The utilization phase of 
the manufacnuing system coincides with the realization phase of the 
product. How the specification phases of the two are related to each 

other depends on which of the two was specified first With an existing 
manufacturing system the specification phase of a product is related to 

the specification of the manufacturing system. With an existing product 

specification the manufacturing system specification depends on the 
product specification. 

2.3 The Process-Interaction Approach 

The Process-Interaction approach is a method for the specification of 

industrial systems and for the specification and realization of the 

associated control system [Rooda 1987, Overwater 1987, Wortmann et 
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aL 1989]. The related language ProcessTalk can be used to make fonnal 
and functional specifications of industrial systems [Wortmann 1991]. 
The ProcessTool supports the specification and realization phase of 
industrial systems according to the Process-Interaction approach 
[Wortmann 1991]. It is an interactive graphical environment for the 
modelling and simulation of industrial systems. 

In the Process-Interaction approach an industrial system is considered 

to consist of a set of parallel processors connected to each other by 
interaction paths. The representation of an jndustrial system as a 
collection of processors, with interactions between them and with a 
specification of the passive elements, is called a model of an industrial 
system. The modelling is always done within the framework of a certain 
problem de6nition. One of the main criteria by which a model may be 
judged is the degree to which it represents the relevant aspects of the 
industrial system. Simulation is used to evaluate the model. One of the 
strong points of the approach is that it is possible to use the model of a 
control system as the actual control system. 

Top-down design is supported by the process interaction approach. The 
design of a model usually starts, at a given level of abstraction, with the 
definition of the processors and the interaction paths. The processor 
executes certain functions, the functionality of a processor is determined 
by the interaction ports. These ports connect the processor to the 
enviwnment. 

Processors 

There are two types of processors: expanded processors and leaf 
processors. When the model of the processor is described it may be 
found that there is still some parallelism inside the processor. This 
means that the model of the (expanded) processor consists of parallel 

subprocessors with interaction paths between the internal processors 
and interaction paths to the re:st of the model (the environment), through 

the interaction ports of the processor. The process of expansion may be 
repeated, which results in a tree of processors. At the end of such a tree 
an unexpanded processor is found; this type of processor is called a leaf 
processor. A subprocessor is also called a child processor and the 
expanded processor is then its parent processor. 

The structure language is the part of ProcessTalk: that describes ex
panded processors in a graphical fonn. A circle represents a processor, 

while an arrow represents an interaction path. The name of a processor 
is printed in the circle, while the name of an interaction port may be 
attached to the corresponding end of an arrow. 
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Leaf processors are modelled by a process description. This description 
lists the actions a processor has to execute and the conditions under 
which these actions have to be executed. 

The task language is the part of ProcessTalk that is used to describe the 

leaf processors. It is based on the object oriented programming language 

Smalltalk~80j which is further described in Appendix A. The task 
language is able, among other things, to express: send actions, receive 

actions and actions that take time but which are not detailed any further. 

The task language is described in Appendix B. 

A passive element is always inside a processor. A passive element may 
have a value; if it does not, it is the presence of the element that counts. 
It is transferred from one processor to another processor through an 

interaction path. The state of the model depends on the passive elements 

present in the model. A processor changes the state of the model by the 
execution of actions. These actions consist of creating a passive element, 
receiving a passive element, changing the value of a passive element, 
sending a passive element, or deleting a passive element. 

Interactions 

The transfer of a passive element froID one processor to another 

processor is called an interaction. The purpose of an interaction is 

communication and/or synchronization. There are two types of inter
action: a send action and a receive action. A send action makes a passive 
element available for interaction, a receive action takes a passive 
element that is available for interaction. 

The interaction (the transfer of the passive element) takes place through 

an interaction path. An interaction path is connected to two different 

processors. The connection to a processor is called a port. There are two 

types of ports: a send port and a receive port. In order to be able to 

distinguish between ports, every port has a name. The interaction path 

is directed, it starts at a send port and it ends in a receive port. The transfer 
of the passive element occurs in zero time. 

The send and the receive action specify which port is involved in the 

interaction. More than one interaction path may be connected to a send 
or a receive port. H a send or receive action involves more than one 
interaction path, then the interaction takes place along that path where 

the other side was first in executing its receive or send action. 

For further detail on the Process-Interaction representation of a model 
see [Overwater 1987], and for further information on ProcessTalk (the 
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structure and task language) and ProcessTool (the modelling and 
simulation environment), see [WorOllruill 1991]. 

2.4 Systems 

There are three types of systems: real systems, conceptual systems and 
formal systems. Real systems actually exist in the real world. Conceptual 
systems are abstractions Or constructions created by the human mind. 
Conceptual systems exist only on paper and point towards reality. 
Formal system .. are systems that are used to create conceptual systems 
[Nauta 1974]. The tenns for these three types of system that will be used 
in this thesis are; 'system' for real system, 'model' for conceptual 
system and 'language' for formal system [Rooda 1990]. 

A model is a representation of a system which contains the essential 
properties of the system. The essential properties depend on the objective 
for which the model is intended. The model can be used to examine and 
to predict the behaviour of the system. The accuracy of a model depends 
on the effort that is put into the construction of the model and on the 
accuracy of the available data. These factors are influenced by the 

accuracy that is required. 

Modelling is a means to study and design real systems. Modelling is 
considered to be an art, which means there are no specific guidelines 
which lead to a good model; in fact it is a rather intuitive process. 

The use of a model helps in structuring one's thoughts about the system, 
in understanding the system's behaviour and in differentiating relevant 
data. With a model it is possible to conduct experiments to test the 
system's sensitivity to certain factors and to test the effect of changing 
the system. It is often difficult or impossible to conduct these experiments 
with the real system. 

There are two kinds of models: iconic models, which are visual 
representations of a system; and symbolic models, which represent the 
properties of the system with help of mathematical symbols and relaw 

tions [Smedinga 1988J. 

Symbolic models are used to perform calculations. There are three kinds 
of symbolic models, which are differentiated in terms of the way a 

solution is constructed: analytical, numerical and simulation models 
[Smedinga 1988 J. All models represent only part of reality and are used 
to investigate some aspects of this reality. A disadvantage of simulation 
models over analytical and numerical models is that jt is not possible to 
prove the mathematical correctness of simulation results. For complex 
models it is often impossible to find an analytical or numerical solution. 
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In that case simulation is the only possible way to solving the problem. 

Before simulation is started, however, a model first has to be constructed; 
this model is then transfonned into an algorithm which is run on a 
computer. 

Real systems are divided into two types: continuous time and discrete 

time systems. In discrete time systems variables change discretely with 

time while in continuous time systems variables change continuously 

with time. Whether a system is discrete or continuous depends on the 

view of the observer. Most systems are partly discrete and partly 
continuous. In a manufacturing system, for instance, the changes 
material undergoes inside a machine are of a continuous nature. On the 
level of abstraction where the inside of the machine is not considered, 
however, these changes can be viewed as having a discrete character. 

In this thesis the systems are factories and manufacturing systems. The 

language used is ProcessTalk, which is supported by a tool: ProcessTool. 
Only the discrete nature of systems is considered and the model 
presented in this thesis concentrates on the control context. 

2.5 Hierarchies 

Different kinds of hierarchies are found in the control context. Some of 
these hierarchies coincide with each other, but most of them are not 
completely coupled. This means that the levels of the different hierar

chies are usually intennixed. Much of the vagueness found in the 
literature about the control of manufacturing systems is caused by the 
fact that the different hierarchies are not distinguished. 

Three fonus of hierarchy may be distinguished. 

The frrst hierarchical form is the system hierarchy. A system 

hierarchy is a control hierarchy. The system controls subsystems, 

but the subsystems are not a part of the system. An example is found 

in the anny, where a lieutenant commands sergeants, and a sergeant 
commands soldiers. 

The second form is the model hierarchy, which is a form of 

aggregation and decomposition. The system is split into smaller 

subsystems, and all subsystems together form the original system. 
The subsystem is part of the system. An example is time. A week 
is split into seven days, a day into 24 hours, etc. 

The third form of hierarchy is the inheritance hierarchy. This 

hierarchy classifies systems. An example is the taxonomy of 
biological species. 
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All tluee forms of hierarchy are found in manufacturing controL The 
most striking hierarchy is the system hierarchy. The manufacturing 
system consists of resources that are controlled by One (hierarchical) 
controller. The manufacturing system executes one or more manufac
turing processes: a manufacturing process consists of operations that 
have to be performed to transform the input material into the output 
materiaL The resources of a manufacturing system are able to perlorm 
these operations. The resource may consist of a central controller and 
subresources. The invocation of a manufacturing process is also an 
operation. As a consequence the manufacturing system itself is also a 
reSOUrce-

Many decisions have to be taken by a controller. The controller often 
takes these decisions in a step by step maImer. The control problem is 
solved with the use of an algorithm having a hierarchical nature. For 
instance, a piece of material can be transported to several resources and 
there are more than a single transporter available. In this case the 
controller might first allocate the material to one resource and afterwards 
allocate the transport job to one of the transporters. 

A manufacturing system is controlled by a hierarchical control system. 
The manufacturing system also has a model hierarchy, which coincides 
with the control hierarchy. The model hierarchy is related to the 
configuration of the manufacturing system. The hierarchical levels that 
are often distinguished are: factory, facility, shop, cell, station and 
machine [Beukeboom et a1. 1989]. The related system hierarchy COn
tains the levels factory controller, facility controller, shop controller, 
cell controller and station controller. 

Other model hierarchies are concerned with aggregation: aggregated 
information is used, especially during planning. 'The demand information 
is aggregated and a coarse plan is calculated on the basis of this 
information. In different phases, the infonnation is decomposed in order 
finally to generate detailed manufacturing commands for the different 
machines. Examples of aggregation are: consumers taken together in 
consumer groups, products taken together in product families, machines 
taken togetheT in machine groups, time intervals taken together to form 
longer time periods. These are all examples of model hierarchies. 

The product structure also has a hierarchical nature: this is true for both 
the material structure and the operation structure. For the material 
structme three forms are distinguished: (1) the assembly structure; a 
product consists of one Or more parts; (2) the arborescence structure; 
different products all are made of the same part; and (3) the general 
product structure, which is a combination of the former two [Joensson 
1983]. 
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The operation structure of a product has a hierarchical nature, too. The 
hierarchy of the manufacturing system (facility, shop, cell, etc.) is also 
found in the operation structure. The operation of a facility is discharged 
by the execution of operations for shops. The operation of a shop 
consists of operations for cells, and so on. Both the product structure and 
the operation structure form a. model hierarchy. These hierarchies are 
related but do not necessarily correspond to each other on a one to one 

basis. 

Smalltalk-80, which forms the basis for the task language, uses the 
inheritance mechanism and contains a class hierarchy. Every object in 
Smalltalk-80 belongs to a certain class; as a consequence all objects in 
the model belong to a class. These classes are part of the Smalltalk-80 
inheritance hierarchy. 

As has been illustrated above some hierarchies coincide with each other 
even if they are of a different form. Other hierarchies do not coincide 

although they are of the same fonn. In the rest of the thesis it has to born 
in mind that two hierarchies do not necessarily coincide. 

2.6 Basic components of physical manufacturing 

systems 

The physical manufacturing system is defined by the operations, the 
material, the resources and the recipes. An operation is pelfonned on 
material by a resource. The recipe describes the manufacturing process 

as a sequence of operations. These concepts are all discussed below. 

Operations 

An operation is a unit of work that is executed by one resource. There 

are operations that are specific to the manufacturing process (which is 
determined by the processing technology and the manufacturing ma
chines) and there are operations that also depend on the status of the 
manufacturing system. The first are called the processing or value 
adding operations, while the second are supporting operations. An 
inheritance hierarchy for operations is given in Figure 2.1. 

The execution of an operation changes material; input material is 
changed into output material. The change is related to the material 
properties in the case of manufacturing operations. A verifying opera
tion changes the data about the material. A transport operation change 
the spatial location of the material. The store operation is related to a 
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Figure 2.1. The operation inheritance hierarchy. 

change of the time coordinate. The material exchange operations are 
related to the directing of material interactions between processors. 

The processing operations are manufacturing or verifying operations. 
Transport, store and material exchange operations are supporting opera
tions. The two material exchange operations, receive material and send 
material, are considered to be inherent actions which are perfonned 
before and after the execution of another operation. 

The processing operations only change jfthe manufacturing technology 
changes. Processing operations are static and determined in advance_ 
The execution of supporting operations depends on the status of the 
manufacturing system; for this reason supponing operations are not a 
part of the manufacturing process description. Verification operations 
are considered as processing operations because these operations usu
ally form an integral part of the manufacturing process. 

Several classifications of manufacturing operations have been pub
lished [Spur and Stoeferle 1981, Ehrlenspiel 1985, Burna 1987J. Here 
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the following types are distinguished: shape, add, remove, form and 

assemble. These operations transform material. For clarity two foons of 
material are distinguished: discrete products and bulk goods. Bulk 

goods are also considered to include small parts, fluids, gases and so on. 

The control system is considered to direct only the manufacturing of 

discrete products. 

The shape operation creates a discrete product from bulk goods. An add 
operation specifies the addition of some material to a discrete product. 
This means that a discrete product and some bulk good is transfonned 
into another discrete product. Remove means that some material is 
removed from a discrete product: this results in waste (a bulk good) and 

a discrete product. Form means the transfonnation of a discrete product 
into another discrete product. The fonn operation is supposed to change 

the geometrical properties or the internal material properties. The 

assemble operation means the putting together of two or more discrete 
products to fonn a new discrete product. Because bulk goods are 
neglected, the operations add, remove and form are abstracted into the 
general term. transfonn. 

The verifying operations are necessary to achieve a specified quality. 

The verification is split into two categories: test and inspect. The test 
operation checks the functional performance of a piece of material. 
while an inspect operation checks a piece of material in a visual manner 
(surface and geometric properties) [Herroelen 1985]. A verifying 
operation makes specific information about the state of material available. 

The route of material through the manufacturing system may be influ
enced as a consequence of a verifying operation; for example the 

material may be reworked, repaired or rejected. Rework means that the 

material is processed once again on some resources it has already 

passed; repair means some additional operations are exerted on the 

material; reject means the material is removed from the manufacturing 
system and not processed any further. Other uses of the verification 

information are to modify the performance of an upstream resource 
(feedback) or to modify the way the material will be processed in a 
downstream resource (feedforward). 

The transport operation is needed to move material from one resource 

to another. The material route through the (physical) manufa.cturing 

system is not part of the manufacturing process. The destination of the 
material is determined by the controller. This way it is possible to let the 

controller decide which resource executes an operation and to realize 
dynamic material routes. 

The store operation is in fact not a real operation: it is the passage of time 

between the receive operation and the send operation. So every resource 
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can store material. During a store operation (in general) the material 
does not change. 

The manufacturing operations assemble, transform and shape com
pletely specify the product. The technology chosen, and the resource 
types inside the manufacturing system, dictate which operations are 
used to manufacture a product. These operations add value to the 
product. The verifying operations are necessary to achieve a certain 
quality standard. The verifying operations and the manufacturing opera
tions together fonn the processing operations. These operations form 
the recipe and describe the manufacturing process. Material transport is 
needed in order to execute a manufacturing process. S tore operations are 
used to allow the ma.nufacturing process to proceed in a smoother Or 
optimum manner. Material exchange operations command the exchange 
of material between processors. The transport, the store and the material 
exchange operations are not part of the manufacturing process descrip
tion (the recipe), they depend on the status of the manufacturing system. 

Material 

A manufacturing system transforms raw material into finished prod
ucts. A resource performs a part of the total transformation. Both raw 
material and finished products are called material. The material in the 
manufacturing system has a discrete nature. Materials having a non
discrete nature, such as small parts, bulk goods, fluids, gases and waste, 
are not modelled; it is supposed that they are taken from an unlimited 
supply, or placed in an I.Ullimited store. 

Every resource has the same material interface. It is supposed there is a 
unit load that is the same in the whole manufacturing system. All 
resource batch sizes and capacities are expressed in tenns of this unit; 
all material fits into this wlit load. 

For a piece of material, a material unit; there is a route through the 
resource, which is expressed in terms of operations. The operation that 
a material unit has to undergo indicates which type of resource the 
material unit needs for dle execution of the next operation. It forms the 
basis On which the destination of the material unit is determined. The 
status of th~ matelial depends on the progress of the manufacturing 
process; the operations that have been exerted on the material, and on the 
quality of the material; the way the operations have been exerted on the 
material. 
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Resources 

A resource is a system that executes operations. In a manufacturing 
system the operation is pelfonned on a load of material. When the 
resource is to execute an operation, the material on which this operation 
has to be performed must also be specified. A resource perfonns three 

basic actions: receive material, process material and send material. The 
process material action is the actual execution of a store, transport or 
processing operation. Receive and send material actions are theex.ecution 

of a material exchange operation. 

Resources are divided into expanded and leaf resources, leaf resources 
being machines. Another classification of resources is into processing 
resources and supporting resources. Stores and transporters are support

ingresources; all other resources (shaper, transfonner, verifier, assembler 
and expanded resources) are processing resources. The resource in
heritance hierarchy is described in Figure 2.2. 

The machine is characterized by the fact that it consists of a physical 
system (the device) and a control system (the machine controller) 
[Rooda 1990]. The machine controller is not considered; only the 
interface of the machine with the control system is of interest. The ca~ 
pabilities of a machine are the operations a machine can execute. The 
status of a machine is either idle, receiving, processing, sending or 
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Figure 2.2. The resource inheritance hierarchy. 
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down. The amount of material in a machine is also a detenninant of its 
status. All machine types are characterized by a maximum amount of 
unit loads they can contain. Another characteristic of the processing 
machines is their batch size. Processing machines are able to process 
loads of material and this load is characterized by a minimwn and 
maximum amount. The maximum amount of material a machine can 
contain is equal to its (maximum) batch size. The capacity of a machine 
is the amoWlt of material a machine can process per unit of time. 

The fWlction of a store can be manifold. A store is used to store goods 
before and after processing in order to compensate fluctuations in the 
arrival and departure of goods, caused by down times, stochastic 
variations in process times and so on. A store is used to prevent deadlock 
(see Section 3.5). It is used as an interface between transport systems and 
it is used to collect material in order to manufacture a load of material 
as a batch. The model of a store is described in Figure 2.3. A resource 
of type store only performs the actions receive material and send 
material. A send material action is invoked by a send material operation 
(material request), the receive material is not invoked by an operation. 
The store is connected to an internal transport system (with the ports 
inside) and to an external transport system (with the ports outside) 

Store> body 

I material I 
self rec:elveFromOneOI; #('ouISide' 'inSide' 'controller' ) do: 

I :portName ;item r 
(item isKindOf: MaterialRequast) 

IfTrue: 

[material ;m self removeFromBuffer: Item. 

self send: material to: item desUnatlon). 
(item isKindOf: Material) 

ifTrue: 

[salf addToBuffer; [tern]] 

Figure 2.3. The model of a store. 
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A machine of the transporter type moves material from one place to 
another without changing the properties of the material. The model of 
a transporter is described in Figure 2.4. 

A machine of the transformer type changes the material it is processing 
and delivers it in a new state. The model of a transformer is shown in 
Figure 2.5. A machine of type verifier does not transfonn material, it 
collects information about the state of the material it is verifying. Its 
model, however, is the same as the model of a transformer. 

A machine of the shaper type creates new discrete pieces of material. Its 
model is similar to that of the transformer, with the exception that it does 
not receive material from the transporter before the execution of a job. 

A machine of the assembler type combines two or more pieces of 
material and delivers it as one piece. Its model is also similar to the 
transfonner, an assembler only receives more pieces of raw material. 

Transporter )0 bOdy 
I request transportJob origination destination matelialData material report I 
request : .. sa" formulateRaquest. 
self send: requeslto: 'controller'. 
transporwob :~ self recelveFrom; 'controller'. 
origination :: transportJob origination. 
destination :: transportJob destination. 
material Data :: transportJOb material. 
self moveTo: origination. 

material :- self pick: maieriaiData 'rom: origination. 
self moveTo; desUnation. 

seH place: material at: destination. 

report :~ seH fonnulateReportFrom: transportJob and: material. 

self send: report to: 'controller' 

Figure 2,4. The model of a transporter. 
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outside 

Transformer ;>0 body 

I request rawMaterlal Job operation finished Material report I 
request := sell formuJateRequest. 

self send; request to: 'controller', 

rawMa.terial :m self recaivaMateriaJFrom: 'outside'. 

job :D self racelveFrom; 'controller'. 
operation ; .. jOb operation. 
finished Material ;a selt execute: operation on; rawMaterial. 
report ;m self formulateRepottFrom: jOb and; tinishedMaterial. 

san send; repon to: 'controller', 
self send Material: tlnlshedMaterisl to; 'outside' 

Figure 2.5. The model of a trans/onner, 

Recipes 

The product structure describes a product, either in the form of an 
operation structure or a material structure. The operation structure, or 
the 'recipe', is a list of operations that have to be executed in order to 

make the product. The material structure is a list of parts that make up 
the product. In this study only the recipe is used to specify products. 

The operation structure describes the manufacturing process. The 
description varies from very simple to very complex and is called a 
recipe. A list of sequential operations is a relatively simple form, the 
assembling of subassemblies followed by a series of operations on the 
assembly is already more difficult. In the following a nwnber of recipe 
fonns are discussed: sequence, concurrency, alternative and block. The 
inheritance hierarchy of recipes is printed in Figure 2.6. These recipe 
forms may be nested to realize complex operation structures. A recipe 
consists of a collection of recipe steps; a recipe step is either an operation 
or a recipe. A recipe indicates which operations have to be perfonned, 
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Recipe 

Sequence 

concurrency 

Alternative 

BloCk 

Figure 2.6. The inheritance hierarchy oJrecipes-
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what type of material is involved and in which sequence these opera
tions have to be executed. 

The two basic recipe structures are the sequence and the concurrency. A 
sequence is a Ust of recipe steps that have to be executed one after the 
other (sequentially). A sequence usually refers to one type of material. 
An example is 

Sequence 
(transform (1) material of type A, 
transform (2) material of type A, 
transform (3) material of type A). 

A concurrency means that all the recipe steps of the recipe may be 
executed at the same moment, but also at different times, for instance: 

Concurrency 
(transform (1) material of type A, 

transform (2) material of type B, 
transform (3) material of type C). 

A concurrency, most of the time, refers to different types of material. If 
a concurrency refers to one type of material, the recipe steps of the 
concurrency are executed one after the other in a random sequence. 
These two recipe structures allow the description of the assembling of 
a product, for example: 

Sequence 
(Concurrency 

(Sequence 
. (transform (1) material of type X, 

transform (2) material of type X, 
transform (3) material of type X), 

Sequence 
(transform (4) material of type Y, 
transfonn (5) material of type Y), 

assemble (6) material of type X and Y into Z, 
transform (7) material of type Z, 
transform (8) material of type Z) 
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Other recipe structures permit mOre sophisticated operation sequences 
to be implemented. The alternative indicates that only one of the recipe 
steps in the list has to be executed. If, for instance, a product can be 
manufactured in two ways (way I and way II) then the recipe is as 
follows: 

Alternative 
(recipe specifying way I, 

recipe specifying way II) 

The block is meant to indicate that more operations have to be executed 
simultaneously. All the recipe steps of a block have to be executed at the 
same moment. The recipe steps of a block have to be operations, 1llllike 
in other recipes the steps may not fonn a recipe themselves. TIlls kind 
of structure is necessary in some control situations in order to prevent 
deadlock (see Section 3.5) of resources; all the resources involved have 
to be ready before the execution of a block may start. 

A second situation in which the block is useful is when the second 
operation has to start directly after the fmishing of the first operation. A 
block mostly refers to one type of material, which means that the 
operations of tlle block are executed one after the other. If the recipe 
steps of the block refer to different types of material the recipe steps are 
executed simultaneously. An example: 

Block 
(transfonn (1) material of type A, 
transform (2) material of type A) 

The basic components presented in this section -operations, material, 
reSOUrces and recipes M are used to specify the physical manufacturing 
system and manufacturing process. The leaf resources, the material, the 
operations of the leaf resources, and the recipe with these operations 
form the parameters for the control architecture. 

2.7 Classification of manufacturing systems 

The control architecture is intended for the control of manufacturing 
systems. The following classification of manufacturing systems will be 
used to discover demands which the architecture has to fulfil. A rough 

distinction between manufactming systems is made by considering the 
universality of the reSOllTces and the route flexibility inside the system; 
this results in the classes flow shop and job shop. A flow shop is 
characterized by dedicated reSOurces and a fixed route, while in a job 

shop there are universal resources which can be used for many different 
operations and many possible routes. For a mOre complete classification 
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of manufa.cturing systems there are mOre factors to be taken into 

account. 

Several classifications of manufacturing systems have been presented 
in the literature [Kittel 1982, Van Rijn 1986, Van Rijn 1988]. The 
following parameters are distinguished: the material in a manufacturing 
system) the recipes of the manufacturing system, the resources of the 
manufacturing system (with which the universality of resources and 
flexibility of material routes are meant) and the control situation of the 
manufacturing system. These parameters are explained below. 

The material in a manufacturing system is split into the categories raw 
material and finished products. For classification purposes the 
commonality ofraw material, the assortment offinished products, the 
standardization of fmished products and the material structure of the 

finished products are distinguished. On One hand there are manufacturing 
systems which use only a few types of raw material for the manufacturing 
of their products (large commonality) while, on the other hand, there are 
manufacturing systems that use many different types of raw material in 
their products (small commonality). The assortment gives an indication 
of whether the manufacturing system makes many or few types of 
products. The standardization of products plays a role in an assortment, 
too: do the products differ only in colour or are they manufactured in 
completely different ways? The products of a manufacturing system 
also vary in the complexity of the material structure. There are manu

facturing systems that assemble complex products and there are 
manufacturing systems that simply transform the raw material. 

The control architecture has to be capable of handling the different 
categories of material flow in the manufacturing system. Only the effort 
required to implement the architecture will differ: a small commonality 
and hig assortment result in the need for a lot of data, which makes it a 
hig effort to implement the architecture. 

The recipes classify manufacturing systems in two ways: (1) the number 
of recipes the manufacturing system is capable of executing; and (2) 
complexity of the recipes. There are manufacturing systems having a 
few recipes and those with many recipes. This classification parameter 
is related to the product assortment. The complexity of a recipe has to 
do with the nesting structure of the recipes and with the number of 
operations that have to be executed to make the product. This parameter 
may be related to the complexity of the material structure, but there are 

also products that contain no assemblies but that still have a lot of 
operations involved in their manuiacrnring. Further in this section a 
distinction is made between recipes with a single operation and recipes 
with multiple operations. 
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The control architecture has to be capable of handling all kinds of recipe 
structures: the nwnber of operations in a recipe is limited only by the 
computer power. The number of recipes in a manufacturing system is 
also only limited by the capacity of the control computer. The architecture, 
however, starts from the static situation, where the recipes are known in 
advance. Even for situations where many different product types are 
manufactured in small series, the architecture will be applicable, if these 
recipes are available in advance. 

The classification of manufacturing systems with the help of the 
reSOlITces allows uS to distinguish two related topics: the universality of 
resources and the flexibility of the transport system. On the one hand 
there are dedicated reSOlITces that are capable of only one operation and 
On the other hand there are resources that can execute a lot of different 
operations. The flexibility of the transport system influences the route 
flexibility in the manufacturing system. If the transport system is only 
capable of transporting material from one reSOlITce to the next, the route 
is fixed. If the transport system is capable of transporting material from 
any resource to any reSOlITce, then one has maximum route flex.ibility. 
The route flexibility also depends on the decoupling of resources, by 
which is meant the possibility of processing material in a different 
sequences on different reSOUl'ces. 

The universality of machines and the route flexibility are usually 
related. Dedicated machines mostly form part of manufacturing systems 
with a small route flexibility, for instance the flow shop where the route 
of the material through the manufacturing system is fixed. Universal 
machines often fonn part of manufacturing systems with a large route 
flexibility, which then results in a job shop. 

The control architecture is intended for the job shop situation, but the 
flow shop and other manufacturing configurations having a lower 
degree of route flexibility or which contain less universal machines are 
in fact simplifications of the job shop and also will be handled with this 
control architecture. 

The control situation delivers classifying parameters, such as the 
uncertainty in the market situation, manufacturing job sequencing 
strategy, the production rate and series sizes. The uncertainty in the 
market situation is composed of the uncertainty in demand and the 
uncertainty in delivery. The uncertainty in the market situation is an 
important factor for determining the production strategy, which can be 
based on consumer orders, on a fixed production program or on 
production for inventory. Production rate and series sizes are usually 
related. Production rate is the number of products manufactured in unit 
time; series size is the number of products of the same type, manufac
tured consecutively. 
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single r"e$ouroo 

pa.rallel resources C:=J rasoul'CEl 

- material route 

resources with fixed route (line) 

resources with universal routes 

Figure 2.7. The basic resource layouts of a manufacturing system. 

The control architecture focuses on manufacturing control and pays 

little attention to the interactions with consumers and suppliers. These 
interactions are part of the factory controller; all control situations have 
to be handled by adapting the control algorithms of the factory controller, 

without the need to change the rest of the control architecture. 

Up to now we have seen four parameters that classify manufacturing 
systems. In the next part only the recipe and the resources of the system 

are used to distinguish four classes of manufacturing systems, which are 

of interest for the control situation. For the recipe two categories are 

distinguished: recipes consisting of a single operation and recipes 
containing more than one operation. The resources in the manufacturing 

system are characterized by the resource layout. The resource layout is 

a function of the number and types of processing resources and the 

material routes that can be realized by the transport system. 

There are four basic layouts; single resource, parallel resources, re

sources with a fixed route and resources with universal routes. The 

layouts are represented in Figure 2.7. The reSOurces with a fixed material 
route form a line. It is supposed that in a line material is allowed to pass 
a resource on its route without being processed on the specific resource 
(skipping). Many layouts forms exist between resources with a fixed 

rouk and resources with universal routes. These fonns are all consid

ered to belong to the universal route case. 

The recipe is based on the manufacturing process, the recipe has to 

correspond with the resource layout. The recipes with a single operation 
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Table 2.1. The relation between resource layout, recipe and 

manufacturing system classes. 

resource 

layout 

single resource 

parallel resources 

reSOurces with 

fi)(ed rOUte (line) 

resources with 

universal routes 

reCipe 

single operation multiple operations 

single shop 

parallel ShOp flow shop 

parallel shop Job ShOp 

can be executed by all four resource layouts, but the resources with a 
fixed route and the reSources with universal routes behave as parallel 
reSOurces to the recipe with a single operation. This results in two 
different manufacturing classes: the single shop and the parallel shop. 
The recipes with multiple operations can only be executed by the 
resources with a fixed route and by resources with universal routes. This 
results in the flow shop and the job shop, respectively. 

Four basic manufacturing system classes are considered in the rest of 
this thesis. These are the single shop, the parallel shop, the flow shop and 
the job shop. The classes in relation to reSOurce layout and recipe are 
represented in Table 2.1. The parallel shop can be equipped with 
identical or different resources, the flow shop may be a pure flow shop 
(no skipping) or a flow shop with skipping. A manufacturing system 

which does not belong to the classes single shop, parallel shop and flow 
shop is al ways regarded as a job shop. In the job shop the same resource 
may be visited more than once by a piece of material, which means 
cyclic material routes are allowed. This view of the manufacturing 
configuration has not considered the stores. The stores are supposed to 
be placed at the interface of the manufacturing system with the outside 
world, and inside the resources if these are expanded. 
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Control of manufacturing systems 

3.1 Control concepts 

A distinction is drawn between the control system and the controlled 
system.. The control system regulates the actions of the controlled 
system.. To do this the control system has to have some conception of the 
goal that has to be reached. In order to control, there have to be 
interactions between the control system and the controlled system. The 
control system influences the controlled system with stimuli and it 

needs to know the status of the controlled system and the response of the 
controlled system to a stimulus. By comparing the response and the 
status of the controlled system with the goal, the control system 
determines the stimuli for the controlled system. These stimuli are also 
influenced by the stimuli the control system receives from the outside 
world, called the environment. 

The activities in a discrete system have to be triggered and coordinated. 
These activities are themselves triggered by signals from the environ
ment. The triggering of the internal actions as a response to stimuli from 
the environment is the task of the control system. In some cases the 
control system sends stimuli to the environment in order to influence 
constraints imposed by the environment and to influence the stimuli the 
environment sends to the control system. 

The goal of a control system is often defined as a value Or criterion that 
has to be optimized. The control system uses a strategy, which describes 
the way the goal should be achieved. The way the control system and the 
controlled system react to the stimuli from the environment is called the 
behaviour of the system. The behaviour of the system is determined by 
the goal and the strategy of the control system, by the capability and the 
capacity of the controlled system and by the constraints and stimuli from 
the environment. 

In manufacturing the control system processes information and the 
controlled system processes material. The control system directs the 
material flow through the controlled system. In the leaf resources, or 
machines, the information and material meet each other. Before the 
working of the manufacturing controller is elaborated further, we 
discuss the jnformation in a manufacturing system. 
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The types of information in a manufacturing system are configuration 
information, the system status, the system history and objects that are 
used for communication. The control system has knowledge about the 
configuration: the resources that it controls, the physical layout of the 
resources and the manufacturing process that is perfonned by the 
reSOurCes (the recipes). These data about the configuration are considered 
to be unchanged during the control of the manufacturing system. 

In order to be able to take its control decisions, the control system needs 
to keep a record of the status of the physical manufacturing system. This 
record includes information about the material in the manufacturing 
system, which operations have been performed on the material, which 
operations are being performed on the material by which resources, and 
which operations still have to be pedonned on the material. To be able 
to evaluate the perfonnance of the manufacturing system, the controller 
has to keep track of the history of the manufacturing system. Things like 
the up, down and idle times of resources, the process time and the wait 
time of material are represented in the form of statistical excerpts. 
Records of the events that happen in the manufactwing system are kept 
in logs to be able to replay events in order to trace cauSes of errors_ The 

statistical excerpts and the logs change over time. 

The control system of the manufacturing system regulates the manu
facturing of products: this is done by commanding the resources in the 
physical manufacturing system and collecting data from these resources 
and sending data to the environment. With the help of the resources the 
material is directed through the manufacturing system. The control task 
is divided into planning, scheduling and monitoring. These subtasks 

result in actions taken by the control system. The control system starts 
the manufacturing process, distributes the work to the resources, takes 
care of the progress of the manufacturing process and signals the 
finishing of the manufacturing process. The controller of a manufac
turing system commands the resources of the manufacturing system and 
in this way it directs the material through the system. 

The monitoring of the manufacturing system is split into three functions. 
The first function is the momentary recording of the progress of the 
manufacturing process: the recording of the status of the material that is 
being processed. The second function is the recording of the activities 
of the resources. Related to these functions is the signalling to the 
environment about the status of the manufacturing system and the 
process. In the third place, the control has to record and check the overall 
performance of the manufacturing system over a longer time interval. 

Factories and manufacturing systems have a certain capability and 
capacity. They are able to manufacture products, they are designed for 
a certain throughput, the manufacrnre of a product has a more or less 
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defined lead time. These things are fixed in the configuration of the 
systems (resources; layout and recipes). The control of the systems has 
to fulfil certain criteria concerning such matters as costs and quality. And 
the systems have to react to stimuli. The control system uses the system, 
with its fixed capability and capacity, by reacting to the stimuli while 
optimizing the criteria. 

The stimuli for factories are orders for amounts of products; the stimuli 

for manufacturing systems are jobs describing loads of work to be 
executed. The goals of factories and manufacturing systems differ. A 
factory tries to secure its future existence by fulfilling orders as com
pletely and as well as possible, while a manufacturing system has to 
execute jobs as rapidly and as well as possible. These goals are translated 
into criteria like lead time, throughput and due date reliability. The 

factory is an independently operating system; a manufacturing system 
is a kind of slave system which is part of the factory. TIlis makes the 
factory controller more complex than the manufacturing controller. 

