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Abstract

We present a two-layer hierarchical formulation to ex-

ploit different levels of contextual information in images for

robust classification. Each layer is modeled as a condi-

tional field that allows one to capture arbitrary observation-

dependent label interactions. The proposed framework has

two main advantages. First, it encodes both the short-range

interactions (e.g., pixelwise label smoothing) as well as the

long-range interactions (e.g., relative configurations of ob-

jects or regions) in a tractable manner. Second, the formu-

lation is general enough to be applied to different domains

ranging from pixelwise image labeling to contextual object

detection. The parameters of the model are learned using

a sequential maximum-likelihood approximation. The ben-

efits of the proposed framework are demonstrated on four

different datasets and comparison results are presented.

1. Introduction

The problem of detecting and classifying regions and ob-

jects in images is a challenging task due to ambiguities in

the appearance of the visual data. The use of spatial context

can help alleviate this problem significantly. For example,

in Figure 1, the sky and the water patches may locally look

very similar but their relative spatial configuration removes

this ambiguity.

There are different levels of contexts one would like

to use to improve classification accuracy. For instance,

for pixelwise image labeling problem, the local smooth-

ness of pixel labels will be a local context. On the other

hand, global context will refer to the fact that the image re-

gions follow probable configurations e.g., sky tends to occur

above water or vegetation (Figure 1). We denote this type

of global context by region-region interaction. Similarly, for

the problem of parts-based object detection, the local con-

text will be the geometric relationship among parts of an

object while the relative spatial configurations of different

objects will provide the global contextual information. This

type of global context is denoted by object-object interac-

tion. As shown in Figure 1, the keyboard and the mouse

may be very hard to detect because of their impoverished

Figure 1. Example images demonstrating that scene con-

text is important in different domains to achieve good

classification even though the local appearance is im-

poverished. From left: first and second - scene labeling

(region-region interaction), third - object-region interac-

tion, fourth - object-object interaction.

appearance but the relative configuration of monitor, key-

board and mouse helps disambiguate the detection. Simi-

larly, car detection is much easier given the configuration of

building and road (Figure 1). In this case, the global context

is provided by object-region interaction.

In the past, context has been advocated for the prob-

lems of pixelwise image labeling [13][5] and object detec-

tion [2][15][12]. All these techniques are either specifically

tuned for a certain application domain or use context only

at a specific level. The key contribution of this paper is a

framework that provides a unified approach to incorporate

the local as well as the global context of any of the three

types in a single model.

In [13], Singhal et al. presented an approach for la-

beling each region in the scene sequentially based on the

labels of the previous regions. This approach will give

spurious results if the previously labeled regions were as-

signed wrong labels. Markov Random Fields (MRFs) pro-

vide a sound theoretical approach to model contextual in-

teractions among different components simultaneously [4].

However, a variety of applications require image observa-

tions to model such interactions. For example, different

natural regions in a scene, or parts of an object are related

through geometric constraints. Traditional MRFs do not

allow the use of observed data to model interactions be-

tween labels. Conditional Random Fields (CRFs), proposed

in [10], provide a principled approach to incorporate these

data-dependent interactions. In our hierarchical approach,

each layer is modeled as a CRF. Another advantage of CRFs
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Figure 2. A simple illustration of the two-layer hierarchi-

cal field for contextual classification. Squares and cir-

cles represent sites at the two layers. Only one node

along with its neighbors is shown for each layer for clar-

ity. Layer 1 models short-range interactions while layer

2 long range dependencies in images. The true labels x

are obtained from the top layer by a simple replication

mapping Γ(.). Note that the partition shown in the top

layer is not necessarily a partition on the image.

over the traditional MRFs is that they use a discriminative

approach for classification rather than spending the efforts

in modeling the generation of the observed data.

Different forms of CRFs have been used by various re-

searchers in image modeling [7][5][15]. He et al. [5] have

presented an approach where context is enforced through

local and global learned features tuned to pixelwise scene

labeling application. Torralba et al. [15] have combined

boosting with CRFs to learn the graph structure and its po-

tentials for contextual object detection, but do not provide a

guiding framework for handling different levels of context

for different applications in the same model.

Various forms of hierarchical models have been sug-

gested under both undirected [11] as well as undirected [1]

graph paradigms. However, these models have been re-

stricted to simple local contextual information such as la-

bel smoothing to obtain good segmentation. They do not

use any high level global context. In addition, all the previ-

ous hierarchical models were based on MRFs. This paper

presents the first work on using a hierarchy of CRFs.

