
applied  
sciences

Article

A Hierarchical Control System for Autonomous
Driving towards Urban Challenges

Nam Dinh Van , Muhammad Sualeh , Dohyeong Kim and Gon-Woo Kim *,†

Intelligent Robotics Laboratory, Department of Control and Robot Engineering, Chungbuk National University,
Cheongju-si 28644, Korea; quangnam.auto.tech@gmail.com (N.D.V.); er.sualeh@gmail.com (M.S.);
robotdevel@naver.com (D.K.)
* Correspondence: gwkim@cbnu.ac.kr
† Current Address: Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea.

Received: 23 April 2020; Accepted: 18 May 2020; Published: 20 May 2020
����������
�������

Abstract: In recent years, the self-driving car technologies have been developed with many successful
stories in both academia and industry. The challenge for autonomous vehicles is the requirement of
operating accurately and robustly in the urban environment. This paper focuses on how to efficiently
solve the hierarchical control system of a self-driving car into practice. This technique is composed
of decision making, local path planning and control. An ego vehicle is navigated by global path
planning with the aid of a High Definition map. Firstly, we propose the decision making for motion
planning by applying a two-stage Finite State Machine to manipulate mission planning and control
states. Furthermore, we implement a real-time hybrid A* algorithm with an occupancy grid map
to find an efficient route for obstacle avoidance. Secondly, the local path planning is conducted to
generate a safe and comfortable trajectory in unstructured scenarios. Herein, we solve an optimization
problem with nonlinear constraints to optimize the sum of jerks for a smooth drive. In addition,
controllers are designed by using the pure pursuit algorithm and the scheduled feedforward PI
controller for lateral and longitudinal direction, respectively. The experimental results show that the
proposed framework can operate efficiently in the urban scenario.

Keywords: autonomous vehicle; motion planning; local path planning; control system

1. Introduction

According to a survey reported in 2018 [1], the number of on-road accidents is more than 90%
caused by personal inadvertences. Self Driving Cars (SDCs) are a prominent method for the human
to solve collisions, frustrating situations, and decrease energy expenditure. Although SDCs have
breakthroughs in trial stages, the governments are still hesitant to commercialize due to the worry
about safety in public transport. Recently, SDCs technology has been developed with a large number
of studies, especially in the epoch of deep learning. Besides, the biggest challenge of SDC technology
is that it needs to handle all circumstances on the road like expert drivers.

Within 2016, the Society of Automotive Engineers (SAE) defined various criteria of the autonomy
level of SDCs [2]. Firstly, it starts at level 0 with comprehensive human handling. Level 1 can support
the driver by operating either lane-keeping assist systems or adaptive cruise control. Level 2, which
assists human drivers in steering and acceleration control, operates similarly to level 1 but is more
intelligent in specific driving scenarios. At level 3, the autonomous module can conduct perception
tasks like object detection and tracking to intervene in the control tasks, this level requires frequent
human override for vehicle control. At level 4, the operation can manage most of the circumstances on
the road; nevertheless, human override is an option to handle unexpected scenarios. To the best of our
knowledge, at this level, an exclusively self-driving company named Waymo is ready to deploy in
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public transportation over numerous million miles on city roads in fall 2018 [3]. Level 5 is designated
to a fully autonomous vehicle.

The Defense Advanced Research Projects Agency (DARPA) started an autonomous driving
challenge in 2002 [4]. This challenge can be considered as the first well-known experiment for SDCs,
and it opened the imagination of humans about what the autonomous vehicle can do. The first
competition was held and awarded one million dollars for the winner on March 13, 2004 [4]. However,
in the first contest, no team could complete the challenge. The second DARPA grand challenge was
held on October 8, 2005 [4]. Five teams of twenty-three could accomplish the autonomous driving
mode. Stanley robot of Stanford won the competition followed by Sandstorm of Carnegie Mellon.
Later, on November 3, 2007, the DARPA established a competition called DARPA Urban Challenge,
which operated on busy roads and needed much more intelligent motion planning and perception [4,5].
This competition also required vehicles to drive automatically in several locations with GPS-denied
environments. The winning team was Boss of Carnegie Mellon University, and the Stanford Junior
team came second. After the DARPA competition, many autonomous vehicle challenges and tests
have been organized. The European Land-Robot Trial (ELROB) [6] has been conducted from 2006
to the present. From 2009 to 2013, the Intelligent Vehicle Future Challenge in China was held [7].
In South Korea, the autonomous vehicle challenge was firstly announced by Hyundai cooperation in
August 2008 [8]. The most recent competition was announced in March 2018 and organized in July
2019. The organizer built a testing ground called K-city to mimic the urban area.

From that time of the final DARPA Urban Challenge, many successful stories in the industry of
autonomous driving in urban environments have been reported. Specifically, Google’s self-driving car
had driven automatically over 140 thousand miles in California in 2010 [9]. About four years later,
Google successfully developed an autonomous vehicle that can be driven up to 40 kilometers per hour
in the urban area. In 2016, Google’s autonomous driving vehicle was renamed to Waymo [3]. From that
moment, Waymo has been getting many achievements and leading the race to get autonomous cars
into public transportation. Around the end of 2015, the Tesla company induced an autonomous
driving vehicle called Autopilot to market [10]. In 2016, the Tesla Model S had a disastrous accident
in Florida. The reason for this accident was the simultaneous failure of both camera and radar
sensors. Despite suffering severe problems, the self-driving automobiles are continuously developed.
Recently, Zoox and nuTonomy have led the autonomous taxi business. Numerous start-up businesses
have been establishing and reinforced to bring safe autonomous vehicles to trade as early as 2020.
Autoware [11], Apollo [12], NVIDIA DriveWorks [13] and Openpilot [14] are the most popular
open-source frameworks. We highlight that Autoware [11] and Apollo [12] using the Robot Operating
System (ROS) [15] that can be flexibly integrated into real-world applications.

