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ABSTRACT 

Automatic control systems with sophisticated control algorithm 
can be very large and complex. In order to improve the 
automatic process control, it is important to develop fault 
diagnosis strategy. A hierarchical scheme of fault detection and 
isolation based on Decision Support System (DSS) is 
presented. For fault diagnosis, a knowledge based procedure is 
required. In addition to analytic symptoms, heuristic 
information have to be taken into account. A pattern 
recognition method, a unified representation of all symptoms, 
and a fuzzy expert system are integrated in the diagnostic tool. 
This approach is applied to sensor fault detection in a chemical 
plant, and compared with different methods. 

Keywords: fuzzy decision, on-line fault diagnosis, pattern 
recognition, fuzzy expert system. 

1. INTRODUCTION 

The aim of a diagnosis procedure is to solve two main 
problems: the fault detection which can be done by collecting 
and analysing the information from the process, and the 
decision able to localise and give the type and the origin of the 
fault.  

To realise a real-time diagnosis tool, a particular decision 
method is developed in order to detect sensor failures based on 
analytical redundancy. This tool is a special element of a 
diagnostic system applied to a complex process.  

To solve these problems, the system can be decomposed into 
subsystems. The modelisation of these subsystems leads to the 
residual generation. The residual evaluation provides important 
information, analytic symptoms necessary to solve the 
diagnostic problem. 

Usually, the decision making is realised by an elementary 
logic. Meanwhile, when multiple faults or false alarms occur, 
the failures are not isolated [10]. Some specific mathematics 
algorithms and an additional knowledge about the analytical 
redundancy can increase the efficiency of the decision making 
[6][14]. This aim is achieved by the decomposition of the 
method in four modules: 

•  the Analytic Symptoms Generation (ASG), provided by 
classical redundancy residual generation and evaluation, 

•  the Heuristic Symptoms Generation (HSG), which is 
generally provided using the human observation, 

•  the knowledge which contains all information about the 
process, the fault detection method, the different types of 
failures and their propagation through the system, 

•  all the heuristic and analytic symptoms are used to 
determine the faults affecting the process. The Global 
Diagnostic (GD) is achieved by the Symptoms Unification 
(SU) [6], and a procedure of Pattern Recognition (PR)[1]. The 
outputs of this tool give the type and confidence degree of the 
faults. 

The architecture of such a diagnostic tool is illustrated by the 
following figure. 
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Figure 1: Architecture of a Decision Support System 

This paper is organised as follows: in the second and third part, 
the generation of the analytic and heuristic symptoms are 
described. The knowledge base is defined in part four. The 
resolution of the complete diagnosis problem will be presented 
in part five. Finally, to illustrate our approach, the simulation 
results of a five tanks process are shown in part six. The 
concluding remarks are given in the last part. 

2. ANALYTIC SYMPTOMS 

Classical methods are used to produce analytical information. 
These methods require several measurable signals. A particular 
analytical redundancy of multivariable systems and detection 
algorithm are developed to generate analytic symptoms. 



Analytic Symptoms Generation: Redundant Symptoms.  
The process models are considered to generate the analytic 
symptoms. Consider the following linear stochastic system 
described in a state-space form: 

X AX BU w

Y CX v

k k k k

k k k

+ = + +
= +





1
 

The process parameters A, B and C are assumed to be known; 

k represents the sample; X, Y, U, w and v represent 

respectively the state, the output, the input, the state noise and 

the output noise vectors where: 
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with δkl is the Kronecker symbol. 

The Kalman filter is used to estimate the state vector based on 
the input and output measurements:  
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The model-based fault detection using the Dedicated Observer 
Scheme (DOS) can be achieved according to the following 
principle: assuming that the system is totally observable, a state 
observer can be obtained using each measurement variable yn. 
The number of observers is equal to the number of 
measurements. The redundant residuals rj can be computed 
[12]. If a bias occurs on sensor e(n), some residuals are equal to 
zero and others are different from zero. A Generalised 
Likelihood Ratio test (GLR) is used for the residual evaluation. 
Therefore the output vector of the GLR method, called 
coherence vector [1], can be built according to each statistical 
test applied to each residual: 

S = { S(sj) : j= 1 ... J} 

where J determines the number of residuals and S(sj) represents 
the state of the redundant symptom as S(sj) is equal to zero 
when the statistical characteristic of residuals is a white noise 
and equal to one in some other case. 