A factory receives stimuli: the orders from consumers and material from 
suppliers. The factory sends stimuli to its environment: ordexs for 
suppliers and, perhaps, advertisements to consumers. The factory control 
system has to adjust the petformance of the factory to the market 
demand. The capacity of the factory is fixed at the moment the factory 
is built, the capacity is based on market forecasts. If the demand deviates 
from the forecast it may be impossible for the control system to fulfil the 

demand. If demand is higher than supposed; the factory is overloaded 
with orders or orders have to be refused. If demand is lower than 
predicted the factory is underutilized and this leads to a lower return on 
jnvestment. Another difficulty arises from the purchasing of material 
from suppliers. If suppliers are unable to deliver or deliver too late, it 
may also be impossible for the factOlj' to satisfy the demand. 

The manufacturing system receives stimuli from its master. This is a 
control system, which sends jobs to the manufacturing system and takes 
care of the supply of material necessary for the ex.ecution of the jobs. The 
manufacturing system sends stimuli to this master in the form of signals 

that it wants work. The capacity of a manufacruring system is fixed, 
which means that the manufacturing control system has to ensure that 
the system is neither overloaded nor underutilized. But, to a large 
degree, this is the responsibility of the master. The manufacturing 
controller has to signal to its master that it needs more or less work. It 
is the responsibility of the master to use the manufacturing system in the 
way it was designed to be used. The manufacturing controller has to 
enable the master to do this by realizing a behaviour that is easy to 

understand and to predict, so that the master can observe the consequences 
of proper or improper usage of the manufacturing system. 
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Measures of performance 

In order to use reSOurCeS efficiently it is necessary to attune the work 
load to the capacity. An ideal factory and an ideal manufacturing system 
are perfectly balanced (see below), which means that the resoW'ce 
capacity is adjusted to a certain throughput level. At this throughput 
level it is possible to match the work load perfectly to the reSOurce 
capacity. The inventory level is decisive for the work load of the system: 
the ideal work point of an ideal manufacturing system is an inventory 
level which is equal to the sum of the batch sizes of all machines. In the 
ideal manufacturing system, operating at its ideal work point, reSOurceS 
are never idle and material never has to wait to be processed. In the ideal 
case the work load is equal to the capacity all the time. 

The work load, however, is not exactly known in advance: neither the 
work load nor the capacity are constant in time. A factory is confronted 
with fluctuations in demand, uncertainties in purchasing raw material 
and variations during manufacturing. The demanded products, amounts, 
order times and due dates required by the consumer vary in time. The 
delivery dates of material from suppliers usually are difficult to predict 
in advance. The manufacturing process itself is also confronted with 
disturbances; capacity fluctuations caused by machine failures, mainte
nance and repair, and yield fluctuations which result in rework, repair 
and rejection of material. These disturbances cause the manufacturing 
times to vary. Other factors that contribute to variations are differences 
in process time for operations, differences in recipes for products, 
differences in batch size of machines, differences in batch quantities for 
jobs, variations in the product mix that a factory or a manufacturing 
system manufactures, and variations in the amount of work a factory or 
a manufacturing system is processing. 

The perlormance of a factory is related to the amount of products that 
the factory manufactures, the costs that are incW'Ied in the manufacturing 
of those products, and the prices received for the manufactured prod
ucts. This periormance has to result in (positive) profits, because 
otherwise the existence of the factory is jeopardized. The perfonnance 
of a manufacturing system, on the other hand, has to do with the relation 
between the specified behaviour and the actual behaviour. A manu
facturing system is designed to be able to manufacture a certain amount 
of product per hour in a certain process time, under defined constraints 
(throughput, lead time, inventory level)_ If the manufacturing system is 
operated in the way specified, the performance has to be close to the 
specification. 
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There are three meaSUI'es that are frequently used to assess the perfonn
ance of a factory: due date reliability, mean lead times of products and 
utilization degree of machines-

Due date reliability is a difficult measurement, because due dates are 
usually created in a negotiation process between the factory and its 
consumer. Whether due dates are realizable depends on the agreed due 
date (whether it is a realistic due date), on the work available in the 

factory, and the due dates of all of the jobs in the factory. 

The lead time of products as a performance measure is not trivial. 
Different products usually have different process times. If, within a 
period of time, many products with short process times are produced, the 

mean lead time is smaller than in a period in which most of the 
manufactured products have long process times. Another important 
influence on lead time is the inventory level within the manufacturing 
system. The bigger the inventory level of a manufacturing system, the 
longer the mean lead time. 

Utilization is a difficult perfonnance measure because it concentrates on 
the performance of single machines. The utilization is a function of the 
available capacity and load (the amount of orders) assigned to the 
factory. If the available capacity is fixed and the load is adapted to the 
capacity, the scheduling algorithm has to ensure that the resources are 

utilized as efficiently as possible: this means that idle times of resources 
have to be minimized, just like set up times. 

In order to measure the performance of a manufacturing system, the 
intention of the manufacturer has to be hom in mind. The maximum 
throughput of a manufacturing system is fixed, a manufacturer wants his 
system to manufacture close to the maximum throughput, with short 
lead times) small inventories and reliable due dates. In the ideal system, 

as we have seen, the wait times of products are zero) as also are the idle 
times of resources. The inventory level is equal to the amount of material 
all resources in the system are able to process simultaneously. The 
performance of the manufacturing system is found by studying the 
relationships between lead time, throughput and inventory level. 

The lead time as a function of the inventory level is shown in Figure 3.1. 
The throughput as function of the inventory level is shown in Figure 3.2. 
These relations are found if the manufacturing system is in a steady 

state. The steady state is reached if the input rate and the output rate of 
the manufacturing system, measured over a period of time, are equal. 
This means that during the meaSUI'ement the: inventory level is more or 
less constant. There is a relation between throughput, inventory level 
and lead time [Little 1961, WiendahI1987]: 
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Figure 3.1. Mean lead time as a junction of the mean inventory level. 
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In an ideal manufacturing system the throughput and the lead time as 
function of the inventory level arelike the dotted lines in Figures 3.1 and 
32. The lead time is equal to the nominal process time until the system 
is saturated. This happens when the inventory level is equal to the sum 
of the batch sizes of the machines. From here on the lead time increases 
linearly with the inventory level. The throughput, on the other hand, 
increases linearly with the inventory level until the system is saturated; 
from the saturation point on the throughput remains constant and is 
equal to the maximum throughput. 

The behaviour of less ideal systems is shown as solid line in Figure 3.1 
and 3.2. In such systems the lead time always increases with the increase 
of the inventory level but, from a certain point of inventory level, this 
increase is linear. This linear increase is equal to the inverse of the 
maximum throughput per piece of inventory. The throughput of the 
system does not increase linearly but more smoothly, and from a certain 
point it remains constant. This saturation point coincides with the point 
from where the lead time increases linearly_ 

The work point of a manufacturing system is determined by the choice 
of the mean inventory level. The control system has to try to minimize 
the difference between the ideal perfonnance and the real performance. 
But the lead time and throughput performance measures depend for the 
biggest part on the chosen work point. So, for instance, it makes little 
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Figure 3.2. Mean throughput as a junction of the mean inventory 

level. 

sense to increase the inventory level any further if the system has 
reached its maximum throughput. The point where the ideal factory 
reaches its maximum throughput at minimum lead time is called the 
ideal work point. The representations of the lead time and the throughput 

against the inventory level are called the performance graphs. It depends 

on the market situation whether the work point for a manufacturing 
system is chosen on the "left side' or on the "right side" of the 

perlormance graph. On the left side the lead time is relatively short at the 
cost of idle machines. On the: right side the machines are intensively 
utilized at the cost of long lead times. The control system tries to keep 
the inventory level close to a work point. The quality of the controller 

is determined by the difference between the ideal lead time at the work 

point and the measured lead time at that work point. The best controller 

minimizes the difference between these values. 

The control system of a manufacturing system tries to operate at the 

work point it was designed for. H, however, the master has too few jobs, 
this results in an inventory level that lies below the work point, which 

means that the mean lead time is also lower than that at the work point. 

If there are mOre jobs than are allowed by the work point, these jobs will 
have to wait at a higher level (in the master), thus introducing wait 

queues at that higher leveL 'The lead time of jobs in the system remains 

equal to the lead time given in the perfonnance graph. If the manufac

turing system allows hot jobs Uobs having a higher priority) I this results 
in a transfer of the mean lead time. The mean lead time at the work point 
will become longer. Thus, the throughput will become lower. The hot 
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jobs disturb the manufacture of the other jobs so much that the mean lead 
time increases [Conway et aL 1967]. 

Balancing 

The process of determining the capacity of a factory Or a manufacturing 
system in relation to an expected work load is called balancing. The 
balancing of a factory states goals for throughput levels and determines 
the necessary resources in a factory. The recipes and the throughput 
levels are used to calculate the static work load of the resources. These 
static loads are used to calculate the number of resources needed to 

achieve the tlrroughput level. These calculations allow the ideal work 
point to be defined. By constructing the ideal perfonnance graph, an 
impression of the real behaviour of the manufacturing system at the 
different inventory levels can be obtained_ 

3.2 Control functions 

The control system is often divided into subsystems that are related to 
the functions that have to be perl'onned. Some functions exist as separate 

subsystems while others are incorporated in more than one subsystem. 
The factory controller incorporates capacity planning, marketing, pur
chasing and manufacturing control. Design, accounting and quality 
control are not incorporated in this study. These functions increase the 
complexity of the model, wi thout adding to our insight. If need be, these 
functions can be added in the future. 

To coordinate the activi ty of the resources in the manufacturing system, 
the controller has to take decisions on what actions have to be perfonned 
by what resources. The tasks of the controller are split into the subtasks 
of planning, scheduling and monitoring. 

The difficulties associated with planning and scheduling are the combi
natorial nature of the problems, their size and complexity and the 
uncertainty in the data, all of which cause deviations between the 
generated plan or schedule and reality. Because of the size of the 
planning problem it is usual to aggregate information, in order not to 

have to consider every detail of the manufacturing process. The possible 
aggregations are many. Aggregation of time, aggregation of products, 

aggregation of resources, aggregation of operations, aggregation of 
consumers, aggregation of suppliers. Aggregation helps in certain ways 
to overcome uncertainties; the demand of a group of consumers behaves 
less unpredictably than the demand of one consumer. But aggregation 
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also introduces new uncertainties: the decomposition process cannot 

always be executed in a way that is consistent with the aggregated data. 

Aggregation is closely related to the notion of hierarchy. In hierarchical 
planning more than one aggregation is applied. A popular hierarchy in 
planning is the division into strategic, tactical and operational levels. 
These levels have different time horizons, but often also consider 
different details for material or products, operations and resources [Hax 

and Candea 1984, Joensson 1983]. The hierarchical planning will not 
coincide with the control hierarchy presented here. The control archi

tecmre does not contain a hierarchical planning algorithm, if it is to be 

implemented in the future it will have to be implemented in one 

controller; probably the factory controller. 

Planning 

The term planning} as it is used in the literamre, has a lot of different 
meanings. Here we use the definition given in Hax. and eandea [1984]: 
the manufacturing process and the capacity of the resources are supposed 

to be fixed and planning is related to the optimal utilization of the 

resources under the constraints of fluctuating demand requirements. 

The term capacity planning will also be used. In Burbidge [1987} 
planning is defmed as the function that provides the control system with 
the infonnation to be used to manufacture products, it is related. to the 

design of the manufacturing process and the provision and arrangement 

of production resources (layout). This is considered to be part of the 
specification phase of the system. In the controller a process planning 
function is implemented that generates process plans (which are called 

tasks) on the basis of the command the system has received and the 
capabilities (recipes) of the system. Kempf [1989] relates planning to 

the decisions concerning the use of capabilities of resources in order to 

manufacture products which are described by design engineers. Kempf's 
[1989] definition is used here for the term balancing. 

In this thesis planning is divided into subfunctions: capacity planning, 
purchasing, process planning and process interpreting. Capacity plan

ning ensures that the resources are utilized on a more or less constant 

level in time. This function is only found in the factory controller, it 
decides whether a new order is accepted Or refused and it generates, if 
necessary, manufacturing jobs for which no orders have yet been 
received. The purchasing function takes care of the ordering of raw 

material from the suppliers. The purchasing function is also only found 

in the factory controller. The process planning function, with help of the 

recipes, defmes the way material is manufactured. The process inter
preting function is needed to detennine the next operation a piece of 
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material has to undergo. This new operation is determined from the 
process plan and the infonnation about the status of the material. 

In this thesis the planning of the recipes is not considered. It is related 
to the product and the technology that is used to manufacture the product 
and lies outside the scope of the present work. The balancing problem 
is concerned with the attuning of the production capacity of a factory to 
the expected market demand. The balancing of a factory states goals for 
production levels and considers the necessary capacity of the factory. 
Because the configuration of the factory is supposed to be static, this 
function is performed before the control system starts to operate and it 
is not considered as a part of factory control. 

The term capacity planning is used for the function of the factory 
controller that states norms for the manufacturing system, which are 
based on expected and real demand. Capacity planning tries to satisfy 
demand as well and as far as possible and to utilize the system as well 
as possible. Problems in satisfying consumer demand have two aspects. 
Demand is characterized by its random character, with peaks that are 
often bigger than the maximum production rate of the manufacturing 
system. On the other hand, the consumer demands delivery times that 
are often not realizable with. production to order. The means by which 
the capacity planning can absorb demand fluctuation are the variation 
of production rate by adding production capacity Or introducing idle 
times, Or the spreading of production over time and introducing in

ventories. If these do not work, management has to negotiate with the 
consumer to introduce delays and backlogs, or has to refuse orders. The 
means by which delivery times are reduced are based on the same 
principles. 

Scheduling 

Scheduling is the assigning of a start time and a completion time to an 
operation, together with the specification of the material and the 
resoW'ce involved. This assignment depends on the operations the 
material has to undergo, on the operations the resource is able to execute, 
and on the capacity available for operations in the manufacturing 

system. 

The scheduling problem is classified in the literature [Graves 1981] as 
being either dynamic or static and either detenninistic Or stochastic. In 
practice a manufacturing system is dynamic and stochastic. 'Dynamic' 
means that jobs anive during the time considered, 'stochastic' means 
that some events in the system have a random nature. These events are 
the demand of jobs, the process time of a job, the breakdown of 
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machines, and errOrS during the execution of an operation which lead to 

rework, repair or rejection of material. 

In a manufacturing system material is directed aCross the resources as 
efficiently as possible. The efficiency is usually realized by the opti
mization of a measure of performance (the optimization criterion) that 
is related to the resources or to the material in the manufacturing system. 
Scheduling analyses the future in order to take decisions that are to be 

executed in the future. The optimization attempts to maximize the 

perlonnance of a manufacturing system. Unlike planning; scheduling is 

not concerned with negotiations with consumers, but rather with the 

work that has to be executed. by the resources. Scheduling receives its 
jobs from planning or from a master controller. 

Scheduling is about taking decisions concerning the sequence in which 
operations are executed wheIl; and on what resources. The subfunctions 

of scheduling are releasing~ allocating, sequencing and dispatching. 

Releasing has to do with the moment of release of new material in a 
manufacturing system. In order to do this the controller has to take 

decisions and to communicate. The allocating function decides on 
which resource material is processed. The sequencing function decides 
on the sequence in which material is processed on a resource. Both 
allocating and sequencing are related to taking decisions. The dispatch
ing function takes care of the sending of a command to a resource. 
Dispatchlng has to do with the communication; no decisions are 

involved. 

The releasing of a command or material in the manufacturing system is 

very important. The material that is released has to be processed on the 
necessary resources. If too much material is released into the manu
facturing system, the system becomes overloaded. An overload results 
in extremely long lead times of the material, and in high inventory 

levels. 

In the literature the sequencing of commands to resources has been more 

extensively researched than the releasing of jobs to a system. But recent 
findings show that a releasing strategy is as important as, if not more 

important than the sequencing strategy [Lou and Kager 1989, Lozinski 
and Glassey 1988, Glassey and Resende 1988, Wein 1988; Wiendahl 
1987]. 

When looking at scheduling (especially the subfunctions releasing~ 

allocating and sequencing) one finds that there are two extreme ap

proaches: predictive scheduling and reactive scheduling [Kempf 1989]. 

But both methods have thei.: disadvantages: predictive - the future is 

never the way you planned it; and reactive - if you had known things in 

advance you always could have done better. A purely predictive schedule 
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is difficult to calculate and has to be recalculated every time something 
goes wrong. With big, complex systems in particular, this results in a lot 
of useless calculations, which is why a reactive approach is preferred. 
This means that a decision is taken at the moment the actual choice 
oCcurs. If system performance can be increased by including prediction 
this may be done by signalling future choices. But lhis signalling, or 
claiming, has to be kept to a minimum. 

Predictive scheduling is characterized by the fact that the scheduler 
calculates a schedule in advance. This schedule states the time at which 
a resource has to perform operations on material. The calculation of an 
optimal schedule is in practice not possible, it takes too much time. Even 
the calculation of semi-optimal schedules, with reasonable scheduling 
problems, requires long computation times. Large problems often 
remain impossible to solve. Once a schedule has been calculated it is 
used to strut all action on time. But small disruptions make the rest of the 
schedule invalid, precautions have to be taken so that the deviation 
between the reality and the schedule is kept to a minimum, Or a new 
schedule is calculated with the disruption included. A schedule is~ fot 

instance j only valid for the static case if no new jobs arrive during the 
processing of the jobs in this schedule. 

A different approach to calculating a schedule in advance is to take 
decisions when a choice problem appears: reactive scheduling. TIris 
approach is used in this study. When considering a reactive algorithm 
two kinds of decisions have to be taken. Material becomes available and 
has to be allocated to a resource and there is more than one resource idle 
and capable of processing the material; the allocating problem. Or a 
resource comes available and there is more than one piece of material 
waiting to be processed. Some material is chosen: the sequencing 
problem. In this case sequencing rules are used to differentiate between 
the different possibilities. The use of sequencing roles results in non
delay schedules. A lot of sequencing rules have been described in the 
literature l Pan walker and Iskander 1977, Montazeri 1987] but no simple 
rule has been found that functions well in all situations. Every case has 
to be considered separately to find good sequencing rules. The effec
tiveness of a sequencing rule depends, among other things, on the 
optimization criterion that is used, On the resource configuration and on 
the manufacturing process. 

The dispatching function is concemed with communicating the deci
sions of the controller to the resources. Because of this, dispatching 
strategy is closely related to the allocating and sequencing strategy of 
the controller. The dispatching algorithm of a controller has to be 
consistent with the releasing algorithm of the resources in the manu-
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factoring system. The releasing algorithm of a controller has to be 
consistent with the dispatching algorithm of the master controller. 

In order to solve the scheduling problem the controller may want to 
know what the performance of the resources is. Estimations of process 
times, down times and yield are needed. These data are recorded during 
the functioning of the manufacturing system. If the recorded data are 
used for scheduling purposes, great care has to be exercised because this 

recording results in a feedback loop which may lead to instabilities. 

Release strategies 

A conunon release strategy is the use of unifonn starts, where new work 

into the manufacturing system is released at a constant rate equal to the 
desired throughput. The unifonn starts rule is an open loop strategy, the 
release rate is independent of the status of the manufacturing system 
(e.g. the inventory level). Another release strategy is the fixed-work-in
process rule (Fixed-WIP), new work is released at the moment the 
manufacturing of a product is finished. The work load regulating input 
policy [Wein 1988] releases new work in the manufacturing system if 
the total amount of remaining work for the bottleneck resource falls 
below a prescribed level. The release rate is derived from the throughput 
of the bottleneck. The starvation avoidance (SA) rule [Glassey and 

Resende 1988, Lozinski and Glassey 1988] is similar to the work load 
regulating input policy, but it uses a virtual work load which is the wOrk 

content expected to anive at the bottleneck within a given time. New 
work is released if the virtual work load falls below a given level. Work 
load oriented job release [WiendahI1987] uses a fixed plan period for 
which planned values of throughput, lead time and inventory level are 
detennined. Work is released in such a way that the start inventory plus 
the released work (both expressed in hours) is equal to the sum of 

planned mean inventory and the planned finished work. Per reSOurCe an 
estimate of the work load is made and if this work load exceeds a 
predetermined limit, the release of work in the planning period is 
stopped. 

Priority rules 

Some priority rules and their classification are mentioned below. All 
these rules are intended for the sequencing problem: the allocating 
problem is usually solved on a first-come-first~served basis or ran

domly. Of course it is possible to use other priority rules to solve the 
allocating problem. 
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Priority rules related to processing time use the process time of a 
command or the process time of the supercommand (the command from 
the master) Or the order to which the command belongs, to discrim.inate 
between commands. The SPT rule (shortest-process-time) gives the 
highest priority to the command with the shortest process time. The 
SRPf rule (shortest-remaining-process-time) gives the highest priority 
to the command that belongs to the supercommand that needs the least 
process time to finish. 

Priority rules related to due dates base their choice on the due date of the 
command or of the supercommand or the order to which the command 
belongs. In the first case a due date for every command is derived from 

the due date of the supercommand or order. Examples of priority rules 
are the EDD rule (earliest-due-date) which gives the highest priority to 
the command which belongs to the supercommand or order with the 
earliest due date. The OPNDD rule (earliest~operationa1-due-date) uses 
the due date of the conunand. 

Priority rules related to arrival times and random rules use the sequence 

of arrival of commands to discriminate between them. A very well 
known rule is the FIFO rule (first-in-first-out) Or PCPS rule (first-come
first-served). The command that arrives first has the highest priority. 
LIFO (lastmin-first-out) or LCFS (last-come-frrst-served) gives the 
highest priority to the command that arrived last. Instead of the arrival 

time of the command the arrival time of the order or superconunand can 
also be used. The RANDOM rule chooses a command from the queue 
at random. 

Other priority rules are related to the nwnber of operations or are related 
to costs, for instance by using the economic value of commands to 

discriminate between them. Priority rules related to slack use the 
difference between the time needed to execute a conunand and the time 
available to execute the command to assign a priority to a command. 
Priority rules related to resources use the work in the queue of the 
resource which is to be visited after this reSource by the command, in 
order to discriminate between commands. 

Simulation 

Besides priority rules, simulation may also be used to decide which 
material has to be processed first. In this case the different possible 
choices are simulated in a model. The simulation resul ts in a performance 
report for a number of possible choices. The choice that leads to the best 
perfonnance report is chosen. Por the simulation an exact status of the 
system has to be fed to the simulator in order to obtain a reliable result 
[Doulgeri 1987, Doulgeri ct at 1987, Steyns 1991]. Simulation is used 
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to determine differences between the transforming of one piece of 
material and the transforming of other pieces of material. The simula
tion uses priority rules and the material used in the simulation with the 
best result is also used for the real command. 

Monitoring 

Monitoring is concerned with the processing of information from 

resources. When we speak about the job progress recording subfunction 
we mean the recording of the progress of a job that informs the process 

inteIpreting function about the new status of the material and that signals 
the finishing of a job. The resource activity recording function keeps 
track of the momentary status of resources in order to be able to allocate 
new jobs to resources. The perfonnance measuring function collects 
statistical excerpts of the resources to be able to keep track of the 
perfonnance of the system. 

The events in the manufacturing system are recorded. To be able to 
direct the material through the manufacturing system information on the 
material is kept (job progress recording). This information contains the 
operations that are perfonned (past), the operation that js being performed, 
together with the resource involved (present), and the operations that 
have to be perfonned (future). Further information needed for sched~ 
uling is the due date and the arrival date of the material and information 
related to processing time: the process time (left to be executed), the wait 
time and the lead time of the material. 

To be able to command the resources infonnation is kept about the 
material processed by the resources (past), the material in progress in the 
resource (present) and the material waiting for the resource (future) 
(resource activity recording). Because the material processed by a 
resource increases in time, it is possible to keep only statistical excerpts 
about the past or to record only the m.aterial that was processed the last 
24 hours. It also has to be known of a reSource whether there is still free 
capacity and, perhaps, when this capacity became available. To evaluate 
the perfonnance of a manufacturing system information per resource is 
collected and infonnation about the way jobs from the master are 

executed is collected. 

When considering the manufacturing system perfonnance (perform
ance measuring) the mean lead time, the mean input, the mean throughput, 
the mean inventory level, the due date reliability and the yield are most 

interesting. Because not all jobs have the same work contents, the 
parameters lead time, input, throughput and inventory level are also kept 
in a weighted fonn, with their process time (;;;;;; work contents) as their 
w!:ight. The due date reliability plays an important role at the factory 
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level; the other measures are important at all control levels. Every 
resource has to record these values. For leaf resources the idle time, the 
busy time and down time are also of interest. Looking at the jobs from 
the master, the process time, the wait time and the lead time per type of 
job are of interest. The type of a job is determined by the operation. 

Part of the pedormance measuring is a logging function for material and 
for reSOurces. These lists are used to replay the events in the manufacturing 
system. This information is especially interesting for an analysis of the 
behaviour of the manufacturing system in relation toerrofS thatoccUITed. 

3.3 Control configuration 

In this section we discuss the factors that influence the control con
figuration, dealing in turn with the controller hierarchy, the possible 
classification of controllers by distinguishing the stimulator (consumer 
or supercontroller) and the controlled reSOUIces (expanded or leaf 
resources). This results in four controller categories, which are applied 
one or more times to obtain a hierarchical controller. The distribution of 
the control tasks in relation to the availability of information is discussed, 
just like the kind of decisions that have to be taken and when these 
decisions have to be taken. 

(X>ntroll/t, 

oLJt&ido 

outBidlii 

Expanded 
Resource 

Figllf'e 3.3. The system and model hierarchy of a manufactw·ing 

system with one expanded resource. 
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The relation between recipe structure, system hierarchy and the influ
ence of the controller is discussed with reference to an example, 
followed by a discussion of the controller decisions. These decisions are 
related to material exchange, transport and the processing of material. 
The generation of thege operations and the time at which the commands 
are sent will be described. 

Here, a manufacturing system is considered to be a system with one 
central controller, one transporter, one store and one or more processing 
or expanded resources (Figure 3.3). A manufacturing system itself 
fonTIS an expanded resource. The control system of a manufacturing 
system has a tree structure; the nodes are formed by the controllers, the 
branches by the connection between the controllers, the leaves are 
formed by the leaf resources (= machines). Two controllers which are 

connected by a branch have a super/sub relation. The highest of the two 
is the supercontroller (master), the other the subcontroller. The topmost 
node is the central controller (the factory controller). this controller has 
no supercontroller. Controllers that are equally distant from the central 
controller (which means the number of branches between the central 
controller and the controllers is equal) form a so-called control layer. 
The vertical direction is related to the super/sub connection between 
controllers. The horizontal direction has to do with controllers of the 

same layer. 

The processors of a manufacturing system exchange two kind of 

objects: information and material. In the machines the material and the 
infonnation meet. Controllers process only information. The material is 
transported by transport systems, the stores of resources constitute 
interlaces between the different transport systems. Material is exchanged 
between resources and there are always machines involved 

A disadvantage of an extra control layer is the introduction of extra 
transport systems and stores. This complicates the material route and it 
increases the material handling time and the material waiting time. It is 
possible to share transponers and stores between expanded resources; 
this, however, complicates the control problem substantially, and from 

that point of view it has to be avoided as far as possible. In this study a 
controller will always be associated with its own private transporter and 
store. 

The character of the control system is determined by two factors. First, 

the controller is either independent and receives its stimuli from the 
consumer, or else the controller is a slave and receives its stimuli from 
a supercontroller. Second, the controller controls expanded resources 
which are decoupled by their internal stores, or the controller controls 
leaf (processing) resources which are coupled. Leaf (processing) re
sources Or machines are coupled because these do not contain intemal 
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Table 3.1. Controller categories. 

stimulator 

resources 

decouplad 
processing 
resources 

coupled 
processing 
resources 

consumer 

factory controller 
controlling 

expanded resources 

factory controller 
controlling 

leaf resources 

superoontroller 

manufacturing cootroller 
controlling 

expanded resoul'OOS 

manufacturing controller 
controlling 

leaf resources 

stores (see Section 2.6), which means that a leaf resource cannot start 

receiving and processing new material until the processed material has 
been removed. This leads to four controller categories, as shown in 

Table 3.1. 

The (independent) factory controJ1er is concerned with the interaction 

of the factory with consumers and suppliers. The interest is directed at 

the allocation of work to capacities; here the goal is to meet consumer 

demands as welJ as possible. Factors like lead time, throughput and due 

date playa rok. The factory controller accepts Or rejects orders, with the 

help of the configuration information, the status infonnation of the 

resources and the already accepted orders. The capacity planning plays 

a key role in the acceptance of orders. The (slave) manufacturing 

controller has to execute the work it is offered; the goal is to minimize 
the lead time at a given throughput. The controller has no possibility to 

refuse the execution of work, it has to allocate material to resources and 

to sequence material on resources. The process planning specifies with 

help of the recipes how the material is to be manufactured, and is found 

in both types of controllers, just like the other functions) scheduling and 

monitoring. 

The controller of leaf processing resources has to avoid a system 

deadlock. A machine has no intemal store, it is necessary to remove the 

material at the moment a machine has finished processing and the 

destination machine has room for the material and has not started 

processing. The problem of deadlock is not considered for the controller 
of expanded resources: it is supposed that the stores are big enough to 

store the material that is waiting to be processed. The actions that have 

to be directed have a much more parallel character, many actions are 
independent of each other, in some circlUllstances the actions disturb 

each other. 
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In the hierarchical control system, the responsibility for material is 
transferred from one controller to another controller or to machines. The 
control strategy specifies when the responsibility is delegated. By using 
more control layers it is possible to distribute the control of a manu
facturing system. The control task of the highest controller is more 
general. A controller in a high layer processes aggregated data. The 
decisions that have to be taken are spread more widely in time and 
concem less details.ln the sub layer only a subset of the control problems 

is concerned, but in greater detail and also in smaller time ranges. As a 

consequence there are more but simpler controllers and the control tasks 
are distributed over several controllers. A disadvantage of more hier
archical layers is that a controller not only has to take more general 
decisions, these decisions are also based on more general information. 
TItis can only be avoided with a heavy increase of the conununication 
volume between controllers. 

Sometimes detailed data that allow the best decision to be taken are not 
available to the responsible controller. This information is either present 
inside one of the resources, Or else outside the system. In the flIst case 
extra conununication is necessary to make the information available to 

this controller. fu the second case two situations are distinguished. First, 
the infonnation is available at a higher level, which means that the 
decision has to be taken at that higher level. Second the information is 
available in the same layer or in a lower layer, in which case the 
information has to be transferred to a higher common controller. This 

controller also has to take the decision. 

Information is exchanged in the vertical direction, status information 
from bottom to top and commands from top to bottom. Decisions that 
involve global information have to be taken at the top. If information 
from inside the resource only is needed, the decision can be taken in the 
resource controller. AcontroUer may know what happens in the resources 
or in the expansion of resources. Information from resources that are not 
downward connected is not present in a controller. 

Resources do not necessarily process material from their store in a first

come-flIst~served order. This is one of the reasons why a resource has 
stores. The sequence in which material is processed is a responsibility 
of the resource controller. This has the disadvantage that the sequence 
depends only on the status inside the resource. If status information from 
outside the resource is necessary to determine the sequence then this 
decision has to be taken at the level where this status inforrnation is 
available. On the other hand the suboptimization by a controller may 
disturb the optimization that the supercontroller intended to reach. 

The optimization of the performance of a manufacturing system de
pends to a degree on the scheduling. In order to realize a global 
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optimization, scheduling decisions have to be taken at the top level, 
taking into account all detailed status information at the lower levels. or 
else the resources have to execute operations in a determined time. The 
first situation leads to controllers between the top and the machines that 
merely pass on information. In the second case the resources have to be 
inflexible with no scheduling possibilities for the controllers below the 
top controller. In the ideal case (to reach global optimization) scheduling 
problems are solved as far as possible in the top layer of the controller 
structure, the number of control layers is kept as small as possible, and 
the lower layers are increasinglY inflexible with decreasing uncertainty 
in their behaviour. 

The hierarchical structure found in the control system is also found in 
the description of the manufacturing process: the recipes. A recipe is 
started or invoked by an operation and the manufacturing system is the 
resource that executes this operation. Usually the recipe contains a 
number of sub (processing) operations that have to be executed on the 

Resource (mOdel) hierarchy 

Shop1 

L-Celll 

I-- Station1 

LSlalion2 

Recipe (model) hierarchy 

Shopl capabilities: 

ShopOperation 1 -" sequence (celiOperation 1 on ce1l1) 
CeUl capabilities: 

celiOper'ation1 -> sequence (statlonOperatiool on station 1 , 

stationOperatlon2 on station2) 

Stationl capabilities: 

stationOperatlon1 -> ... (2 hours) 

Station2 capabilities: 

stationOperation2 "> ... (4 houts) 

II Shopl capabilities: 

shopOpera1ion1 "> sequence (celiOperationl on cam, 
celiOperation2 on cell 1 ) 

Celll capabilities: 

celiOperation 1 -" sequenCfij (stationOperation 1 on station 1) 
celiOperatlon2 -:;. sequence (stationOperatlon2 on station2) 

Stationl capabilities: 
stationOperation1 -> .. , (2 hours) 

Station2 capabilities; 
stationOperation2 "> ... (4 hOur'S) 

Figure 3.4. Example of relation between system configuration hierarchy 

and recipe hierarchy. 
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resources in the manufacturing system. The recipe hierarchy and the 
control system hierarchy, however, do not necessarily correspond in a 
one-to-one relation. There may be fewer resources than operations or 
fewer operations than resources. 

The recipe cOnfiguration influences the scheduling poSSibilities of a 
controller. The next example illustrates this problem. A shop contains 
one cell and the cell contains two stations. The factory control level is 
omitted in this case because it does not add any value to this control 
aspect. The manufacturing process consists of an operation on stationl 
followed by an operation on station2 (Figure 3.4). 

In situation I the shop controller starts the manufacturing process with 
the sending of operation cellOperatonl to the cell. The cell controller 
sends first stationOperationl to stationl and afterwardS it sends 
stationOperation2 to stationl. In situation II the shop controller first 
sends ceUOperationl to the cell, the cell controller sends in reaction 
stationOperationl to station!. Mterwards the shop controller sends 
cellOperation2 to the cell and the cell controller then sends 
stationOperation2 to station2. 

It is seen that the influence of the shop controller on the progress of the 
manufacturing process differs for both recipe configurations. In sima
tion I the cell controller decides the start of operations on the stations. 
The shop controller is able to influence the start of stationOperationl, 
by delaying the dispatching of cellOperationl. If, for the execution of 
shopOperationl, it is important that the shop controller is able to 
influence the start of operation stationOperation2, the recipe configura
tion of situation II has to be used. The shop controller needs the status 
of the two stations and the commands from the shop have to be sent 
straight away to the stations. Both pass via the cell controller. This 
situation II degrades the cell controller to an information passer, the 
transport between the two station operations now becomes a responsi
bility of both the shop and the cell controller. The shop controller has two 
consecutive operations without transport in between. This is an wlUsual 
situation, most of the times between two operations the material has to 
be transported from one resource to another. Material flows from cell 
store to stationl, to the cell store, to station2 and back to the cell store. 

Types of operations 

To control the manufacturing process three kinds of operations are used: 
processing operations, transport operations and material exchange 
operations (see Section 2.6). These operations are defined before the 
start of the manufacturing process or on line during the execution of the 
manufacturing process_ All operations the material has to undergo may 
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be fixed beforehand. A second possibility is to fix only the processing 
and the transport operations and generate the material exchange opera
tions on line. The third possibility is to generate both the transport and 
the material exchange operations on line. This means that only the 
processing operations are fixed. The most complex situation arises lithe 
processing operations are also variable and depend on the way the 
manufacturing process is executed and the manufacturing system sta~ 
tus. Verifying introduces the possibility of changing the COurse of the 
manufacturing process. 

The processing operations are deduced from the manufacturing technoJ
ogy that is chosen, and from the resources that are applied in the 
manufacturing system. The freedom of choice for these operations is 
restricted. The support operations (transport and material exchange), 
too, depend on the operational status of the manufacturing system. 
Because of this it is prefen-ed to leave the support operations out of the 
manufacturing process description (the recipe) and let the controller 
generate the appropriate support operations on line. It also means that 
the recipes are usable for all manufacturing systems that are based on the 
same manufacturing technology. 

When commands are issued 

The controller directs the actions in the manufacturing system; there are 
several strategies possible for the perfonnance of this task. In this 
section we discuss the moment at which a command is issued. The 
commands are divided into the categories: material exchange, transport 
and processing. 