2. Hierarchical Framework

In this work, we are interested in modeling interactions

in images at two different levels. Thus, we propose a two-

layer hierarchical field model as shown in Figure 2. Note

that, in any of the two layers, the induced graph’s topol-

ogy is not restricted to regular 2D grid locations. In this

model, each layer is a separate conditional field. The first

layer models short range interactions among the sites such

as label smoothing for pixelwise labeling, or geometric con-

sistency among parts of an object. The second layer models

the long range interactions between groups of sites corre-

sponding to different coherent regions or objects. Thus, this

layer can take into account interactions between different

objects (monitor/keyboard) or regions (sky/water).

The two layers of the hierarchy are coupled with directed

links. A node in layer 1 may represent a single pixel or a

patch while a node in layer 2 represents a larger homoge-

neous region or a whole object. Each node in the two layers

is connected to its neighbors through undirected links. In

addition, each node in layer 2 is also connected to multiple

nodes in layer 1 through directed links. In the present work

we restrict each node in layer 1 to be connected to only one

node in the layer above. As noted by Hinton et al. [6], with

respect to hierarchical MRFs, the use of directed links be-

tween the two layers, instead of the undirected ones, avoids

the intractability of dealing with a large partition function.

Being a conditional field, each node in layer 1 can poten-

tially use arbitrary features from the whole image to com-

pute its bias. The top layer uses the output of layer 1 as

input through the directed links.

2.1. Basic Formulation

Let the observed data from an input image be given by

y = {yi}i∈S , where yi is the data from ith site, and S

is the set of all the image sites. We are interested in find-

ing the labels, x = {xi}i∈S , where xi ∈ L and |L| is the

number of classes. For image labeling, a site is a pixel and

a class may be sky, grass etc., while for contextual object

detection, a site is a patch and a class may refer to objects

e.g., keyboard or mouse. The set of sites in layer 1 is S(1)

such that S(1) = S, while that in layer 2 is denoted by

S(2). The nodes in layer 2 induce a partition over the set

S(1) such that a subset of nodes in layer 1 correspond to

one node in layer 2. Formally, a partition h is defined as

h : S(1) → S(2) such that, if S
(1)
r is a subset of nodes in

layer 1 corresponding to node r ∈ S(2), then S(1) =
⋃

r
S

(1)
r

and S
(1)
r ∩ S

(1)
s = φ ∀ r, s ∈ S(2). Let the space of all

partitions be denoted as H. This partition should not be

confused with an image partition, since it is defined over

the sites in S(1), which may not correspond to the image

pixels (e.g., in object detection, where sites are random im-

age patches). Let the labels on the sites in the two layers

be given by x(1) = {x
(1)
i }i∈S(1) and x(2) = {x

(2)
r }r∈S(2) ,

where x
(1)
i ∈ L(1) and x

(2)
r ∈ L(2), where L(2) = L. The

nodes in layer 1 may take pseudo labels that are different

from the final desired labels. For instance, in object detec-

tion, a node at layer 1 may be labeled as ’a certain part’ of

an object rather than the object itself. In fact, the labels at

this layer can be seen as noisy versions of the true desired

labels .

Given an image y, we are interested in obtaining the

conditional distribution P (x|y) over the true labels. Given
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y, let us define a space of valid partitions, Hv , such that

∀ h ∈ Hv , xi = x
(2)
r ∀ i ∈ S

(1)
r where r = h(i). This im-

plies that multiple nodes in layer 1 make a hypothesis about

a single homogeneous region or an object in layer 2. Fur-

ther, we define a replication mapping, Γ(.), which takes any

value (discrete or continuous) on node r and assigns it to all

the nodes in S
(1)
r . Thus, given a partition h ∈ Hv , and the

corresponding labels x(2), the labels x can be obtained sim-

ply by replication. This implies, P (x|y) ≡ P (x(2)|h, y)
if h ∈ Hv . However, given an observed image y, the

constraint h ∈ Hv is too restrictive. Instead, we define a

distribution, P (h|y), that prefers partitions in Hv over all

possible partitions, and,

P (x|y) ∼=
∑

h∈H

P (x(2)|h, y)P (h|y)

=
∑

h∈H

∑

x(1)