Roughly speaking, the autonomous vehicle system can be commonly divided into three primary
classes [16,17], including perception and environment mapping, motion planning and control system.
In this article, we develop an autonomous driving system, as shown in Figure 1. The perception and
environment mapping are applied to determine where the self-driving vehicle is and what surrounding
environments are. One of the most challenging issues in the urban scene is less-texture and high
illumination. So that the localization algorithm could achieve precision and be robust in the area,
the localization uses the inertial navigation system (INS) with an Inertial Measurement Unit (IMU) and
Global Positioning System (GPS) fusion to avoid drift over time [16,17]. In GPS-denied environments
such as a tunnel scene, the 3D LiDAR odometry [18] technique is implemented to localize itself.
The prediction uses the Interactive Multiple Model–Unscented Kalman Filter–Joint Probabilistic Data
Association Filter (IMM-UKF-JPDAF) method [19], which predict the trajectories of the dynamic
objects such as vehicles, pedestrian. The motion planning categorizes into three groups [16,17,20]
global path planning (GPP), decision-making and local planning. The GPP makes route planning,
which plots through a series of lanes or roads efficiently. The GPP generally uses a High Definition
(HD) Map, which provides ad-hoc structured information regarding the streets and Vehicle-to-X (V2X)
communication technology, then it chooses the best route via a series of waypoints.
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This paper focuses on handling a hierarchical control system including decision making, local
path planning and control. The decision-making can be divided into Finite State Machines (FSM)
and Markov Decision Processes (MDPs) [16,17]. MDPs is useful for solutions with uncertainty
information of perception and quite complicates to implement with a large variety of scenarios.
In contrast, FSM is a simple method and handles well with many circumstances. In the DARPA
Urban Challenge, Stanford Junior team succeeded in applying FSM with several scenarios in urban
traffic roads [4]. However, the main drawback of FSM is the difficulty in solving uncertainty and
in large-scale scenarios. In this work, we propose the decision-making with a new structure to
manage various traffic scenarios and road conditions. This FSM contains the mission that the vehicle
should perform and the behavior of the car, such as lane-changing, lane-keeping, obeying traffic
lights, and rule-based speed limits. The local path planner (LPP) generates a regional trajectory for
the autonomous vehicle in both structured and unstructured scenarios. Researchers in [21] used the
decoupled approach of path and velocity to produce a speed profile, although this solution is not
optimal but straightforward. Appolo [12] performs the spline path by determining a QP optimization
problem with linearized constraints. Despite this algorithm is an effective method but not optimal
with the temporal variable. In this paper, we solve the LPP by exploring an optimization problem
in the Frenet coordinate [22]. Herein, we define the optimization problem with not only trajectory
parameters but also travel time, and additionally join the constraints of input and output velocity.
After solving this optimization problem, we have both spatial and temporal parameters for the control.
Recently, the deep learning approaches can be employed to manage lateral control directly [23] or
aid the controller [24]. Nevertheless, the computational cost, complexity, and less robustness are the
main drawbacks of the method. The classical controller as the PID method is the most popular control
strategy which operates adequately in various applications of process control. However, distributed
noises such as road conditions, friction forces are hard to handle by the PID controller. Moreover,
the Model Predictive Control (MPC) [20,25] is a state-of-the-art solution for cruise control due to its
accuracy. However, the implementation of MPC is complex and offers a computationally-expensive
solution. The authors of [20,26] designed a unique Scheduled Feedforward PI (SFF-PI) controller
for both acceleration and brake. We propose two SFF-PI controllers for the longitudinal control.
The proposed architecture efficiently manipulates both acceleration and brake.

Motion planning

Ego-vehicle
State estimation

Environment
Mapping

Perception

Global path planning Decision making Local planning

ControllerActuation

System Supervisor

Sensor data

The autonomous vehicle 
system architecture 

Connectivity

Figure 1. A general framework of an autonomous driving system which is composed of the perception
and environment mapping, motion planning, and controller.
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This paper is highlighted with substantial contributions as follows:

(i) We successfully develop and implement a hierarchical control system for an autonomous vehicle
platform. The vehicle can manipulate the whole mission autonomously within a proving ground.

(ii) The motion planning with the decision-making mechanism using two-stage FSM for the SDCs is
proposed. Besides, we solve an efficient LPP by using a nonlinear optimization technique and
a real-time Hybrid A* algorithm.

(iii) The adaptive-pure pursuit algorithm for path tracking and a new SFF-PI architecture for
longitudinal control are implemented successfully in urban environments.

The remainder of this paper addresses the design of a hierarchical control system for a self-driving
vehicle of Chungbuk National University called Clothoid. Section 2 describes the study on motion
planning with decision making using two-level FSM. Next, the local path planning generating
a comfortable trajectory by solving nonlinear constraints based-optimization is presented. The local
path performs practically an obstacle avoidance algorithm with the occupancy grid map using real-time
hybrid A*. Then, the control strategies that use an adaptive-purse pursuit for lateral control and two
SFF-PI controllers for longitudinal control are exhibited. Finally, experimental results in the K-city
proving ground are described in Sections 3 and 4 provides the conclusion of the paper.

2. Hierarchical Control System

The hierarchical control system consists of global path planning(GPP), decision making, local
path planning and control [27] hierarchies from low to high level as shown in Figure 1. The GPP id
developed based on HD-map and V2X information by using Dijkstra’s algorithm to select the best
route. A series of waypoints from the GPP is first combined with the perception to adjust the behavior
of the vehicle. Then, the local path planner employs the behavior to generate an efficient trajectory.
Herein, the path is comprised of a set of waypoints with a format <x, y, v> for each waypoint, where
x, y are the global coordinate in the Universal Transverse Mercator (UTM) coordinate [11], and v is
the speed of the vehicle. Finally, the control commands the car to follow the trajectory by using the
longitudinal and lateral controllers. In this section, we neglect the GPP and concentrate on the design
of decision making, local path planning, and control.