Material exchange commands 

The material exchange is considered first. With material exchange a 
transporter is always involved. The moment to issue a material exchange 
command is evident. This has to happen when both sender and receiver 
of material are physicaJly connected and ready to pass material. The 
send orreceive material command is given at the moment the transporter 
has arrived. An exchange command may only be given to a resource if 
the material is present in the resource. If material exchange commands 
are given in an earlier stage reSOurces become blocked, which disables 
further material exchange with the resources involved. 

The send and receive material commands may be send by the controller 
to the transporter and another resource. The other resource is either a 
store, an expanded reSource or a processing machine. If the resource is 
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expanded the subcontroller has to pass the exchange command to the 
store involved. 

Material exchange commands are needed because material does not 
necessarily leave stores and processing machines in the sequence it 
entered. The simplest way to control material exchange is by letting the 
transporter send infonnation about the material it want .. to receive from 
a resource (send material command). The receive material command is 

superl1uous, it is incorporated in the sending of material} under the 
condition that the material receiver (a store Or a processing machine) is 
ready and able to receive and identify the material. This solution makes 
storage independent of the manufacturing controller. The rnanufacN.r
ing controller only invokes the transport connnand and, after the 
executionoftheconunand,itreceivesatransportreport, whichconfinns 

that the material is stored in the destination resource. As a consequence 
the manufacturing controller does not know what material has arrived 
in and has left its store. In our model the transporter will send "send 
material" commands (or material requests) to stores and processing 
machines and "receive material" commands will not be issued. 

Transportcolnnnands 

A transport command is issued after the material has become available 
for transport. There are two extreme moments in time to send these 
transportcoromands. Start transportation at the earliest possible moment} 
when a processing resource has completed its operation or when 
material arrives at a manufacturing system (early transport). Or start 
transportation at the latest possible moment when the destination 
processing resource is ready to start a new operation (late transport). The 
transport command is sent by the controller to the transporter. 

With early transport the controller has to know what the destination of 
the material is at the moment a processing operation is finished. In case 
of multiple destinations, a choice between destinations may have to be 
made before the resource is available. This disadvantage can be over

COme by avoiding the possibility of multiple destinations; by configuring 
resources in such a way that resources which perform the same operation 
have a common input store, for instance. An advantage of early transport 
is the good overview that results. All material is waiting in the store of 
the resource that is going to process the material. 

With late transport material always anives too late, the transport starts 
when the processing resource becomes idle. The resource remains idle 
during the transport of the material. The overview of the manufacturing 
system decreases. The material that has to be processed on a resource is 
waiting in expanded or processing resources that just have processed the 
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Table 3.2. The activities as a/unction of material position and 

rCJponsible control level /01' early transport. 

position 
responsible control level 

of material 
manufacturing 

controller resource 

store Schedule transport capacity 

transporter transport material 

resource1 SChedule resource1 capacity 

process material 

SChedule transport capacity 

transporter transport material 

resource2 schedule resource2 capacity 

process material 

etc. 

material or it is in the store of the manufacturing system. Multiple 
destinations, however, do not cause any problems. 

Tables 3.2 and 3.3 show at what material position control decisions are 
taken. With early transport the material arrives in the store, here the 
controller schedules the material to the transport capacity. The material 
is transported to the resource. Mter the material has arrived in the 
resource, the controller schedules the material to the resource capacity. 
The process command is sent to the resource and the material is 
pwcessed in the resource. After the material has been processed the 
material is scheduled to the transporter again illld so on. From Table 3.2 
it is clear that it is impossible to use early transport for the control of 
(coupled) leaf resources. It is impossible to put material into a busy leaf 
resource and schedule it to dIe leaf resource afterwards. The capacity of 
a leaf resource has to be available before the material is transported to 
it. With late transport the material is scheduled to reSource capacity and 
afterwards the material is scheduled to transport capacity. Then the 
material is transported, the process command is sent and the material is 
processed. This cycle repeats until the manufacturing process is fin
ished. Only after the last processing operation the material is scheduled 
right away for transport to the store. Other strategies for sending 
transport commands are possible: use late transport for the operations 
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Table 3.3. The activities as a/unction o/material position and. 

responsible controllevelfor late transport. 

responsible control level 
position 

of material manufacturing 
controller resource 

store schedule resource1 capacity 

schedule transport capacity 

transporter transport material 

resourw1 process material 

schedule resource2 capclty 

schedule transport capadty 

transporter transport material 

I'EIsourC92 process material 

etc. 

S5 

that can take place on multiple resources and early transport for 
operations that take place on unique resources, or start transportation a 
short time before the destination resource becomes idle. In Our model 
(factory and manufacturing) controllers of leaf resources apply a late 
transport strategy. For controllers of expanded resources either an early 
or a late transport strategy may be chosen. The late transport strategy is 
implemented in such a way that it is possible to start transportation 
before capacity is available in the destination resource. 

Processing commands 

A reSOurce cannot process material for which it did not receive a 
command or execute a command for which the material has not arrived. 
The issuing of processing commands leads to two extreme strategies: 
material driven and command driven manufacturing. The earliest mo
ment to issue processing commands is when the manufacturing process 
is started. This way of issuing commands leads to a material driven 
manufacturing system. The other possibility is to issue processing 
commands in order to start the processing of the material. This is a 
command driven manufacturing system. 
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In a material driven manufacturing system the route of the material is 
fi xed at the start of the manufacturing process. The fixing of the material 
route has a big disadvantage, it reduces the on line route flexibility. In 
case of machine failure, for instance, it is impossible to change the route 
to a resource that has not broken down. The arrival of material at a 
resource triggers the execution of the manufacturing process. The 
bottom controller (of the leaf resources) has to collect all processing 
operations and is able to schedule these, thus realizing local optimiza
tion. The scheduling of transport operations is the only way to enable 
some global optimization. One way to implement a material driven 
strategy is by connecting the recipe to the material, and to use this for the 
control of the resources_ 

A command driven strategy sends a command at the moment that an 
operation has to be started on a reSOurce. This means that the controller 
decides at the; latest possible moment which resource is to be used to 
process what materiaL Global optimization is possible and material 
routes are determined during the manufacturing process. The controller 
needs the status of the resources to start operations, so the resources have 
to send their status information to the controller. The command driven 
manufacturing system has to take care of transport before the actual 
process command is issued. Our model is based on a command driven 
control strategy. 

The configuration of the controller is influenced by the. way in which it 
is stimulated and by the type of the resources controlled. Two categories 
of control configuration may be distinguished on the basis of the 
stimulator: the factory controller and the manufacturing controller. The 
factory controller implements the following functions: capacity plan
ning, marketing, purchasing, process planning, process interpretation, 
allocating, sequencing; dispatching order progress registration, resource 
activity registration and perfonnance measurement. The IllaIlufacturing 
controller implements the functions of process planning, process in
terpretation, releasing, allocating, sequencing, dispatching, job progress 
registration, reSOurce activity registration and performance measure
ment. Other factors influencing the controller configuration are the 
strategies chosen for commanding the material exchange, the transport 
and the processing. The total control system configuration is determined 
by manufacturing process constraints, resource constraints and control 
constraints. Here factors such as the nwnber of control layers required, 
the need fol' infonnation, the availability of information, the need for 
global optimization and the way the recipes are built up playa role. In 
the next section the communication between controllers is considered. 
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3.4 Communication protocol 

The controller of a manufacturing system communicates with its master 
(superconttoller) and its resources. The pUIpose of communication is 

the exchange of information and the synchronization of actions. The 

communication provides infonnation from and to the supercontroller to 

and from the controller, to enable the controller to receive commands for 
executing a manufacturing process (releasing), and it provides informa

tion to resources, to start the execution of operations in the resources 

(dispatching). The communication takes place with the exchange of 

objects, which are either commands from the controller or statuses and 
results from the resources. The commands for resources start the 
processing of material or request infonnation. The results are responses 

to commands, while statuses are not necessarily related to a command. 
The status or result contains information about the status of material 

and/or information about the status of resources: information about the 
available resource capacity is of particular interest to the controller. The 
resource status infonnation is used to decide what new work has to be 
done by a resource (allocating and sequencing). Material status infor
mation is used to discover what new operation has to be perlonned on 

material (process interpretation). Status information is also used for the 
monitoring function. 

The way the communication takes place is defined by a communication 

protocoL The communication protocol defines the contents of the 

messages and at what point in time the messages are sent. The com
munication protocol has to be able to control all kinds of manufacturing 
classes (job shop, flow shop, parallel shop and single shop). The 

contents of the messages have to be limited and the number of messages 
sent has to be limited. 

Usually information is exchanged between a controller and its 

supercontroller and between a controller and its resources. The resource 
is either a machine or an expanded resource; in the latter case the 

information is sent to a subcontroller. The exchange of information in 

this fashion is in the vertical direction. Sometimes the volume of 
communication can be restricted by letting resources communicate with 

each other, rather than using a common controller. Such interactions 

carry with them the risk that interaction paths between resources have 

to be introduced which depend on the specific manufacturing process. 

For this reason resources are not connected to each other. The only 

exception is the transporter. The transporter is physically connected to 

other resources in order to ex.change material; to control the material 
exchange an information exchange from the transporter to the involved 
processing machine or store is also allowed. 
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A controller of a manufacturing system, which knows the exact status 
of all the resources, is able to control the whole manufacturing system 
in the best way. But it has to deal with every signal and control all 

activity) which means a lot of communication and calculation. The 
reSources send excerpts of their status to the controller, in order to reduce 
the communication volwne. The controller is able to use these excerpts 
to help allocate and sequence material. The status of a resource is 
represented at two places, the status representation in the manufacturing 
controller has to be correct and consistent with the status of the resource. 
This places certain demands on the communication protocol. The 
sophistication of the communication protocol has to be weighed against 
the commllllication volume. Complex communication protocols allow 
the controller to acquire more infonnation and to control on a more 
detailed leveL Simpler communication protocols go hand in hand with 
smaller communication volumes and the delegation of detailed control 
decisions. 

Four communication protocols are considered for the execution of work 
on a resource. These protocols use three different sets of messages: 

1 command, result (protocol 1) 

2 status, command, result (protocol 2) 
3 statusRequest, status, command, result (protocol 3 and 4) 

The messages arc sent in the sequence that they are mentioned. The 
manufacturing controller uses the protocol for the release of work from 
the supercontrolIer_ The supercontroller also has to use the same 
protocoL StatusRequests and commands are sent to the controller; status 
and result are sent from the controller to the supercontroller. The 
manufacturing controller also uses the protocol to dispatch work to 
resources; the controllers of the resources use a matching protoco1. 

supercontroUar controller resource 

command "-

subcommand 

subresult 

-_. 

subcommand ... 

subresult --. result time 

! 
Figure 3.5. Messages between control levels as/unction o/time/or 

protocol!_ 
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Subcommands and substatusRequests are sent to the resources; 
substatuses and subresults are sent from the resources to the controller. 

In the first protocol (see Figure 3.5), the manufacturing process is 
invoked by the command. The subcommand dispatches work to the 
resources. The subresults are used to infonn the controller about the 
capacity of the resource and the progress of the manufacturing process. 
The finishing of the manufacturing process is confinned by a result. The 
result also signals the capacity of the manufacturing system. A com
mand results in a subcommand. The subresult is used to generate a new 
subcommand or a result. 

In protocol two (Figure 3.6) the status is used to signal the capacity of 
the manufacturing system to the supercontroller. The status or the 
capacity available is calculated with help of the substatuses and/or the 
subresults of the resources, which give indications about the capacity of 
the resources. The work for the manufacturing system is sent with the 
command. The dispatching of work to resources is done with help of the 
substatuses. The work is sent with the subcommands. The subresults 
indicate the progress of the manufacturing process. The completion of 
the manufacturing process is announced with a result. In protocol two 
substatuses are used for two purposes, to generate a status and to 
generate a subcommand. 

SUpercontrolier controller resource 

'""'-
substatus 

."" 
substatus 

..... 
status 

command ... 
-- substatus 

subcommand 
p 

subresult ...... 
""" 

substatus 
.... 

subcommand 

subresult 
.... 

time result 

l 
Figure 3.6. Messages between control levels as function o/time/or 

protocol 2. 
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supercontroller controller resource 

statusRequE!st 

subslatUsRequest ~ 

substalUSRequest ... 

. --
substatus -
$ubstatus 

.... 
status -

command 
p 

subCommand ..... 

subcommand 

". 

Subresult 
.... 
.... subresult 

result 
..... 

time 

1 

Figure 3.7. Messages between control levels as function of time for 

protocol 3-

The set of messages statusRequest, status, command and result leads to 

two different protocols. The first (protocol 3 is printed in Figure 3.7) 
uses the messages statusRequest and status for the determination of the: 
capacity planning function of the factory controller. The second (pro
tocol 4 is printed in Figure 3.8) uses the messages statusRequest and 
st.atus for the on-line allocation and sequencing of work on resources. 

The statusRequest is used to test whether it is possible to execute work. 
The stat.usRequest generates substatusRequests; the substatuses answer 
these subrequests, they give information about the capacity of the 
resources and are used for the generation of the status which declares the 
capacity available in the manufacturing system. The work the manufac
turing system receives depends on the status sent and comes in the fonn 
of a command. The work is distributed in the fonn of subcomroands. 
This has to be done upon the arrival of the command to infonn the 
resources about the work they have to execute. The resources need to 
know their work load in order to be able to answer future 
substatusRequests concerning their capacity. The progress of the 
manufacturing process is regulated by the material transport and recorded 
by the subresults. The completion of the manufacturing process is 
reported with a result. This manner of control leads to a material driven 
manufacturing system, where the load of the manufacturing system is 
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superconlrolier controller resource 

slatusAeQuest 

status .... 
cornmaod • 

subslatusRaquest 

substatus 

subcommand 

- subresult 

." 
............... RRoon.-t .... 

subStatus 

subcommand -
subr&sult 

result tlma 

t 
Figure 3.8. Messages heMleen control levels as junction of time for 

protocol 4_ 

controlled with help of a question/answer protocol preceding the start of 
the manufacturing process. 

In protocol 4 the statusRequest and status are used for the on-line 
releasing of work in the manufacturing system. The statusRequest is 
answered by the controller with help of the information available, 
without consulting the resources. The status indicates the capacity of the 
manufacturing system and influences the work released in the manu
facturing system. The manufacturing process is started with a com
mand. To allocate and sequence the work the controller consults the 
resources with help of substatusRequests. The answers of the resources, 
the substatuses, are used to allocate and sequence the work and to 
dispatch it to the resources in the form of sUbcommands. The progress 
of the manufacturing process is recorded by the subresults and the 
completion of the manufacturing process is signalled with a result. 

The choice of a protocol 

Protocol 1 allows no separate communication about material status and 
resource capacity. In expanded resources this is a particularly severe 
drawback, which is why protocoll has been rejected. Protocol 3 leads 
to a material driven manufacturing system and the decisions about 
resource capacity are always based on the infonnation available in the 
resource, which leads to local optimization. Unforeseen problems may 
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release; 

sand available capacity 

I'eOOive work 

-~ 

dispatd1: 

receive available capacity 

sand work 

controller resource 

Figure 3.9. The releasing and the dispatching o/work in protocol 2_ 

arise during the execution of the manufacturing process. On the basis of 
these disadvantages protocol 3 has to be rejected. 

Protocols 2 and 4 are more closely comparable. A possible implemen
tation of protocol 4 sends all available work as potential work to the 
resource (= a statusRequest). The resource filters out the infeasible work 
and accepts a part of the potential work (= a status). The controller uses 
the accepted work to decide what work the resource has to execute ("" a 
command). In protocol 2 the resource requests for work by sending all 
possible work it can execu tc to the controller (= a status), the controller 
matches this with the available work and decides what work the resource 
has to do (a command). 

For both protocols both the releasing and the dispatching of work is 
schematically reproduced in Figure 3.9 and Figure 3.10. 

status Request 

status 

command --"' 

su"""", ... ~_ 

... subs1atus 

subcommand -

release: 

receive work load 

send executable work lOad 

receive WQrk 

dispatch: 

send work load 

receive executable work load 

Send work 

suparoontroller controller feSource 

Figure 3.10. The releasing and the dispatching o/work in protocol 4 , 
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Table 3.4. Examples oj expression medium/or protocol 4_ 

expression medium 

statUSRaquest 

status 

command 

expression medium 

status Request 

status 

command 

expression medium 

statusRaquest 

slarus 

command 

expression medium 

statusRequest 

status 

command 

expression medium 

status Request 

status 

command 

jObS 

10 potential jobs 

five accepted jobs 

one jOb 

operation 

a job with any operations 

a job with a set of possible operations 

a job with one operation 

amount of material 

a job with any amount of material 

a job with a I'\'lInImUm of one and a maxilun (1/10 ~ 

a job with four pieces 

due date 

a lob to be executed as fast as possible 

a job which can be finished within one or t'W'o months 

a job that has to be finished within six weeKs 

resource 

a job to avery reSource 

jObs from the resources that can execute the job 

a job for one resource 
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In protocol 4 potential work is sent to the resource. Here the work is 
filtered and accepted work is sent back to the controller. This work is 
filtered again and real work is sent to the reSOurce. This work can be 
expressed in many forms. Table 3.4 shows different means of expres
sion. A job contains an operation, material, a due date and is intended for 
a resource. With protocol 2 it is possible to use the SaIne manner of 
expression without the uSe of a statusRequest, under the condition that 
the freedom with which the status can be expressed can be restricted in 
meaningful way (as is the case for at least operation and resource as 
expression mediUll1). 

Protocol 4 has the disadvantage that all available work has to be 
communicated to the resources, which leads to a lot of communication. 
In protocol 2 the resources have to express all possible work or available 
capacity to the controller; with flexible and universal resources this may 
be a difficult task. Protocol 2, however, confers a double function on the 
status messages: they can be used both for the signalling of capacity to 
a higher controller and for the distribution of work to the resources. This 
means that the use of protocol 2 supports releasing of work with help of 
information send by the resources. A relatively uncomplicated version 
of protocol 4 will support releasing only on the basis of information 
available information in the controller. Because of this, protocol 2 will 
serve as the basis for cOIIlIl1unication between controllers and between 
controller and resource in the control architecture. 

3.5 Problems related to parallelism 

The physical manufacturing system consists of parallel machines. The 
control system consists of parallel controllers: there is a single controller 
only if the con trol system consists of one layer. The parallel controllers 
are implemented on parallel computers and/or as parallel processes on 
one computer. The controllers and machines are both called processors. 
Problems related to interacting parallel processors discussed are; dead
lock, starvation, combining messages, data consistency and the model~ 
ling of the controller. 

Problems of deadlock or starvation may arise between synchronized 
cOIIlIl1unicating processors. In case of deadlock or starvation one or 
more processors become blocked indefinitely. These problems have 
been addressed in the literature on operating systems [Maekawa et al. 
1987, Peterson and Silberschatz 1986]. A deadlock simation occurs 
when two Or more processors are waiting for an event that can only be 
caused by one of the waiting processors. The starvation problem occurs 
if a processor is indefirutely waiting for an event to happen. In contrast 
to deadlock, this event happens regularly, but it is always allocated to 
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another processor. There are two levels of interaction between the 

processors: the infonnation level and the material level. The deadlock 
and starv ation problem occur on both levels. The cause of starvation has 

to do with the scheduling policy. Here no further attention is paid to this 
aspect. 

Three policies are used to handle deadlock: prevention, avoidance and 

detection [Meakawa et al. 1987]. With prevention the system design 

excludes deadlock. With avoidance the behaviour of the processors is 

restricted in such a way that deadlock does not occur; to accomplish this 

one needs to have a knowledge of the future processor behaviour. In the 
third case a detection algorithm is used to identify a group of deadlocked 
processors. The system is recovered by breaking the deadlock. 

Deadlock on the information level is prevented by blocking the control
lers only in a receive action; any processor can send an object to a 
controller, which the controller is always able to handle. The controller 
is willing to receive any object. The handling of the received object is 

never blocked. This is done by using the asynchronous send and by 

disallowing receive actions in the handling of received objects. 

The manufacturing system becomes deadlocked on the material level 

when two or mOre resources want to exchange material and none of the 
resources involved can store new material before the old material is 
removed. On the material level deadlock cannot be prevented, since this 
would constrain the recipes of a manufacturing system. So deadlock on 

the material level has to be avoided, or detected and recovered from. 

Deadlock is avoided by only releasing new jobs that will not cause any 

circular wait. The use of an avoidance policy may lead to a less efficient 
usage of resources. If one ensures that the stores in the manufacturing 
system are large enough, then the occurrence of deadlock is less 
probable and recovery from deadlock is always possible. With sufficient 

storage space the transporter is always able to empty itself andlor to 
remove the material from on of the blocked resources. 

The problem of combining messages that arrive at a processor is 
discussed next. In parallel processor systems communication may take 

place simultaneously, but a processor handles a single message at a time. 

In some cases a choice has to be made between handling messages 
separately or together even if they arrive after each other. As stated 

above the controller handles an object without blocking, Le. without 

waiting for the next object. If objects have to be combined, they have to 

be stored until the combination is complete. If an object may be handled 
either alone or in combination with an object that is still to arrive, the 
disadvantages of waiting for the next object or handling the object at 
once, have to be weighed against each other. 
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In parallel processor systems infonnation is sometimes stored in mOre 
than one processor. A problem is to keep the data consistent. A control
ler, for instance, records the status of its resources. The controller can 
change the status of a resource by sending it a command, so that the 
controller may update the status record. The status kept in the controller 
is also changed by the status message from the resource. This means that 

the status is kept in two processors and is changed by two processors. 
Attention has to be paid to the way the status record is changed, in order 

that it stays consistent with the starns of the resource. 

The controller may be modelled as an expanded processor or as a leaf 
processor. A rule of thumb is that processors that contain parallelism 
should be expanded. In our case, however, we have chosen not to expand 
the controller even though there is still some form of parallelism. A 
controller, as defined above, receives objects and handles these objects. 
These objects stem from different ports and can in many cases be 
handled in parallel. In order to handle these objects, however, common 
data are used. So, if the objects are handled in parallel, there has to be 
a central data base processor. This data base processor will in some sense 
have the same structure as the controller with parallelism. This will 
mean a shift of the parallelism from. the controller to the data base. This 
is why we have chosen not to expand the controller in parallel processors. 
Another form of parallelism in the control algorithm has to do wi th the 
sending of objects after a delay. The task language of the ProcessTool 

has a messages for this kind of interaction. Because of this we have 
chosen not to use a separate processor that delays objects. 

3.6 Summary 

Chapter 2 has revealed the way in which the physical manufacturing 
system is specified. This is done using the operations, the material, the 
resources and the recipes. The various manufacturing classes, too, have 
been introduced: single shop, parallel shop, flow shop, and job shop. A 
manufacturing system consist.s of a controller, one store, one trans
porter, and a number of processing resources. The resource layout 
together with the recipe corresponds with one of the classes mentioned 
above. Because resources may be expanded, it is possible to create 

control layers. There are four controller categories. These are based on 
whether the controller communicates with consumers and suppliers ("" 
factory controller), or if it is commanded by a supercontroller ('" 
manufacturing controller) and on whether the controller controls ex
panded resources or machines (leaf resources). 

Performance graphs have been introduced to measure the performance 
of a manufacturing system. These represent the lead time and through-
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put as a function of the inventory leveL The use of these graphs allows 
the ideal performance and the ideal work point of a manufacturing 
system to be detennined. The control functions planning, scheduling 
and monitoring have been discussed. It has been seen that the releasing 
strategy is the most important aspect of scheduling. 

As described in Section 3.3 the configuring of the control systems and 
the distribution of control decisions depends on the availability of 
information, the decisions that a controller has to take, control transport 
and processing. The material exchange is commanded by the transport 
system. The control configuration is influenced by the moment at which 
operations are transferred. Two strategies have been mentioned for the 
sending of transport commands: early and late transport. Likewise, 
cormnand driven and material driven manufacturing are distinguished 

for the sending of the processing commands. 

Section 3.4 discusses the different communication protocols more 
closely. Finally, the problems related to parallelism ate discussed. Here 
factors such as deadlock, starvation, combining messages, data con
sistency and the modelling of the controller in ProcessTalk playa role. 

In the next chapter a model of a general control architecture will be 
presented. This is intended for a job shop manufacturing system, but it 
is also suitable for the other classes that have been discussed. Both 
communication with consumers and suppliers, as well as with a 
supercontroUer are considered. Processing operations are generated at 
the start of the manufacturing process, and the controller uses a com
mand driven manufacturing strategy. Transport operations are generated 
on line by the controller. The controller of leaf resources applies a late 
transport strategy, while controllers of expanded resources may use 
either late or early transport. Material exchange operations are gener
ated on line by the transporter. 

The communication protocol between the controllers of different layers 
use status, command and result messages. A request is used as status, it 
expresses in terms of operations the momentary capacity of a resource. 
A job is used as command and a report is used as result. The release 
strategy of the manufacturing controller is implemented with the send
ing of requests to the supercontroller. Release may be delayed by the 
supercontroller by not answering a request inunediately. The controller 
uses the su brequests from the resources to take allocation and sequencing 
decisions and dispatches the work in the fonn of a job. The allocation 
and sequencing is done on the basis of reactive scheduling and simple 
priority rules are used. 



Chapter 4 

The control architecture for 

manufacturing systems 

In this chapter the ideas developed in the previous chapters are applied 

in the control architecture. It presents the data structure which is used to 

represent the objects in the model, together with the model itself, 
defined according to the Process-futeraction Approach. The model 
gives an insight into the workings of the manufacturing controller. The 
final sections discuss the application of the model to four different 
manufacturing system classes: single shop, parallel shop flow shop and 
job shop. Here we describe how they are to be controlled and how 

requests have to be generated. The last section goes further into the 

matter of configuring a controller hierarchy. 

The total model can be used in the design of manufacturing systems, to 

test their control systems and to simulate their beha ..... iour. If the simu~ 
lation shows that the perfonnance of the manufacturing system is 

satisfactory, then the model can be used to control the actual system; 

either an existing one, or one which still has to be constructed. The most 
imponant parameters that can be changed in this model are the opera
tions, the material, the resources and the recipes which specify the 

physical manufacturing system. Other parameters influence the control 

configuration: the control layers with the different types of controllers, 
the recipes and the manufacturing system class of every expanded 
resource, and the control strategy (panicularly the releasing and the 
sequencing strategy). 

4.1 The data structure 

In order to implement the model of a manufacturing system, we need 

data objects. These, together with the data structure, are described in 
what follows. The model of the factory is constructed using the 
ProcessTool [Wortmann 1991]. The process descriptions of the leaf 

processors are written in ProcessTalk., a Sroalltalk.-80 based language 

used by the modelling tool. As a consequence, the data structure is also 

written in Smalltalk.-80. In Smalltalk -80, class names start with a capital 
letter; by convention, instances of a class receive the same name as their 
class or superdass, but they start with a small letter. 
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Figure 4.1. Data structure: job - subjob relation_ The blocks are 

objects with their instance variables. A solid line ending in the left 

corner of an object reflects the relation is contained by. A dotted 

line ending in the left corner reflects the relation is of type. 

Several types of objects are distinguished in the model. A short overview 
of the objects in the data structure is given below. Subsequently these 
objects are treated more elaborately. The processors of the model are 
instances of the classes Resource, ManufacturingController, Consumer 
and Supplier Or subclasses of these classes. The processors are part of 
the model and are not treated extensively in this section. 

The processors communicate with the help of objects. The objects that 
are transferred between Factory, Consumer and Supplier are instances 
of Potential Order, Quotation, RealOrder and Invoice. 

Between controllers and between controller and processing resources 
instances of Request, Job and Report are transferred. These will also be 
called ProcessRequest, ProcessJob and ProcessReport. 
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Figure 4.2 Data structure: order - subjob relation,The blocks are 

objects with their instance variables. A solid line ending in the left 

corner of an object reflects the relation is contained by. A dotted 

line ending in the left corner reflects the relation is of type. 
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Between controllers and transporters instances of TransportRequest, 
TransportJob and TransportReport are communicated. 

Transporters exchange objects of the class Material and MaterialRequest 
with stores and leafResources. 
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The objects of type ProcessJob and TransportJob are collections. A 
processJob contains instances of ProcessUnit, a transportJob instances 
ofTransportUnit. Both ProcessUnit and TransportUnit have a common 
superclass: WorkUnit. 

A workUnit contains an instance of MaterialUnit and illl instance of 
Operation. A process U nit contains a processOperation and a materiaIU nit, 
a transportUnit contains a transportOperation and a materialUnit. 

Also the classes Material and MaterialRequest are collections, they 
contain instances of the class MateriaIUnit. 

Other categories of objects are used in the controller to record the 
progress of orders and jobs. The progress of orders is recorded in 
instances of OrderProgressFonn, the progress of jobs is done with 
JobProgressForm, OrderProgressForm and JobProgressFonn are sub
classes of ProgressFonn, 

The manufacturing process is specified with objects of class Sequence 
which is a subclass of Recipe. The model only contains sequential 
recipes_ The sequence is a collection of instances of ProcessOperation. 
The ProcessOperation is a subclass of Operation. 

The actual process plan for the manufacturing of a product is kept in the 
controller. The process plan is an instance of Task. Because the recipes 
are always sequential, a task is also sequential. It contains a collection 
of proc~ssUnits. 

The controller contains objects which do the calculating and deciding. 
These objects implement the functions of planning, scheduling and 
monitoring. In the manufacturing controller an instance of the class 
ProcessPlanner makes the process plans (tasks with processUnits) and 
monitors the manufacturing process. In the factory controller this is 
done by an instance of FactoryPlanner. The factoryPlanner does the 
same as the processPlanner and it incorporates the capacity planning 
function. The sequencing and allocating functions for resources of the 
same type are implemented by instances of the class JobScheduler. The 
total sequencing and allocating in a controller, and the generation of 
transportU nits, is done by instances ofLateScheduler and EarlyScheduler. 
Where the first one uses a late transport strategy and the second an early 
transport strategy. Both Late Scheduler and EarlyScheduler use instances 
of the class JobScheduler to take sequencing and allocating decisions. 

The communication between controllers and between controller and 
resource, is based On the communication protocol that uses status, 
command and result (protocol 2 described in Section 3.5). These are 
implemented with the objects request, job and report, respectively. The 
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communication protocol between the factoryController and the envi
ronment (Consumer and Supplier) is implemented with the help of 
potentialOrders (consumer enquiries); quotations (responses to a con
sumer enquiry). realOrders and invoices. This way it is possible to 

achieve an interface between these processors, where the refusal of 
orders is possible. An order represents a command for the 

factory Controller. The manufacturingController receives jobs as com

mands. 

Both the order and the job invoke the manufacturing process. Below we 
first describe the way the different objects are related for the job (Figure 

4.1) and the order (Figure 4.2). After that a more detailed description of 

the different classes is given. 

The job invokes a manufacturing process. The job is a collection of 
processUnits. A processUnit is an operation associated with a 
materialUnit. The operation of the processUnit points to a recipe. The 

recipe is a collection of operations and a specification of the materialType. 

The materialType of the recipe has to correspond with the class of the 

materialUnit. This recipe is used, together with the materialUnit; for the 

creation of the task. The task is the process plan, it administrates the 
progress of the manufacturing process. The task is kept in a controller 

and it is not sent to other controllers. The task consists of a collection of 
process Units. The processUnits of the task are used for the creation of 

subjobs. The task is linked to the job with help of a jobProgressFonn (see 
Figure 4.1). 

The order also invokes a manufacturing process. The order contains, 

among other things, a product name and an amount. The 
orderProgressFonn contains all orders that have to be delivered in order 
to purchase the raw material needed to manufacture the product. The 
product name is used to fmd an operation that points to a recipe for the 
manufacturing process. The operation and the material rue kept in the 

orderProgressFonn. These two are used to create the task for the 
manufacturing of the products. The task is linked to the order with help 
of an orderProgressForm (see Figure 4.2). 

Now follows a detailed description of the objects in the manufacturing 
model. All processors of the model are instances of subclasses of the 
class ProcessorObject. The objects transferred between processorObjects 
are either instances of a subclass of InteractionObject or of 

InteractionCollection. An interactionCollection is a collection of ob

jects. These objects need not be instances of a subclass of 
InteractionObject. An interactionObject and an interactionCollection 

contain the address (the processorObject for which it is intended), and 
the arrival time (the time it arrives at the intended processorObject). A 

processorObject only receives an interactionObject or an 
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interactionCollection if it is addressed to itself. When sending an 
mteractionObject or an interactionCoIlection, the processorObject ad
dresses the object for the appropriate processorObject. A processorObject 
records the arrival time of an interactionObject or an 
interactionCollection; as a consequence these objects know the time 
during which they stay in a processorObject. 

In a manufacturing system there is a distinction drawn between material 

and infonnation. All pieces of material in the model are instances of a 
subclass of the class MaterialUnit. These instances refer to a piece of 
physical material. This is used to model the physical material flow and 
to model the reference to a piece of material in the information flow. This 
means that a processor can identify a piece of physical material. Every 
piece of material has a unique name. To transfer material between 
processorObjects, material is sent as a collection ofmaterialUnits. 'This 
collection contains one Or more instances of MateriaJUnit. In this way 
it is easy to send different batch sizes of material to a resource. A material 
collection only exists for a short while and has no special name. The 
collection is an instance of the class Material, which is a subclass of 
lnteractionCollection. 

The class Material is not intended for the creation of hierarchical 
material structures. In the model it is supposed that all material Units are 
of the same type. If a hierarchical material structure is needed, this has 
to be created by adding insUUlce variables to subclasses of the class 
materialU ni t. 

Example of a hierarchical material structure. A cassette with 0 to 25 
wafers is built with the classes Wafer and Cassette. 

class name: Wafer 
superc1ass: MaterialUnit 
class name: Cassette 
superclass: MaterialUnit 
instance variable names: wafers 

The instance variable wafers is an instance of the class Array (a 
Smalltalk-80 class) of size 25 and contains 0 to 25 instances of Wafer. 

In order to be able to draw material from a store, the store has to know 
which material is to be withdrawn, and the processor to which the 
material has to be sent. An instance of MaterialRequest commands a 
Store to send the specified material to the destination. The class 
MaterialRequest is a subclass ofJnteractionCollection. AmaterialRequest 
contains materialUnits, and has an instance variable that specifies the 
processorObject to which the material has to be sent (the destination). 
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The instances of the class Operation are used to tell a resource which 
recipe has to be executed. There are two kinds of operations: the 
TransportOperation, which specifies a transport movement for a trans

porter; and the ProcessOperation, which specifies arecipe of a processing 

resource. The processOperation is of a certain type and has a specific 

parameter. 1\vo processOperations of the same type with different 
parameters refer to the same recipe, but with different adjusttnents of the 

resource. The processOperation is executed on a resource of a certain 
type. This resourCe type is specified in the process Operation. The 

processOpetation knows the time it takes to execute the related manu

facturing process. This time, the process time, refers to the nominal time 

required to execute the processing suboperations. The actual time 
needed to execute the process Operation is increased by waiting times 
and by the transport. The instances of the class TransportOperation 
specify the origin and destination of materiaL 

The work a resource has to perform is specified by an operation and a 
piece of material on which the operation has to be performed. TIlis 

combination is part of a Task, which specifies the complete manufactur

ing process plan on the material Unit in the manufacturing system. The 

combination of operation and materialUnit is called a workUnit. The 

workUnit contains a reference to the task to which it belongs. For the 

purposes of administration, the workUnit has an instance variable 

arrivalTime. Like operations, there are also two types of workUnit: 

TransportUnit and ProcessUnit. For scheduling purposes it is possible 
to assign a startDate, a due Date and a priority to a workUnit.ln order to 
keep a record of the position of the material, the workUnit keeps the 
position in the instance variable position. 

The class TransportUnit has two methods by which it can access the 
origin and the destination ofthetnaterialUnit. A1though the transportUnit 

belongs to a task, it is not placed in the task. when the task is created; 

rather, it is created at the moment the material Unit of the task has to be 

transported. In this way it is possible to choose the route of the 

materialUnit at the latest possible moment. 