P (x(2)|h, x(1))P (h|x(1))P (x(1)|y), (1)

where both P (x(1)|y) and P (x(2)|h, x(1)) are modeled as

conditional fields which will be explained in Sections 2.2

and 2.3. In (1), computing the sum over all the possible

configurations of x(1) is a NP-hard problem. One way to

reduce complexity is to do inference in layer 1 until equi-

librium is reached and then using this configuration x̂(1) as

input to the next layer, i.e., P (x(1)|y) = δ(x(1) − x̂(1)).
However, by doing this, one loses the power of model-

ing the uncertainty associated with the labels in layer 1,

which was included explicitly in (1) through P (x(1)|y). In

principle, one can use Monte Carlo sampling or a varia-

tional approach to approximate the sum in (1), but they

may be computationally expensive. In this work, instead,

we wanted to examine what could be achieved by making a

very simplifying assumption, where along with the equilib-

rium configuration, we also propagate the uncertainty asso-

ciated with it to the next layer. We use the sitewise max-

imum marginal configuration as x̂(1). Let the marginals

at each site i be bi(x
(1)
i ) =

∑

x(1)\x
(1)
i

P (x(1)|y), and

b(x(1)) = {bi(x
(1)
i )}i∈S(1) . The belief set, b(x(1)) is prop-

agated as an input to the next layer. Note that the configu-

ration x̂(1) can be obtained directly from b(x(1)) by taking

its sitewise maximum configuration. Thus, in the future, we

will omit explicit conditioning on x̂
(1)

. Now, we can write

P (x|y) ≈
∑

h∈H

P (x(2)|h, b(x(1)))P (h|b(x(1))). (2)

Note that both terms in the summation implicitly include

the transition probabilities P (x
(2)
r |x̂

(1)
i ). For the first term,

these are absorbed in the unary potential of the conditional

field in layer 2 as explained in Section 2.3. Section 2.4 will

describe a simple design choice for P (h|b(x(1))). We first

describe the modeling of the conditional field in layer 1.

2.2. Conditional Field - Layer 1

The conditional distribution of the labels given the ob-

served data, i.e., P (x(1)|y) is directly modeled as a homo-

geneous pairwise conditional random field proposed by [10]

as,

P (x(1)|y) =
1

Z

∏

i∈S(1)

φ(x
(1)
i , y)

∏

i,j∈Ni

ψ(x
(1)
i , x

(1)
j , y),

where Z is a normalizing constant known as the parti-

tion function, Ni is the set of neighbors of site i. Here,

φ(x
(1)
i , y) and ψ(x

(1)
i , x

(1)
j , y) are the unary and the pair-

wise potentials.

Generalizing the binary form in [7][14] to multiclass

problems, we model the unary potential as,

log φ(x
(1)
i , y) =

∑

k∈L(1)

δ(x
(1)
i = k) log P ′(x

(1)
i = k|y),

(3)

where δ(x
(1)
i = k) is 1 if x

(1)
i = k and 0 otherwise, and

P ′(x
(1)
i = k|y) is an arbitrary domain-specific discrimi-

native classifier. This form of unary potential gives us the

desired flexibility to integrate different applications prefer-

ring different types of local classifiers in a single frame-

work. Let hi(y) be a feature vector (possibly in a kernel-

projected space), that encodes appearance based features

for the ith site (a pixel, a patch or an object). To model

P ′(x
(1)
i = k|y), in this paper we generalize the logistic

classifier used in [7] to a softmax function,

P ′(x
(1)
i = k|y)=















exp(wT

k
hi(y))

1+
P|L(1)|−1

l=1 exp(wT

l
hi(y))

if k< |L(1)|

1

1+
P|L(1)|−1

l=1 exp(wT

l
hi(y))

if k= |L(1)|

Here, wk are the model parameters for k = 1 . . . |L(1)| −
1. For a |L(1)| class classification problem, one needs only

|L(1)| − 1 independent hyperplanes.

The pairwise potential predicts how the labels at two

sites should interact given the observations. Generalizing

the interaction potential in [7] for multiclass field,

log ψ(x
(1)
i , x

(1)
j , y)=

∑

k,l∈L(1)

vT
klµij(y)δ(x

(1)
i =k)δ(x

(1)
j = l)

(4)

where, µij(y) is the pairwise feature vector, and vkl are

the model parameters. For example, in the case of object

detection, the vector µij(y) encodes the pairwise features

required for modeling geometric and possibly photometric

consistency of a pair of parts. The sitewise label smoothing

can be achieved by forcing µij(y) to be 1.

2.3. Conditional Field - Layer 2

The formulation of the conditional field for layer 2 can be

obtained in the same way as described in the previous sec-

tion by changing the observations to b(x(1)), the set of sites
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to S(2), and the label set to L(2). The main difference lies in

the form of the unary potential. Each node r ∈ S(2) in this

layer receives beliefs as input from the nodes contained in

set S
(1)
r from the layer below. Taking into consideration the

transition probabilities on the directed links between node r

and the nodes in S
(1)
r , the unary potential can be written as,

log φ(x(2)
r , b(x(1)))=

∑

k∈L(2)

{

δ(x(2)
r = k)

(

logP ′(x(2)
r =k|b(x(1)))+

1

|S
(1)
r |

∑

i∈S
(1)
r

logP (x(2)
r =k|x̂

(1)
i )

)}

Here, |S
(1)
r | is a normalizer that takes into account the dif-

ferent cardinalities of sets S
(1)
r .