2.1. The Decision-Making Mechanism Based on Two-Stage FSM

The Decision-Making Mechanism (DMM) [28] of SDCs employs FSM to handle the mission
planning and behavior on-road driving. The first DMM called the Mission FSM (M-FSM), which
manages the vehicle’s missions. The second DMM named the Control FSM (C-FSM) mimics the
vehicle’s status on the road. After observing the surrounding object’s trajectory from the perception
and the missions data, M-FSM and C-FSM are determined as following in Figure 2. M-FSM is
categorized into five classes: Ready, Stop-and-Go (SAG), Change-Lane(CL), E-stop, avoid obstacle
mode. In particular, the M-FSM consists of a C-FSM that manages the control states of the vehicle.
A human needs to control the vehicle starting or stopping on-road driving by reducing or increasing
the acceleration, respectively, to mitigate damage to the engine. Likewise, the SAG mode is designed to
mimic all human behaviors mentioned beforehand. When urgent situations appear, the E-stop mode is
activated. The CL mode consists of two control states lane-keeping and lane-changing, which actuates
when lane changing state is demanded. The obstacle avoiding mode activates when the obstacles have
been detected lying on the path. The transition condition is a directed graph in the M-FSM, and the
descriptions of all transition conditions in Figure 2 are summarized as following in Table 1.
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Table 1. The descriptions of transition conditions of Decision-Making Mechanism (DMM).

Condition Description

10, 20, 30, 40 The perception informs the emergency circumstances
00 Continuously works in an emergency mode
11 All ROS nodes staying healthy, and the vehicle status is ready to go
01 Non-dangerous and wake up to the ready state
41 Un-complete obstacle avoiding mission, and the time for the mission is over
12, 22 Standard scenario
32, 42 Completely performs the lane-changing and obstacle-avoidance mission, respectively
33 Operating in the lane changing mode
23 Demanding to change the path
03 Wake up to lane changing mode if a non-emergency case comes
44 Handling on the avoid obstacle mission
14, 24 Need to avoid the obstacle
21 Finished SAG mode, wait to new mission

The data structures, which we infer from Figure 2, are utilized to implement the M-FSM and
C-FSM. Each state in FSM requires a resource that is updated over time in the ROS nodes of perception.
The use of priority and flag of each state is to prevent access to the same resources. The priority level of
the E-stop mode is highest, following by the obstacle avoiding mode, the CL mode, and the SAG mode.

Ready

SAG mode

Begin
Start

Running

Begin 
Stop

Stop

E-stop
mode Keep lane

Stop CL mode

Change lane

Follow 
trajectory

Ovoid obstacles
mode

11

10

01

21

12

20
32

23

40

00

44

42 24

03

30

33

22

Start

41

14

Figure 2. Decision mechanism based on Mission-Finite State Machines (M-FSM) while the inside of
M-FSM describes Control FSM (C-FSM).
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2.2. Local Path Planning

Commonly, the local path planning (LPP) is performed when the mission planning demands and
described in Section 2.1. Specifically, LPP needs to find an optimal path to pass the static or dynamic
objects while satisfying the kinematic and road shape constraints. The purpose of LPP is to efficiently
generate a trajectory for an autonomous robot in the structured or unstructured environment given the
temporal start and end position. Moreover, the trajectory, velocity, acceleration, and derivative of the
acceleration must smooth during the operation of the vehicle. In this subsection, the jerk minimization
based-LPP on the local Frenet coordinate is first presented. Then, an implementation of the hybrid A*
algorithm with an occupancy grid map is given.

2.2.1. Optimization-Based LPP on the Local Frenet Coordinate

In this subsection, we perform an optimization-based LPP to generate a route from a start point
to a goal. The lane-changing is a typical example and activated whenever motion planning orders.
The Frenet coordinate [22,29] applied to represent the vehicle’s planar trajectory into a longitudinal
and lateral axis as shown in Figure 3a. The coordinates are represented by s and d parameters, which
are the ahead and side distance of the endpoint respect to the initial temporal position respectively.
This work employs the temporary Frenet coordinate to efficiently solve an optimization problem,
as shown in Figure 3b.

X

Y

L

L

(a)

(b)

d

s

( , )i is d

( , )e es d

( , )i is d

( , )e es d

D

Siv

ev

5-order  Polynomial 
Solver

 , ,i i is s s

 , ,
f f f

s s s

 , ,
i i i

d d d

 , ,
f f f

d d d

T

Generated path

( , )
k k

s d

Figure 3. Jerk minimization based-trajectory generation on the local Frenet coordinates. (a) the lane
change scenario; (b) jerk minimization algorithm on the temporal Frenet coordinate.

The best way to represent the smooth of a driving route is the derivative of acceleration called
jerk. Different from previous work [22,29], an optimization problem for a spatial and temporal path
with nonlinear constraints is introduced to minimize the sum of square jerks. The algorithm can also
operate in SAG mode as presented in Section 2.1, which is a straightforward problem of this solution.
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The problem is solved by minimizing the amount of squared-jerk over the whole temporary
trajectory. The results [22,29] indicated that a polynomial function could efficiently represent a trajectory
as a function over time. Two quintic polynomial functions are applied to represent a path. Once having
the polynomial functions, the trajectory can reconstruct by performing each value corresponding to
a discrete-time step. The path regard to s and d coordinate are quintic functions as yielded

z(t) = ξ0 + ξ1t + ξ2t2 + ξ3t3 + ξ4t4 + ξ5t5, (1)

where t is time (second) started counting from the initial pose of temporary trajectory, and ξ0:5 are the
coefficients of the quintic function. The velocity, acceleration and jerk are respectively given by

vz =
dz(t)

dt
= ξ1 + 2ξ2t + 3ξ3t2 + 4ξ4t3 + 5ξ5t4. (2)

az =
d2z(t)

dt2 =
dv(t)

dt
= 2ξ2 + 6ξ3t + 12ξ4t2 + 20ξ5t3. (3)

jz =
d3z(t)

dt3 =
dv2(t)

dt2 =
da(t)

dt
= 6ξ3 + 24ξ4t + 60ξ5t2. (4)

We assume that the velocity vector of the initial and the end pose have the same length, and their
direction coincides with the car heading angle. Therefore, the values at the initial pose {si, di} and the
endpoint {se, de} are selected as



















si = 0, ṡi = v, s̈i = 0
di = 0, ḋi = 0, d̈i = 0
se = S, ṡe = v, s̈e = 0
de = D, ḋe = 0, d̈e = 0

. (5)

The cost function of the optimization problem is the sum of the entire square-jerk in the whole
temporary trajectory for both s and d direction. The cost is expressed with s and d parameters in term
of the quintic function, which is defined by