The manufacturing process that the material has to undergo is specified 

by a task, which consists of a collection of process Units. A task belongs 
to a progressFoITIl. The task is related to material) which is specified in 
the processUnits. The task is derived from a recipe. The task contains 
process Units, the recipe contains operations. The materialUnits) together 

with the operations from the recipe, form these processUnits. The 

materialUnits are specified in the processUnit(s) of the job that invoked 
the task. Tasks are not transferred between processors, they stay inside 
the controller. From a task subjobs are derived, which are transferred to 

resources. The task structures are equivalent to the recipe stnlctures. 
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Only sequential tasks are implemented in the model. In a sequential task 
all processUnits have to be executed one after the other (in sequence), 
and all processUnits are related to the same piece of material. The 

material and position are represented in the processUnit because, in 
other types of task, more than one piece of material can fonn part of the 
task. 

A fmished processUnit is removed from the task. In the case where the 

last processUnit of a task has been executed, the resulting materialUnit 
has to be transported to a store. For scheduling pwposes a record of the 

remaining process time ofa task is kept. Atask contains only processUnits. 
The transportUnits are dynamically created by the controller during the 

execution of the task. The processUnits are created upon the anival of 
the job that invokes the task. 

A progressFonn is used to administrate the execution of an order or a 
job. The reception of an order or a job is a signal for a controller to start 
certain actions. A record of the progress of these actions is kept in the 
instances of OrderProgressFOIm and JobProgressForrn, respectively. 

Both are subclasses of ProgressForm. The class ProgressFonn imple

ments the common messages of Order Progress Form and 

J obProgressForm. 

The class ProgressFoIm has an instance variable for the instantiator of 

the progressFoTIll. This is either an order or a job. To execute the order 
or the job the reSOurces have to execute one Or more tasks. These tasks 
are kept in an instance variable. To be able to administrate the perlormance 
of the manufacturing system, the time when the execution of the tasks 
started and finished is kept in instance variables. 

The material content of a progressFonn is equal to the number of 

materialUnits that are manufactured in the tasks. The work content of a 

progressFonn is thus the material content multiplied by the manufac
turing time of one materialUnit. 

The instances of class JobProgressForrn register the progress of the 

execution of a job. At the start the jobProgressFonu is created with the 

help of a job. Mter the finishing of the tasks the jobProgressFonn 
delivers a report on request. 

The factory has no supercontroller that dispatches jobs associated with 
operations; rather, it has consumers that dispatch orders associated with 
products. This means the progress of orders in the factory has to be 
recorded differently from the progress of jobs in the manufacturing 
system (see Figure 4.1 and 4.2). The instances of OrderProgressForm 

are used to record the progress of the execution of an order. The progress 

of the purchasing and of the manufacturing process are kept in the 
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orderProgressForm, in the instance variables orders and tasks, respec
tively. Because the relation between a task and an order differs from the 
relation between a task and a job, an orderProgressForm contains some 

extra instance variables in comparison with the jobProgressFrom. A job 
contains the material that has to be processed and the operation that 

points to the recipe that has to be used to create the task. An order 

contains a product name and the amount that is wanted. Raw material has 
to be ordered in order to manufacture the products. The orders are kept 
in the instance variable orders. The material that has to be transformed 

is kept in the instance variable materiaL The operation that represents 

the interface between the product name and recipe is kept in the instance 

variable operation. This operation is introduced in order to be able to 
represent the recipes in the factory in the same) as in a manufacturing 
system.. 

For the ordering of products a protocol with potentialOrders, quotations, 
realOrders and invoices is used. The consumer enquires whether it is 

possible to deliver products; the quotation states whether the 

potentialOrder is feasible or not. A quotation that accepts a potential Order 

may be answered with a realOrder by the consumer. The realOrder is 

answered with an invoice (after delivery of the products). The 

orderProgressFonn is used for potentialOrders as well as for realOrders. 
Fot a potential order, the orders sent to the suppliers are also potentiaL 

With the help of the quotations from the suppliers, the controller decides 
whether the potential order of the consumer is acceptable. A potential 
order is only acceptable if all potential orders are accepted by the 
suppliers. 

The instance variable orders keeps track of all orders that have not yet 
been responded to. The instance variable accepted keeps track of 

whether the received quotations have accepted or rejected the 

potentialOrders that have been sent. If the collection orders is empty, all 

outstanding orders have been answered and the instance variable 

accepted contains whether the potential consumer order is acceptable or 

not. 

In the case where the orderProgressForm belongs to a realOrder, the 
collection orders is empty if all the raw material that has been ordered 

has actually been delivered. In this situation the manufacturing of the 

products starts. 

Instances of the class Order specify the product and the amount of 

products that a consumer wants from a supplier. An order contains its 

sender in the instance variable consumer and its receiver in the instance 
variable supplier. The order contains a dueDate, which is the date before 

which the products have to be delivered. For administrative reasons the 

order also contains a reference to the progressFonn to which it belongs. 
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The class Order has two subclasses: Potential Order and RealOrder, to 
be able to distinguish between both types of orders. 

The response to a potentialOrder is an inst.ance of the class Quotation. 
The quotation contains the order to which it is related. A quotation also 
has an instance variable that indicates whether the order is accepted or 
rejected. 

Mter the manufacturing and the distribution of the products for an order, 
an instance of Inyoice is smt. An invoice contains a reference to the 
order that invoked the manufacturing of the products and a reference to 
the material that. has been delivered to the consumer. 

A job is a collection of work Units that have to be executed (simultane
ously) by a resource. There are two kinds of jobs: the processJob and the 
transportJob. The class TransportJob is a subclass of (Process)Job. All 
the work Units of a job have to comprise the same operation. This means 
thatthe operation type and operation parameter of the process Operations 
have to be the same, or in case of a transportJob the origin and the 
destination of the transportOperations have to be the same. A job is 
destined for a certain resource, so the job has a reference to the resource 
for which it is intended. The job specifies an amount of material and an 
operation that has to be performed on the material. Although the 
process Units of a processJob have each their own dueDate, these dates 
do not necessarily have to be the same. For this reason a processJob has 
its own dueDate. The class TransportJob has two methods by which it 
can access the transport origin and destination. 

An instance of Request specifies the conditions which a new job for the 
reSOurce has to fulfiL A requests gives information about the 
operationTypes a resource is willing to execute. The minimum and 
maximwn batch size of the job is specified and a request contains 
infonnation about the resource from which the requests stems. A request 
has to be answered by exactly one job. This may occur immediately, or 
after a time interval. 

Mter ajob has been executed, an instance of Report is sent to the sender 
of the job. A report contains the job that has been executed. There are two 
types of Report: the (Process)Report and the TransportReport. A 
transportReport belongs to a transportJob. Because a task always 
finishes with a transportJob, the transportReport has a method to 
investigate whether it belongs to a finished task. 

The class Resource is used to specify which behaviour and properties a 
Resource has. A resource is an instance of a subclass of the class 
Resource. The class Resource is a subclass of ProcessorObject- The 
behaviour specified by the instance protocol of Resource are methods 
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every resource knows. All resources have different names. An expanded 
resourCe consists of subresources. The resource knows its subresources 
and it knows the type of the subresoutCes. 

A resource has properties that are the same for all resources of the same 
type. These properties are specified in the class protocol of Resource. 
Every resource is of a certain type: the resourceType. The resourceType 
corresponds with the class name of the resource. A resource type has a 
minBatchSize and a maxBatchSize which specifies the number of 
materialUnits the resource expects in one job. A resource has a limit to 
the amount of material and amount of work it can process simultane
ously. In the case where the resource is of type machine the 
maxInventoryLevel is the same as the maxBatchSiu. A resourceType 
has a dictionary of recipes, which lists, for every operation, the 
suboperations that have to be executed by the subresources. The recipe 
for a certain operation is used by the resource controller to construct the 
task that specifies the manufacturing process the resource has to 
perfonn in order to execute a job. For the resourceType there is also a 
set of operationTypes that specifies which operationTypes the resource 
is capable of executing. An operationType can only be executed on one 

type of resource. 

The controller uses objects to perform calculations and decisions. The 
planner is one of these objects. There exist two types of planners. A 
planner for the manufacturing controller and a planner for the factory 

controller. The first is of the class ProcessPlanner, the second is of the 
class FactoryPlanner, which is a subclass of ProcessPlanner. 

A processPlanner makes process plans for the jobs the controller 
receives. These process plans are represented in tasks, and are coupled 
to jobs via progressFonns. When a task is finished the processPlanner 
receives a transportReport which is used to see whether a report for ajob 
has to be generated. These reports may be requested from the 
processPlanner. The processPlanner also keeps track of the perfonnance 
of the manufacturing system. It monitors the input, the throughput, the 
inventory Level and the leadTime. 

The factoryPlanner plans the available capacity in the controller, it 
records the progress of the purchasing of material for orders and it makes 
process plans for the received orders. The factory Planner may be asked 
whether there is still capacity available to manufacture an order. The 
purchasing is done both for potentialOrders and for real Orders. From a 
potentialOrder the factoryPlanner creates potentialOrders for the sup
plier. From a real Order it creates realOrders for the supplier. From 
quotations it formulates quotations for the consumer. From invoices 
from the supplier it fonnulates tasks for the manufacturing of products. 
From a transportReport, which signals the completion of a task, an 
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invoke is formulated for the consumer. The factoryPlanner also keeps 
track of the capacity available in the factory. Just like the processPlanner, 
the factory planner monitors the input, the throughput, theinventoryLevel 
and the leadTime. 

Three classes are responsible for the allocating and sequencing functions: 
there is a class that allocates and sequences the work for one type of 
resource, called the JobScheduler; and there are two classes that 

schedule all work for the processing resources, called the LateScheduler 
and the EarlyScheduler. The last two classes differ only in the way the 
transport takes place: late transport or early transport. 

The jobScheduler schedules requests (allocating) and it schedules 
workUnits (sequencing). The jobScheduler uses these objects to fonnu
late new jobs for the resources of one type. A request is related to a 
resource, a workUnit is rdated to material. The resource and the 
workUnit are combined with help of the operationTypes mentioned in 
the request and the operation mentioned in the workUnit. The 
job Scheduler is used for both processingResources and for transporters. 

The jobScheduler implements sequencing and allocating. For these it 
uSes simple sequencing rules. 

The class Early Scheduler is a subclass of LateScheduler. Both have the 
same message interface but differ in their implementations and are used 
in different ways. Here only the message interface is discussed and only 
the lateScheduler is mentioned further. The lateScheduler takes care of 
the scheduling of work on the processing resources, which is done by 
formulating new transportJobs and processJobs. The late Scheduler uses 
one jobSchcdukr for every resourceType in the manufacturing system. 
The lateScheduler schedules requests and it schedules tasks; as a 
response it fonnulates new transportUnits. The controller lets the 

transportScheduler (which is an instance of JobScheduler) schedule 
these. The lateScheduler treats processReports, which also result in new 
transportUnits. The lateScheduler fonnulates new proccssJobs for the 
resources from transportReports. 

4.2 The control model 

The environment in which a factory operates is called the market. The 
market is characterized by a sequence of consumers and suppliers. The 
market model contains a consumer, a factory and a supplier (Figure 4. 3). 

The factory behaves as a consumer to the supplier and as a supplier to 
the consumer. The factory receives orders for products from the COn
sumer, and it orders raw material from the supplier. The supplier delivers 
raw material to the factory. The factory manufactures products from the 
raw material and delivers the products to the consumer. 
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Market model 

Figure 4.3. Market model, 

In the model the protocol of ordering and delivering between a con

sumer, factory and supplier is similar to the protocol 4 mentioned in 
section 3.4. The supercontroller corresponds to the consumer, the 
controller corresponds to the factory controller and the subcontroller to 
the supplier, The messages statusRequest, status, command and result 
are replaced by respectively potentialOrder, quotation, realOrder and 

invoice. 

The factory model consists of a factory controller and factory reSOurces 

(Figure 4.4 a, b and c). The factory controller conunands the factory 
resources and it handles the administrati ve interactions with the supplier 

and the consumer. The factory controller's task consists of capacity 

planning, marketing which is about handling consumer orders, purchas
ing of raw materials. manufacturing control and distributing control. In 
Figure 4.4 d the process description of a factory controller is given, it 

Factory model 

Figure 4.4. Model o/the/actory. a) Factory model_ 
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Factory8$sources model 

controller cootroller oonlroller controller ~Mtr'Oli"r oonlroll .. , 

Figure 4.4. Model oj the factory. b) FactoryResources model. 

FactoryProcasslngResources model 

controller eomroller COrilrolk>; oorilr'Oli$f 
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Figure 4.4. Model of the factory. c) FactoryProcessingResources 

model. 

handles orders in a sequential fashion, One at a time. The actual process 
description of the factory controller is shown in Appendix C. 

If the factory controller recdves a potentialOrder, it checks whether 
there is capacity available to manufacture the products. IT there is 
capacity free to manufacture the products before the due date demanded, 
the factory controller formulates a potential Order for the supplier. The 
potentialOrder is sent to the supplier to check whether the supplier can 
deliver the needed raw material in time. Only if the supplier accepts the 
potentialOrder of the factory, does the factory accept the potentialOrder 
of the consumer, In all other cases the potentialOrder is rejected by the 

factory controller. 'When the conswner receives a quotation that accepts 
the potential Order, it decides whether it wants to place a real order. 

The consumer sends the reaIOrder to the factory controller. The factory 
controller formulates a real Order for raw material and sends it to the 
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FactoryControlier :> body 

I order I 
order := self receiveOrder, 
order IS Potential 

ifrrue: 
[(planner hasCapaCity'=:or: order) 

IITrue: 
[self handlePotentialOrder: order, 

self sendPotentialOrder. 

self handleQuotation: self recelveQuotation], 

self sendQuotationJ 
itFaJse: 

(selt handle Real Order; order. 

salf sendRealOrder. 
self handle Invoice: self receivelnl/Olee. 
self handleSubrequest: self racelveSubreques1. 
self handleTransportRequest: self racelveTransportRequest. 

self sendTransportJob. 
self handleTransportReport: self reooiveTransportReport. 
self sendSubjob, 
self handlaSubreport: self receive$ubreport. 

self handleTransportRaquest: self receiveTransportRequest. 
self sendTransportJOb, 
self handleLastTransportRaport: self receivaTransportReport. 
self send Invoice] 

Figure 4.4. Model of the factory. d) Process description of a 

simplified FactoryController. 
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supplier. The factory controller also reserves capacity for the manufac
turing of the products. After the receipt of the raw material and the 
invoice from the supplier, the controller commands the factory re
sources to manufacture the products. The description of the control of 
the manufacturing process by the factory controller is analogous to the 
control in a manufacturing system controller and is described below. 
Mter the manufacturing process is completed, the factory controller 
sends a distribution command to the factory store and an invoice to the 
consumer. The factory store sends the products to the consumer. 

This model does not contain a transport system between factories. The 
exchange of material between the supplier and factory and between 
factory and consumer is modelled as an interaction path between 
processors. 

The factory model is based on the factory control architecture described 
by Arentsen [1989]. It is possible to connect more than one supplier Or 
more than one consumer to the factory, and it is possible to use a forecast 
controller to realize different ordering strategies. In Arentsen's model 
the processor FactoryResources is modelled as a single processing 
machine; in the present model it is modelled as a factory store, a 
transporter and processing resources (Figure 4.4b), 
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Figure 4.5. The model of a manufacturing system. 

a) ManufacturingSystem model. 

ManufacturingResourCflS model 
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Figure 4.5. The model of a manufacturing system. 

b) ManufacturingResources model. 

<;oril",lIo, ool1\rolklr 

The processing reSources in a factory are either leaf resources or 
expanded resources (Figure 4Ac). A leaf reSOillce (a machine) performs 
one operation on aU the material in the machine and it has no capability 
to store other material. If the processing resource in a factory is an ex
panded resource, it consist of a group of processing machines. An 
expanded resource is also called a manufacturing system; it does have 
the capability to store material that is not being processed. 
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Manu1acturingProcessingAesources model 
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Figure 4.5. The model of a manufacturing system. 

c) ProcessingResources model. 
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A manufacturing system (Figure 4.5a) and a processing machine have 
the same interactions with their environment. A manufacturing system 
contains at least one store and one transporter (Figure 4.Sb). The 
processing resources of a manufacturing system are leaf resources or 
expanded resources (Figure 4.5c). It is possible to repeat the control 
structure of the manufacturing system recursively in the expanded 
processing resources. The recursion starts with a factory controller at the 

top and ends with a processing machine at the bottom. The number of 
control layers between the factory controller and the processing ma
chine is a design parameter. 

In the next part a distinction is made between job, subjob, request, 
subrequest etc. The meaning of these tenns are given in Figure 4.6. 

Supercontroller 

l ~ 1 
request report 

subrequest subreport transport Request transportReport 

Resource Transporter 

Figure 4.6. The names of objects sent between the different 

processors. 
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ManutacturingCon1roUer > bOdy 

self handleSubrequest: self receiveSubrequest. 
saH send Request. 
self handleJob: self receiveJOb. 
self handleTransportRaquest; self recelveTransportfiequest. 
self sendTransportJob. 
self handleTransportReport: self recelveT~anaportRepon. 
self sandSubjOb. 
self handlaSubreport: self recelveSUb~eport. 
self handleTransportRequast: salf receiveTransportRaqueSI. 
self sendTransportJob. 
self handleLastTransponReport; self receiveTransportReport. 
self sendRepon 

Figure 4.7. Process description of a simplified (sequential) 

manufacturing controller. 

We now go on to explain the description of the execution of a job in a 
simple manufacturing system, which executes jobs sequentially one 
after the other. The related process plan (a task) consists of a single 
process Unit, which means a job leads to one subjob. This manufacturing 
system has One processing resource. The controller handles only one job 
at a time. The process description of this controller is printed ill Figure 
4.7. 

The manufacturing controller starts with the receipt of the subrequest of 
the processing resource. The subrequest is given to the process scheduler. 
The subrequest is also used to generate a request for a job from the 
supercontroller. The request is sent to the supercontroller. The 
supercontroller takes care of transport of material to the store. The 
transportation of material to the system store is either a reaction to the 
request from the system, or else the material is already available ill the 
store. The processJob for the manufacturing controller is a response to 
the request. This means that the material always arrives before the 
processJob and the processJob always arrives after a request has been 
sent. 

The controller lets the process planner create the description of the 
manufacturing process (the process plan) that has to be executed in order 
to execute the processJoh. The process plan or the task is here a 
collection of One processUnits. The process planner records what jobs 
are in progress. The process planner administrates the new processJob 
and generates a progressFonn that contains the task that has to be 
executed. 

The processUnit of the task is scheduled. For this purpose the process 
scheduler uSes the subrequestfrom the processing resource. The process 
scheduler monitors the status of the processing resources (with help of 
sUbrequests) and generates subjobs for processing resources with the 
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process plan (from the process planner). The process scheduler uses the 
process plan to create transportUnits and to dispatch the processUnits to 

the processing resources. The scheduler in this controller uses a late 
transport strategy. This means that the transportU nits are generated after 
the sequencing of the processUnits. 

The processUnit and the subrequest taken together result in a 
subprocessJob for the processing resource. Before the subprocessJob is 
sent to the processing resource, the material has to be transported to the 
processing resource. The process scheduler generates from the 
subprocessJob the transponU nit that specifies the transport of material 
to the processing resource. The transport scheduler uses this transponU nit 
and waits for a transportRequest from the transporter to generate a 
transportJob. TIlls transportJob is sent to the transporter and the trans
porter moves the material to the processing resource. When the trans
porter has finished its transportJob it sends a transportReport to the 
controller. The ttansportReport is a sign to the process scheduler that the 
subprocessJob may be sent to the processing resource. The controller 
dispatches the subprocessJob to the processing resource. 

When the processing resource has finished the processing of the 
material, it sends a subprocessReport to the controller. The process 
scheduler uses the subprocessReport to generate a new transportUnit. 
TIlis unit specifies the material that has to be moved from the processing 
resource to the store. The transport scheduler waits for a transportRequest, 
then generates a new transportJob from the transportUnit and the 
request. This transportJob is sent to the transporter. The transporter 
picks the material from the processing resOurce and places it in the store. 
After the completion of the transport, the transporter sends a 
transportReport to the controller. The transportReport belongs to a 
fInished job. For this reason the transportReport is given to the process 
planner that administrates the finished processJob and delivers a 
processReport. This processReport is sent to the supercontroller. The 
supercontroller has to take care of the removal of the material from the 
store of the manufacturing system. 

Mter the processJob has been finished the controller waits for a new 
subrequest and sends a request for anew processJob to the supercontroller. 
In the case where the manufacturing process is controlled by a factory 
controller, the factory controller has to take care of the material flow 
itself and no requests are sent to get jobs: the jobs stem from the supplier 
and the capacity planner. 

The model of a sequential manufacturing controller has been described 
above. However, the manufacturing controller has to handle some 
complications. Fi:rst., it has to control more than one processing resource 
and to execute more than one processJob at a time. This IS handled by 
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ManufacturlngControlier > body 
s91f 

receiveFromOn90f: #('controller' 'resource' ) 

before; self requestSendTIme 
do: 

[ :portName :lIem I 
portName : 'controller' 

IfTrue: 

[self handleJob: It9m. 

self sendAvallableTransportJobsl

portNam9 = 'resource' 
IfTrue: 

[Item iSReq:U5St 
ifTrue; 

[self handleSubrequast; item. 

self sendAvaliableTransportJobsl. 
item isReport 

ifTrue: 

[self handleSubreport: Item. 
self sendAvailable TransportJobS). 

item IsTransportRequ9st 
IfTrue; 

[self handleTransportRequest: Item. 
self s9ndAvallableTransportJobsJ. 

item isTransportReport 
ifTrue: 

[Item belongsToFlnlshedTask 
ifTrue: 

[self handleLaStTransportR9port: item. 
self sendAvailableReports] 

if False: 
[S91f handleTransportReport: Item. 

S91f sendAvaiiableSubJobsJIII 
ifTimedOut: [self send Request] 

Figure 4.8. Process description of the manufacturing controller. 

using a parallel algorithm where the execution of all tasks is progressed 

by the events that happen. Second, a task can consist of more than one 
process Unit. 11lis means that the control algorithm has to repeat the 
execution of processUnits until the task is finished. Third, the manufac
turing controller has to handle batch size differences between process~ 
lng reSOurces. In order to do this material has to be split and/or to be 
combined. The splitting of material is made possible by allowing mOre 
tasks for one processJob. Thus the material can be processed in smaller 
quantitks. To process material of different tasks on one processing 
resoW'ce, processUnits have to be combined. This is possible because a 
sobprocessJob may consist of more than one processUnit. The fourth 
complication is the generating and the sending of the request, which will 
be handled in the next sections. 

The control algorithm of the manufacturing system has been described 
in a purely sequential fashion. By rewriting the algorithm in a parallel 
version, in our case an event driven controller it possible to control all 
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kinds of manufacturing systems. The controller is event driven: the 
reception of an object (an event) precedes a part of the manufacturing 

process. The parallelism of the control algorithm results in a controller 

that is continuously waiting to receive objects. As a response to these 

objects it sends, if possible, other objects. The objects a manufacturing 

controller can receive are: a processJob) a subrequest, a subprocessReport, 
a transportR.equest or a transportReport (Figure 4.6). The objects a 

controller sends are: a request, a processReport. a subprocessJob and a 

transportJob. The sending of the requests is coupled to a timer in order 
to be able to send requests after some delay. The process description of 

the manufacturing controller is given in Figure 4.8. Hereafter the 

parallel control algorithm is discussed) i.e. the different actions to be 
undertaken after the receiving of an object. 

If the potential actions cannot be executed because other objects are 
missing) the received object or derived objects are stored by one of the 

schedulers. The scheduler stores processUnits and requests, the trans

port scheduler stores transportUnits and transportRequests. 

processJob 

The process planner generates a progressForm for the processJob and 

specifies the task that has to be ex.ecuted in order to execute the 

processJob. The task is scheduled by the process scheduler. The process 

scheduler uses subrequests from the processing resources to find which 

resource is able to execute the processUnit from the task. The process 
scheduler generates the transportUnits. Because material may be split, 
the arrival of a processJob may lead to more than one transportUnit. It 
has been chosen to let the process scheduler plan the route of the 
material, because this way fixed routes and flexible routes are handled 
in the same way. This is not possible if the process planner generates the 

routes. 

The transportUnits from the scheduler are scheduled by the transport 

scheduler. ff the transport scheduler has a transportRequest which can 

execute the transportUnit, this results in a transportJob, which is sent to 
the transporter. 

subrequest 

If the controller receives a subrequest) this may enable the process 
scheduler to sequence a processUnit On a processing resource. As a 

consequence the process scheduler generates a transportUnit. Together 

with a transportRequest this resul ts in a transportJob for the transporter. 



90 the control architecture for manufacturing systems 

subprocessReport 

The controller receives a subprocessReport if a processing resource has 

processed the material. As a consequence the material from the resource 
has to be transported to the next processing resource. To do so the 
process scheduler has tInd out the next operation to be executed on the 
material (process interpreting) and to allocate material to a processing 
reSOurce. If the task (process plan) is finished, there are nO more 
process Units to be executed by any processing resource and dle material 

has to be transported to the store. The process scheduler that handles the 
subprocessReport tries to generate the transportUnits. This is only 
possible if the task is finished or if there is a subrequest from the resource 
to which the next processUnit can be allocated. A consequence of 
combining material is the fact that a subprocessReport may lead to more 
than One transportUnit.1f the transport scheduler has transportRequests, 
the transport scheduler generates a transportJob. 

transportRequest 

The transportRequest is used by the transport scheduler to generate 
transportJobs. If there are transportUnits the receiving of a 

transportRequest results in the sending of a transportJob. Because of 
combining of material a transportJob may transport more materialUnits 
at one time. 

transportR eport 

With the arrival of a transportReport at the controller two cases have to 
be distinguished. The material has been transported to a processing 
resource where a process Unit has to be executed, or the manufacturing 
process on the material is finished and the material has been transported 
to the store. If the material has been transported to a processing resource; 

dlen the process scheduler allocates the subproccssJob for that resource 
and it is sent to the resource. Because of the combining of material a 
transportReport does not automatically lead to the allocating of a 
subprocessJoh. The subprocessJob has to be sent if aU material of the 
subprocessJob has been transported to the resource. Transport of the 
material to the store means the manufacturing process of the material is 
finished. A report has to be generated only after the arrival of the last 
piece of material of a processJob, this is a consequence of the splitting 
of material. The planner generates a process Report for the processJob 
and the processReport is sent to the supercontroller. 
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In many cases the process scheduler knows the material route before
hand. This enables the early generation of transportUnits. With early 
transport, the process scheduler generates the transportUniton arrival of 

the processUnit. The transportReport releases processUnits and the 
process scheduler schedules these with subrequests from the processing 
resources. The transport is executed before the scheduling. A manu
facturing controller with such a process scheduler behaves differently 
fromthecontrollerwithlatetransport,andthesedifferencesarediscussed 
below. 

The differences are found in the process scheduler and in the actions 
taken after the reception of a processJob, a subrequest and of a 
transportReport. Mter the reception of the processJob the process 
scheduler always generates a transportUnit and, if there is a 
transportRequest available, the transport scheduler generates a 
transportJob. Mter a transportReport material has to be allocated to the 
resource, it depends on the received subrequests whether a subjob has 
to be sent or not. After the reception of a subrequest no transportUnit is 
generated but material has to be sequenced on the resource, if material 
present in the resource, a sub job is created and this is sent to the resource. 

A transportReport of a fInished task is handled in the same way as by the 
late scheduler. 

The request send strategy implements the release strategy. The actual 
release of jobs is equal to the sending of a request Of, if no jobs are 
available, it is worse than the request send strategy. The sending of 
requests depends on the status of the manufacturing system. The 
sending of a request may be strongly coupled to the sending of subrequests, 
or not coupled by using a fixed time interval for sending a request (open
loop). A simple request send strategy is to send a request for every 
subrequest. This only works if every processJob results in one 
subprocessJoh. Then there is the possibility to use the subrequest of one 
specific processing resource of the manufacturing system to send a new 
request, or a combination of subrequests of different processing resources. 
The progress of process Jobs can be used for the generation of subrequests. 
For imtance: send a request if a job is finished. TIlls seeks to achieve a 
fixed number of jobs in progress (Fixed-WIP). Another way is to send 

a request after the start of a specific subprocessJob, it is also possible to 
delay such a request, which results in a so-called request generation with 
delay. To send a request some time interval after the last request is a so
called uniform starts strategy. This strategy uses no status information 
of jobs and resources. It sends a new request after a time interval. The 
fixed time interval has to be adapted in advance to the capacity of the 

manufacturing system. A possibility to use dynamic time intervals is 
presented by Mommers [1990]. He calculates the time interval using 
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MlIllngShop model 

Figure 4.9. Model o/the single milling shop. 

a) The MilIingShop model. 

Resources mOdel 

oonlr'OllAI cQO\rolier oontrcllbl <lQntrolll3r 

Figure 4.9. Model oj the single milling shop. 

b) The Resources model. 

cootloU... QQntroUer 

performance indicators such as lead time and inventory level, thus 
establishing a closed-loop strategy. 

A manufacturing system with processing machines has to avoid block
age of resources (deadlock). To avoid deadlock complex simulators may 
be used which only generate a request if the execution of the job will 

never block the system. 
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Figure 4.9. Model a/the single milling shop. 

e) The ProcessingResources model. 

93 

The next sections discuss the relation between request generation and 
the class of the manufacturing system. In the last section the relation 
between the request generation and multiple control layers is discussed. 

4.3 Single shop 

In this section the model of a single shop is presented, followed by its 
recipe table, which consists of operations the shop is able to execute, 
coupled. to recipes. Mtel' that the request generation strategy is discussed 
and the performance graphs of a single shop are studied. The example 
starts from an ideal single shop in which all recipes take the same time. 
Finally, the consequences of deviations in process times are discussed. 

In this example a single milling shop contains one milling machine. Its 
model is illustrated in Figure 4.9. The shop consists of a controller and 
resources. The resources consists of a store, a transporter and processing 
resources. The processing resources consistof a single milling machine. 
The milling machine processes one piece of material at a time. The 
manufacturing jobs for the shop have to contain only one piece of 
material The manufacturing processes in the shop consist of one 
operation on the milling machine. The recipe table is given below. 

recipes: 
millProductA 1 -> Sequence (milll) 
millProductBl -> Sequence (mi112) 

The shop is capable of executing the operations millProductAl and 
millProductB 1. The milling machine executes the operations mill I and 
mi1l2. The total manufacturing process in the shop consists of transport-
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Figure 4.10. The peiformance graph of the milling single shop. The 

mean lead time as afunction o/mean inventory level and the mean 

throughput as a function of mean inventory level. 

iog material from store to the milling machine, milling the piece of 
material and transporting the material from milling machine to store. It 
is supposed that the transport takes 5 minutes per movement and the 
milling takes 60 minutes. This means the total manufacturing process 
takes 70 minutes. The shop controls a machine, so a late transport 
strategy has to be used (see Section 3.3). 

Several possibilities exist for the generation of requests. The fIrst is to 
use the subrequest from the milling machine for the generation of a new 

request for the supercontroller. This works well if the supercontroller is 
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immediately capable of sending a new job for the shop (if the 

supercontroller uses the early transport strategy) else the shop has to 
wait a while before a new job is available: during this period oftime the 

milling machine remains idle. Let us suppose it takes 15 minutes before 

the supercontroller is able to send a new job in response to a request. In 
this case the request strategy should try to make SUI'e the new job arrives 
at the shop at the moment the manufacturing process is finished. The 
manufacturing process in the shop is ready 65 minutes after the milling 

machine starts processing. So a new request should be send 65 ~ 15 = 50 

minutes after the sending of the subjob to the milling machine. Thus the 
controller sends the subjob and uses this event to start a timer which 
signals the moment to send a request to the supercontroller. This manner 
of requesting is called request generation with delay. A simpler way to 

request would be to request a new job 70 - 15 = 55 minutes after the 

arrival of a job. However. this is an open~ loop policy: the arrival of a job 

at the milling shop is no guarantee that the current job for the milling 

shop is finished within a certain time. The request of a single shop 

contains all operation types for which the single shop has recipes. In the 

example the request contains the operation types millProductA and 
millProductB. 

The milling machine is idle during the transport of material (loading and 

unloading). TIlis is due to technological constraints. In order to reduce 

this idle time the transport time has to be reduced, Or else another way 
of transporting has to be implemented. No attention has been paid to this 
problem. 

The performance graphs of the milling single shop are printed in Figure 

4.10. The lead time of a job is always 70 minutes or more. If the shop 
always contains exactly one job the maximum throughput of one piece 
of material pet 70 minutes is reached. H the mean inventory level 

becomes larger the lead time increases by 70 minutes per piece of 

material. It is clear that an inventory level of exactly one is the best work 

point for the controller. If the time between the sending of a request and 
the receipt of a job varies, a smaller delay may be chosen to be sure the 

job has arrived before the machine runs idle. This smaller delay results 

in an inventory level that becomes larger than one and a lead time that 

becomes larger than 70 minutes. If the delay is too big the lead time 
remains 70 minutes but the throughput of 1 piece of material per 70 
minutes is not reached. 

The consequences of variable process rimes are restricted to the per

fonnance graph and the length of the delay. The delay is equal to the 
process time minus a safety margin. If the process time is known, the 

delay can be calculated, and material is requested in time. If the process 

time is not exactly known an estimation has to be made, and the 
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perronnance will depend on the estimation. The controller behaviour, in 
principle, remains the same and the lead time does not necessarily have 
to be larger than the (detenninistic) process time of the jobs together 
with the transport time. 

Two ways to generate requests have been discussed above. One was 
based on the use of subrequests, the other On the use of a delay, which 
started at the sending of a subjob to a resource. In both request 
mechanisms the resource influences the controller in requesting new 
jobs. The lead time of a job for a single shop is known exactly if the 
behaviour of the resource in the shop is known. If process times are 
random, then lead time has to be weighed against throughput. A high 
inventory level reduces the chance that the resource becomes idle at the 
cost of an increase in lead time. The controller of the single shop tries 
to keep the inventory level at exactly the batch size of the resource, 
because this minimizes the lead time in the single shop. 

4.4 Parallel shop 

The parallel shop is in many ways simjlar to the single shop. The parallel 
shop presented here is a parallel milling shop which consists of a 
controller and resources (Figure 4.11). The resources consist of a store, 
a transporter and processing resources. This time, the processing re
sources are two equivalent milling machines. These milling machines 
have the Same characteristics as in the single shop. 

ProcassingResourc8s modal 

()(> ... ItoI~r controller 

outside otJI~ide 

Figure 4.11. Model o/the processing resources of the parallel 

milling shop. The controller, store and transporter are modelled 

according to Figure 4.9 a and b. 
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Figure 4.12. Performance graphs of the parallel milling shop. 
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The most important characteristic of the parallel shop is the fact that all 
manufacturing processes in the shop consist of one processing opera
tion, perfonned on one processing resource. The manufacturing process 
consists in this case of transport from store to one of the mining 
machines, processing of the material on the milling machine, and 
transport from the milling machine to the store. The recipe table of the 
shop is equivalent to that of the single milling shop. The recipe table of 
the shop is printed below. 

recipes: 
millProductAl ~> Sequence (milll) 
rnillProductB 1 -> Sequence (mi1l2) 
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The controller of the shop is able to process two pieces of material in two 
different resources; these resources are in fact independent capacities. 
So if one resource sends a subrequest, the controller sends a request that 
states the capabilities and capacities of that resource. If, in our case for 
example, one milling machine can only execute the mill1 operation and 
the other only the mi1l2 operation, a subrequest of the first machine 
results in a request from the controller for a job with a millProductAl 
operation. The shop controller sends as many requests as it has capacity 
in its processing resources. This capacity of the processing resources is 
stated by the subrequests from these resources, so one subrequest is 
equal to one request. Just like the single shop, the parallel shop may also 
use a delay before sending a request in order to reduce the idle times of 
the machines. The sending of a subjob lS a reasonable reference pointfor 
the start of the delay. 

The performance graphs of the parallel milling shop are printed in 
Figure 4.12. The mean lead time remains 70 minutes, as long as the 
inventory level remains below tvvo pieces of material. With a mean 

material level above the two pieces the mean lead time increases by 35 
minutes per piece of material. The mean throughput of the shop is at a 
maximum if the inventory level is two pieces Or more. The maximwn 
throughput is equal to one piece of material every 35 minutes. 