Analytic Symptoms Generation: Quality of the GLR test 
To improve the decision making, some further information 
must be considered such as the quality of the residual 
generation and evaluation, quantified by the frankness mj and 
the persistence pj. The frankness mj on the residual rj represents 
the jump value of the statistical test with regard to the 
threshold test:  
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The symptom pj represents a persistence degree in time of S(sj). 
The persistence is computed by counting the number of 
occurrence of S(sj)=1 in a sliding window of width d where 1/d 
is the resolution of pj. 

The frankness and the persistence qualify the magnitude of the 
faults. The analytic symptoms mj and pj increase the number of 
information on the binary output S(sj) and must improved the 
decision making. The following figure presents the generation 
of the analytic symptoms. 
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Figure 2: Analytic symptoms generation 

3. HEURISTIC SYMPTOMS 

Heuristic symptoms are produced on-line using qualitative 
information in linguistic term defined by human observation, to 
provide the fault decision. 

Model-based Quality 
The aim is to obtain a robust decision on uncertainties of the 
model because the matrix parameters A, B, and C are only 
estimations of the real system parameters [11]:  
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with A B C, , represent the real matrices parameters and 

δ δ δA B C, , are the errors associated to each matrix. The 

human expert can represent a confidence level cj on the model 
by a linguistic term [2]. 

The heuristic symptom vj is then defined to take into account 
the age of the system during the time. Some different 
qualitative rules can be established to represent the quality of 
the residual generation from cj and vj. 

4. KNOWLEDGE BASE 

Diagnostic Matrix 
According to the DOS structure, a bias on sensor e(n) has a 
signature Sgn. A signature table can be designed for all the N 
sensors: 
 

 Sg1 Sg2 ... SgN-1 SgN 

r1 0 0 ... 0 0 

r2 1 1 ... 0 0 

... ... ... ... ... ... 

rJ-1 0 0 ... 1 0 

rJ 0 0 ... 0 1 

 
This table is also called ″diagnostic matrix″ [10] or ″structure 



matrix″ [4]. In this paper, this table is noted D with different 
elements D(n,j) where n is the current number of sensors 
(n=1,...,N) and j is the number of residuals (j=1,...,J).  

Membership Functions and Linguistic Terms 
The integration of different kinds of diagnosis knowledge with 
a unified diagnostic strategy is facilitated by the symbolical 
approach. In order to unify all the symptoms, the frankness and 
the persistence must be fuzzified. To achieve this task, the 
definition of the membership functions must be done by the 
human expert during the system configuration, because he 
knows all the information necessary to the definition of these 
functions [7]. These values are approximated and obtained 
experimentally. 

Due to a real-time constraint, triangular or trapezoidal 
membership function is chosen. An ambiguity degree between 
the different linguistic classes is defined such that no more than 
two membership functions are superposed. 

Inference Matrix 
In order to minimise the false alarm occurrence, we must 
consider the residual accuracy degree represented by cj and vj, 
and the quality of the residual evaluation represented by mj and 
pj. 

It is known that when cj is small, the residual is probably 
deviated from zero, which may lead to the increase of false 
alarm possibility. Moreover, if mj is small, the fault detected is 
nothing else but a false alarm. Therefore, in order to increase 
the decision reliability or the ″robustness″ against false alarms, 
it seems necessary to take into account these information which 
may lead to the variation of the vector S even in the absence of 
failures. 

Then, the parameters cj, vj, mj and pj are linked to the symptom 
quality µ(sj) by a fuzzy decision table, also noted inference 
matrix [13], where each case represents a fuzzy rule as: 

IF (cj is Linguistic A at Fuzzy value W) 

 AND  (vj is Linguistic B at Fuzzy value X) 

 AND  (mj is Linguistic C at Fuzzy value Y) 

 AND  (pj is Linguistic D at Fuzzy value Z) 

THEN µ(sj) is MIN (A, B, C, D) at min (W, X, Y, Z) 

where MIN (Large, Small) = Small and min (0.1, 0.8) = 0.1 

The decision table makes possible the implementation for 
fuzzy logic. This table can be considered as a generic table 
because there is an adjustment of the ranges according to the 
expert knowledge during the membership functions definition. 
The rules of this table assume that the confidence of µ(sj) is 
proportional to cj, vj, mj and pj. 