ξ∗s , ξ∗d , T = arg min
ξs ,ξd ,T

(
T
∫

t=0
j2s (t)dt +

T
∫

t=0
j2d(t)dt)

= arg min
ξs ,ξd ,T

(

T
∫

t=0

(

6ξs
3 + 24ξs

4t + 60ξs
5t2)2

dt +
T
∫

t=0

(

6ξd
3 + 24ξd

4t + 60ξd
5t2
)2

dt

)

.
(6)

Combining Equations (2) and (3) with their values at initial position (t = 0) and Equation (5).
The value of ξ0, ξ1 and ξ2 for both s and d coefficients are indicated undoubtedly as

ξ0 = z(t = 0)
ξ1 = vz(t = 0)
ξ2 = 1

2 az(t = 0).
(7)

Finally, six variables ξ3, ξ4 and ξ5 for both s and d need to be determined with their constrains at
the end pose as yielded by

zT = ξ0 + ξ1T + ξ2T2 + ξ3T3 + ξ4T4 + ξ5T5

vT
z = ξ1 + 2ξ2T + 3ξ3T2 + 4ξ4T3 + 5ξ5T4

aT
z = 2ξ2 + 6ξ3T + 12ξ4T2 + 20ξ5T3.

(8)
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Thanks to Equations (6) and (8), the optimization problem is established to solve for T, ξ3, ξ4 and
ξ5 given as

ξ∗s , ξ∗d , T∗ = arg min
ξs ,ξd ,T

(Jz(ξ, T)) = arg min
ξs ,ξd ,T

(

Js(ξs
0:5, T) + Jd(ξ

d
0:5, T)

)

,

s.t.
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0 + ξs

1T + ξs
2T2 + ξs

3T3 + ξs
4T4 + ξs

5T5 − zT
s = 0
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5T4 − vT

s = 0
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d = 0
ξd

1 + 2ξd
2T + 3ξd
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4T3 + 5ξd

5T4 − vT
d = 0

2ξd
2 + 6ξd

3T + 12ξd
4T2 + 20ξd

5T3 − aT
d = 0

T > 0

.

(9)

The results of optimization problem in Equation (9) are obtained in Figure 4. It should be noticed
that using constrain T > 0 in the experiment approximately increases twice the computational cost.
Therefore, we drop constrain T > 0 to relax the optimization problem, later only need to check the
condition. For different velocities, the optimal trajectory is solved and presented as the solid blue
line in Figure 4. As observed from Figure 4, when v large, it significantly affect the results. In this
case, if the value of T is selected slightly different from the optimal value, the result can not produce
an optimal trajectory. Moreover, when the travel time T from the initial point to end point is known,
we can easily find ξ3, ξ4 and ξ5 by using Equations (7) and (8) as follows
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z − (ξ1 + 2ξ2T)
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. (10)
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Figure 4. Optimization solving based-jerk minimization problem, (a) s = 15 m; v = 5 m/s; d = 3.5 m;
(b) s = 20 m; v = 5m/s; d = 3.5 m; (c) s = 20 m; v = 10 m/s; d = 3.5 m; (d) s = 30 m; v = 5 m/s; d = 3.5 m.
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The last step is developing the quintic function of the s and d axis to reconstruct the trajectory at
each discrete time as shown in Figure 3b. The obtained results are presented in Figure 5. To reduce
the computational complexity, a practical solution uses a lookup table determined by the offline
optimization solving process. Whenever the DMM informs lane changing, the lookup table is utilized
online to find the optimal time of T, then solve the linear in Equation (10) to get the optimal path.

(a) (b)
Figure 5. Jerk minimization based-trajectory generation on the local Frenet coordinate. (a) Solving jerk
minimization using a matrix form for a different traveling time T; (b) Solving jerk minimization using
a matrix form for a different velocity v.

2.2.2. Obstacle Avoidance Based on Hybrid A* Algorithm

One of the important features of the path-planning module in an autonomous vehicle framework
is the obstacle avoidance mechanism [16,30]. This mechanism is desired when an autonomous vehicle
must detour the predefined global path in order to avoid any hindrance. Typical examples of such
environments are of car crash-like obstacles, or construction sites on the highways. The path planner,
upon receiving the information from the perception module about an obstruction in the way, activates
the obstacle avoidance mechanism. Based on the information from the perception module and global
path, sub-goals of starting and goal poses of the vehicle are defined, and an ideal path is generated that
takes non-holonomic constraints into account. The realtime hybrid A*-based LPP is performed that
mainly inherits the implementation of [31,32]. The algorithm is performed when DMM requests by
providing start and goal location and occupancy grid map as the inputs. The goal is selected from the
global path planning, whereas the perception within a sliding window continuously updates the local
grid map. The algorithm starts with the initialization by generating a collision lookup table and obstacle
distance lookup table. The Reed Shepp curves are calculated for the constrained heuristics, whereas
an A* search was conducted for the unconstrained heuristics. The analytical collision-free path is fed
to the smoother that optimizes the obstacle distances and treats it for smoothness. Later, the refined
path is fed forward to the control module. The main improvement compared with the previous
research [31] is a large static occupancy grid map is stored as initialization and updated during
the operating of this algorithm. The local region about the obstacle is employed for path planning.
This methodology enables the safe path generation when dealing with the uncertainty of dynamic
objects from the perception.

2.3. Vehicle Control Strategy

The local path planning generates a local trajectory plus target speed. Then, the vehicle is
commanded to follow the local path towards reference velocities. The control architecture includes
longitudinal and lateral control [33]. The longitudinal controller asks the vehicle to follow the desired
speed by acting acceleration, whereas the lateral controller manipulates the lane tracking by adjusting
the steering turn. The controller architecture is demonstrated as in Figure 6. The curve-level of trajectory
is used to create the speed profile generation (SPP). The target speed of DMM feeds directly into the
longitude controller if it is greater than the speed after the SPP. In contrast, DMM speed is utilized.
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Speed profile
generation

Smoother
Trajectory

Reference generation

Vehicle 
modeling

Longitudinal 
controller

Lateral
 controller

Acceleration

Break

Steering

feedback

Controllers

waypoints

<x,y,v>

feedback

Figure 6. The control system architecture consists of longitudinal control with the Scheduled
Feedforward PI (SFF-PI) controller and lateral control using the adaptive-Pure Pursuit Controller (PPC).