The parallel milling shop has the transporter as a common resource. If 
two machines receive a job at the same moment one job has to wait for 
the transport of the material of the other job. To prevent this it seems 
logical not to request two jobs at the same time, but rather to force a delay 

between two requests equal to the time it takes to load the material of a 
job. 

The request generation in a parallel shop is analogous to the generation 
of requests in a single shop. A possible refinement to the request 
generation mechanism is the introduction of a minimwn time interval 
between the sending of two requests. This time interval is equal to the 
load time of material and prevents wait times due to transport in the 

shop. 

4.5 Flow shop 

Two working methods can be followed to model a flow shop. The flow 
line can be built by coupling a number of factories with a single 
processing resource behind One another. This is in fact the factory 
control architecture proposed by Arentsen [Arentsen, 1989]. Because 
Arentsen's factory control architecture is compatible with the architec
ture presented in this thesis, it follows thatArentsen 's theory is also valid 
for this architecture. The disadvantages of the use of the architecture in 
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ProcessingRasources modal 

Figure 4.13. Model of the processing resources of the milling flow 

shop_ The controller, store and transporter are modelled according to 

Figure 4.9 a and h. 

this way is that, with a change of the manufacturing process, the control 
structure of the manufacturing system has to be changed and that every 
resource is involved in the capacity planning. 

The other way to model the flow shop is with the help of multiple 
processing resources. It is modelled as a manufacturing system with a 
central controller; all the recipes consist of a number of operations, 
which are executed in sequence on the resources. TIlls method is 
illustrated below. 

The milling flow shop has two milling machines: a coarse milling 
machine and a fine milling machine. The model of the shop is found in 
Figure 4.13. The milling parallel shop has similar structure as the 
milling single shop and the milling parallel shop. 'The resources of the 
shop are a store, a transporter and processing resources. The processing 
resources are fonned by a coarse milling machine and a fine milling 
machine. 

The recipes of the flow shop differ from the single and parallel shop. The 
manufacturing of a product is now done by executing two processing 
operations. The recipe is shown in the recipe table below. 

recipes: 
millProductA1 -> Sequence (coarseMill1 fineMilll) 
millProductB 1 M> Sequence (coarseMi1l2 fineMill2) 

The manufacturing process consists of transporting material from store 
to the coarse milling machine, the coarse milling of material, transport 
from the coarse milling machine to the fine milling machine, fme 
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milling of material, and transport from the fine milling machine to the 
store. It is supposed that both the coarse and the fine milling take 30 

minutes, the transport of a piece of material takes 5 minutes. The 

transporter is modelled as one common resource which executes all 

transport in the station. This is not a necessity: other solutions, e.g. a 

distributed transport system, are also possible. 

The request generation of a flow shop differs from that of the single and 

parallel shop. Not every subrequest leads to a request for the 
supercontroller. This is not possible because One job of the supercontroller 
is executed on two resources. There are two subrequests needed for the 
execution of one job. So only half as many requests have to be generated 

as there are subrequests received. One way of generating requests is to 

use subrequest<; of the frrst resource in the manufacturing process, in this 

case the coarse milling machine. The flow shop will not request more 

than one job at a time because the first milling machine can only process 
one piece of material at a time. Just as in the single shop a delay may be 
used to request a new job in order to be sure the material arrives in time 

at the flow shop. For the start time of the delay the sending of a job to 

the first resource is a good reference. 

If the first m.achine is not a bottleneck, this manner of request generation 
does not work: it leads to an everlasting increase of inventory in the flow 
shop, because the input rate of jobs becomes bigger than the throughput 
of the flow shop. The start of a subjob at the bottleneck station is a 
reference point, which circumvents this problem. Now the length of the 

delay has to be adapted in such a way that jobs anive in time at the 
bottleneck resource. This time depends on the jobs that are in process on 
the resources in front of the bottleneck and on the process time of these 
jobs. The maximum time interval between two requests is equal to the 

inverse of the maximum throughput (in this example 40 minutes; see 

below). This is a maximum length, which has to be used if the inventory 

level of the flow shop is equal to the desired work point. In some cases 
(e.g. with the start up of the shop) it makes sense to increase the 

inventory level of the flow shop. In order to do this the length of the time 
interval has to be smaller than the inverse of the maximum throughput. 

To make the time interval smaller than the process time of the subjob on 
the first resource has little use, because it would introduce a wait queue 
in front of the first resource_ 

By using the start time of a subjob on the bottleneck resource for 

generating a new request, establishes a link between the behaviour of the 

resources and the generation of requests (closed loop). If, for instance, 
a resource in front of the bottleneck goes down, the bottleneck resource 
does not receive a new subjob. If subjobs arrive too early at the 
bottleneck, they have to wait until the bottleneck is idle. In both cases 
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the bottleneck will not generate new subrequests and, because of this, 

the controller will not send any new requests. 

Another way of generating requests is to start by generating so many 

requests that the flow shop becomes filled to the work point. From then 

on the finishing of a job can be used to generate a new request This leads 

to the Fixed-WIP release strategy (see Section 3.2). In the milling flow 
shop this means two requests are sent at the beginning and afterwards, 

after the finishing of a job, a new request is sent. Another possible 

request generating mechanism is the use of a constant time interval. The 
interval should be equal to the inverse of the desired thxoughpul This 
leads to the so~called unifonn-starts release strategy, where every so 
many minutes a new job is started in a manufacturing system. In our 
example a request has to be generated every 40 minutes. TIri"S m.echa
nism is an open-loop policy and bears the disadvantage that no coupling 

exists between the execution of subjobs on the resources and the sending 
of requests. 

The request of a flow shop nonnally contains all operation types that the 

flow shop is capable of executing. A fixed product mix may be realized 

by altematingly sending requests with different capabilities. 

To calculate the performance graph of the milling flow shop a possible 
optimal behaviour of the shop is given. 'This is the behaviour of a filled 
shop and repeats every 40 minutes, although the operations on both the 
coarse and the fine milling machine take only 30 minutes. At time 0 the 
fine milling machine has finished a product and the transporter trans
ports the fInished piece of material from the fine milling machine to the 

store. At time 5 the coarse milling machine finishes its operation and the 

transporter transports the piece of material from the coarse milling 

machine to the fine milling machine. At time 10 the material arrives at 
the fine milling machine and the [me milling is started. The fine milling 

finishes at time 40, the start of the new cycle. At time 10 the transporter 

also transports a new piece of material from the store to the coarse 
milling machine. At time 15 the material arrives at the coarse milling 
machine and coarse milling is started. The coarse milling will be 

finished at time 45, just in time for the material to be transported to the 
fine milling machine. 

The capacity of the machines is one product every 30 minutes, the extra 
time being due to the transport of products. Once again, this can be 

reduced with another implementation of the transport system. 

The minimum lead time of a job is equal to 75 minutes, and the 

maximum throughput is equal to one piece of material every 40 minutes. 

The flow shop inventory level, however, is not two pieces of material all 

the time. During a period of five minutes, when the material from the 
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Figure 4.14. Performance graphs of the milling flow shop. 

coarse ruilling machine is transported to the fine milling machine, there 
is onl y One piece of material in the shop. The mean material contents at 
the ideal work point is therefore 1.875. The performance graph of the 
tlow shop is given in Figure 4.14. An inventory level above the ideal 
work point causes the lead time to increase by 40 minutes per piece of 
material. 

The example above mentions new mechanisms for the generation of 

request. The subrequestfrom the bottleneck resource may be used or the 
sending of a subjob to the bottleneck may be a reference for a delayed 
request. Then there is the possibility to use the fInishing of a job to send 
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a request (Fixed-WIP). The last mechanism mentioned uses a fix.ed time 
interval between the sending of requests (uniform starts). 

4.6 Job shop 

The most complex manufacturing system is a job shop. The job shop is 

characterized by great route flexibility and universal resources. In a job 

shop there are nO constraints to the route of the material through the shop 

and there is no limit to the number of times a resource is visited, thus 
cyclic routes ate allowed. 

The propagation of requests from resources through the manufacturing 
controller to the supercontroller in a job shop is difficult. Because the 

recipes consist of more than one operation, it is not possible to send a 

request for every subrequest received from the resources. There is also 

not necessarily one bottleneck that is always visited and that can be used 

as a trigger for the requesting of new jobs from the supercontroller. A 
way to request new jobs in a job shop is the use of the inventory level 

in the manufacturing system. This leads to the generation of requests 
when a job finishes, and a filling mechanism for loading the shop 

(Fixed-WIP, as discussed in Section 4.5). The bigger the job shop the 

smaller the influence of one job on the behaviour of the manufacturing 

system, and the better general observers, such as inventory level, can be 
used as a request generating mechanism. The work point is related to the 
sum of the batch sizes of the machines in the manufacturing system.1'h.is 
mechanism only gives satisfactory results if the execution of the jobs is 
distributed smoothly over all resources in the manufacturing system. 

The mechanism mentioned above does not function well if the work 

contents of the different jobs show large variations. In this case the use 

of work content may work better. The work content is the sum of the 

process times of all the jobs in the system. Manufacturing control with 

the use of work content is discussed in [Wiendahl1987]. A disadvantage 
of the use of work content is the difficulty of finding a relation between 
the batch size of the machines, which is expressed in material units, and 
the optimal work content of the manufacturing system, which has to be 

expressed in hours. Here also the jobs have to be distributed evenly over 

the total manufacturing system. 

An even more loosely coupled request mechanism is the use of a fixed 
time interval between the sending of two requests (unifonn starts). If, for 

instance, the manufacturing system has been designed to manufacture 

a product every two hours, then the controller may send a request every 

mo hours. A disadvantage of this open-loop mechanism is the lack of 

feedback between the actual capacity of the manufacturing system and 
the loading request of the controller. 
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The time interval between two requests also has to be related to the input 
rate. It is no use to request two jobs at the same time Or shortly after each 
other, if there is no capacity available to process these jobs at that 

moment. The example of a job shop is presented in the next chapter, so 
no further example is given here. 

The single shop and the parallel shop are able to guarantee a certain lead 
time, when they request a job. The flow shop also, under certain 
conditions, guarantees a deterministic lead time. For the job shop, 
however, the lead time tends to vary. By operating the job shop with a 
controlled inventory level (Fixed-WIP) at a work point, this variation in 
lead time is often kept within limits. 

The resources of a job shop should not be leaf resources in order to 

prevent deadlock and long idle times. On the other hand resources with 
a job shop structure in a job shop seems also unwise. This increases 
uncertainty and lead times, with bad throughput figures. It is best if all 
job shop decisions are taken at one level, as high in the hierarchy as 
possible, so that one controller has a view of the total scheduling 

problem and is able to keep the total system at a work point which is 
determined in advance. 

4.7 Configuring a hierarchical control system 

The integration of the concepts treated above results in the new hierar
chical control architecture. This architecture allows a structured approach 
to the design of manufacturing control systems, especially for manu
facturing systems having a job shop character. 

Foul' manufacturing system classes have been presented in Chapter 

Two: a single shop, a parallel shop, a flow shop) and a job shop. In 
Chapter Three four controller categories have been described: a factory 
con troller controlling expanded resources, one controlling leaf resources, 
a manufacturing controller controlling expanded resources, and one 
controlling leaf resources. 

This chapter has discussed the data structure, the general control model 
and the strategies for the generation of requests. The following six 
request generation strategies have been described: a subrequest causes 
a new request, a subrequest of the bottleneck causes a new request, start 

of the first subjob of a task causes a new request after a time interval or 
delay, start of a subjob On a bottleneck cauSes a new request after a time 
interval or delay, the completion of a job causes a new request (Fixed
WIP), or a new request is sent at fixed time interval (unifonn-starts). In 
the last four sections the relation between request generation and the 
manufacturing system class has been discussed. 
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The controller of the described architecture controls processing re

sources, a transporter and a store. It has been shown that the processing 
resource may be expanded, itself containing a controller, processing 

resources, a transporter and a store. In this way a hierarchical control 

system is built up. 

A controller belongs to a certain category, and a manufacturing system 

class has to be determined. Arequest generation strategy and a transport 

strategy have to be chosen for every controller. These aspects are related. 

The nwnber of control layers is adjustable. The top of the hierarchy is 

formed by a factory controller. The bottom is formed by (leaf) processing 
resources controlled by a manufacturing controller controlling leaf 
resources. If there is only one layer, then the controller is a factory 
controller controlling leaf resources. 

A controller that controls leaf resources has to use late transport, because 
a leaf resource has no way to store material that is not being processed. 

In order to avoid deadlock and to reduce idle times the single shop, the 

parallel shop and, perhaps, a well balanced flow shop are the most 

obvious classes to use for a manufacturing system with leaf resources. 

These classes are associated with few sequencing problems: a scheduler 

using the FIFO sequencing rule is nonna1ly sufficient. In case of a job 
shop extra attention will have to be paid to deadlock avoidance. 

The factory controller has to take care of capacity planning. To do this 
it needs a clear view of the behaviour of the resources it controls. In order 
to achieve such insight, one should use a relatively simple class of 
manufacturing system. The most obvious classes here are also the single 
shop, the parallel shop, or perhaps a flow shop, if it is well balanced. A 

job shop manufacturing system class on this level would introduce a lot 

of complications. On this level, one tries to keep the scheduling 

problems to a minimum: calculations are concentrated on the capacity 

planning problem. A necessary condition is that the behaviour of the 

resources in the factory behave reasonably predictably. Asimple scheduler 

using a FIFO sequencing rule or a rule for due date control (e.g. EDD) 
is used on the factory level. 

In controllers of expanded resources, early transport reduces the idle 
times of resources and increases the clarity of the manufacturing system. 
But it reduces the allocating possibilities at an early stage because 
material is allocated to a machine before the material is transported. 

Requests sent after a time interval may be used to request material before 

a job is finished, to prevent the idleness due to late transport. The job is 

requested too early, where the interval between request and actual 
finishing of the job is a safety margin. This margin is, if possible, only 

used by the controller that controls leaf resources. The margins used by 
this controller may settle transport times in more than one supercontrol 
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layer. The transport times of more layers can only be incorporated in one 
margin if the supercontrollers generate requests on the basis of 
subrequests. If in one of the supercontrollers requests arC not generated 
with help of subrequests (e.g. unifonn starts or Fixed-WIP); only the 
transport delays up to this supedayer are accounted for in the margin. 
Here delays in layers above this superlayer can not be accounted for. 
This problem may arise in controllers of a flow shop Or a job shop class. 

If a controller controls expanded resources and there are no duplicate 
resources of one type, then early transport is an interesting strategy to 
use. A controller of a parallel shop class may be inserted in order to 
prevent duplicate resources. A problem that has to be solved with any 
transport strategy is the level at which material in the factory is stored. 
In the manufacturing controller the material is considered to form the 
inventory of the controller only if a job for the material has been 
received. Nonnally the material is stored in the resources of the 
controller where the sequencing and allocating decisions have to be 
taken. This sequencing and allocating has to be done in a layer where a 
global survey of the necessary system information is available. This is 
usually one of the highest layers. The lower layers use late transport and 
are of a simple manufacturing system class in order to keep the internal 
inventory small and to achieve deterministic lead times, which enables 
st~quencing and allocating decisions to be made on the basis of relatively 
certain data. This layer, where sequencing and allocating problems are 
solved, may be of a job shop or an (unbalanced) flow shop class-

The control architecture which has been presented in this chapter takes 
as its starting point the specification of the machines and the recipes. 
Together with the specification, one may also give a rough sketch of the 
controller configuration and the number of the hierarchical layers. The 
control architecture applied to this infonnation results in the controller 
configuration. The control architecture asSumes that the transport capacity 
of the transport system is over-dimensioned. The control configuration, 
and especially the transport systems and the stores, have to be adapted 
to each other. The designer of the physical manufacturing system has to 
detennine the transport systems and the stores in concert with the 
designer of the control system. The control configuration is created On 
the basis of the insights presented above. This leads to a specific model. 
The uSe of simulation allows one to check the behaviour of the control 
system. The simulation also generates performance graphs, which may 
be used to determine a suitable work point for the factory. 

This approach is used in Chapter Five. With help of the control 
architecture a hierarchical control system is developed for a complex IC 
factory with a job shop character. The unique properties of the hierar
chical control architecture are discussed in Chapter Six. 



Chapter 5 

A case: an Ie manufacturing system 

5.1 Introduction 

The architecture presented in the previous chapters will now be applied 
to an example, in OTder to illu:strate the architecture in practice. In this 
chapter an Integrated Circuit (IC) manufacturing system is modelled 
and the perfonnance of the system i:s studied with help of simulation 
experiments. The diffusion proce:ss is used in the factory to produce 
wafers containing les. The factory applies the CMOS (Complementary 
Metal Oxide Semiconductor) technology [Sze 1983]. 

The manufacturing of les is difficult for many reasons. The p:rocess 
consists of hundreds of steps (manufacturing operations). Many process 
:steps have to be performed on the same machine. The durations of the 
process steps vary from less than one hour to almost one day. The factory 
has a job shop character. The machines have a poor reliability and the 
process is subject to random yield crashes. Operator availability and 
unpredictable repair times further complicate the manufacturing proc r 

eSS [Lorlnsky, Glassey, 1988]. The nominal time required to manufacture 
an Ie can be up to several weeks and, in practice, average lead times of 
more than six times the nominal process time are no exception [Miller, 
1990]. 

IC manufacturers have put a great deal of effort into the development of 
new technologies and the improvement of the manufacturing process, 
in order to increase the scale of integration ofles. Nowadays, they have 
started to realize that, in order to reduce the cost, attention has also to be 
paid to the control of the manufacturing system. 

In the future factories will contain cell orientated manufacmring systems 
and automated material handling systems, in order to reduce the number 
of processing steps and to exclude contact between operator and 
processing materiaL Computers will control the material flow and the 
manufacturing process to reduce lead times [Warnecke, 1990]. 
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5.2 The Ie manufacturing system 

The Ie manufacturing process to be dealt with is described briefly 

below. More extensive descriptions can be found in the literature [Sze 
1983, Burman et aL 1986, Kessler 1988]. 

The manufacturing of an Ie is split into four parts: the manufacturing of 
the raw wafers; the wafer fabrication; a probe and dice operation; and 
packaging and testing. The first two parts are also called the front end, 
the last two the back end. To produce raw wafers, molten silicon is 
transfonned into crystalline ingots which are sawn into wafers. The 
wafer fabrication is the part with which this chapter deals, and is 
explained in brief below. The wafer fabrication is done in an Ie 
manufacmring system, often called a wafer fab. Mter the wafer fabri~ 
cation the ICs on the wafer are tested, and sawn into individual chips. 
The approved chips are encapsulated into packages and tested again 
before shipping. 

The basic building block of an CMOS Ie is the MOS transistor. An Ie 
contains up to millions of these transistors. The way to make an Ie is by 
depositing Or growing layers of material on the wafer. With help of a 
photol ithographic process a pattem is applied on this layer and with help 
of an etch process the layer is partially removed, the photoresist being 
removed afterwards. By repeating these steps several layers are grown 
on the wafer. Another process used is ion implantation, where ions are 
shot into the wafer and introduce so-called dopants into the silicon. 
These dopants diffuse through the silicon by heating the wafer. In order 
to manufacture an Ie hundreds of process steps have to be executed. 
Many of these steps are executed On the same resources, which makes 
the process cyclic, i.e. it is a job shop. 

The machines of a wafer fab are usually divided into five categories: 
lithographic equipment, diffusion-CVD (Chemical Vapour Deposition) 
equipment, etch equipment, implantation equipment and metalization 
equipment. A step in the manufacturing process is usually preceded by 
a clean step and followed by an inspection step. Etch steps are not 
preceded by a clean step, and implantation steps are neither preceded by 
a clean step nor followed by an inspection step. 

The lithographic machines put patterns On the wafer. The wafer is first 
coated with a light-sensitive photoresist. The stepper exposes the 
wafers, which are then developed. The coater, stepper and developer are 

usually integrated into one machine. 

The diffusion-CVD machines grow or deposit layers of material on the 
wafer. This happens by putting the wafers in a furnace, heating it and 
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leading gases through the furnace. Because of the long setup times 

furnaces are used for only a limited number of process steps. 

The etchers remove material from the wafet. The developed photoresist 
protects a part of the wafer and the uncovered areas are removed. This 

is usually done with a dry etch process. An etcher is also used to strip the 
photoresist from the wafer. 

In the implanter charged ions of the right dopant are fired at the wafer. 

This is a low temperature process. Mter the implantation the swface of 
the wafer may be damaged. This damage is healed by heating the wafer 

for a short while, so-called thennal annealing. To diffuse the implanted 
ions into a larger doped region the wafers are heated in a furnace (one 

of the diffusion-CVD machines). 

The metalization machines deposit metal on the wafer. The process 
m.etalization or sputtering is done to connect the components of the Ie 
with each other and to provide bonding pads, were the Ie is connected 

to the outside world (pins of the encapsulation). 

Besides to the process machines (steppers, furnaces, etchers, implanters 

and sputterefs), the chip fab also contains cleaners, inspectors, stores 

and transporters. The material in the factory consists of cassettes with 

wafers. These cassettes usually contain 25 wafers. The machines in the 

IC factory have different batch sizes, some process single wafers such 
as the steppers. Fumaces process up to two, three or four cassettes at one 
time. 

5.3 Control of Ie manufacturing systems 

The control of Ie manufacturing systems is the subject of much 

research. Several control, releasing and sequencing strategies have been 

described and tested with help of simulation. Work load regulation 

[Wein 1988, Lawton et at 1990] uses the work load in front of the 
bottleneck to decide when to introduce a new job in the manufacturing 

system. Starvation avoidance [Glassey and Resende 1988, Lozinski and 

Glassey 1988] tries to start new jobs as late as possible, in order to let 

material anive at the bottleneck station just before the bottleneck runs 
idle and to minimize work in progress levels. An important conclusion 
of such studies is that scheduling influences the average lead time 
significantly, where larger improvem.ents are obtained with job release 

than with subjob sequencing. Flow rate control [Kager and Lou 1989, 

Lou and Kager 1989] calculates loading rates at each job step in the 
wafer manufacturing system by comparing inventory levels and surplus 

levels with predetermined values. The shifting bottleneck approach 

[Uzsoy et aI. 1989] approximates the general job-shop problem by 
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Table 5.1. Manufacturing process o/CMOS (process time 207 

hours). 

machine 
process 

number operation pa~ameter 
type 

time 
{hours] 

1 Inti Diffusion CMOS1 Dflntl 6 
2 Mask CMOS2 StePt'er 1 
3 CF4 Etch CMOS3 Etch F4 1 
4 HCurrlrnplant CMOS4 HCurr 1 
5 02Etch CMOS5 Etch02 1 
6 DrlvDiHusion CMOS6 DfD~iv 15 
7 CF4 Etch CMOS7 EtchCF4 1 
S Mask CMOSS Stepper 1 
9 MCurrlrnplant CMOS9 MCurr 1 
10 02Etch CMOS10 Etcl'102 1 
11 OryDiffuslon CMOS11 DfDI)' 4 
12 NtrdDeposition CMOS12 LPNtrd 2 
13 Mask CMOS13 Stepper 1 
14 CF4Etch CMOS14 EtchCF4 1 
15 02Etch CMOS15 Etch02 1 
16 MCurrlmplant CMOS16 MCurr 1 
17 WetDiffusion CMOS17 otwet 12 
18 CF4 Etch CMOS18 EtchCF4 1 
19 GateDiffusion CMOS19 OfGate 4 
20 DPolDeposition CMOS20 LPDPol 3 
21 Mask CMOS21 Stepper 1 
Z2 CI2Etch CMOS22 EtchCI2 1 
23 02Etch CMOS23 Etch02 1 
24 Mask CMOS24 Stepper 1 
25 MCurrlrnplant CMOS.25 MCurr 1 
26 02EtCh CMOS26 Etch02 1 
27 TEOSDeposition CMOS27 LPTEOS 2 
28 CF4Etch CMOS28 EtchCF4 1 
29 TEOSDeposltion CMOS29 LPiEOS 2 
30 Mask OMOS30 Stepper 1 
31 MCuITlmplant OMOS31 MCu~~ 1 
32 02Etch OMOS32 Etch02 1 
33 Anneal CMOS33 DfAnnl 4 

34 Mask CMOS34 Steppe~ 1 
35 MCurrlrnplant CMOS35 MOurr 1 
36 02EtCh OMOS36 Etch02 1 
37 Anneal CMOS37 DfAnnl 3 
38 L TOOeposition OMOS38 LPLTO 3 
39 Mask CMOS39 Stepper 1 
40 CF4Etch OM0840 EtChOF4 1 
41 02Etch CMOS41 Etch02 1 
42 AIDeposltion CMOS42 LPAI 2 
43 Mask CMOS43 Stepper 1 
44 BCI3EtCh CMOS44 EtchBCI3 1 
45 02Etch CMO$45 Etch02 1 
46 OxldDeposition CMOS46 PEOxid 3 
47 ResistOeposltlon CMOS47 Coater 1 
48 CF402E1ch CMOS48 EtchCF4 1 
49 OxidDepoSition CMOS49 PEOxld 2 
50 Mask CMOS50 Stepm 1 
51 Cf:'4Etch CMOS51 Etch 1=4 1 
52 02Etch OMOS52 Etch02 1 
53 AIDepo$ition OMOS53 LPAI 2 
54 Mask CMOS54 Ste~r 1 
55 BCI3Etch CMOS55 Etch CI3 1 
56 02Etch CMOS56 Etch02 1 
57 OxidDeposltion CMOS57 PEOxid 3 
58 MaSk CMOS58 Stepper 1 
59 CF4Etch CMOS59 EtchOF4 1 
60 02Etch CMOS60 Etch02 1 
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Table 5.2. Manufacturing process of SRAM (process time 197 hours, 

this process time is inclusive cleaning, inspecting and transporting). 

number operallon parameter 
machine ~ 

type [hOu'S] 

1 IntlDiffuslon CMOS1 Of Inti 6 
2 Mask SRAM2 Stepper 1 
3 CF4 Etch CMOS3 EtchCf4 1 
4 HCurrlmplant OMOS4 HOurr 1 
5 02Etch aMOS5 Etch02 1 
6 OrivOlffusion OMOSS DfDriv 15 
7 Of4Etch CMOS7 EtchCF4 1 
8 Mask SRAMS Stegper 1 
9 MCurrlnlplant CMOS9 M urr 1 
10 02Etch CMOS10 Etch02 1 
11 DryDlffusion CMOS11 DfOry 4 
12 NtrdOepositlon CMOS12 LPNtrd 2 
13 Mask SRAM13 Ste~r 1 
14 CF4Etch CMOS14 Etch F4 1 
15 02Etch CMOS15 E1ch02 1 
16 MCurrimplant CMOS16 MCurr 1 
17 WetOlffusion CMOS17 DfWet 12 
18 CF4 Etch CMOS18 EtchCF4 1 
19 GateDIffuSion OMOS19 OfGate 4 
20 MGurrlmplant SRAM20 MCurr 1 
21 DPoiOeposition SRAM21 LPDPOI 3 
22 TaSl2Deposition SRAM22 SpTaSI2 1 
23 Mask SRAM23 Stepper 1 
24 CI2EtCh SRAM24 EtdlCI2 1 
25 02Etch SRAM25 EtCh02 1 
26 TEOSDeposltlon SRAM26 L.PTEOS 2 
27 CF4Etch SRAM27 EtchOf4 1 
28 Mask SRAM28 Ste6per 1 
29 MCurrlmplant SRAM29 M urr 1 
30 02Etch SAAM3Q Etch02 1 
31 Mask SRAM31 Ste~er 1 
32 MCurrlmplant SRAM32 M rr 1 
33 02Etc:h SRAM33 EtCh02 1 
34 TEOSDepoSition SRAM34 LPTEOS 2 
35 Mask SRAM35 Stepger 1 
36 Cf4Etch SRAM36 Etch F4 1 
37 02Etch SRAM37 Etd'l02 1 
38 Poly Deposition SAAM38 LPPoly 2 
39 Mask SRAM39 

S:hper 1 
40 CI2Etch SRAM40 Etc CI2 1 
41 02Etdl SRAM41 EtdlO2 1 
4.2 NtrdDeposltion SRAM42 LPNtrd 2 
43 Mask SAAM43 stepter 1 
44 CF4Etch SRAM44 Etch F4 1 
45 02Etdl SAAM45 Etch02 1 
46 Hourrimpiant SRAM46 HCurr 1 
47 PSG DepositiOn SRAM47 LPPSG 3 
48 flowOiffuslon SRAM48 Dfflow 3 
49 Mask SRAM49 SteP~er 1 
50 GF4Etch SRAM50 Etch F4 1 
51 02Etch SMM51 Etch02 1 
52 AIDepOsition SRAM52 LPAI 2 
53 Mask SRAM53 Stepper 1 
54 BCI3Etcn SRAM54 EtchBCIS 1 
55 02Etdl SRAM55 Etch02 1 
56 OxidOeposltlon SRAM56 PEO>:id 3 
57 Mask SRAM57 Stepper 1 
58 CF4Etch SRAM58 EtchCf4 1 
59 02Etch SRAM59 Etch02 1 
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solving a sequence of single machine problems and using a disjunctive 
graph representation to capture interactions between machines. EUeby 
et aL [1989] introduce a constraint-based framework with an adaptive 
mechanism to allow the operator to express interactively its criteria and 
with a least conunitment approach to prevent supedluous scheduling 
activities. An application of the ill manufacturing management phi
losophy in an etch shop is presented by Martin-Vega et al. [1988]. 

The simulation ofIe manufacturing systems has received an increasing 
amount of attention in the literature [Miller 1990, Tullis et aL 1990, 
Oenekamp et al. 1990, Matuyama and Atherton 1990, BUIman et al. 
1986,AthertonetaL 1989 , Atherton 1988,Atherton 1987, Pollak 1989]. 
Simulation has been used to gain an insight into the behaviour of the 
manufacturing system, both performance and dynamic capacity having 
been analysed. Simulation results have also been used to take control 
decisions and to design future factories. Simulation programs are 
mostly used in combination with a material tracking system, which 
delivers input information for the simulation program. To validate the 
model, simulation output is compared with information from the tracking 
system. Attempts are being made to integrate output results with the 
tracking or control system in order to use simulation as a tool for 
scheduling and control [Tullis et aL 1990]. 

In all these studies, the most important performance measure of an IC 
manufactUIing system is the lead time of jobs. This is the time between 
the start of a job in the wafer manufacturing system and the fmishing of 
the job. The lead time influences the yield, inventory costs and time to 
market. Long lead times influence the yield negatively [Miller 1990]. 
Yield is the percentage of products manufactured, that fulfil the re
quirements. The lead time influences the time during which foreign 
particles have a chance to contaminate wafers. Variations in lead times 
and in times between processing steps cause process variability. Lead 
times determine learning time, and thus the time required to solve 
manufacturing problems. Long lead times go with high work in progress 
levels. Witll high inventories, the capital invested in the partially 
processed wafers is large, there is much space needed for storage and 
extra resources for product tracking. Long lead times result in long times 
before a new product comes on the market, which influences the 
competitive capability of the company. 

On the other hand Ie manufacturing systems are expensive and, to keep 
costs per wafer low, high throughputs are required. The relation between 
lead time, throughput and inventory is found in the perfonnance chart, 
mentioned in Chapter three. The model ofllie Ie factory is shown in the 
next section. The capability of the model is shown in the last section of 
this chapter, together with the calculation of some performance charts 
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for different configurations and different control, releasing and 
sequencing strategies. 

5.4 The control model of an Ie manufacturing 

system 

The ICmanufactwing system we model here is based on data taken from 
the literature, compiled by Denekamp [Denekamp 1989]. It is based on 

parts of an existing factory, so that the process has all the properties of 

a real Ie manufacturing process and can probably be used for a real IC 
manufacturing system without mnch alteration. 

The facility manufactures two product types, both being manufactured 

with CMOS technology. One is called CMOS, the other SRAM. Both 

processes are described in Tables 5.1 and 5.2. These tables only contain 

the processing steps. the cleaning steps and the inspection steps having 
been omitted. 

The figures accompanying this chapter represent schematically the 
model of the important parts of the chip factory. The complete model 

contains 792 processors, 582 leaf processors and 210 expanded proc
essors. The model will be presented in a bottom up manner. The 

StepparStation1 model 

eontrolililf ~OI'IIfolier 

Figure 5.1. A station model. a) StepperStation] model. 
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StepperSaliooResources model 

controllElr CC/(]\ionA' contfollo; ~on'roller 

Figure 5.1. A station model. b) StepperStationResources model. 

StepperTrans'o~merS mode' 

Figure 5.1. A station model. c) StepperTransJormers model. 

hierarchical control layout of the factory has five control levels: station, 
cell, shop, facility and factory. 

Station 

"The lowest level controls machines. These are the cleaners, the process
ing machines and the inspectors. A machine, together with a store and 
a transporter, fonus a station. An example of a station (the StepperStation) 
is shown in Figure 5.1. A station is of a single shop class. 
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Cell 

The stations are put together in a flow shop manufacturing system class, 

the celL A cell is a line with a cleaning station at its head, then the 

processing station and fmally the inspection station (Figure 5.2). The 
cells in the etch shop do not contain cleaning stations. and the cells in the 
implant shop contain no cleaning and no inspection station. A cell also 

contains a store and a transporter. 

StepperCell1 model 

outside outside 

Figure 5.2. A cell model. a) StepperCelil model. 

StepperCeliResources model 

Figure 5.2. A cell model. b) StepperCelLResources model. 
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StapperSlatiOr'lS model 

oonl,ol~r conlrollo, cOntroll~ cont,oll<tr controller oo~tl'Oll"'r 

Figure 5.2. A cell model. c) StepperStations model. 

Shop 

The cells are grouped in a parallel shop manufacturing system class: 
shops (Figure 5.3). This means that, in the shop, material visits one cell 
and leaves the shop aftelwards. Besides the cells, a shop contains, of 
course, One store and one transporter_ 

UthOShop 1 model 

oQnlrtlller ~onlrQII"'r 

Ql,II3ide outsidA 

Figure 5.3. A shop model. a) LithoShopl model. 
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LithoShopResou!'CeS model 

Figure 5.3. A shop model. b) LithoShopResources model. 

Facility 

The facility is of a job shop class. The cells that use the same technology 
and the same chemicals are grouped together. This leads to five shops 
in the facility: litho~shop; diff-CVD-shop, etch-shop, implant-shop and 
metal-shop. These shops, together with a transporter and a store, fonn 
the entire facility (Figure 5.4). 

Factory 

The Ie factory contains one facility, a store and a transporter (Figures 
5.5). The factory has a single shop configuration. 

From the control point of view we can say that the factory is a single 
shop, the facility is a job shop, the shop is a parallel shop. the cell is a 
flow shop, and the station is a single shop. 

The material in the Ie factory consists of cassettes of wafers. The 
material unit is one cassette containing 25 wafers. All machines in the 
factory have batch sizes of one or more cassettes. The maximum batch 
size is four cassettes. The process times of the material on the machines 
is supposed to be known and to be detenninistic. The process times 
mentioned in Tables 5.1 and 5.2 refer to one batch size. The machines 
do not fail, the facility operates 24 hours a day and no (scheduled) 
maintenance takes place. Yield losses during manufacruring are in the 
first instance not considered. 'This means that, during the processing of 
a cassette, no wafers are reworked j no wafers are damaged and, after the 
execution of an order, the specified number of products are manufac
tured. Operator availability is also not included in the model: every 
operation on a machine starts at the moment the material arrives at the 
idle machine. Tools are also not considered and setup times are part of 
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LlthoCelis model 

controll .. , <x>ntrolie( ~Qntrollill col'lltoll .. , controll", ~ontr(ll~r 

clmtroller cOl'ltrolliO' "on/I"I;>II"" ~ontfolleJ 

oontrollot ="II"I;>I~r 

Figure 5.3. A shop model. c) LithoCells model. 

the process time. Machine failure, yield loss and operator availability 
are left out of account, because the intention of this study is to gain an 
impression of how to configure the control of a complex factory, and 
how useful the described control architecture is. At this stage these 
factors only Serve to confuse the issue. Afterwards, when the control 
theory of an ideal factory has been established, these factors will, of 
course, have to be taken into account. 
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ChipFacilityl model 

~Or'Itrotier ~o~trotler 

Figure 5.4. A model of the facility. a) ChipF acilityl model. 