5. GLOBAL DECISION 

The fault isolation using the redundant symptoms analysis is 
based on the following principle [4]. 

The signature Sgn representing the state of the redundant 
symptoms associated to a given failure e(n), makes possible the 
failure detection and isolation, that is the signature analysis. 
This kind of methods can be associated to the rules used by the 
expert system. But, in the case of complex processes, these 

rules may be insufficient to solve the problem. The reasons are 
the following [10]: 

•  Many failures may occur simultaneously. It means that as 
many rules as failure combinations have to be generated. 

•  Since the measurement and the identification of the 
redundant equations parameters are inaccurate, the number 
of rules must increase in order to achieve an appropriate 
fault detection method. 

While this kind of rules does not allow the failure isolation, a 
method based on the computation of a distance between the 
signatures and the redundant symptoms S using the pattern 
recognition is proposed [1]. 

Unification of Symptoms 
Once the membership functions are defined, it is possible to 
fuzzify the variables mj and pj [5] in order to mix them with the 
heuristic symptoms cj and vj. The use of the rules of the fuzzy 
inference matrix allows the computation of the confidence µ(sj) 
of each S(sj). These rules are implemented in the rules base of 
an expert system. The working memory is firstly constituted by 
the fuzzyfication of mj and pj in addition to cj and vj. When all 
the validated rules are executed, this memory contains the 
linguistic terms describing the confidence µ(sj). 

The moment or the barycenter method is then used to defuzzify 
the linguistic terms provided by the expert system [5]. The 
method is sensitive to the membership functions shape and 
takes into account all the variable information. The quality on 
the redundant symptom S(sj) is defined as follows:  

µ(sj) = 0 S(sj) is a false alarm. 

0<µ(sj) < 1 The symptom quality on the residual 
evaluation result is increasing. 

µ(sj) = 1 S(sj) expresses directly the state of the 
concerned sensor. 

The redundant symptom S(sj) is then corrected by µ(sj) which 
leads to unified symptom: u(sj) = µ(sj) . S(sj) 

And a set U
~

 is defined as: U u s j JU j
~

( ) : ...
~

= =



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1  

Pattern Recognition: Hamming indicator computation 

Consider a set E
~

 of the signatures of the sensor failures which 

can affect the process: 

E
~

 = { Sgn: n = 1 ... N } +  Sg0 

where N is the number of sensors used to construct the 
observers. 

The signatures Sgn and Sg0 are also defined as the following 
sets: 

Sgn  = { D(j,n) : j = 1 ... J } and  Sg0 = { 0 ; 0 ; ... ; 0 }  

and D is the diagnostic matrix, J is the number of the redundant 
symptoms, Sgn is the failure signature on the sensor e(n) and Sg0 

is the signature of the fault free system. 



The outputs of the decision method is noted F eE n
~

( )( ) . This 

function represents the state or the confidence of the sensor and 
takes the following values: 

F eE n
~

( )( ) =0 No failure on the sensor e(n). 

F eE n
~

( ) ] , [( ) ∈ 0 1  A value expressing the probability of the 
failure presence on the sensor e(n). 

F eE n
~

( )( ) =1 The sensor e(n)is faulty. 

Particularly, F eE
~

( )( )0  is the fault free degree of the whole set 

of sensors. Therefore, the decision method is achieved 

comparing the unified symptoms set U
~

 with the signature Sgn. 

The Hamming’s distance formula [8] is used to make this 
pattern recognition [1], [14], and [3]:  
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~
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U S
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The resemblance between the redundant symptoms and the 
signatures of the different failures has to be analysed. Hence, 
the following function is defined: 

  FE n gne U S
~

( ) (
~

, )( ) = −1 δ  

Notice that, in the case of simultaneous failures on different 
sensors, it is advantageous to consider only the differences  
| ( ) ( , )|

~

u s D j nU j −  when D(j,n) = 1. Hence, the Hamming 

distance defined in equation (1) becomes the modified 
Hamming indicator: 
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with W(n) is the number of the elements D(j,n) ≠ 0 

The fuzzy fault indicator F is achieved by: 
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In the case of a DOS structure the number of ones per signature 
is constant such that W=2.(N-1). 

6. THE FIVE TANKS PROCESS 

This fault detection and isolation method is applied to a 
simulation process composed of five tanks linked one to 
another. 