2.3.1. The Longitudinal Controller

The characteristics of the model are required to design a controller efficiently. However, the full
modeling of a vehicle entails complexity and nonlinearity [34]. Besides, it is hard or impossible to
identify the parameters of vehicle modeling by describing physical relationships. Instead, we identify
the model by using a simple method where the workstation command as the input and the longitudinal
velocity as the output. The model is represented as a second-order function with a time delay [34],
as yielded in Equation (11).

GPv(s) =
V(s)

Acc(s)
=

KP1s + KP1

TP2s2 + TP1s2 + TP0
e−sτd . (11)

Although the parameters of the model (11) depend on velocity and road terrain, the model’s
characteristics are helpful to adjust the controller parameters. Researchers [16,17,20,25,30,34] did not
present how to tune the controller into practice. In this work, we first collect data, then identify the
vehicle model, next analyze its properties, and finally design the controllers. The SFF-PI controller [35]
as in Figure 7 tracks the feedback signal including velocity error, windup affecting before and after
saturation, and the vehicle velocity yielded as

ψSPI(t) =
KFF(v)

v0
vre f +

KP(v)

v0
ere f +

(

KI(v)

v0
+ KAWese

)

τ=t2
∫

τ=t1

ere f (τ)dτ, (12)

where ere f is the difference between the desired and measured velocity, ese is the error of output before
and after the saturation block which limits the acceleration and brake within −1 and 1. KFF(v), KP(v),
KI(v) are respectively feedforward, propagation, integration coefficient, which depend on the velocity,
and v0 is the nominal velocity of vehicle.
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Figure 7. The SFF-PI architecture for longitudinal control.

To implement the controller, we need to transform Equation (12) from continuous-time to
discrete-time domain with a period of T. So, the output of the controller at time t = kT is given as

ψk
SPI =

KFF

v0
vk

re f +
KP(vk)

v0
ek

re f +

(

KI(vk)

v0
+ KAWek

se

)

T
k

∑
i=0

ek
re f . (13)

Similarly, the output at the next time step t = (k + 1)T is

ψk+1
SPI =

KFF

v0
vk+1

re f +
KP(vk+1)

v0
ek+1

re f +

(

KI(vk+1)

v0
+ KAWek+1

se

)

T
k+1

∑
i=0

ek+1
re f . (14)

The integration can be obtained by using the recursion

Γk+1 =
k+1

∑
i=0

ek+1
re f = ek+1

re f +
k

∑
i=0

ek
re f = ek+1

re f + Γk. (15)

The proposed architecture of the longitudinal controller is illustrated in Figure 7. Using the
recursive form of Equations (14) and (15) to implement the SFF-PI controller which is shown in
Algorithm 1. Herein, the control algorithm is processed at each interrupt event of a timer. Line 2 gets
the desired and measured velocities. Then line 3 calculates the error velocity. In line 5, the scheduled
PI parameters are searched in a lookup table saved in the program. The integration value can be
achieved by utilizing Equation (15) as in line 6, and the output value is processed using Equation (14)
in line 7. From line 8 to line 10, if the control values before and after saturation are different, it needs to
re-handle Equation (14) to get new ek+1

se . The controller must apply accelerating or braking to obtain
the best control performance. To perform that, we only need to apply acceleration if it is more than
zero, otherwise braking is used as from line 14 to line 19.

In summary, The longitudinal controller based on the SFF-PI is designed as follows
Step 1—recording data: the acceleration range [0, 1] is executed and recorded as the input, also the

output is the observed velocity. Similarly, when the vehicle operates at a nominal speed, the braking
force range [−1, 0] is employed.

Step 2—identifying: accelerating and braking model are identified by using the second-order
modeling with a time delay.

Step 3—designing: the SFF-PI controller is designed and tuned to obtain the best result.
Step 4—evaluating: Algorithm 1 is run with the parameters tuned in Step 3. In practice,

the parameters should be slightly adjusted.
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Algorithm 1: Longitudinal control algorithm based on SFF-PI.

Input: reference velocity vk+1
re f and measured velocity vk+1

Output: accelerating or braking
Data: look-up table with control parameters KFF(vk), KP(vk), KI(vk), v0

1 init() /* initialization ROS node, parameters, timer interrupt Tm0 with period T = 10ms */

2 if Interrupt timer Tm0 then

3 ek+1
re f ← vk+1

re f − vk+1

4 Find KFF(vk+1), KP(vk+1), KI(vk+1) /* lookup table is used */

5 Calculate Γk+1 as in (15)
6 Calculate pψk+1

SPI as (14) with ek+1
se = 0 and saturate [−1; 1] to get ψk+1

SPI

7 if ek+1
se ← ψk+1

SPI − pψk+1
SPI 6= 0 then

8 Re-calculate Step 5 and 6 with new ek+1
se

9 Get ψk+1
SPI

10 else

11 Get ψk+1
SPI

12 Update Γk ← Γk+1

13 if ψk+1
SPI >= 0 then

14 Saturating [0; 1] and applied acceleration ψk+1
SPI

15 else

16 Calculate ψk+1
SPI = 0

17 Calculate braking throttle bψk+1
SPI same process from Step 2 to 12

18 Saturate [−1; 0] and apply brake bψk+1
SPI

19 while true do

20 main()

2.3.2. Adaptive-Pure Pursuit Algorithm Based-Lateral Controller

To pursue a trajectory that is provided by LPP, the lateral controller is needed. Recently,
the state-of-the-art lateral controller is Model Predictive Control (MPC) [16,20,36], which can
effectively address the problem with high accuracy. However, this method is complex, and it
requires high computational cost and resources. Besides, the processing time of MPC controller
is approximately 10 ms in practice, so it can cause a delayed signal. Although the optimal controllers
such as feedforward-LQR can achieve high accuracy, its robustness is not guaranteed due to the
disturbances [37]. Geometry based-path tracking is one of the most common methods of path tracking
algorithms in robotics. This solution finds the relationship between the vehicle and the path by
the geometric constraints. One of the most famous geometry-based controllers is Stanley, which
was introduced and implemented in Stanley robot in DARPA Grand Challenge in 2005 [16,30].
This approach uses the front-wheel position as a nonlinear feedback function of the cross-track
error. The controller operates smoothly in the highway driving, but it is fair to deal with disturbances.
Furthermore, the Stanley method encounters a discontinuity path tracking problem while the Pure
Pursuit Controller (PPC) is more robust. Although the PPC is not precise as the state-of-the-art methods
in high-speed scenarios, the PPC is selected due to its stabilization to disturbances [16]. In this paper,
we present the implementation of an adaptive-PPC for path tracking with an explicit algorithm.
The path curvature is described in Figure 8c given as