ChipFacilltyResources model 

Figure 5.4. A model of the facility. b) ChipF acilityResources model. 

The factory is to produce 0.5 cassettes per hour (= throughput). The load 
of the different processing machines can be calculated from Tables 5.1 
and 5.2, as is explained below. The target throughput is used to calculate 
the necessary number of processing machines. With the number of 
machines and the load for the machine for both product types, the 
utilization of the machines is calculated for three product mixes. The 
fjrst mix produces 0.5 cassette CMOS per hour and no SRAM 
(CMOS:SRAM = 1:0). The second mix produces 0.25 cassette CMOS 
and 0.25 cassette SRAM per hour (CMOS:SRAM;;;;;; 1:1). In the third 
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ChipShops model 

~onlJ'ol~r ~ontrolle~ ronlroUQ~ <;QntroUer <;Qnlroller ~nlrollqr 

QI.Itslde oulsidl;l 

controUeI" eOl\lrol1ef controller ~ol'lll'1JlI"'r 

o~ out$ide 

Figure 5.4. A model of the facility. c) ChipShops model. 

situation 0.5 cassette SRAM and no CMOS is manufactured per hour 
(CMOS:SRAM ~ 0:1). 

The loads for the different processing machines are represented in Table 
5.3, the cleaners and inspectors of each cell being omitted. A cleaning 
step and an inspection step are supposed to last one hour. All cleaners 
and inspectors of a cell have a batch size that is equal to the processing 
machine in the cell, so the capacity of the cleaner and the inspector is the 
Same as the capacity of the processing machine. Because the load is 
equal to or less then the load of the processing machine, the utilization 
of the cleaner and the inspector is also equal to or less than the utilization 
of the processing machine. 

To calculate the values of Table 5.3 the following fonnulas are used: 

~y 

lxy"'= L Pxyz 
~l 
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ChipFactory model 

Figu1"e 5.5. A model of the factory. a) ChipF actory model. 

ChlpFactoryResouroos model 

controller ~Ioj 

oUlslde 

Figure 5.5. A model of the factory. b) ChipFactoryResources model. 

ChlpFadllties modal 

comroller QQnIr"Uat 

outside O~id9 

FigU1"t 5.5. A model of the factory. c) ChipFacilities model. 
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Table 5.3. Load and utilization of the different machine types for 

different product mixes (CMOS.-SRAM) 1 :0,1:1 and 0:1. 

machln& ~<i b.!>.l<;Jh load \JtI1I~IIQn 
shop Q~cily typ_ ~ size CMOS SRAM 1;0 1;1 

UlhoShQP $biopper 6 6 1:2 12 1 1 
C08.ler 1 1 1 0 0.5 O.2S 

DIfCVOShop Of Ann I 1 4 4 7 0 0.00 0.44 
DfDriv& 2 4 8 15 15 0.94 0,94 

D10ry 1 4 4 4 4 0.5 0.5 
DfFlow 1 4 4 0 3 0 0.19 
DfGate 1 4 4 4 4 0.5 0,5 

Dflntl 1 4 4 G 6 0.75 0.75 
DfWel 2 4 8 1:;! 12 0.75 0.7S 

LPOPI)I 1 :;: 2 3 3 0,75 0.75 
LPLTO 1 2 2 3 0 0.75 0.38 
LPNtrd 1 2 2 2 4 0.5 0.75 

LPP<;>iy 1 .: 2 0 :2 0 0.25 
LPPSG 1 2 2 0 a 0 0.38 

LPTEOS 1 :2 2 4 4 1 1 
Pf:Oxid 2 3 6 a a 0.S7 0.46 

E:lo=.i'lSht;!p IOlchBCI3 1 1 2 1 1 0.75 

EWlCF4 5 5 9 9 0.9 0.9 

~1(;hCI2 1 1 1 :2 0,5 0.75 
Elch02 6 6 12 12 1 1 

ImplanlShop HOurr 1 :2 2 1 2 0.25 O.as 
MCurr :2 2 4 5 5 0.63 0.63 

MetalShop LPAI :2 2 4 :2 1 0.75 
SpTaSi2 1 1 0 1 0 0.25 

pn 

L lxy· 7 
~ = first namral number bigger than 

y",l 

bx 

pn 

L lxy. ty 

cx=~· bx and 
y-l 

Ox=-
ex 

with:x = type of machine, y =-: product and z = operation, 

CP = number of operations, p'l ~ number of products, 

:M? = number of machines of a type, 

0:1 

1 

0 

0 
0.94 
0.5 
0,$ 
0,5 
0.7S 
0,75 
0.75 
0 
1 
0.5 
0.75 
1 
0,25 

0.5 
0.9 
1 
1 

0.5 
0.63 

0.5 
0.5 

p = process time of operation of a product on a type of machine, 

I "" load of a type of machine due to a product, 

t ~ throughput of a product, 

b = batch size and c = capacity of a type of machine, 
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The controllers of the hierarchica1layers generate requests according to 

different strategies. The station controller sends a request shortly before 
the machine has finished processing. A cell controller sends a request 

shortly before the bottleneck station has finished processing. The 
bottleneck station is most of the time the station where the actual 
processing takes place. Only if the processing step lasts 1 hour are the 
stations in the cell perfectly balanced, and the first station is used as 
bottleneck. A shop controller sends a request when it receives a cell 

request. The shop requests only work that can be executed by the cell 

which sent the cell request. The facility controller sends a request when 
its inventory level is below a certain level and there is no request 
outstanding (Fixed-WIP). The facility request is either sent when the 

facility receives a job or when the facility has finished a job. The cells 

and stations request a material amount that is equal to their (maximum) 

batch size. The shop requests the same amount as was requested by the 

cell. The job for the facility always contains four cassettes. This is done 

because there are many furnaces that process batches of four cassettes 
or common dividers of four. Only the PEOxidCell (a furnace in the 
diff-CVD shop) has a batch size of three. By letting this cell request 1 
to 3 cassettes, instead of its maximum batch size, a batch of four 

cassettes can be processed by all stations without the station having to 
wait for cassettes from another job. 

5.5 Simulation experiments and results 

To demonstrate some possibilities of the control architecture, the model 

of the Ie manufacturing system is used for different experiments. The 
experiments consider the following aspects: the product mix, the 
transport time, the batch size, the request generating strategy and the 

sequencing strategy. 'The performance of the facilities is emphasized 

during these experiments. The influence of the market is not considered. 
To decouple the behaviour of the consumer and the supplier from the 
perfonnance of the facility, the factory controller ensures that an excess 
amount of blank wafers and product ordc:rs are available. The consumer 
demand is bigger than the maximum throughput of the factory and the 

supplier delivery time is very short. Because of these conditions the 
factory controller is able to answer all requests from the facility with a 

job. 

To judge the quality of the model, it has to be verified and validated first. 

The verification is used to ascertain whether the model functions as 
intended. The validation is then used to investigate the correcOless of the 

model in relation to the modelled system. The verification is done with 

the help of modular progranuning and testing of the different modules 

(in this case the processors of the model). The model is executed in steps 
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in order to check its behaviour. With the complete model some extreme 
experiment,; are perfonned. These experiments do not need to be 

realistic, but they do serve to reveal the robustness of the model. If the 
model seems to be reliable, Some simple experiments are executed. The 
results of these experiments may be deduced analytically. The results of 
the experiments are compared with the analytical solution. The last 
check is to collect redundant data during the simulation experiments and 
to test whether the collected data are consistent. The validation of the 
model is in this case not possible because the modelled system does not 
exist in reality. The only possible validation is by comparison of the 
results with results reported in the literature for comparable experi
ments. 

Simulation runs have been done with the complete model and once it 
was found to be correct, it was simplified in order to save execution time. 
The simplification was possible because the cells of the model behaved 
in a predictable way. The cells were flow shops containing a minimum 
of One and a maximum of three stations~ all having the same batch size. 
The control of the cell and the stations is adjusted in such a way that a 
request is generated when the cassette can be processed directly after 
each other on all stations. The lead time of the cassette is easy to predict, 
the only insecurity being related to the transport time. The compressed 
model contains 80 processors: 66 leaf processors and 14 expanded 
processors. The model runs more than six times faster. The compressed 
model is validated with help of the complete model. 

The performance of the facility has been studied with the compressed 
model. The results of the experiments are recorded in the form of graphs. 
The lead time and the throughput are set out against the inventory level. 
These are called perfonnance graphs (see Section 3.1). The perform~ 
ance graphs contain redundant infonnation. In most cases both graphs 
are reproduced because they give insights from different viewpoints. 
The perfonnance graphs only have validity if the material input rate is 
equal to the throughput. To get truthful results this condition has to be 
fulfilled. A performance graph is made for every experiment. To 
construct performance graphs an experiment consists of runs with 
different inventory levels_ A measurement at a certain inventory level 

gives only one point on the perfonnance graph. For the complete graph 
usually 10 measurements are perfonned. 

The simulation model is detenninistic, but nonetheless the results of the 
simulation behave in some sense stochastically. The experiments involve 

non-tenninating experiments, where the lead time and the throughput of 
the facility is determined at a more or less constant value of the inventory 

level. Before the measuring of these values is started, the facility has to 
be in a steady state situation. This state is achieved only after the elapse 
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of a certain time, called the start-up interval: the model is then in a 
transient state. To determine the length of the transient state the change 
in the distribution of the observations is studied by plotting the obser
vations against time, and by comparing histograms of different sets of 
observations. When the distribution of the observations remains constant, 
the steady state has been reached. 

The observations generated by a deterministic model show a regularity; 
the measurement of one cycle is enough to obtain a reliable result. 
Sometimes the cycle is difficult to distinguish, and then the model seems 
to behave stochastically. In these caseS the run is split into subruns. The 

measurements of the different subruns is determined by looking at the 
sample autocorrelation function; the size of the confidence interval 

depends on the number of subruns. 

The purpose of the experiments is to reveal the possibilities of the 
control architecture. Because an extended statistical analysis of the 
simulation output calls for many simulation runS and because the time 
to perlorm these runs is limited, for most runs only one subrun is done 

and, in case the observations showed large variances, three subruns are 
perfonned. The size of the 90% confidence interval is always less then 
10% of the measured value. A more extensive analysis of the results is 
to be found in De Jonge [De Jonge 1991]. 

An experiment is done to detennine a perfonnance graph. The experiment 
starts with an empty facility, whereupon the facility is filled with 
material up to a certain level. The loading of material is distributed over 
a time interval, the length of the interval is equal to the avernge lead time 
at that moment. Mter the loading one waits until the steady state is 

Table 5.4. The default setting of the facility. 

product mix (CMOS:SRAM) 1 :0 

transport time 1 minute 

batch sizes 1,2.3 and 4 

minimum amount requested equal to maximum batch slIa 

minimum amount PEOxid equal to 1 

shop requesting strategy shop request derived from cell request 

facility requesting strategy Fixad-WIP 

sequencing I\Ile FIFO 
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reached. During the waiting at least all material in the facility has to be 
processed. This lasts at least as long as the average lead time. After the 
waiting the measuring starts. 

Five aspects are investigated: the product mix, the transport times, the 
batch sizes of the machines, the request generating strategy and the 
sequencing strategy. A default experiment is perfonned to compare the 
different experiments. The default factory manufactures only CMOS at 
a throughput of 0.5 cassettes per hour. All transporter movements in the 
factory take one minute. The machines have batch sizes ranging from 1 
to 4 cassettes. The number of cassettes requested by a machine is equal 
to its maximum batch size, except for the PEOxid fumace, which 
requests 1 to 3 cassettes. The shop controller sends the requests from the 
cells immediately to the facility controller. The facility controller uses 
a Fixed-WIP strategy to generate requests. The facility controller (and 
all other controllers) use a FIFO sequencing rule. The default settings of 
the facility are shown in Table 5.4. These settings have been varied 
during the different experiments. With product mix and transport time 
the settings of product mix and transport time are changed. With batch 
size the munber and batch size of machines and the minimwn batch size 
of a request is varied. With the request generating strategy, three ways 
of generating requests by the shop controller are studied. With the 
sequencing strategy different sequencing rules are used by the facility 
controller. 

Product mix 

The first experiment concernS the product mix. The facility is capable 
of manufacturing CMOS and SRAM. The capacity of the facility is 
independent of the product mix; 0.5 cassettes per hour. The two products 
have different process times: CMOS 199 (inclusive transport 207) hours 
and SRAM 189 (inclusive transport 197) hours. The lead time of a 
product consists of its process time and a wait time: 

1CMOS == PCMOS + WCMOS 

lSRAM ~ PSRAM + WSRAM 

PeMOS = 207 [hours] 

PSRAM "" 197 [hours] 

with: 1 the lead time, p the proces time and w the wait time. 

From the fommla: 1 = ! 
t 

( i = inventory level, t = throughput) 
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Figure 5.6. Performance graphs of the facility for different product 

mixes (CMOS:SRAM = 1 :0,1:1 and 0;1). a) Mean lead time of 

CMOS cassettes versus the mean inventory level. 

400 

300 

o 

ideal facUlty 
--q.-... 1:1 
____ 0;1 

100 200 300 

mean inventory level 
[cassettes) 

Figure 5.6. Performance graphs of the facility for different product 

mixes (CMOS:SRAM = 1:0, 1:1 and 0:1). b) Mean lead time of 

SRAM cassettes versus the mean inventory level. 
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Figure 5.6. Performance graphs of the facility for different product 

mixes (CMOS_'SRAM = 1:0, 1:1 and 0_'1). c) Mean throughput versus 

the mean inventory level-

one can derive the average lead time independently of the product mix. 
Another expression for this lead time is: 

I = a. lCMos + (1 - a) , I SRAM 

with a being the proportion of CMOS manufactured in the facility. It is 
supposed that the wait time is equally distributed over the two products, 
so: 

wCMQS = WSRAM :;;;;; w 

This leads to the following expression for the wait time: 

w"" U- - PSRAM) - a , ( PCMOS -PSRAM) 
t 

The value of the wait time depends on the product mix, With 
ProcessTimeCMOS being larger than ProcessTimeSRAM it follows 
that with an increase of the CMOS ratio (a) the wait time becomes 
smaller, so with an increase of the CMOS ratio the lead times of the two 
product types also become smaller. 

To see the influence of a change in the product mix on the throughput 
and the lead time, runs with CMOS: SRAM equal to LO, 1: 1 and 0: 1 are 
compared. The results are shown in Figure 5.6: 
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The CMOS lead time graph (Figure 5.6a) shows that at the higher 
inventory levels the mean lead time of CMOS cassettes decreases if the 
percentage CMOS produced increases. The SRAM lead time graph give 
a similar result. This confirms our expectations. The throughput graph 
show only small differences. 

Transport time 

All moves of the transporters in the (default) model take one minute. A 
transport job takes either one or two minutes. depending on the start 
position of the transporter. If the transporter is at the place were the 
material has to be removed, it takes one minute. In all other cases it takes 
two minutes. A transporter is supposed to be able to carry up to eight 
cassettes. The utilization (u) of a transporter (= percentage of the time 

the transporter is busy) is calculated from the load for the manufacturing 
of one cassette expressed in hours ("" mOve time (m) times the number 
of moves (n» divided by the batch size (b) (= number of cassettes the 
transporter carries per transport movement); times the throughput (t) ("'" 
number of cassettes manufactured per hour). 'This leads to the following 
expression: 

u =!!........ill... t 
b 

The maximum utilization is calculated with a move time of two minutes 
and an inventory level of one cassette. The desired throughput is equal 
to 0.5 cassette per 60 minutes. Both the worst case and the observed 
(after simulation) utilization of the transporter are represented in Table 
5.5. 

From this table it appears that in worst case the facility has a heavily 
loaded transport system, but because the transporter can transport 

Table 5.5. Utilization of the transporters for eM os manufacturing. 

number worst case observed 
of trans-

resourca pon time batrnsize utili- time batch size utill-
moves [minute] [cassette] satlon [minute] [cassette] satlon 

ChipFac:fllty 61 2 1.02 1.73 1.27 0.69 

UlhoShop 26 2 0.43 1.59 1.00 0.34 

DifCVDShop 30 2 0.50 1.62 2.60 0.16 

ElchShop 48 2 0.80 1.65 1.00 0.66 

ImplantShop 12 2 0.20 1.52 2.00 0.08 

MetalShop 4 2 0.07 1.00 1.00 0.03 
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Figure 5.7. Perjonnanee graphs of the facility for different transport 

times. a) Mean lead time versus the mean inventory level. 

0.'; 

o.s 

~g 0.4 

g''$ 
2m 
.c:j=: 

-~ 0.3 I! 
0.2 

0.1 

0 100 

ideal fadlity 
.. - 5min 

- .•. ~ 2mln 

-- 1mln 
---e-- 0.2 min 

mean Inventory level 
[cassettes] 

900 

Figure 5.7. Performance graphs of the facility for different transport 

times. b) Mean throughput versus the mean inventory level. 
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batches of more than one cassette in less than two minutes, the actual 
capacity of the facility is bigger than the worst case capacity. The 
transporter in the etch shop, however, has nO possibility to move more 
than one cassette at a time: all etch cells have a batch size of one. The 
only way to improve the capacity of the etch transporter would be the use 
of a scheduling strategy that increases the chance that the transporter 

waits in the right start position. With the increase of the transport time 

the transporter in the etch cell is expected to become a bottleneck. 

Experiments have been perlormed with four different transport times: 
0.2, 1.0,2.0 and 5.0 minutes. The expected utilization of the transporter 

of the etch shop for the four transport times is calculated. The average 
transport time is calculated by multiplying the transport time by 1.65 

(the mean time a transport movement in the etcher last according to 

simulation results). If the utilization of the transporter comes out to be 
greater than 1, it is the bottleneck and the throughput is limited by the 
transporter. Then the throughput wanted has to be divided by the 
utilization of the transporter to find the expected throughput. These 

values are given in Table 5.6. 

The differences in transport time influence the lead time graph in two 

ways. An increase of the transport time increases the process time and, 
if the transporter is the bottleneck, the increasing sloping line becomes 

steeper. The change in throughput is deducible from the change in lead 

time. 

The results of the change in transport time are reproduced in the Figure 
5.7. The lead time graph shows that, if the transporter is not a bottleneck, 

an increase in transport rime influences the lead time only for small 
inventory levels. If the transporter is a bottleneck the increase in lead 

time is dramatic. The throughput levels observed in the throughput 
graph at high inventory levels correspond with the ex.pected values in 
Table 5.6. 

Table 5.6. Expected utilitarion of the transporter of the etch shop and 

expected throughput of the facility. 

lransport 
utilization throughput lime 

0_2 0.132 0.5 

1.0 0.66 0-5 

2_0 1-32 0.38 

5.0 3.3 0_15 
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Batch size 

The facility contains machines with batch sizes that vary from one to 
four cassettes. The machines with the biggest batch size also have, in 
general, the longest process time. Despite this, many machines with a 
big batch size are underutilized. Two effects have been studied in 
relation to the batch size: what happens if all machines have a batch size 
of one? And what is the influence of the minimum amount of material 
that is requested by a machine? 

In the first e~periment the capacity of all cell types is kept the same, by 
replacing a cell with the number of cells equal to its batch size. Thus, the 
cell consists of a flow shop with stations, a stations is of class single shop 
and contains a machine with a batch size of one cassette. The existing 
overcapacity is kept the same. In the second ex.periment the batch sizes 
are put back to the default values and the minimum amount of cassettes 
requested by a cell is changed. The new minimum amount is one cassette 
instead of the usual maximum batch size. The minimum amount of 
PEOxid is always kept at one cassette. 

The results of the experiments are plotted in Figure 5.8. It appears that 
the facility where all transfonners have a batch size of one, comes close 
to the ideal facility. Differences are now mainly caused by process time 
differences. The consequence of requesting a minimum of one cassette 
causes a worse performance in the low inventory level area. This 
situation often leads to the processing of one cassette while, shortly 
afterwards more cassettes arrive, which have to wait for the finishing of 
the first cassette. This wait time appears to be longer than the wait time 
that arises if machines have to wait until a batch is complete. This also 
has to do with the fact that a facility job contains four cassettes. 

Request send strategy 

It has been shown above that it is possible, using the control architecture, 
to manufacture different product types, to vary transport times, to 

change the cOnfiguration by adding machines, and to change the control 
parameters of resources (minimum batch size requested). In the next 
example the behaviour of the shop controllers is changed. Up to now a 
shop request has been sent after the reception of a cell request (the cell 
request strategy). This situation is compared to generating shop requests 
depending on the inventory level in the shop (a Fixed-WIP request 
strategy). The control strategy variants used in these cases refer to the 
request send strategy of the five shops. As stated in Section 4.4 for a 
manufacturing system of class parallel shop, which the shop in the Ie 
factory is, the request generation is best based on the requests of the 
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resources (the cells). So these experiments may show if this assumption 

is correct 

The Fixed-WIP strategy uses two kinds of limits: a limit that remains the 
same during the experiment (constant limit) and a limit that depends on 
the inventory level during the measurement (variable limit). In both 

cases the Fixed-WIP level is constant during the simulation run. The 
constant limit is calculated using the work load of the shop. The division 

of the material depends on this work load. This is based on the 

assumption that the facility is perfectly balanced and every shop needs 

its processing time share of the material. The share is increased by one 

cassettej to also allow a load for the transporter of the shop. The load per 
shop is calculated with the formula: 

load = total process time in shop. maximum throughput 

Thus the sum of the process times of all operations that have to be 
perfonned in a shop times the wanted throughput is the amount of the 
inventory that the shop should contain. Table 5.7 shows the inventory 
limits that result for the maximum wanted throughput in the constant 
limit case. In the variable limit case the material limit in the shop during 

a measurement is found by multiplying the maximum inventory level of 

the facility and the ratio given in Table 5.7. The constant limits are equal 

to the variable limits at the ideal work point. The ideal work point is 

equal to the nominal lead time times the maximum throughput: this is 

207 x 0.5 = 103.5 cassettes. 

The sending of requests according to a Fixed-WIP release strategyj uses 
less information than the sending of request based on cell requests. A 
shop request based on a cell request asks only for jobs the cell is able to 
execute. A request based on the inventory level (Fixed-WIP) asks for 
jobs that the shop is able to execute. As a consequence the facility 

controller might send a job to the shop for a cell that is not idle. This job 

takes the place of a job for the idle cell. So material in the shop blocks 

material waiting on the facility level. With the variable limit, all material 

Table 5.7. Work loads of the. different shops for one CMOS cassette. 

shop 
process load limit 

ratio lime [hour] [cassette] [cassette] 

lithO 39 20 21 0.196 

dilCVO 98 49 50 0.492 

etch 48 24 25 0.241 

implant 6 3 4 0,030 

metal 8 4 5 0.040 
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is divided over the shops in a proportional way. If the facility is 
reasonably balanced all material will be waiting in the shops. With the 
constant limit the shop only contains the amount of material it is 
supposed to be able to process. Below the ideal work point all material 
is probably waiting in the shops; above this work point part of the 
material is waiting at the shop level and another part at facility level. 
With the cell request strategy the shop only contains material that is 
being processed in the resources of the shop; the rest of the material is 
waiting on facility level. The last control strategy ensures that the right 

jobs are sent to the shop and there is a view of the material that is waiting 

to be processed. The results show that the perlonnance of this strategy 
is better than the use of a material limit. Besides this, the strategy also 
offers the biggest opportunity to schedule material in the facility. 

The results in Figure 5.9 show that the cell request strategy is best. 
Below the ideal work point the Fixed-WIP request strategy using 
constant limits behaves the same as the one using variable limits. Above 
the ideal work point the experiments with variable limit approach the 
cell request strategy while the experiments with a constant limit clearly 
show a diminution in throughput. This shows that a parallel shop can use 
a request generation strategy, where the requests are generated at the 
moment when they are received from the resource. However, this is only 
true if delays due to transport of material have been accounted for in the 
requests of these resources. 

Sequencing strategy 

The last example shows that it is possible to apply different sequencing 
rules in the control architecture. The sequencing of jobs in the facility 
is examined. Three sequencing rules are applied. FIFO (first-in-first~ 
out), SRPT (shortest-remaining-process-time) and RANDOM. A rule 
like SPT (shortest ~process-time) has no use in the facility because there 
are only a few operations which have to be executed on different 

resources and which also have different process times. And if one is 
interested in other sequencing rules, they can easily be implemented and 
tested with help of simulation. 

Because some shops request jobs with more than one cassette, the 
sequencing rule is combined with an algorithm to join cassettes. Ajob 
always contains the cassette with the highes t priority and if necessary it 
contains more than one cassette. So sometimes the situation arises that 
the cassette with the highest priority cannot form a complete batch, 
while other waiting cassettes do fonn a batch. The cassette with the 

highest priority now blocks these other cassettes and no job is sent In 
case of FIFO, the cassette with the highest priority (the frrstcassette) is 
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probably also the frrst batch. With SRPT, and especially with RAN~ 
DOM, it is less probable that the cassette with the highest priority will 
form the first batch. The results in Figure 5.10 show that FIFO performs 
best, even a little better than SRPT and much better than RANDOM. 

The Figures 5.11 a, b, and c show the lead time of the jobs and the time 
at which the specific job was finished. The figures show the lead times 
for an inventory level of 240, but the behaviour found is also valid for 
other inventory levels. These figures show that SRPT and RANDOM 
cause a bigger variation in the lead time than FlFO. Not only the lead 
time varies more, the time between the fmishing of two jobs also shows 
a bigger variation. It appears that especially RANDOM sequencing 
causes the facility to oscillate. This oscillation is also related to the 
Fixed-WIP release strategy, where a new job is started when a job is 
finished. So if many jobs finish shortly after each other, many jobs are 

also started during a short interval. 

This chapter has illustrated how a hierarchical control system can be 
built using the control architecture. The constructed factory contains 
five control layers, where the second layer has a job shop character. The 
factory contains 1 facility, 5 shops, 43 cells, 110 stations, 110 transfonn
ers, 160 stores, 160 transporters and 160 controllers. With the help of 
simulation experiments the use of performance graphs and a number of 
possibilities of the control model have been demonstrated. 



Chapter 6 

Conclusions 

6.1 Review of the study 

The study presents a new hierarchical control architectme and a structured 
method by which it is possible to specify, simulate and implement 
controllers for actual or planned manufacturing systems having a job 
shop character. A job shop is characterized by universal machines 
having great flexibility in terms of material routes. A property related to 
job shop manufacturing systems are the serious problems in controlling 
throughput and lead time. 

The investigation was initiated in view of the increasing need for 
automation, coupled with the problems associated with the automation 
solutions currently available. Two current automation problems have 
been signalled by Arentsen [1989]: the gap between the automation of 

machinery and the automation of administration, and the island auto
mation which results in stand alone solutions of automated elements 
which are difficult to combine into an efficient system. With the advance 
of technology the functionality of machines has increased, which makes 
the complexity of manufacturing systems greater and the control of 
manufacturing systems more difficult. One of these control problems is 
the long lead times that are often encountered in manufacturing systems 
with a job shop character. There is a clearly perceived need for computer 
control of these manufacturing systems. But the results of research into 
manufacturing controllers for such systems, as these have been presented 
in the literature to date, are very vague, and the research into sequencing, 

which is a part of the control problem and is thought to be able to reduce 
the long lead times, often lacks any close relation with practical 
application in manufacturing systems. 

Arentsen's [l989} work demonstrated the value of modelling and 
simulation in the building of control systems, as well as how to avoid 
island automation and the automation gap. His factory control architecture 
concentrates on the highest control level of a factory and on the 
interactions between factories. It consists of a chain of transformers 
which are controlled by their own controller. It is, however, only 
applicable to manufacturing systems with a flow shop character. This 
study presents a control architecture that is applicable to the much more 
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compkxjob shop manufacturing systems. It uses recipes to specify the 

manufacturing process. The conu'ol architecture is constructed in such 

a way that it can be used for any manufacturing system for which the 

manufacturing processes are expressible in (sequential) recipes. The 

architecture is a framework that can be used when building and/or 

automating manufacturing systems. 

The starting point for building controllers for industrial systems is 

modelling. The modelling is performed according to the Process

Interaction approach [Rooda 1987, Overwater 1987]. This approach 

provides a language (ProcessTalk) and a tool (ProcessTool) [Wortmann, 

Rooda 1990, Wortmann 1991], which have been used for specifying, 

developing and testing the architecture. The approach and the tool 

together allow a smooth transition from modelling the system to 

simulation of the system and finally to implementation of the controller. 
The building blocks of the control architecture are implemented in 

software in the tool. In this way it is easy to simulate future manufac

turing systems, and to use the (simulated) controller in the itnplemen
tation of the manufacturing system. 

Modelling involves the setting of boundaries for the system and con

centrating on those aspects of the system that are of interest to the 

modeller. In this case the flow of discrete pieces of material, the 

machines that manipulate the material, the controllers that drive the 
machines and the interactions necessary for directing the material 

through the factory are modelled, together with the necessary data 
structures and the control algorithms_ Energy, gases, liquids and small 
parts such as screws are not modelled. Operator availability, tools, the 
set up of machines, their maintenance and repair are not part of the 

model, just like machine breakdown and yield losses. The industrial 

system that results is an idealized and simplified system in which the 

main material flow is represented. The study is based on static manu

facturing systems, by which is meant that the configuration of the 
manufacturing system and the manufacturing process remain constant 

in time. 

In this study a classification of hierarchies is introduced (Section 2.5). 

The architecture is based on a hierarchical approach. The centralization 

of control enables a decoupling between the controller structure and the 

manufacturing process. This decoupling is realized with help of recipes, 

which can be executed by a controller. Centralized control also opens the 
possibility to let all resources aim at the same goal. Multiple hierarchical 

layers correspond with layouts of factories and allow the distribution of 

the control effort. The unique feature of the control architecture is the 

fact that the controllers of the different hierarchical levels all have an 
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equivalent model, which is recursively repeatable. As a result of this the 
number of hierarchical layers can be adjusted arbitrarily. 

The building of a manufacturing system starts with the specification of 
the physical system configuration and the specification of the manufac
turing process. These specifications are used in the control system. The 
architecttIre uses standardized models of the physical manufacturing 
machines, which are presented in Chapter Two. These are the basic 

physical building blocks. Machines are called leaf resources. There are 
two categories: processing leaf resources (shapers, transformers and 

assemblers), and supporting leaf resources (transporters and stores). A 
multi-layer control system comprises aggregates of machines. An 
aggrega~ of machines and a control system is called an ex.panded 
resource. An expanded resource is also a processing resource. Opera
tions are used for the specification of the manufacturing process steps. 
Resources execute operations by transforming material. The list of 
operations that have to be executed by a group of processing resources 
to manufacture a product is called a recipe and is the representation of 
the manufacturing process. In this thesis new structures for recipes have 

been presented. 

A manufacturing class is the strocture of the top layer of a manufacturing 
system. The class of a manufacturing system depends on the physical 
layout of the resources and on the recipes that the system can execute. 
Four classes of manufacturing system are introduced: single shop, 
parallel shop, flow shop and job shop. The control architecture is 
especially suitable for the control of a job shop, but because the other 
three layouts are simpler variants of the job shop, the architecture can 
also be applied in the other cases. An expanded resource also belongs 
to a certain manufacturing class, so the total factory may contain 
different types of manufacturing classes. 

The controller has to direct resources and material, and to monitor their 

status. Decisions are taken as late as possible in order to minimize the 
differences between reality and anticipated reality. The decisions are 
subdivided into categories concerning material exchange, transport and 
processing. The moment to take a decision depends on the decision 
freedom and the time at which information becomes available. In 
relation to this the strategies of early and late transport are distinguished, 
just like material driven and command driven manufacturing. The place 
where information is available is an indication of the level at which 
decisions have to be taken. To make information available, the control

ler communicates with the resources- In this study four communication 
protocols between the controller and the resource are introduced and 

looked at. The aspects related to control are more extensively handled 
in Chapter Three. 



144 conclusions 

In order to be able to judge the performance of the manufacturing 
controlJer, performance graphs have been used (Section 3.1). The 
behaviour of a manufacturing system is recorded by simulating the 
model of the manufacturing system and measuring the mean lead time, 
mean throughput and mean inventory leveL The performance graphs 
plot lead time against inventory level, and also throughput against 
inventory level. In a balanced system these three variables are related to 
each other. An essential addition to the performance graphs are the lines 
describing the ideal factory. By plotting both the actual performance and 
the ideal performance, a clear insight is gained into the behaviour of the 
manufacturing system in relation to the ideal, best attainable perfonn
ance. 

The divergence between reality and anticipated reality is kept to a 
minimum by making use of a reactive scheduling strategy. This means 
that a decision is taken at the moment the actual choice occurs. 
Scheduling is divided into subfunctions: releasing, allocating, sequencing 
and dispatching (Section 3.2). 

Chapter Four presents the development of the hierarchical control 
architecture in the form of the data structure and the control model. A 
manufacturing system consists of processing resources, a transporter, a 
store and a central controller. The release strategy, which defmes the 
way new jobs are started in a manufacturing system, is implemented 
with the help of requests. A request from a resource asks for work. In fact 
the request indicates free capacity in the resource_ In the control 
architecture the momentary capacity is calculated from bottom to top. 
Resources send requests to the central controller. The requests are used 
to allocate and sequence manufacturing jobs and to calculate momen
tary capacity, and thus for the generation of requests for the control level 
above, which influences the release of jobs. In this way a new for

maHzation for the releasing of jobs in a hierarchical controlled manu
facturing system is given. By controlling the release of manufacturing 
jobs, the jobs are executed with lead times that fall within predictable 
limits. 

The control architecture js illustrated in Chapter Five) where an IC 
factory is modelled. Here it is seen that the new I y developed architecture 
and the control model present a structured method for the implementation 
of a hierarchical control system for a complex job shop manufacturing 
system. The experiments show that the perfonnance of the manufacturing 
system can be controlled within acceptable limits. 
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6 .. 2 The advantages of hierarchical control 

The thesis presents a detailed description of the control architecture. The 

architecture enables manufacturing control system builders to model, 
simulate and implement controllers for manufacruring systems. It is 
suitable for any kind of manufacturing system, ranging from a single 

shop to a job shop. It contains building blocks for the modelling of 
manufacturing systems, and it makes the design of manufacturing 
systems and manufacturing controllers a more structured process, 

allowing the construction of hierarchical control systems. 

The control problem of many manufacturing systems calls for solutions 
that are only valid for the specific situation. The architecture presented 
here does not offer a general solution wi th which every specific problem 

can be tackled, but it does offer a framework which can be adapted to 
most situations, which takes account of the whole system. and which 
offers a possibility to adjust the different controllers to a common goaL 

This architecture for control systems eases the task of the control system 
builder, in that it offers a structured approach and building blocks with 

which systems can be designed in shorter times. 

The integration of new concepts has resulted in this control architecture. 

One of these concept is the use of the same controller model in the 

different hierarchlcallayers. The control architecture uses the concept 

of recipes to specify the manufacturing process. The recipes allow a 

decoupling between controller structure and the manufacturing process: 
a necessary condition to be able to control job shop manufacturing 
systems. Recipes are a type of software which instructs the manufacturing 
controller. The behaviour of the manufacturing system and the control 
system is measured with the help of the concept of perfonnance graphs. 
The resources influence the work load. due to this concept the progress 

of the manufacturing of products is influenced in a bottom-up manner. 

In the literature manufacturing systems are usually controlled in a top

down manner. The progress of the manufacturing process is regulated 

with help of the request concept. This has resulted in a new fonnalization 

of the release of jobs in a hierarchically controlled manufacturing 
system. 

The repeatability of the control model in hierarchical layers. tht:; 

decoupling between controller structure and manufacturing process, the 
use ofperfonnance graphs and the fonnalization of hierarchical releasing 
with help of requests, are unique to this control architecture. These 

concepts make the control architecture fit for the control of job shop 
manufacturing systems. 
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Useful new ideas have been developed during the realization of the 
control architecture. The three hierarchical fonns n system hierarchy, 
model hierarchy and inheritance hierarchy - are a new contribution to 
the architecture. The specification of a manufacturing process with help 
of the four recipe structures (sequence, concurrency, alternative and 
block) is a new idea. The classes single shop, parallel shop, flow shop 
and job shop are introduced to classify manufacturing systems. 