In this part, the localisation of the level sensors failures are 
considered. 

 

The Process Description 
This process is described by the following figure: 

q2q1

qs
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Figure 3: The five tanks process 

 

An operating point is given by the following values: 

input flow rates (m3/s) q1= 0.6004.10-4, q2= 0.0929.10-4 

Outflow coefficients ρ1=0.5, ρ2=0.5, ρ3=0.6, ρ4=0.5, 

ρ5=0.2 

Section (m2) tank = 15.4 10-4 

pipe = 0.5 10-4 

levels (m) y10=0.5, y20=0.47, y30=0.42, 

y40=0.37, y50=0.32 

 

A linearized model of this system around an operating point is 
obtained and described by a continuous state space 
representation where:  
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64.9351  and C= I(5,5). 

Additive gaussian noises are considered for the simulation of 
the five tanks process. The input noise is equal to 10% around 
the mean value qi. The measurement noise is equal to 5% 
around the mean value yi.  

Before running this method, the knowledge base must be built. 
The diagnostic matrix is directly obtained by the DOS 
structure. The membership functions are defined by the human 
expert according to his knowledge of the system. For this 
process and for the residual generation and evaluation 



methods, the membership functions are chosen as in the 
following figure:  
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Figure 4: Frankness and persistence 

Where the fuzzy sets are represented by Z : Zero, VS: Very 
Small, S: Small, A: Average, L: Large, VL: Very Large. 

In the following study, a comparison between the three fault 
indicators for the fault decision is achieved. The first one, 
called ″Hamming Indicator″, is computed by the original 
Hamming distance formula (1) based directly on the redundant 
symptoms S(sj) and not on the unified symptoms U(sj). The 
second one, called ″Modified Hamming Indicator″, is 
computed by (2) always based on the redundant symptoms. 
The last one is defined in (3) and is called ″Fuzzy Fault 
Indicator″. 

Case 1 
Three biases of 4% on sensors y1, y3 and y4 are considered 
respectively at instants 100, 400 and 600. The comparison 
between the three fault indicators shows the advantage of our 
approach with regard to the classical Hamming indicators. As 
shown in Figure 5, for the first indicator, the decision making 
is very difficult because the detection is almost impossible. 
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Figure 5: Hamming Indicator 

Using ″Modified Hamming Indicator″, the decision making is 
possible with a large rate of false alarms while the ″Fuzzy Fault 
Indicator″ makes possible the detection and isolation of 
different failures with low rate of false alarms. Hence, the 
decision making is more accurate. At instant 600, 3/5 of 

sensors are affected. Thus, the decision making is more and 
more difficult due to the limitation of analytic redundancy 
method (Figures 6 and 7).  
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Figure 6: Modified Hamming Indicator 
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Figure 7: Fuzzy Fault Indicator 

Case 2 
In this case, only one sensor failure (y3) is considered. 1000 
samples are computed during the study. The aim is to compare 
the performances of these methods when the quality of the 
model changes. 

In Figure 8, the histograms illustrate the previous remarks 
about the dispersion of the decision making, while Figure 9 
shows again the robustness of the unification approach against 
model uncertainties. When the quality of the model is bad, with 
the ″Hamming Indicator″, all the histograms are superposed, 



whereas with the ″Modified Hamming Indicator″, the rate of 
false alarms is very large. But with ″Fuzzy Fault Indicator″, the 
decision is more ″realistic″. 
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Figure 8: ″Good″ quality of the model 
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Figure 9: ″Bad″ quality of the model 

7. CONCLUSION 

In this paper, the Decision Support System (DSS) has been 
developed. The method used to realise this system is based on 
the unification of heuristic and analytic symptoms. In fact the 
unification makes the fault decision more ″robust″ against 
model uncertainties, due to the parameter identification or the 
ageing of the system. This strategy leads to less false alarms 
and non-detection. This decision support module is a part of a 
whole diagnostic system. That is why the output of this 
module, the fault indicator, must be accurate. The advantage of 
this approach is emphasised through the comparison with 
Hamming indicators and applied to the five tanks process. The 
DSS has been considered as a generic tool. Consequently, 
different residual generation and evaluation methods can be 
applied to detect and isolate different types of failures. The 
results obtained in this paper are encouraging and allow to 
consider the real-time implementation. 
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