χ =
1
R

=
2 sin(α)

la
, (16)
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where la is the look-ahead distance determined from the rear axle pose to the desired path, R is the
radius of the circle passing through points A and B with having a tangent at point A, α is the angle
between the vehicle heading and the look-ahead direction. The steering angle is calculated by using
the bicycle model and Equation (16) as follows

ψpp = tan−1(χL) = tan−1( 2L sin(α)
la

). (17)

X

Y

(a)
Y

Z

W

W

W

L

L

a
l



(b) (c)

X

L

P R

R

e
A

B

H

Figure 8. The coordinate systems in our automated driving; (a) the global coordinate system in the
offset-Universal Transverse Mercator (UTM) frame; (b) the local vehicle coordinate system; (c) the
geometry of path-pure pursuit algorithm.

Using the relationship of cross-track error e in Figure 8c, Equation (16) can be written as

sin(α) = e
la

χ = 2e
l2
a

. (18)

The look-ahead la is linearly proportional to the longitudinal velocity of the vehicle vr.
Thus la = κvr. Finally, using Equations (17) and (18), we haves

ψpp = tan−1
(

2L sin(α)
κv

)

= tan−1
(

2eL

l2
a

)

. (19)

where la is set to the minimum and maximum values of 3 m and 22 m, respectively. As reported in [37],
the value of κ effects the stability of the system. Roughly speaking, increasing or decreasing the value
of κ is the trade-off between smoothness and precision tracking. However, the value of κ is unreliable
if it is excessively small or large which causes instability or poor tracking. The value of κ is tuned and
implemented as in [38]. Therefore, the looking ahead distances are adapted as follows

la =











3 ; v < 15 kph

0.76v− 8.4 ; 15kph ≤ v ≤ 40kph

22 ; v > 40kph

. (20)

The vehicle speed directly affects the stabilization such as the slipping and rolling. So, the target
speed needs to limit depending on the road curvature [38] as yields

v ≤
√

g(ρ + ϑ)

χ
=

√

g(ρ + ϑ)l2
a

2e
, (21)
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where g is gravity, ρ is the road super-elevation smaller than 6% in the urban environment, and ϑ is
the side friction factor bounded to 0.1 for dry road [38]. Therefore, we bound the target speed as

v ≤ 0.9la√
e

(22)

Finally, we implement the lateral controller described in Algorithm 2 with a timer interruption of
10 ms. Herein, the look-ahead distance is first calculated, then the local path is converted to the vehicle
coordinate. Next, the closest waypoint and ahead waypoint are found by using Algorithms 3 and 4,
respectively. The final step is calculating the limited speed and steering angle. Note that e is
y-coordinate of the ahead-waypoint in the local frame.

Algorithm 2: The lateral controller and velocity planning algorithm based on PPC.
Input: reference path in term of way-points, ego-vehicle position and measured velocity v

Output: steering angle and target speed
1 if Interrupt timer Tm1 then

2 Calculate ahead distance as in Equation 20 ;
3 Convert the desired trajectory to vehicle coordinate as in Appendix A.1 ;
4 Find the closest waypoint to the ego-vehicle by using Algorithm 3 ;
5 Find the ahead waypoint by using Algorithm 4 ;
6 Calculate path curvature as in Equation 18 ;
7 Calculate speed limit as in Equation 22 and limited to [10,50] kph ;
8 Calculate steering control by using Equation 19 ;

9 while true do

10 main();

Algorithm 3: Find the closest waypoint to the ego-vehicle.
Input: reference path in term of way-points, ego-vehicle position
Output: index of the closest waypoint

1 index = 1;
2 for search in the whole waypoint trajectory do

3 d(index) = distance from ego-vehicle to waypoint(index);
4 if d(index) >= d(index+1) then

5 index++;
6 d(index)← d(index+1);

7 else

8 return index;
9 Break;

10 Return index;
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Algorithm 4: Find the ahead waypoint in the reference trajectory.
Input: reference path in term of way-points, ego-vehicle position, ahead distance la

Output: index of the ahead waypoint
1 index = closest waypoint;
2 for search in the whole waypoint trajectory do

3 d(index) = distance from ego-vehicle to waypoint(index);
4 if −ǫ <= d(index)-la <= ǫ then

5 return index;
6 break;

7 else

8 index++;

9 Return index;

3. Experimental Results

After developing the hierarchical control system in Section 2, this section provides experimental
results of the decision making, local path planning and control. Firstly, the vehicle platform, hardware,
and software are presented. Secondly, we demonstrate the robustness of the control system. Finally,
the local path planner is given with the performance in both structured and unstructured environments.

3.1. The System Integration of Autonomous Vehicle

The self-driving car uses the model Hyundai I-30 platform with the configuration illustrated as in
Figure 9.

(a)

Zed

camera
3D Lidar

GPS IMU

(c)

3D Lidar Zed camera GPS antena

(b)

Figure 9. (a) Hyundai I-30 platform, (b) the perception with 3D LiDAR, Zed-camera, GPS and Inertial
Measurement Unit (IMU), (c) the sensors configuration.
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The autonomous vehicle is equipped with various sensors to enhance the perception. The sensors
system consists of 3D Light Detection and Ranging (3D LiDAR), Zed-camera, GPS, IMU, and encoders.
The computational devices use two computers with the configurations as Xeon X5690 processors,
NVIDIA GeForce GTX-1080Ti, 32 GB RAM, 512 GB SSD, and networking gear as shown in Figure 10.