Perfonnance graphs have been used in more places in the literature, but 
the idea of introducing the line of the best attainable behaviour of a 
manufacturing system in the performance graph is new. This addition 
gives a much clearer insight into the behaviour of the actual manufac
turing system. For simple manufacturing systems the graphs have a 
trivial character, but for large, complex manufacturing systems the 
performance graphs are useful for the assessment of the control system 
and for setting out control strategies. 

In considering controllerdecisions and decision moments, new control 
strategies have been found. First the early and late transport strategies 
which are related to the transport decisions. Second the command driven 
and material driven manufacturing which are related to the way processing 
decisions are taken. 

The study of communication between controllers and beween controller 
and resources has resulted in four new communication protocols. The 
formalization of these protocols and the different possibilities and 
implementations of these protocols are new notions. 

It is seen that long lead times are caused by high inventory levels. To 
reduce lead times it is not so much a new sequencing strategy that is 
needed as a better control of the inventory level. The work point of ajob 
shop manufacturing system is adjusted by controlling the inventory 
leveL With a simple releasing strategy (Fixed-WIP releasing) the 
inventory level can be kept constant. As regards sequencing, first-in
first-out seems to be an excellent strategy: it is fair, every piece of 
material flows in a natural way through the manufacturing system, and 
it causes small deviations in the lead time. 

The control problem has to do with the divergence between reality (the 
status of the factory) and the anticipated reality (the production plans 
and schedules for the factory)_ This divergence makes corrective actions 
necessary, which makes the control problem complicated, and this 
divergence should be kept to an absolute minimum. The divergences 
between reality and anticipated reality are caused by uncertainties in 
consumer demands, supplier deliveries and manufacturing system 
behaviour. 
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The capacity of a manufacturing system is based on a forecast of 

demand. As long as the capacity of a manufacturing system is constant) 

the performance of the manufacturing system should not be related to its 

ability to fulfil the demand. Market demand has to be responded to in 
such a way that the manufacturing capacity is not exceeded. This is a 
problem that has to be solved on the factory level. It seems better to avoid 
the manufacturing control having to absorb demand fluctuations, since 

this obscures both demand uncertainty and manufacturing system 
performance. The manufactwing control has to minimize the uncertainty 

in the manufacturing system's behaviour. A manufacturing system that 

behaves in a predictable way enables the capacity planning function in 

the factory controller to see the consequences of its decisions. 

The control is not based on the idea of executing detailed production 

plans, which are jmplemented from top to bottom. In the control 
architecture the momentary capacity, which is calculated from bottom 
to top, is used to progress production. Control decisions are taken on a 
reactive basis. This way, any divergence between reality and anticipated 
reality is minimal. 

To control a hierarchical manufacturing system, it is required that the 
uncertainty in the behavjour in a layer is small, as small as possible, and 

that the momentary capacity of a layer is clearly expressed. For single 
shop and parallel shop layers, these conditions are easily fulfilled. For 

layers with a flow shop structure some constraints are needed in order 

to fulfil these conditions. In job shop structures, however, the instanta
neous capacity is the result of changes and often cannot be unambigu
ously expressed. For this reason it seems to be advisable to avoid a job 
shop structure as far as possible in the control layers. The example of the 

Ie factory showed that the architecture does work for a job shop 
structure. In case a job shop is implemented within a multi-layer control 
system, the architecture allows ajob shop structure in every layer. From 

the control point of view and for efficiency purposes) the job shop 

structure should be implemented in as few layers as possible, and 

preferably only in one of the top layers) with little uncertainty in the 

layers below. This allows scheduling decisions to be centralized and the 

behaviour to be optimized on a global basis. 

Although there is no maximum to the number of hierarchical layers, it 
is advisable to limit their number. Every layer includes extra transport 

systems, mechanical interfaces between transport systems, and extra 
stores. The sharing of stores and transport systems is possible in the 

control architecture, but because this complicates the control problem 

considerably, it seems to be a undesirable solution. 

Decentralization of the control problem can be viewed as the moving of 

responsibility from top controllers to controllers in lower hierarchical 
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layers. A conunon goal and consistent data inside a factory will not 

allow a totally distributed control system: a central controller remains 
necessary, even if it might be reduced to something like a central 
database. 

Planning and scheduling research is of little use without a uniform 

perl'onnance measure, a general control strategy and a control frame
work. Thecontrol architecture presented in this thesis offers the possibility 

to fit such research in with the whole. To improve perlonnance, in most 

cases it is not the control strategy or algorithm which has to be changed; 
rather, it is the physical manufacturing system which will have to be 
adapted. The batch size of reSOillces and the process times of operations, 
in particular, should be attuned to each other. 

The strength of the control architecture has been demonstrated by the 
simulation of an Ie manufacturing system. This is considered to be a 
complex system, containing five hierarchical layers and more than one 
hundred processing machines. No simulations found in the literature 
have considered the hierarchical control levels in such detail. The 

simulation demonstrated the capabilities of the control architecture. In 

the example, the product mix, the transport times, the batch sizes, the 

request generating strategy and the sequencing strategy have all been 
varied. 

The performance graphs of the Ie facility show that, when the inventory 
level is low, the choke of a sequencing strategy is not interesting; all 
sequencing strategies behave more or less the same, because there are 
only very short queues with no or few options. When the inventory level 

is very high the sequencing strategy is also not very interesting; the 
manufacturing system in this case is saturated and manufactures at its 

maximum leveL 

6.3 Recommendations for further research 

The architecture is versatile, and may be adapted to a great variety of 
control situations. It allows the systematic design, modelling and 

simulation of manufacturing control systems, and can be used directly 

to implement control, when a factory is built. Nevertheless, a fully 
integrated and automated manufacturing system has not been realized. 
Neither has it been demonstrated that the control architecture may 
resol ve every control situation. The archi tecture is, however, a firm base 
to which many additions are possible. Some of these additions are 

discussed in this section. 

A Jot of aspects of manufacturing control still remain to be investigated. 

Functions like quality control, product development, investment policy 
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and accountancy will have to be dealt with. Deadlock is at present 
circumvented by using stores with large enough space for material. If 
deadlock cannot be solved in this way, the controller has to incorporate 

calculation before requesting a new job to see whether a new job will 

cause deadlock or not. Capacity is only available if deadlock is excluded. 

The architecture does not contain complex planners and schedulers. A 

plea has been entered for simple reactive schedulers. In some cases new 

scheduling techniques, based on artificial intelligence research or on 

neural networks, seem to offer opportunities jn controlling manufacturing 

systems. 

The petfonnance graphs shown in the example refer to a few product 

types with small differences in work content. The significance of these 
perfonnance graphs. in the; case of jobs with large differences in work 
contents, is the subject of ongoing research which is also considering 

other perfonnance criteria. 

The control architecture manages the discrete material which undergoes 

the manufacturing process. In a later stage the architecture will have to 
be ex.tended to take care of the management of bulk materials (e.g. gases 
and screws), scrap and energy. 'The simulation model did not consider 
tools and machine breakdown. The control of ideal manufacturing 
systems has to be understood before these aspects can be considered 

more closely. Extensions, which have to do with tools, setup of machines, 

maintenance and repair, will have to be integrated in the future, if they 
are not avoidable. 

In order to get closer to a totally automated manufacturing system 

further development of the data structure and the control structure are 
necessary. The recipes used in the ex.ample did not contain assembly 
operations. To include these operations in the manufacturing processes, 
the data structure has to be extended with parallel recipes and with 

parallel tasks. Furthennore, the interpreting function of the IIWlufacturing 

controller might also have to change. Another extension in this area is 

the possibility to change material routes; as a consequence of test results. 

The control architecture js applicable to non-changing manufacturing 

systems. An interesting extension to the architecture is the possibility to 
handle changes in the manufacturing processes and changes in the 
configuration of the manufacturing system. Such extensions will increase 

the applicability of the control architecture considerably. The control 
architecture represents the manufacturing process independently of the 
control structure. If the manufacturing system contains a transport 

system that is able to realize general material routes, the control 

architecture is suitable for dynamic manufacturing processes: only 

functions like manufacturing process specification and the distribution 
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of the infonnation of the manufacturing process specification (the 
recipes) to the different controllers have to be incorporated in the 
arcru tecture. 

The change of the manufacturing system configuration is probably easy 
to incorporate because of the request mechanism. A newly connected 
resource only has to send requests to state its capacity and to receive 
jobs. The controller initialization may have to be changed, but the 
control algorithm remains the same. 

The results of this study have not been implemented in an existing 
factory; to do this it will be necessary to perfonn a closer study of 
organizational structures and management tasks. Some of these may 
have to be incorporated in the architecture. The implementation of a 
control architecture in a new or existing organization is probably worthy 
of a study in its own right. 

During the development of the control architecture ideas for further 
research into manufacturing control became available. Students have 
explored some of these ideas, of which three are mentioned here. The 
cOIIllllunication protocols between the controller and the resources offer 
so many opportunities that further research on the different protocols 
seems justified [De Jonge 1991]. The implementation of the control 
architecture without the use of computers, but with cards, looks possible 

and interesting fVincenten 1991]. During the control of a manufacturing 
system simulation can be used to take allocating and sequencing 
decisions. A further investigation of the possibilities of simulation as a 
tool for controlling and decision support seems to offer great opportunities 
[Steyns 1991]. 

The architecture developed here can handle very complex factory 
configurations ~ job shops - and thus formes an important contribution 
to the theory of factory and manufacturing control. The architecture has 

proved to be reliable and robust. It has given rise to a great number of 
new ideas, SOme of which are the subject of ongoing research, and it 

promises well for the future: extensions are likely to make it even more 
powerful. 
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AppendixA 

An introduction to Smalltalk-80 

The Xerox Palo Alto Research Center started in the early 1970's a 
project to create a powerful information system; which made it possible 
to use computing power effectively and easy. This research resulted in 

the Smalltalk-80 system which is described in Goldberg and Robson 

[1989] and Goldberg [1984]. This appendix is based on the first text. 

The Smalltalk-80 system is more than a programming language. The 
researchers at Palo Alto concentrated on two areas: a programming 

language in which a human can describe the models he has in his mind, 

and that can be executed on a computer) and a user interface which 
enables the hUIllilll to communicate with the computer in a user friendly 
way. 

The Smalltalk-80 system is an interactive programming environment. 
In this environment every component can be observed and manipulated. 
In order to use the Smalltalk-80 system a high resolution graphical 
display screen and a pointing device (such as a mouse) are essential. 

The Smallta1k.-80 system is a large system) that includes objects that can 
perform functions which are usually provided by the computer operat

ing system. The system is based on the concepts object, class, message, 
method and inheritance. Smalltalk. consists of communicating objects. 

The interaction between objects is viewed the same way on every level 

of complexity. Because the functioning of objects does not depend on 

the internal details of other objects, modularity is supported. The 
complexity is reduced by minimizing of interdependencies between 
objects and by grouping similar objects together in classes. The 
subclassing mechanism supports inheritance which avoids repetition of 
the same code in different places. Classes and instances are units for 

organizing and sharing information. Subclassing is a means to inherit 
and to refine existing capabilties. 

A.l Basic Smalltalk-80 concepts 

Progranuning in Sm.alltalk-80 is facilitated by the fact the user can use 

everything that is already in the system. In order to write a new program 

the programmer has to find out what existing concepts he can use and 
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which new situation he wants to model, then establishing the new 
situation means programming the difference. 

Before introducing the syntax of the Smalltalk -80 language an overview 
of the main concepts will be presented. 

Object 

The SmalltaJk-80 programming language is an object oriented program
ming language. Every component in Sma1ltalk -80 is an object. TIris may 

be a representation of something physical or non-physical. An object 

consists of some private memory and a set of operations. This set of 
operations represent the functions that an object can perfonn. The 
private memory represents the data structure of an object. 

Class 

If every single object in Smalltalk would have a description of its 
properties the system would not be manageable. To avoid this problem 
abstraction is used. Objects with equal properties get a generalised 
description: a class. The concept class is comparable to the type 
definition concept in Pascal. In a Smalltalk class the implementation of 
the private memory and the set of operations of objects of the same kind 
are described. Every object in Smalltalk belongs to a class. An object 
which is described by a class is called an instance of th~t class. 

Message 

Most objects have a contents, the private memory. The contents of an 
object is not directly available to other objects. The contents of an object 
can only be manipulated with the help of messages. A message tells the 
object what operation it should perform. The object can react in an 
appropriate way by executing the requested operation. A message does 
not tell how to perfonn an operation. A message can be accompanied by 
argwnents. Messages are the only way to access the operations of an 
object (encapsulation) and operations are the only way to acces the 

private memory of an object (data hiding). Because of the message 
mechanism, the implementation of operations an object can perfonn, 
remain private to the object, just like the data structure of its internal 
memory. All messages an object understands are called its interface. 
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Method 

An object knows for every message it can perfonn a method that 
describes the way in which the requested operation has to be executed. 
A method is a procedure abstraction comparable to a function in Pascal. 
A method may specify changes of the object's private memory or it may 
contain messages for other objects. The methods an object knows 
belong to the class. which the object is an instance of, or to a superclass 
of this class. 

Inheritance 

A class is a specialization of another class: it is a subclass. On the other 
hand it may be a generalization of another class: then it is a superclass. 
A property of the subc1assing mechanism is called inheritance. Inherit" 
ance means that every object of a certain class will have all properties 
of that class and all the properties of all superclasses of that class. This 
inheritance mechanism counts both for the methods and the private 
memory of a superclass. An object understands the messages defined in 
its class and those defined in its superclasses. The correct execution of 
the method that belongs to a message is handled by the language 
mechanism. 

Polymorphism and late binding 

A variable may refer to an instance of any class, this is called 

polymorphism. The method, that is to be executed when a message is 
sent to an object, is selected at ron-time. The concept is called late 
binding. 

A.2 The Smalltalk-80 syntax 

'The Smalltalk-80 system components are represented by objects. These 
objects, which are instances of classes, interact with each other with the 
help of messages. A message causes a method to be executed. Now the 
syntax for describing objects and messages will be presented. 

An object is described by a sequence of characters this is called an 
expression, the object is called the value of the expression. In the 

Smalltalk-80 programming language there are four types of expres
sions: literal expressions, variable names, message expressions and 
block epressions. 
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Literal expressions 

Literals describe constant objects. There are five kinds of objects that 
can be referred to by a literal expression: nwnbers, individual charac
ters, strings of characters, symbols and arrays of literal expressions. 

Examples of numbers: 

1 -103.57.893 

individual characters: 

$a $b $c 

strings of characters: 

abc' 'defghi' 

symbols: 

#idle#busy 

arrays of literal expressions: 

#($a $b$c) 

#( #( #a 11 #a12) #( #a21 #"0122)) 

Variable names 

The private memory of an object consists of variables (instance vari
ables). Most of these variables have names. Each variable remembers a 

single object and the variable's name can be used as an expression 
referring to that object. A variable name is a simple identifier, a sequece 
of letters and digits beginning with a letter. 

There are two kinds of variables in the system) distinguished by how 
widely they are accessible. Private variables are accessible only to a 
single object. Instance variables are private. Shared variables can be 
accessed by more than one object. Private variable names are required 
to have lowercase initial letters; shared variable names are required to 
have uppercase initial letters. 

Examples of variable names: 

contents, name 

shared variable names: 

Pi 

A literal constant will always refer to the same object, but a variable 
name may refer to different objects at different times. The object 
referred to by a variable is changed when an assignment expression is 
evaluated. Any expression can become an assignment by including an 
assignment prefix . .An assignment prefix is composed of the name of the 
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variable whose value will be changed followed by a colon and an equal 

sign. 

Example 

asignment expression: 

name ;. 'Charles' 

A pseudo-variable name is an identifier that refers to an object, a 
pseudo-variable name is different from a variable name in that its value 
cannot be changed with an assignment expression. Some of the pseudo

variables in the system are constants; they always refer to the same 
objects. Three important pseudo-variable names are nil, true and falSe. 

Message expressions 

Messages represent interactions between components of the Smalltalk-
80 system. A message requests an operation on the part of the object 
which gets the message. 

A message expression describes an object, which should pedorm the 
message, a selector and possibly some arguments. The object and 
arguments are described by other expressions. The selector is specified 
literally. Amessage 's selector is a name for the type of interaction which 
is requested from the object. The selector of a message determines which 

operation will be invoked. The arguments are other objects that are 
involved in the selected operation. 

Example of message expression: 

aCollection add; anObjact 

where aColiection should perform the message, add: anObject is a message, 
add; is a selector and anObject is an argument 

Unary messages are messages without arguments. 

Example of unary message: 

size 

The general type of message with one or more arguments is the keyword 
message. The selector of a keyword message is composed of one or more 
keywords, one preceding each argument. A keyword is a simple iden
tifier with a trailing colon. When the selector of a multiple keyword 

message is referred to indepently, the keywords are concatenated. 

Example of keyword message: 

a.t: Index put anObject 

where at:put: is a selector, at: is a keyword, put: is a keyword 
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There is one other type of message expression that takes a single 
argument, the binary message. A binary message selector is composed 
of one or two non alphanumeric characters. 

Example of binary message: 

<10 

Smalltalk-80 messages provide two-way communication. The selector 
and argument transmit information to the object about what type of 
response to make. The object transmits information back by returning 

an object that becomes the value of the message expression. If a message 

expression includes an assignment prefix, the object returned by the 

object that performs the message, will become the new object referred 

to by the variable. Even if no information needs to be communicated 

back, an object always returns a value for the message expression. 

Parsing rules: 

1. Unary expressions parse left to right. 

For instance 2 sin sqrt evaluates as: (2 sin) sqrt. 

2. Binary expressions parse left to right. 

For instance 1 + 2' 3 evaluates as: (1 + 2)·3. 

3. Binary expressions take precedence over keyword expressions. 

For instance 1 + 2 raisedTo: 0.5 evaluates as: (1 + 2) raisedTo: 0.5. 

4. Unary expressions take precedence over binary expressions. 

For instance 1 + 2 sqrt evaluates as: 1 + (2 sqrt). 

There is one special syntactic fonn called cascading that specifies 
multiple messages to the same object. A cascaded message expression 
consists of one description of the object which should perform the 
messages, followed by several messages separated by semicolons. 

Example of cascading: 

aCollactlon add: objectOne; add: objeclTwo; add: objectThree 

Block expressions 

Blocks are objects used in many of the control structures in the 
Smalltalk -80 system. A block represents a deferred sequence of actions. 
A block expression consists of a sequence of expressions separated by 
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periods and delimited by square brackets. When a block expression is 
encountered) the statement enclosed in the brackets are not executed 
immediatly. The value ofa block expression is an object that can execute 
these enclosed expressions at a later time, when requested to do so. The 
sequence of actions will take place when the block receives the unary 
message value. 

Example of block: 

Ii :-1 + 1. sum:- sum + II 

A control structure determines the order of some activities. The funda
mental control structure in the Smalltalk-80 language provides that a 
sequence of expressions will be evaluated sequentially. Many non 
sequential control structures are invoked either by sending a message to 

a block or by sending a message with one or more blocks as arguments. 
The response to one of these control structure messages determines the 
order of activities with the pattern of value messages it sends to the 
hlock(s). 

An example of a control structure implemented with blocks is simple 
repetition, represented by a message to an integer with tlmesRepeat: as the 
selector and a block as the argument. The integer will respond by 
sending the block as many value messages as its own value indicates. 

Example of simple repetition: 

I :- O. sum :_ O. 

10 UmesRepeat: [i : .. i + 1. sum : .. sum + a 
Two common control structures implemented with blocks are condi
tional selection and conditional repetition. Conditional selection is 
similar to the if-then-else statement in Pascal and conditional repetition 
is similar to the while-do and repeat-until statements in this language. 
These conditional control structures use two Boolean objects named true 
and false. Booleans are returned from messages that ask simple yes-no 
questions (for example, the magnitude comparison messages: ., <, <_, >, 

>., .... :m)~ 

The conditional selection of an activity is provided by a message to a 
boolean with the selector IfTrue:lfFalse: and two blocks as arguments. The 
only objects that understand ifTrue:ifFalse: messages are tl\le and false. They 
have opposite responses: true sends value to the first argument block and 
ignores the second; false sends value to the second argument block and 
ignores the fIrst. The value returned from IfTl\Ie:ltFalse: is the value of the 
block that was executed. 

Example of conditional selection: 

x> max 
iITrue: (y :- max] 
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if False; [y ;~ xl 

Other conditional selections are: ifTrue:, if False; and ifFalse:ifTrue:. 

The conditional repetition of an activity is provided by a message to a 
block with the selector whileTrue: and another block as an argwnent. The 
receiver block sends itself the message value and if the response is true, 

it sends the other block value and then starts over, sending itself value 

again. When the receiver's response to value becomes false, it stops the 
repetition and returns from the whlleTrue: message. 

E:1C:ample of conditional repetition: 

I :: O. sum ;- O. 
[i.e 10] 

whileTrue: 

[i := 1 + 1. sum :- sum + i] 

Other message for conditional repetition is: whileFalse:. 

In order to make some nonsequential control structures easy to express, 
blocks may take one or more argwnents. Block arguments are specified 
by including identifiers preceded by colons at the beginning of a block. 
The block arguments are separated from the expressions that make up 
the block by a vertical bar. 

A common use of blocks with argum.ents is to implement functions to 

be applied to all elements of a data structure. For example many objects 
representing different kinds of data structures respond to the message 
do:, which takes a single-argument block as its argument. The object that 
performs a do: message evaluates the block once for each of the elements 
contained in the data structure. Each element is made the value of the 
block argwnent for one evaluation of the block. 

Example of enumeration over an array: 

sum ;.0. 

#(1 2345678910) do: [ :11 sum:: sum + I) 

where #(1 23456739 10) is an array that can perfonn a do; message, [ ;i I 
sum ;c sum + i] is a single argument block, I is a block argument, sum :- sum 

+ i is the expression in the block. 

Other enumeration messages are: collect:, select:, reJect:, detect: and InjeC1:lnto:. 

The objects that implement these control structures supply the values of 
the block arguments by sending the block the message value;. A block 
with one block argument responds to valve: by setting the block arglUllent 
to the argument of valva: and then executing the expressions in the block. 
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Basic task language methods 

This appendix lists the most important methods of the task language. It 
is based on Wortmann [1991]. 

Bubble> task frame 

Inltle;llzeTIUIkii 
"This method is called before any prOCBssar 8x6CUteS initJa/ActJons or body. It should 

not contain any send or racelve actions, as the Pf0C8SS9S are not Itmnfng yet. It Is 
mainly Intended to inltJ8IIz6 instance variables .• 

Inltl.IActiona 
"ThIs mBthod is called once b6fore the first f1X6GUtion of body .• 

body 
"TnJs method is caJlBd r8p8a.tedly during simulation. It must b8 md9fined by all 

subclasses. Calling stapPrcc8ss prevents further calls af this method .• 

haltSlmulatlon 
"Stop th9 pteS9flt sImulation. The eff8ct is analogous ta pushing the stop-button 01'1 
the control panel .• 

stopProc8N 
·Prevent this bubbl6 from eX9CUting any I/,Inher actions during me Pf9S9flt 
simulatIon .• 

Bubble> activity 

These methods are used to simulate an activity in no more detail than the 

fact that it takes a certain amount of time. 
workDurlng: tlmeDelay 

"7he process wfll b8 busy for timeOelay tfm9 units. Th6 status asSocJst9d with this 
activity Is busy .• 

worttDurtng: tlmeOelay fOrReaaOn; workStatus 
"The prOCBSs will be bUSy fOr tJmeDelay time units. ThB status assoc;afG(1 with this 
acrIvity Is workstatus.· 

workDurtng: time Delay fOrRee80n: workStatus InterruptFrom: pO/1NemG 
"ThB process will be bl.JSy far tJmeDBlay rime units, unless an ;tem is reooiV9d from 

ponName b6fom timeDelay Is explfBd. The status associated with the activity Is 

provided by workStatus. Return wherher thB activity tsrminated without fnte"upt .• 

workDurlng: time Delay forReason: WOrkstatU8 InterruptFrom: portName If: 
eOndHlon 

'The process will b8 buSy for tlmeDelay lime units. unless an it8m tha.t satisfies 

condition is reoolved from portName befom timeDelay is expired. condition is 8. block 

that will be evaluated with candidate itBms as the single argument. It should have no 

slde-l1ffects. ThB status associated with the activity is provided by womStatus. 

Return whether too activity terminated without Interrupt. " 



168 basic task language methods 

Bubble> sending objects 

send: ObjeCt to: portName 

"The most basic s~nd action. S~nds object synchronously to the port specified by 

portName. Th~ proCBss blocks until a matching receive Is performed by another 

processor. " 

send: Object ImmedlamTo: portNama 

"Behaves exactly like a normal send when sending at this moment is possible. If it 
block.s, which Is detected a little latet', an et'l'Ot'message appflars in the console .• 

send: object ImmedlamTo: ponName then: then BlOCk; (lIse: (llseBlock 
"Try to sBnd Object to portName at thIs moment. II that succeedS. evaluate the 

thenBlock, if it does not succeed, evaluate else810ck. Thus this send cannot block .• 

send: Object before: aTime 10: portName 1hen: thenBloCk el9&: elSeBlock 
"Try to send objflct to portName bBfofB aTimB. If that succeeds, evaluate the 

thens/oak. if it does not succ8~. Bvaluate else Block . • 

send: Object to: portName1 then: block1 orTo: portName2 then: block2 

"Try to send object to portName1 or podName2. Block until sending to one of the 

ports succeeds. If sending to both POrtnatn8S would bB possiblB, use the one that 

has the longest waiting rBC8i~. Evaluat@ the correspondIng block when sending 
has succeeded .• 

send: Obj toOne01: portNanHIs 
"portNames is a collection of send port names. Try to send to one of thesB. Wlum 

there are waiting receival'S. the longest waiting is used. otherwise the first receiver 

that becomes available will be used. Aft8r a succesful send thB method returns. the 

processor will not try to sBnd to the other ports as W611. Retum the portName that 
was used for tile send .• 

sen(l: Obj toOneOf: portNames then: acllon81ock 
"actionS/Oak is a one argument block. th~ argumBnt specifies the portName to whIch 
the selld succeeded .• 

sand: object con1lnuousTo: ponName 
"Send object to portName. It will be avai/able for an unlimited number of receivers 

until it is rBplac~ by a new call to this method. This selld does never block, H 

send: Object asynchronousTo: portName 

"Send object to portName. object will be buffered until a raceiver is availabl8. 50 this 

processor will not block.. The size of the buffer is unlimitBd. " 

Bubble> receiving objects 

rec(llveFrom: portNal118 
"Receive from tile spBcified port. Block. until some sendtlr Is avaJlal;Jle let' 

communication. Return the ICBm rBCllived .• 

recelveFrom: portName If: condHlon81ock 
"condition Block is a on8-argumMt block. It Is fJvaJuatfJd with the candidate Item as 

argument. Evaluation should have no sldB BffBCts and must return a Boolean. The 

condition must not involYfj valu@s which change on their own, such as the simulatIon 

timB. This message retums the Item received. H 

racelvelmmedlateFrom: ponName If: condition BloCk 
"Behaves exactly likB a normal rBC8ivB when receiving at this moment Is possible. If 

it blocks, this blocking is only detBcted a little later, then an error message appeal'S in 

the console. " 

recelvalmmedlateFrom: portName 11: condition BloCk then: thenBlock 6188: 
elseBlock 

'7ry to receive an objBCt that has beBn sent at an earlier moment and that sat/sfles 

conditionBlock. If there Is such an object. execute thenS/oak with the received object 

as the single argument. Otherwise execute else8l0ak (no arguments}." 

recelveFrom: portNama b&tOI'&; tlma tnen: 1nenBIocI!. lfTlmedOut: tlmeOutBloek 
"If an Item is received before time. thenBlock is evaluated with that itBm as the single 
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argum8nt. Otherwis8, timeOut81ock is 8valuated (no arguments) .• 

receive From: pOI1Name before: time If: condition Block then: thenBlock 
IfTlmedOut: tlmeOutBlock 

"If an Item Is f8c8ived that satisfieS condftlonBlock bafOra time, then Black is 

8valuated with that it8m as the single argument. Otherwise, timeOutBlack Is 

evaluated." 
recelveFrom: pOI1NBme within: anlnterval then: thenBlock IfTlmedOut: 

tlmeOutBlock 
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"If an item is f800iVed within anlntefYal, thenBlock is evaluated with that item as the 

single argutrlBnt. Otherwise, timeOutSfock Is evaluated .• 

reeelveFrom: portName within: Bnlntervallf: condltlonBlock then: thenBlock 
IfTlmedOut: tlmeOutBlock 

"If an it8m is receiVBd that sat/sfles conditiOn8/ock within anlntefYai, thenBlock is 
evaJuatBd with that item as the slngfB BTgument OtherwiSB, timeOutBloclc is 
evaluated, • 

recelveFrom: portNamel then: blockl or: pol1Name2 then: block2 
"ReCBiv8 an Item from either one of two ports. Evafuate the corresponding blOCk with 

th9 fBDBiv8d Item as the singl9 argument .• 

recelveFromOne01: portNamea 
"partNames is 8 collection of rBC8iv8 port names. Try to receIve from 01'18 of these_ 

When there are waiting s9/'lders, the longest waiting Is used, othelWlse the first 

sender that b8c0m9S avaiiabl8 wl1l be used- AftBr the succesful ret:8iV9 the method 

rBtums th9 Item rBCSived; the proct!ISSOf will not try to rBC8i1/9 from /tie other ports as 
w8ff .• 

l8CelveFromOneOt: portNames do: action Block 
"actionBfOCk Is a two·arglJment bfock. Wh8n an Item Is avaifabfe, actionB/ock is 

evaluated with the name of the ponlnvolved as the ffrst argument and the item as 
thB second argUtrlBnt " 

recfllveFfomOneOf: portNames If: condition Block do: actlonBlock 
"W11en an Item that satisfies condition BlaCk is availabl8, actionBlock Is evaluated 

witf! /tie name of the port InvolvEid as the filSt argufflBnt and the item as tfIB second 
argument. • 

Bubble> special communications 

send: Item to: sendPol1 then: 8endBIOck orRec:elveFrom: recelVePOl1lf: cond 
tlMtn: recelveBlock 

"Send the item to the sendPort, or receive an item from the receivBPort tf'Iat satisfies 

ccnd, depBnding on which communication SUCCBBds first. Th9 ccnd/f/on Is either nil 

(no cctldltlon) or a one argument bfoCk. " 

send: Item to: sendPort then: send BlOCk orRecaweFrom: recelvePort If: cond 
then: recelveBlock wHhln: tlmelntervallmmedOut: tlmeOutBloCk 

"S8nd the item to the s8ndPort, or receive an itBm from the recelvePort that Satisfies 

cond, dependirtg on which commlJtlication sUCC8flds first. "communication dD6s not 
succeed withitl timelnmrval, evaluate tfmeOutBloCk. " 

send: Item toOneOf: sendPorta do: sendBlock orRecelveFromOneOf: 
l'8CelvePOrt8 If: c:ond do: receive Block 

"S8nd the item to one of the sandPorts, or f8c@ive an item that satisfies cond from 

one of the raceivePorts, dBpBnding an which communication succeeds ffrst 

sandSiock is a one argument bfock; the argument specifies tM portnam9 at which 

sending succeeded. reooiveBlock is a two argument block; the arguments are the 
partname and the rBCBivad object. • 

send: Item toOneOf~ sendPona do: sendBlock orR8celveFromOneOf: 
recelvePorts If: cond do: receive Block within: tlmelntervallmmedOut: 
tlmeOutBlock 

"Send thB item to one of the sBndPorts, or receive an item that satisfi9S oond from 

01'16 of the rBCBiWlPorts, depending on which communication $uCCBBds first. If 
communication dOBS not succeed within lftrlBlnterval, ev.;Wate tlmeOJ,ltBfock • 
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Bubble> accessing 

The following messages do not implement an action but provide control 
or access to the modeL 
Children 

"Return a collection with all fhe processors of my expansion· 

narne 
"Retum my name, a String" 

newName: string 
"Set the name of the receiver to the argument .• 

parent 
"Retut'tl the parent processor of the receiver .• 

Bubble> testing 

IsPartOiClsas: class 
"Answer whether the receiver is 8. child (or a child of or child etc.) of a proct[JSsor of 

the dass specified by thfl argument .• 

IsPartOfPrOCG880rNamed: aName 
"Answer whettler the receiver Is 9. child (or a child of 8. child etc.) of a p1'OC89S0r 

named as the argument. " 



Appendix C 

The hierarchical control model 

methods 

This appendix lists the objects and the most important methods of the 
data structure and the control model. The aim of this appendix. is to give 
the interested reader a more detailed description of the hierarchical 
control model and its data structure. It gives implementations of 
interesting methods. Most of the objects have been discussed in Section 
4.1 and 4.2. 

The class hierarchy of the objects is given below. 

The items that are exchanged between processors (Section C.l). 

Objact 

InteractlonObject 

Order 

RealOrder 

PotentialOrder 
Quotation 

Invoice 

Request 

TransportRaquest 

Report 

TransportReport 

Ordered Collection 

Interac:tlonCollectlon 

Job 
TransportJob 

Ma1erialRaquest 

Material 

The object for the representation of material (Section C.2). 
Object 

MaterialUnit 

Items needed for the administration of the manufacturing process 
(Section C.3). 

Object 

ProgressForm 
JobPrograssFoll'n 

OrderProgressForm 

Operation 

TransportOparation 
Pr~ssOperation 
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WorkUnit 

Process Unit 

TransportUnit 

OrderedCollection 

Task 
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The objects where the calculation for the different decisions is done 
(Section CA). 

Object 

Proc9ssPIanner 

FactoryPlanner 

JobScheduler 

LateScheduler 
EartySchEl(lulEl( 

The processors of the model (Section C.5). 