3D LiDAR
data

Zed Camera 
data Localization nodes: GPS, IMU, 

Odometer data

Motion planning nodes

LiDAR
Localization

node

Perception PC Localization and Control System 
PC

LiDAR
Object tracking

node

Yolo Object 
detection node

F
u
s
io
n Control System nodes

CAN 

Ethernet USB 3.0

Ethernet

Connector: Ethernet, USB

Figure 10. Software and hardware architecture. The left computer manages the perception using
a stereo camera and 3D LiDAR fusion. The right computer performs the localization with multiple
sensor fusion of GPS and IMU and the control system. The software architecture in Robot Operating
System (ROS) middle-ware arrangement is joined between the two workstations.

The perception workstation (PW) handles Object Detection and Tracking (ODAT) by fusing 3D
LiDARs and cameras. The Control System Workstation (CSW) performs the localization by using
GPS, IMU and encoders [39] and the controller. The perception, localization, and control tasks
employ the Robot Operating System (ROS) middle-ware version-Kinetic Kame [15] on top of Ubuntu
16.04.5 LTS. The development utilizes two workstations connected by the ROS TCP/IP protocol.
In Figure 10, the PW runs a deep learning node using YOLO v3 [40] and 3D LiDARs for ODAT with
IMM-UKF-JPDAF algorithm [19]. The CSW handles the localization by applying the sensor fusion
technique of GPS and IMU [39]. The control system includes global path planning based on an HD
map node, local path planning node, and controller node. We notice that LiDAR object detection
and LiDAR localization must work in one computer because of latency transportation of LiDAR data
through the Ethernet.

3.2. The Robustness of the Path Tracking Controller

Firstly, we implement path-tracking algorithm based on adaptive-PPC in Section 2.3.2.
Then, the working performances in a proving ground are analyzed. The results show that the algorithm
works efficiently and performs missions successfully in the test. The tracking results are visualized in
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Rviz as shown in Figure 11. The outcomes indicate that the lateral controller obtains the stabilization
and robustness to disturbances such as terrain, rolling resistance, and aerodynamic effect. In the
common areas with small curvature such as regions 1, 2, 3, and 4 handle well with the low slip respect
to the reference trajectory. Although Region 6 and 7 have convex curvatures, the lateral controller also
performs well.

7 56

21 3 4

Figure 11. The visualization of the path tracking algorithm in different routes, where the red line is the
actual path and the green line is the ground-truth path.

Figure 12 presents the path tracking results in structured environments. The data is recorded
with a bag file, then processing in MATLAB-Robotics System Toolbox. Figure 12b–d are cropped from
Figure 1 working at high-curvatures. The path tracking algorithm operates well with small tracking
errors in this trial. The hardest task is shown in zone 5 with a concave curve, and the vehicle performs
comfortably while the vehicle speed is around 12 kph. It should be remarked that, the adaptive-PPC
effortlessly tracks the center of the road while the human is troublesome to conduct this challenge.
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Roughly speaking, the adaptive-PPC can outperform humans in this test.To check the performance of
adaptive-PPC, we define the root square error of the path tracking algorithm as follows

ςx =

√

N
∑

i=1
δ2

x

N =

√

N
∑

i=1
(Px−P

re f
x )

2

N ; ςy =

√

N
∑

i=1
δ2

y

N =

√

N
∑

i=1
(Py−P

re f
y )

2

N ; ς =
ςx+ςy

2 ,
(23)

where ςx and ςy are the Root Mean Square Error (RMSE) of the path tracking in x and y-axis, and ς

represents the average error in both x and y-axis. Furthermore, δx and δy denote the error of measured

and ground-truth point at each time step. Px and P
re f
x are x coordinate of each position and reference

point at each measured time step, respectively. Py and P
re f
y are similar for y coordinate. The results of

path tracking error in the structured environment in Figure 12 shown in Table 2.

Table 2. The errors of path tracking algorithm.

Whole Trajectory (m) A1 Area (m) A2 Area (m) A3 Area (m)

ςx 0.0037 0.0128 0.0029 0.0201
ςx 0.0078 0.0162 0.0232 0.0227
ς 0.0057 0.0145 0.0130 0.0214

The overall error of the tracking algorithm is around 6 mm per waypoint. The errors at
high-curvature approximately are 10 to 25 mm per waypoints. We also demonstrate the error in
terms of the histogram as shown in Figure 13.
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)
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Figure 12. The path tracking results in the structured environment, (b–d) are corresponding to part A1,
A2, A3 of (a).
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Figure 13. Histogram of the path tracking errors.

3.3. Velocity Tracking Based on SFF-PI Controller

The vehicle modeling uses MATLAB and Simulink with the dynamic model specified in Vehicle
Dynamics Blockset. In this simulation, the vehicle model with one degree-of-freedom (1DOF) was used.
A simulation model was developed to compare control strategies between a feedforward PID [26],
a SFF-PI [26], a Predictive [35] controller and ours approach as shown in Figure 14. Our method uses
two SFF-PI controllers described in Algorithm 1, and the controllers have also tuned the parameters.
We implement the SFF-PI controller as in Algorithm 1. The parameters for the accelerating controller
are updated as follows

KFF = 0.1; KAW = 1; v0 = 5; {KP, KI} =



















{0.2, 100}; v < 5
{6v− 29, 100v}; 5 ≤ v < 10
{6v− 30, 100v}; 10 ≤ v < 20
{100, 2100}; v ≥ 20

. (24)

We also adjust the parameters of the braking controller as

KFF = 0.2; KAW = 1; v0 = 5; {KP, KI} =



























{0.005, 100}; v < 5
{0.09v− 0.35, 10v + 100}; 5 ≤ v < 10
{0.1v− 0.4, 10v + 100}; 10 ≤ v < 15
{0.1v− 0.5, 20v + 100}; 15 ≤ v < 20
{1.2, 250}; v ≥ 20

. (25)

The results in Figure 14 indicate that our controller outperforms other controllers. Figure 14b
shows the accelerating process of ours has the best outcome. The most outstanding result was working
on the braking process, as in Figure 14c,d.
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Figure 14. (a) the comparison of feedforward PI (FF-PI) controller, SFF-PI controller, predictive
controller, and our approach; (b) the accelerating results in 18→23 s; (c) the braking result in 25→30 s;
(d) the braking result in 31→38 s.

In a real test, the performance of our longitudinal controller is provided in Figure 15. The output
speed tracks the desired velocity with a small steady-state error. The result in Figure 15 is a part
of the complete result in the proving ground. The desired velocity is generated by using curvature
information indicated in Section 2.3.2. The response velocity tracks with a small steady-state error
without overshoot because of the limit of acceleration and brake in [−0.8;0.8]. The setting time from
9 kph to 40 kph is approximately 5.5 s. However, if we do not bound the throttle, it can achieve around
4 s as the simulate result in Figure 14. In the braking situation, the design speed can archive from
40 kph to 15 kph for about 5 s.
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Figure 15. Velocity tracking of our SFF-PI controller, where the time is counted from the beginning of
data logging.
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3.4. The Local Path Planning

3.4.1. The Local Path Generation

The results of local path planning are presented in Figure 16. The lane-changing task is performed
to produce a smooth route with the minimum jerk reported in Section 2.2.1. The lane-changing to the
right lane as shown in Figure 16a, after that if the left lane safe, the vehicle change back to the left lane
as visualized in Figure 16b. In Figure 16c,d, the result shows a new trajectory by using the three-order
polynomial function in the Appendix A.2. The main drawback of this method is that it can not work
well in high curvature as in Figure 11 regions 5–7.

(a) (b)

(c) (d)

Figure 16. The illustration of local path planning algorithm, (a,b) are lane-changing processes, (c,d) are
path smoothing.

3.4.2. The Local Path with Hybrid A*

Figure 17 shows two instances of custom-built visualizer. The first instance is when the perception
module notices obstacles in the global path and initiates the path planning module. Thus the occupancy
grid map starts to populate. The second instance is of a detoured path that is being followed by the
vehicle. The result of the local path with hybrid A* in real-world experiments are demonstrated in Rviz
in Figure 18. In Figure 18a, when the vehicle enters the obstacle zone where the perception detects.
The vehicle follows a straight path until finding a route to pass the obstacles as shown in the Figure 18b.
The green path is continuously updated and published to the control until the car reaches the goal
point Figure 18c,d.
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Figure 17. (a,b) Clothoid visualizer application; (c) occupancy grid map with path generation.

(a) (b)

(d)(c)

Figure 18. The local path with hybrid A* integrated into Rviz, (a) begins finding a route, (b) found
a route, (c) following the route, (d) finish A* algorithm.

4. Conclusions

In this paper, we address the analysis and design of a hierarchical control system for a self-driving
car in the urban environment. Besides, this work also presents the tuning and implementation of the
system into practice. The progress addresses the hierarchical control system from the low to high-level
control. A raw-trajectory is generated from the global path planning with the aid of an HD map
and wireless communication V2X. Firstly, the decision-making mechanism is proposed to handle the
missions and control states on the way by implementing the two-stage FSM. Then, the local path
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planning selects a decision and utilizes it to produce a reference trajectory to the control. Secondly,
the local path planning generates an online trajectory with the jerk minimization and the hybrid
A* to secure lane-change and avoid obstacles, respectively. The controllers operate the vehicle by
commanding throttle, brake, steering angle to follow the local route efficiently with longitudinal and
lateral controllers. We implement this work successfully with ROS middleware. The on-going works
are the implementation of the autonomous vehicle working robustly and efficiently under all-weather
and terrain conditions of the urban environment.

Author Contributions: Methodology, N.D.V., M.S., D.K. and G.-W.K.; N.D.V., M.S. and D.K. conducted the
experiments and analyzed the results; N.D.V. wrote the original draft; G.-W.K. reviewed and edited the draft.
Supervision, G.-W.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT) (No. 2018006154) and in part by the MSIT(Ministry of Science, ICT), Korea, under
the ITRC(Information Technology Research Center) support program(IITP-2020-2016-0 00465) supervised by the
IITP(Institute for Information & communications Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A.

Appendix A.1. Coordinate Transformation

To implement local path planning and control algorithms, we need to transform between local
(vehicle) and global frame (UTM coordinate), as shown in Figure 8. The transformation of a local point
in vehicle frame {c} to world frame {W} using the homogeneous transform is yielded in Equation (A1).
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where yax represents the transformation from x frame to y frame, R is rotation matrix. Equation (A1)
can be written as

{

W xw = Cxw ∗ cos(WθC)− Cyw ∗ sin(WθC) +
W xC

Wyw = Cyw ∗ sin(WθC) +
Cyw ∗ cos(WθC) +

WyC
. (A2)

A global point in world frame transforms to local coordinate as shown in Equation (A3)
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Equation (A3) can be written as



















∆x = W xw −W xC

∆y = Wyw −WyC
Cxw = ∆x ∗ cos(WθC) + ∆y ∗ sin(WθC)
Cyw = ∆y ∗ cos(WθC)− ∆x ∗ sin(WθC)

. (A4)

Appendix A.2. Smoother Trajectory

The smoother trajectory algorithm performs the 3-order polynomial by solving a least-square
problem with QR decomposition. The polynomial function can also estimate the curve level by
comparing the error of heading angle and tangent at the closest point to the vehicle.

The problem is to find parameter c with Ic = y as shown in Figure A1. It can convert to a least
square problem c∗ = arg min

c
‖Ic− y‖2. This problem has several techniques to solve such as QR, SVD,
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Cholesky factorization with the computational cost 2mn2 − 2n3

3 , 14mn2 + 8n3, and n2(2m + n
3 ) flops,

respectively. In general, QR factorization is selected due to lowest complex, so I = QmxnRnxn. The use
of QR is shown as

IT I = (QR)TQR = RT R

RT Rc = ITy = RTQTy

Rc = QTy.
(A5)

We use C++ Eigen-library to serve QR factorization.

Raw trajectory
(waypoints<x,y,v>)

N-order
Polynomial solver

(Least-square optimazation)

Output
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(waypoints<x ,y ,v >)

Raw waypoint

Modified waypoint
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Figure A1. Smoother trajectory using n-order polynomial function based on least square optimization.
(a) The overview of the smoother path algorithm, <x,y> is the coordinate of a point in the global frame,
v is the velocity of the vehicle. (b) the waypoints before and after operating the smoother algorithm.
(c) The dimension of matrices in the least square problem.
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