Bubble 

ProcessorObjeCl 

ManufacturingController 

FaCloryController 

Resouroo 

Leaf Resource 

Transformer 

Store 
Transporter 

Consumer 
Supplier 

EnvironmentProcess 

Market 

C.I Interaction items 

InteractionObject - instance protocol 

Object subclass: InteractionObject 
instanceVariableNames: 'address arrivalDate' 

accessing methods 
address 

"Return the address (processor to which this ooject has to be sent) of the object ..• 
arrivalOa1e 

"Return the time the object arrived at its address. " 
stayTlme 

"Return the time passed sines the arrival of the object. 
lW1Address: aBubble 

"Assign 8 value to the address af the objBct .• 
setArrlvalOa1e: ."rlme 

"Assign a valve to lfIe arrival date of the object, " 
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Order - instance protocol 

InteractionObject subclass: Order 
instanceVariableNames: 'product amount supplier consumer 

startDate dueDate progressForm' 

accessing methods 
amount 
consumer 
dueDate 
product 
progfQ.8FOrm 
.nartDate 
supplier 

Order - class protocol 

instance creation method 
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product: aproductNarne amount; aNumber supplier: aSuppllerName cOD$umer: 
aColUJ,umerName startD81:e: stanTIrne duaDat8: dueTlme progreaaFonn: 
aProg1888Form 

~Crea.ts 8. new order. " 

RealOrder - instance protocol 

Order subclass: RealOrder 
instance VariableN ames: ., 

testing methods 

18POtenUai 
/\false 

IsFktaI 
iltr\l9 

RealOrder - class protocol 

instance creation method 
from: aQuotatlon 

"creat8 a new order from 8. quotation" 

PotentialOrder - instance protocol 

Order subclass: PotentialOl"der 
instance VariableN ames: " 

testing methods 

18Potentlal 
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"true 
laReal 

"false 

Quotation - instance protocol 

InteractionObject subclass: Quotation 
instance VariableNames: • order accepted' 

accessing methods 
order 
prograstlForm 
testing methods 
laAccepted 

"accepted 
181nvolce 

lIialse 

leQuotatlon 
"tru@ 

Quotation - class protocol 

instance creation methods 
accept: anOroor 

·create a quotation that a.ccepts the older" 
reject: anOrder 

'create a quotation that rejects the order" 

Invoice - instance protocol 

InteractionObject subclass: Invoice 
instancc;VariableNames: 'order material' 

accessing methods 
dueDate 
material 
order 
prograssForm 

testing methods 
Islnvolce 

IItrua 

IsQuotatlon 
IIfalse 

Invoice - class protocol 

instance creation methods 
order: anOrder material: anOrderedColleetlon 
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·Create a new InvoiC8. The deUvered matBrial is mentlonBd in anOrderedColJectJon, 
the order for the material in an Order .• 

Request - instance protocol 

InteractionObject subclass: Request 
instanceVariableNames: 'resource operationTypes 

minBatchSize roaxBatchSize' 

accesssing methods 

maxBatchSLze 
mlnBatchSlze 
re80urceName 
resourceType 
SCheduleDa. 
newJOb 

AJob for: resource 

testing methods 

laAbleToExecuta: aWortcUnH 
A(operatlonTypas includes: aWornUnit operationType) 

I.Report 

"false 
18Request 

"true 
IsTtall8ponReport 

IIfalse 

IsTninsportRequeet 
Afalse 

Request - class protocol 

instance creation method 

resource: aR880urce operationTypes: operatlonTypeSet mlnBatchSlze; 
mlnlnteger mlxBatch$lze: maxlnteger 

"Cream a new request .• 

TransportRequest - instance protocol 

Request variableSubclass: TransportRequest 
instanceVariableNames: " 

accesssing methods 

newJob 
"TransportJob for: resource 

testing methods 

IsReqll8st 
Afalse 

IsTransportReque8t 
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"true 

Report - instance protocol 

InteractionObject subclass: Report 
instanceVariableNames: 'job' 

accessing methods 

Job 

testing methods 
18Report 

111rua 
ISReqIJ8at 

flfalse 

IsTransponRepon 
flfalse 

IsTransponRequest 
Alalse 

Report - class protocol 

instance creation method 
Job: aJob 

"Create a report belong;ng to aJob. " 
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TransportReport - instance protocol 

Report subclass: TransportReport 
instanceVariableNames: " 

accessing method 
destination 
origination 

testing method 

belongsToFlnlshed'raSk 

fljob destination - ·store' 
IsRepon 

IIlalse 

IsTransponRepon 

lI.rue 

InteractionCollection - instance protocol 

OrderedCollection variableSubclass: lnteractionCollection 
instanceVariableNames: 'address anivalDate' 
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accessing methods (see !nteractionObject) 

address 
1IoITlvalOate 
aetAddress: aBubble 
setAlTlvalOam: aN umber 
8tayTime 

Job - instance protocol 

InteractionCollection variableSubclass: Job 
instance VariableN ames: 'resource dueDate; 

adding method 

addWorkUnlt: aWOrkunlt 
(dueDate isNII or: [aWorkUnll. due-Date < duaDate]) 

Iffrue: [due-Date : .. aWor1<;Unlt dueDate]. 

self add: aWorkUnlt 

accessing methods 

diMtDate 
material 

operation 
oparationType 
proce88T1me 
resourceName 

Job - class protocol 

instance creation method 
fOr: aResource 

MCreat9 a new job for aResourcs .• 

Transport.! ob - instance protocol 

Job variableSubclass: TransportJob 
instanceVariableNames: " 

accessing method 
destination 
origination 

MaterialRequest - instance protocol 

InteractionCollection variableSubclass: MaterialRequest 
instance VariableN ames: 'destination' 

accessing method 
destination 
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"deStination 

MaterialRequest - class protocol 

instance creation method 
deStination: aBubble 

"Create a new matetiafAequest, the d8stinat/on of the reqU6Sied material is 
aBubbJe_' 

Material - instance protocol 

InteractionCollection variableSubclass: Material 
instanceVarjableNames: " 

C.2 Material object 

Materia/Unit - instance protocol 

Object subclass: MaterialUnit 
instanceVariableNames: 'name' 

Materia/Unit - class protocol 

MaterialUnit class 
instance VariableN ames: 'instanceCount' 

class initialization method 
Initialize 

InSlanc:aCount ;= 0 

instance creation method 
nameForlnstance 

Instanc:aCount ;m instance-Counl + 1 _ 

Aname, inStanceCount printStrlng 

new 
"Create a new instance of Materia/Unit with a unique name. " 
Asuper new setName; self nameForlnstanoe 
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C.3 Administrative objects 

ProgressForm - instance protocol 

Object subclass: ProgressFonn 
instance VariableNames: 'instantiator tasks' 
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'The Instantiator is the obj6ct to which the progressForm belongs. The taSkS contain 

the process plans which have to b8 9X8CUted in order to execute the InstantiHtor. " 

tasks-accessing methods 

addTask: aTask 
il1aSks add: aTask 

laFlnl8hed 
"1asks IsEmpty 

rernoveTask: aTask 
"tasks remove: aTask 

taak8 

"taSkS 

administrating methods 

materialContenta 
""lnstantiatoT materialConteots 

wo!1(COntenta 
Aself matertalContents • self operation processTlme 

JobProgressForm - instance protocol 

ProgressFonn subclass: J obProgressForm 

instance VariableNames: " 

accessing methods 

Job 
material 
operation 
report 

"Create a new report whfln the job is execut9d. " 

ilRepor1job: Instantlator 

JobProgressForm - class protocol 

instance creation methods 

Job: aJob 
·CfWlte a new Instance of JobProgf8ssForm. " 

OrderProgressF arm - instance protocol 

ProgressForm subclass: OrderProgressFonn 
instanceVariableNames: 'operation material orders accepted' 
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'The Instance variable operation contains the operation that has to be 8X@CUtBd in 

order to pro(/l.Jce the prO(/vcts ordered. The instance variable material contains thB 

raw material that is ordered for the matllJfSCh.Jring of the prodlJct. The instance 

variablB Ord8rs contains the orders for raw materiai, accepted keeps the resvlts of 

the orders in case thBSB ordBrs ar8 potential. " 

accessmg methods 
order 
material 
operation 
Invoice 

"Rerum a new invoice when the order is fv/filled." 

"Invoice order: instaotiator material: material 

orders accessing methods 
addOrder: anOrder 

orders add: anOrder 
h8ndlelnvolce: anlnvolce 

"Administrate the answer af the supplier to a reaJOrder .• 

handleQuotatlon: aQuotatlon 
"Admlnlstrate me answer af the stJPp/ier to a potentis/Order. " 

IsAccepted 
"wlf Is Delivered and: [acceplEldJ 

IsDeltvered 

"orders IsEmply 
IsPotentl,1 

"instantiator isPotantiai 

OrderProgressF orm - class protocol 

instance creation methods 
order: anOrder operation: anape-ratlon 

"create a nBW orderProgrBssForm" 

Operation - instance protocol 

Object subclass: Operation 
instanceVariableNames: 'operationType resourceType 

process Time ' 

accessing methods 
operatlonType 
processTime 
resource-Type 
8etProCGSsTlme: aTlme 

processTlm9 :~ aTIme 

TransportOperation - instance protocol 

Operation subclass; TransportOperation 
instance VariableN ames: 'origination destination' 
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accessing methods 

destJnatlon 
origination 

TransportOperation - class protocol 

instance creation method 

from: anOrlglnation to: IiD&StInatlon In: aTIme 
·Cr9ate a: new transportOperatlon.· 

Proces~Operation - instance protocol 

Operation subclass: ProcessOperation 

instance VariableNames: 'parameter' 

accessing method 

parameter 

ProcessOperation - class protocol 

instance creation method 

openrtlonType: anOperationType parameter: aParameter t88ourceType: 
aClassName 

·Create a new opersrJon .• 

WorkU nit - instance protocol 

Object subclass: WorkUnit 
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instanceVariableNames: 'operation materialUnit task position 

dueDate scheduleDate' 
"Thft Instanc8 variable scheduleDate Is used tor the ImplefTl6ntation of thtit fifo rule, it 
contains the ,Imil a.t which too workUnit is added to a jobScheduler .• 

accessing methods 

dueDate 
material Unit 
opel'8tlon 
operatlonType 
position 
proceSSTlme 
reBoureeType 
scheduleDate 

bl$k 
setPosltlon: aBubbleName 

position :- aBubbleName 
eetScfle<luleOate: an$cheduleDate 

sCheduleOate; .. anScheduleDate 
eetTask: aTask 
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task :: aTask 

WorkUnit - class protocol 

instance creation methods 

operation: anOperatlon materla!Unlt: aMaterlalUnlt pOSition: aBubbleName task: 
aTask dueDate: 8DueDate 

NGreate a new workUnJt" 

ProcessU nit - instance protocol 

WorkUnit subclass: ProcessUnit 
instance VariableN ames: ., 

ProcessU nit - class protocol 

instance creation method 
operation: anOperatlon mliterialUnlt: aMaterialUnlt dueDate: aTlrne 

"Create a new instance of ProcessUnit H 

TransportU nit - instance protocol 

WorkUnit subclass: TransportUnit 
instance VariableN ames: " 

accessing method 

destination 
origination 

Task - instance protocol 

OrderedCollection variableSubclass: Task 
instance VariableN ames: 'progressFonn remainingProcess1ime) 

accessing methods 

progreesForm 
l'eIl1BlnlngPro<:tlssTlme 
testing methods 
IsFlnlShed 

"self isEmpty 

adding methods 

addPrOC9ssUnlt: aProcessUnlt 
super add; aProcessUnit. 
aProcessUnit setTask; self. 
ramainingP~ocassTima ;,. (remainingProoossTime + aP~ocessUnit procassnme) 
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nnnoveProceasUnlt: aProcessUnlt 
super remove: aProcessUnlt. 
temalnlngProcessTime :_ (ramail'lingProoossTlme - aProcessUnit proc:essTlme) 

Task - class protocol 

instance creation method 
progressFonn: aprogreasFonn 

·Create a: new InstBnoo of task which Is part of aProgftlssForm .• 

C.4 Calculators 

ProcessPlanner - instance protocol 

Object subclass: ProcessPlanner 
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instanceVariableNames: 'resource reports input weightedlnput 
throughput weightedTIrroughput leadThne weightedLeadTune 
inventoryLevel weightedInventoryLevel' 

"The proC8ssPlanner creates PfOCBSS pla.ns for a particular resource. It Blso 

gBrl6f8.t8S tM report II the processPIa.ns b8/tmging to a Job have ffnlshfHi. In thB 

instanoo variables Input, we/ghtBdlnput, throughput, weightedThroughput, 188dTime, 

weight8dLeadTlme, InventoryLBYB/ and waigfltedlnventoryLevel t1lB performancs of 

the fBsour08 is administrated .• 

handling methods 

han<lleTransportReport: aTransponReport 
MHandle a TransportReport, updats the finished task, update the relatBd 

progressForm. If tha progressForm Is finished, a.dministrata the mady job and 
generate a fft(XJrl for th8 finfsned job .• 

makeProcessptansFor: aJob 
·Create the tasks (prooess plans) that have to be executed In ordBr to executB aJOO. 
aJob is also admlnlstratBd as a new job. • 

reports 
HRetum tIla reports of /he jobs that am roody .• 

administrating methods 
admlnl8trateNewJobWhh: aPrognt8SFOnn 

"Admlnistmt8 tile incoming new Job- • 
admlnlatrateRa8dyJobwtth: aProgressForm 

"Administrate the leaving fBady jOb •• 

ProcessPlanner - class protocol 

instance creation method 

for: aR980urce 
"Create a new processPlllfIner .• 
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FactoryPlanner - instance protocol 

ProcessPlanner subclass: FactoryPlanner 
instanceVariableNames; 'orders quotations invoices' 

handling methods 
handlePot&ntlaIOrder: aPot&ntlalOrder 

"Create new potential orders for raw material. " 

handleReatOrder: aRealOr<ler 
"Create new real orders for raw material, and administrate the new aRealOrder .• 

handleQuotatlon: aQuotatlon 
''Administrate aQuotation and genBrate a new quotation if all potential orders arB 

answered. " 

hancUelnvolce: anlnvolce 
"Administrate anlnvoice from /tie supplier. ff sf! msteri8/ is delivered, the tasks 

(proC8SS plans) are created. " 

handleTtansportRoport: aTransportReport 
"HandlB aTransponRBpon, updatB thE! finlshE!d task, update thE! relattiJd 

progr8SsForm. ff thB progrBssForm Is finished, administrate the rBBdy job and 

gBnBfate an Involoo fOf the finished ofdBf. " 

planning method 
hasCapacl1yFor: aP01en1lalOrder 

"Check if tna resouroo has capacity to manr.dacture the amount of prodrJOts 

raquestad in aPotentialOrdar. " 

accessing methods 
Invoices 

"RBturn the Involoos of the orders that are ready. " 

orders 
"Return /tie orders for tne supplier that are Cf6sted on the receipt of orders from the 

consumer." 

quotations 
"Return the quotations to thE! ord8rs of thE! consumer. The quotations can be 

answered If the capaclfy plannef has capacity and It thfJ potential orders for raw 

material have been answered .• 

administrating methods 
admlnI8tra1eNewOl'(lerwI1h: anOrd&rProg ressFonn 

"Administrate the incoming new order, • 

admlnl8trateReadyOrdel'Wlth: anOrderProgrenForm 
''Administrate thB leaving ready order .• 

JobScheduler - instance protocol 

Object subclass: JobScheduler 
instanceVariableNames: 'controller resourceType requests 

workUnits' 

initialize method 
setController: aBubble setResourceType: aAe80urceType 

controller :: aBubble. 
r@sourceType := aR@sourceType. 
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requests ;c SortedColiection sonBlock: self fifo. 

workUnits :: SortedColieClion sortBlock: self fifo 

priority rule methods 

e<ld 
1I[:a :b I a dueDate <= b dueDate] 

fifo 
A[:a :b I a scheduleDate <= b scheduleDate] 

srpt 
A[;a :b I a task remalningProcessTime <- b task remainlngProcassTImel 

adding methods 

schedulBRequast: aRequest 
requests add: aRequest 

SCflGdu\eworkUnlt: aWorkUnlt 
aWorkUnit setScheduleOate: controller lime. 

workUnits add; awol'kunit 

scheduling methods 

executabkkJobS 
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"Find the combinations or workUnlts and requests that can be combiflfJd to new jobS 

and create these. " 
flnClRequeetf"or: aWorkUnlt 

"Lock for requests that can execute aWorkUnit .• 

formulateJobFor: aWorkUnlt and: aRequ89t 
"Formulate a 11eW job from aWorkUnlt and aRequ8St. • 

J obScheduler - class protocol 

instance creation method 
In: aBubbie for: aRG80urceType 

"Create anew jobSchBduler .• 

Aself new setController: aBubble setResourceType; aResourooTypa 

LateScheduler - instance protocol 

Object subclass: LateScheduler 
instance VariableNames: 'controller schedulers 

transportTaskSteps transportablelobs executablelobs reports' 

handling methods 

hand\eReport: aRepol1 
aUpdat8 the tasks of whiCh .!it process Unit has been executed. If the task is finished, 

then formulate transportUnits for transport to store, else schedule the task for the 

execution of the next proCBssUnit of the task. " 

scheduleTask: eTask 
self SCheduleProcessUnit: aTask first 

handIeTransportRepot1: aTranSpOnRepon 
·Check if all material of the job has been transported to a resource If this is the case 

thBn add the job to executablsJobs. " 

scheduling methods 

schedu IeProcessUnlt: aWorkUnlt 
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I resourceType I 
resourceType := aWOl'kunit teeOl.ltceTypa, 

(schedulers at: resourceType) scheduleWOtkunit: aWorkUnit 
SChedUle-Request: aRequ6st 

I taSouroeType I 
I'E!sourceType ;z aRequest resourceType. 

(SChedulers at resourceTYI>6) sch@duleRequest: aRequest 

accessing methods 
executableJobs 

"Retum all jObS that may be sent to their resourCB$ .• 

transponUnlts 

"Return all transponUnlts of material that has to l;u;I trsflspOrtad. " 

LateScheduler - class protocol 

instance creation 
for: anArrayOfResoureeTypes In: aCon1roUer 

"Create a nBW schedulE!r for aConrroller. H 

EarlyScheduler - instance protocol 

LateScheduler subclass: EarlyScheduler 

instance VariableN ames: • destinations' 
'The public messages of thfJ class EarlySchedl,Jler are the same as thOS9 of 

Lat8Scheduler only the Implementation dlff91'S and the sequence in whiCh thflyar8 
sent .• 

handling methods 
handleAeport: aRepon 

·Updatfl the tasks of which a proC8ssUnit has bB8n 8X8cuted. If thE! task Is finished, 

then formulate transportUnits for transpon to store, Blse genBrate thE! rransponUnlts 
for transpon of thB material to the next resOI,JrCE! .• 

handleTransportReport: aTransportReport 
'Try to sch9(f[J/e the process Units, belonging to transported material, on th8 

resource, " 

accessing methods 
executableJObS 

"Ret[Jm all jobS that may be sent to their resources, • 

transponUnlts 
"RBturn all transponUnlts of material thal has to be transported. H 

EarlyScheduler - class protocol 

instance creation 
for: anArtayOfRosourceTypes In: aController 

"GrBatB a new scheduler for aGontroller .• 
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c.s Processors 

ProcessorObject - instance protocol 

Bubble subclass: ProcessorObject 
instance VariableN ames: 'address Table portN ameTable • 
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"The Interactions to diHerent proOBssorObjBcts are multiplexed via one port. Below Is 

illustrated with the send a.nd receive intl3racticn hOw the multlpl9xlng workS. me 

instance variabll3 addressTaole Is a dlcrJonary. It contains associations with 8. name 

and the linked address, The pcrtNameTable Is a dictionary which contains a name 
and thl} portNam8 to which the IinklJd addf9SS is connect9d .• 

initializing methods 
InltlallzeTa8k9 

addressTable:. Dictionary new. 
ponNameTable:. Diction<lJ)l new. 
self inltlallzeAddresSTabie 

receiving methods 
recelveFrom: portName 

"Additional cede for multiplexing via onfJ port and for time stamping the rBC8JV8d 

ooject .• 

I item I 
item :. super recelveFrom: portName if: [:item litem address:D self]. 
Item setAnivaiDate: self time. 
/litem 

Other receiving methods are reimplemented in similar ways. 

sending methods 
send: objeCt to: penName 

"Additional COde for multiplexIng via one porr.· 

/lsuper 

send: (object setAddresS: (addressTable at: portName)} 
to: (ponNameTable at portName) 

Other sending methods are reimplemented in similar ways. 

ManuJacturingController - instance protocol 

ProcessorObject subclass: ManufacturingController 
instanceVariableNames: 'planner scheduler transportScheduler 

requestList' 
"The plannBr is an instance of ProcessPlanner. The scheduler Is either an instanC/3 

of /..4,te$chedulef or EarlyScheduler. The transportScheduler Is an fnstanOB of 

JOI:JScheduler. The sending of requests is done with help of requestLlst. RequestLfst 

containS requests assocIated with the time thB rBquest has to be 88nt. The 

rsquestList is an instanoo of SonedCollection, the elements are sorted to Inelf time 

they have to be sent. A request is placed In requestLfst with the next statement: 

requestLfst add: S9/f formulat8R8quest -> (tim8ToSendRequest) 

When this is done depends on the request send strategy, FOt in.stance with a 'Fixed· 
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WIP'stfatBgy it is donB togBrhBf with rhB sBnding of a fBpon. With 'uniform sums' thB 

sending of a request goes together with the addIng of the next request to 
rBquestUsr. " 

simulation control methods 
Inltlalb:&TaSk& 

requestList := SortedColieclion sortBlock: [:a :b I a value <~ b value]. 

bOdy 
sell 

reooiveFromOneOf: #('oontroller' 'resource' ) 

before: self requestSendTIme 
do: 

I :pOl1Name :item , 

portName - 'controller' 
ifTrue: 

[self handleJob: Item. 
self sendAvailableTransportJobs]. 

portName - 'resource' 
ifTrue: 

[item iSRequest 
ifTrue: 

[self handleSubrequest: item. 
self sendAvailableTransportJobs]. 

Item IsReport 
IfTrue: 

[self handleSobfeport: ~em. 

self SendAvailableTransportJObaJ. 
item isTransportRequest 

ifTrue: 
[self handleTransportRequest: item. 
self sendAvaliableTransportJobs]. 

Itam IsTransportAeport 

ifTtl.le: 

[item belongsToFinishedTask 

ifTrue: 
[selt handleL.astTransportReport: item. 
self sendAvailablaRaportsl 

if False: 
[self handleTransportReport: item. 
self sendAvailable$ubjobs]lll 

IfTlmedOut: [self sendRequest] 
h8ndleJob: aJob 

'Iasl<$ I 
taskS :- planner makeProCEtssPlansFot: aJob. 

tasks do: [:task I scheduler scheduleTask: task]. 

self schadulaTranspOI1Unlts 
nandleLastTransportReport: aTransportReport 

plannaf handleltansportReport: aTfanspot1Raport 

tlQnCUeSUbreport: QReport 
scheduler handle-Report: a.Report. 
self scheduleTransportUnits 

handleSu brequest: aRequest 
scheduler scheduleRaqu9st: aRequest. 

self schadulaTranspot1Unlts 
nQndlelransportAeport: aTransportAeport 

scheduler handleTransportReport: aTransportReport 



the hierarchical control model methods 

handleTransportRequ8st: aTransportRequest 

transportScheduler scheduleRequest: aTransportRequest 

scheduleTranaportUnlts 
schedular transportUnils do: 

[ :transportUnit I 
transportScheduler sChadulaWorkUnlt: transponUnitl 

request5endTlme 
"Retum me time the next f9qUest has to be sent. " 

sending methods 
sendAvallableReporta 

I reports I 
reports : .. planner reports. 

reports do: [:reportl self send: report asynduonousTo: 'controller'] 

8CIndAvallablflSubJObS 

I subJobs I 
subjobs :- scheduler flxecutableJobs. 

SubjObS do: 
[ :subjob I self send: subJob asynchronousTo: subjob resourooName) 

UndRequest 

I request I 
requestUst isEmpty 

If False: 
[request:= requestUst removeFirst key. 
self send: request asynChronollsTo: 'controller'] 

8&ndAvallabl8TranaponJOb8 

I transportJObS I 
transportJobs :z transportSCheduler e;o;ecutableJobs. 

transportJobs do: 

[ :transportJob I self send: transportJOb asynchronousTo: 'transporter'] 

F actoryC ontroller - instance protocol 

ManufacturingController subclass: FactoryController 
instanceVariableNames: .. 

simulation control methods 
body 

self recelveFromOneOf: #('consumer' 'supplier' 'resource' ) do: 

[ :portName :hem I 
portName - 'consumer' 

iffrua: 
[item isPotentiai 

iffrue: 
[(planner has Capacity For: item) 

ifTrue: 

[self handlePotentlalOrder: Ilem. 

salf sandPotantialOrdars) 

if False: 

[self sendQuotationsll. 

Item isReal 

ifTrua: 
[self handleRealOrdar: item. 

self sendRealOrdersll. 

port Name = 'supplier' 

irrrua: 
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[item isQuotation 
IfTrua: 

[self handleQuotation: Item. 
self sendQuotatlons]. 

item islnyoice 

ifTrue: 
[self handlelnvoice: item. 
self sendAvaliableTransportJobsll. 

portName = 'resource' 
IfTrue: 

(Item isReql,lest 
iflrlle: 

[Self MndleSubrequest item. 
self sendAvailableTransportJobs]. 

Item IsReport 

IITrue: 
[sail handleSobreport: item. 

self sendAvailahleTransportJobS]. 
Item isTransportRequest 

ifTrl,le: 

(self handleTranspMReql,lest: item. 
self sendAvaliableTransportJobs]. 

item isTransportAeport 
ifTrue: 

[item belongsToFinishedTask 

ifTrue: 
[self handleLastTransportReport: Item. 

self send Invoices] 
ifFalsa: 

[self handleTransportReport: item. 
self sendAvailableSubjobslIll 

handlalnvolce~ anlnvolce 
I tasks I 
tasks :~ planner handleinvoice: anlnvoice. 

taskS do: [ :task I sChEKh.ller eChedl,lleiask: taSk)' 
sel~ SChedl,lleTransportUnits 

nandlep01entlaIOr<ler: ap01entlalOrder 
(planner hasCapacityFor: aPotentialOrder) 

ifTrue: [planner haOdlePotantialOrder: aPotentialOrder) 
ilandleQuotatlon: suppUerQuotatlon 

planner handleQuotation: supplierQuolation 

handl8RealOrder: aRealOl'der 
planner handleRealOrder: aReal Order 

shipping methods 
er,tpproducteF'or: anlnvolce 

I shipJob I 
shlpJob :~ MaterialRequest destina1ion: 'outside'. 

shipJob addAII: anlnvoloe material. 
$el~ send: ghipJob a.synchronol,lsTo: 'store' 

sending methods 
sendlnvolces 

I Invoices I 
invoices ~D planner invoices. 

invoices do: 
[:invoice I 
self shipProdllctSFor: invoice. 
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self send; invoice asynchronousTo: 'consumeq 
sendPotentlalOl'ders 

I supplierOrderS I 
supplierOrders ;. planner orders. 
supplierOrderS do; 

( :order I self send: order asynchronousTo; order supplier) 
sendQuotatJons 

I consumerQuotations I 
consumerQuotations ; .. planner quotations. 
consumerQuotations do: 

[ :quotation I self sand; quotation asynchronousTo: 'consume() 
s8ndRealOrders 

I supplierOrders I 
supplierOrders :a planner orders. 
supplierOrders do: 

[ :order I self send; order asynchronousTo: order supplier) 

Resource - instance protocol 

ProcessorObject subclass: Resource 
instance VariableN ames: " 

accessing methods 

resoufceName 
resourc:eType 

subr'e80Un:e8 
controller 
store 
transporter 

Resource - class protocol 

Resource class 
instance VariableNames: 'maxinventoryLevel minBatchSize 

maxBatchSize recipes operationTypes' 
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"The variabfe recipes contains the recipes the resOtJ/W can execute. Every recipe is 
8$sociat8d with the operatian that invokes the specific recipe. The operations of th9 
recipe are in fact subOperatJcns of this operation. Tne variabfe operatfonTypes 
cantains the oper8tionTypes tne resource is abfe to 9xecute.· 

default setting methods 
SlrtlnventotyL.8vel: anlnteger 

max Inventory Level :: an Integer 
aetMaxBa1chSIze: anlnteger 

maxBatChSize;. anlnteger 
setMlnBlitchSlze: anlnteger 

minBatchSize: .. anlnteger 

accessing methods 
maxlnventorylevel 
maxBatchSlze 
mlnBlitchSlze 

operatlonTypes 
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recipes 
resourcelYpe 

recipes methods 
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atoparatlQn: anOparatlon putReclpe: aReclpe 
''Add a recipe to r8Clp~s, " 

InltlalizeReclpeFor: anOperatlon 
"This methods calcula.tes the r8cipe that belongs to snOperatlon. It also calculates 

the parameter and thEl proCElssTim€! of til€! operation, It inltiall:t9S all the 

stJboperat/ons by sfJndlng the m8Ssa.g~ InitializeRecipeFor: snOperatlon to the 

$vOre$ources. ThfJ mBthod d€!livers thEl initfa.liz8d anOperation as retvl'l1 value" 

LeafResource - instance protocol 

Resource subclass: LeafResou:rce 
instance VariableN ames: ., 

accessing methods 
controller 

"self 
store 

"self 

Transformer - instance protocol 

LeatResource subclass: Transfonner 
instanceVariableNames: " 

simulation control methods 
body 

I taquest taw Material job operation finishedMaterial report I 
request : .. selllormulaleRequest. 
self send; request to: 'con\l'oller'. 
rawMaterial ;~ self ~ElCEliveMaterlaIFrom: 'outside', 
jOb : .. self feceiveFrom: 'controller'. 
oparation := job operation, 
1inishedMateriai :m self execute: operation on; rawMatEirial. 
report ;- self formulateReponFrom: job and; finishedMatadal. 

self send; report to: 'oontroller'. 
self send Material; finished Material to: 'outside' 

execute: anOperatlon on: aMaterlalColiectlon 
self workDuring: an Operation processTime forReason: 'processing'. 

"aMaterialColiection 
formUlateReportFrom: aJob and: aMaterlelColiectlon 

"Return a rl6W report that contains the result of the exectJtion 01 the joo .• 

10rmuiateRequest 
"Return a new reqtJest tflat contains the capabilities of this /fHlfResotJrce, • 

recelveMaterlalFrom: aPortNeme 
I material I 
material :~ self receiveFrom; aPortName. 
"material 

sendMaterlal: aMaterlalCollectlon to: aPortName 
I material Request material] 
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[aMaterlalCollection isEmptyj 

whlleFalse: 
[materialAequest :. selt recelveFrom: aPortName. 

material :: Material new. 

materialRequest do: 

[ :aMtlj 

aMaterialCollection remove: aMtl. 

material add: aMt~. 
material setAddress; material Request destination. 

self send: material to: aPonName] 

Transformer - class protocol 

recipes methods 
InlUallz&ReclpeFor: anOperatlon 
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"This method CBlculat6S the parameter and ths proc-BssTIme I)f the operation. Ths 

metllod rstums thB infti81iZ6d snOperation .• 

Store - instance protocol 

LeafResource subclass: Store 
instanceVariableNames: 'buffer' 

simulation control method 

body 
j mater1alj 
self recelveFromOneOl: #('outside' 'Inside' 'controllsr' ) do; 

[:portName :ltem I 
(item IsKlndOf: MaterlalRequest) 

ifTrue: 
[material : .. selt removeFromBuffer; item. 

selt send; ma1eriaI1o: Item destination]. 

(item IsKindOf: Material) 

IfTrue; 

[self 8ddToBuffer: Iteml1 

adding methods 
addToBuffer: aMatertalCollectlon 

buffer addAlI: aMaterialColiection 

removeFromBuffer: aMaterlalRequest 

I material I 
material :~ Material new. 
aMatariaiRequest do: 

[:aMtil 
butter remove; aMtl. 

material add: aMt~. 
material setAddress: aMa1erialReql,lest destination. 

~ma1erial 
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Transporter - instance protocol 

LeafResource subclass: Transporter 
instanceVariableNames: 'position' 

simulation control method 

bOdy 
I request tmnsportJob origination destination material Data material report I 
request :: salf formulataRequaS1. 

self send: request to: 'controller'. 
tr'ansportJob :- self rEtCeiveFrom; 'controller'. 
origination :m lfansportJOb origination. 
destination :- transportJOb destination. 
matenarData ; .. transportJob ma.teria.1. 
sell moveTo; origination. 
material ; .. self PiCk; matena.IData from; origination. 

se" moveTo; destination. 
self place: material at: destination. 

report := salf formulateRepo!1From: transportJob and: materiaL 
self send: report to: 'controller' 

lormulateMatenalRequestFOr: aMaterlalColiectlon from: aPonName 
"Retvtn the material request to receive the material mentioned in 
aMatenaICO/lactiOt'l. " 

rormulateReponFrom: aJob anC!: aMatenalColleC1lon 
"Return a report for the 8xeCilted aJob. " 

formuiateRequ8st 
"Return a new request. " 

moveTo: aPortName 
position. aPort Name 

ilFalse; 

[self workDuring: self transportTime forAea5on: 'moving'. 
position := aPortName] 

Pick: aMaterlalColiection from: aPortName 
I request material I 
request ;. self formulateMateriaJRequestFor; aMateriaiCollec1ion from: aPortName. 

self send: request to: aPortName. 
aPortName = 'store' 

IfTrue: [material := self recelveFrom: 'SlOre') 
If False: (malerlal := self recelveFrom: 'resource']. 

~materlal 

placo: aMatarialCol!ectlon at: ePortNama 

self send: aMateriaiCollection to: aPortName. 

Consumer - instance protocol 

ProcessorObject subclass: Consumer 
instance VariableN ames: • orderTimeDistribution orderTime 

productTypeDistribution productAmountDistribution 
dueDateDisu'ibution acceptionDistribution' 

simulation control methods 

bOdy 
self 

receiveFrom: 'supplier' 



the hierarchical control model methods 

before; orderTime 
then: [:anltem 1 self handleSupplierltem: anlteml 
immedOut; [selt generateOrder] 

generateOrder 
"Crea.te a n8W order. " 

nandlelnvolce: anlnvolce 
"Receive the material mBntioned in the invoice and updat8 the administration. • 

handleQuotatlon: aQuotatlon 

"Generate If nBC8SsaIY a new Real order and update the administration. n 

handleSupplleritem: anHem 
anltern isOuolation 

ifTrue; [self handleQuotation; anlteml 
if False: [self handlelnvoice; an Item] 

Supplier - instance protocol 

ProcessorObject subclass: Supplier 
instance VariableNam.es: • acceptionDistribution orders' 

simulation control methods 
body 

self 
reooiveFl'Om: 'consumer' 

before: self ne:<tOellveryTlme 
then; [ :anOrd9l' I self handleOrder: anOrdeJ'] 
iffimedOut: [self dellverNextProducts] 

dellverNextPrOdUct8 
"Deliver matBriBl to the consumer and send an invoic8. " 

handleOruer: anOrder 
"Adminfstrat9 anOrder, If It Is potBntial. a quotation is sent to the consumer. n 

naxtDellveryTllOO 
"Return the time the next order has to be dflfiv8red. " 

Market - instance protocol 

~v~nrnendProcesssubclass: ~arket 

instance VariableN ames: " 
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1. Onderzoek naar scheduling heeft aileen .tin als men beschikt 

over een bestudngsarchitectuur waarbinnen het 

schedulingsalgoribne wordt ge"implementeerd. 

D:U p .. oefltchrtn. 

2. De tegenstrijdige uitspraken over "sequencing" regels in de 

literatuur worden O.a. veroorzaakt doordat de ondelwekers geen 

eenduidige manier gebruiken om de plestaties van een 

produktiesysteem te meten. 

l\IIontlllzeri M., 

A modular simulator for de~lg ... , plAnning. and cont .. ol of nexlble mao;1uflllctu .. 1n1l 
~y~tems, 

DI!IlIIertatlon, J<lIItbolit"b Unh·enllelt Leuven (l987). 

Vit proefsc:h.riR. 

3. Met de keu~ van "release" regels kan cen grotere invloed op de 

prestatie van cen produktiesysteem wonlen uitgeoefend dan met 

de keuze van "sequencing" regels. 

Wlendahlll: ...... 

8.,.~:!IhmgsorieDllerte Fertl~ung~steutJ"ung: Gnmdlallen, Verfahrungs.u.fbRu, 

Reallslerung, 

Cart Ha~r Verllllg, Munehm (1987). 

WeinL.M., 

Schroullng ~emlcondue'or 'l'l'A-ft"t fllbdcatlon, 
IEEE T ... msdions fin ~mlco ... duetOJ" Manufacturing 1 (J), lIS·130 (1988). 

nit p-od'sebrlft. 

4. Voor het specificeren van het produktieproces schiet het gebruik 

van stukHjsten tekort. 

nit p .. oett.chrin (Sec:tle ;U). 

5. Het produceren van verschillende genera ties le's in 6Sn en 

dezelfde {abriek heeft twee belang.-ijke nadelen: de onrust die 

ontstaat bij het vervangen van apparatuut en de "job shop" 

layout. 



6. Bij het oplossen van problemen met de computer is de keuze 

van een goede programmeertaal meer dan het halve werk. 

SmitG.H., 
ne b(:sturilll van waferfabs, 

MemOl"aodum, '!Io~ullell Werktui&b(luwkunde, 

Tedu:d!ll::he UoiversUeU Elodboveo (1988). 

Dlt .,roefsdlrif'l. 

7. Veel communicatie leidt tot inflatie van infonnatie. 

8. Met de introductie van krachtigere computers neemt de 

gerniddelde tijdsduur van een Hsimulatierun" eerder toe dan at. 

9. Gezien de huidige welvaartsverdeHng is een belc:id dat 

onderscheid maakt tussen politieke en economische 

vluchtelingen, onrechtvaardig. 

to. Elk vak. zou naast de wetenschappe1ijke inhoud ook de ethische 

aspecten van het vakgebied moeten behandelen. 

11. Het is vreemd dat nonnale mensen vlees eten. 

12. Het feit dat een stelling geen afbreuk mag doen aan de reputatie 

van de TUE, doet afbreuk aan deze reputatie. 

13. De rockgroep Normaal heeft een belangrijke bijdrage geleverd 

aan het zelfbewustzijn van plattelandsjongeren. 

Henk. Smit Eindhoven, 10 maart 1992 
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