2.4. Modeling Partitioning

The distribution P (h|b(x(1))) should be designed such

that it gives high weight to a partition h ∈ Hv, given the

belief set from layer 1. Since a good partition should drive

all the nodes in a set S
(1)
r to take the same true labels, the

conditional distribution over the partitions is modeled as,

P (h|b(x(1)))∝
{

∏

r∈S(2)

[

max
x
(2)
r ∈L(2)

∏

i∈S
(1)
r

∑

x
(1)
i

∈L(1)

(

bi(x
(1)
i )

P (x(2)
r |x

(1)
i )

)]1/|S(1)
r

|}1/|S(2)|

The term in the product over i is the probability that the

node r, connected to site i, will take label x
(2)
r . Also, |S

(1)
r |

and |S(2)| compensate for the differences in the number of

nodes in set S
(1)
r and the overall number of nodes induced

by the partition respectively.

3. Parameter Learning and Inference

The set of parameters Θ, to be learned in the hierarchical

model, includes the parameters of the conditional fields at

layer 1 and layer 2, and the transition probability matrices

P (x
(2)
r |x̂

(1)
i ). The field parameters for each layer are the

parameters of the unary and pairwise potentials i.e., θ(α) =
{

w
(α)
k , v

(α)
kl

}α=1,2

∀k,l
.

Given M i.i.d. labeled training images, the

maximum likelihood estimates of the parameters are

given by maximizing the log-likelihood L(Θ) =
∑M

m=1 log P (xm|ym, Θ), where the conditional distribu-

tion in the sum for each image m is given by (1). Since

this likelihood is hard to evaluate, following the assumption

made in Section 2.1, we use a sequential learning approach

in which, first the parameters of layer 1 are estimated sep-

arately. Fixing these estimates, the parameters of the next

layer and the transition matrices are estimated by maximiz-

ing the likelihood for the conditional distribution given in

(2). Although suboptimal, the drawbacks of the sequential

approach are somewhat moderated by the fact that the parti-

tion functions for the fields in the two layers are decoupled

due to the directed connections.

Starting with parameter learning in layer 1, since the la-

bels at this layer are not known, we assign pseudo labels

x(1) on S using the true labels x. In the image labeling ap-

plications, since the nodes at both the layers take the labels

from the same set, one can assume the pseudo labels to be

the same as the true labels. For object detection, where the

labels at layer 1 are part identifiers rather than being object

identifiers, one possible way to generate pseudo labels will

be to use soft clustering on the object parts and assign a part

label to each node as in [8]. It is clear that the labels gen-

erated in this way are going to be noisy. That is where the

hierarchical model becomes more relevant, where the top

layer refines the label estimates from the layer below and

the directed connections incorporate the transition proba-

bilities from the noisy labels to the true labels.

To learn the parameters of the conditional field in layer

1 using gradient ascent, the derivative of the log-likelihood

from the distribution P (x(1)|y, θ(1)) can be written as,

∂l(θ(1))

∂w
(1)
k

=
∑

m

∑

i∈S(1)

(

δ(x
(1)m
i =k)−

〈

δ(x
(1)
i =k)

〉)

hi(y
m)

(5)

∂l(θ(1))

∂v
(1)
kl

=
∑

m

∑

i∈S(1)

∑

j∈Ni

(

δ(x
(1)m
i =k)δ(x

(1)m
j = l)

−
〈

δ(x
(1)
i =k)δ(x

(1)
j = l)

〉 )

µij(y
m), (6)

where 〈.〉 denotes expectation with respect to the distribu-

tion P (x(1)|ym, θ(1)). Generally the expectation in (5) and

(6) cannot be computed exactly due to the exponential num-

ber of configurations of x(1). In this work, we estimate

expectations using the pseudo-marginals returned by loopy

Belief Propagation (BP) [3].

The transition probability matrices were assumed to be

the same for all the directed links in the graph to avoid over-

fitting. The entries in this matrix were estimated using the

normalized expected counts of transition from x̂
(1)
i to x

(2)
r ,

which are known at the training time. Note that the counts

are computed using the refined label estimates x̂
(1)
i obtained

directly from b(x(1)).

Given b(x(1)) and P (x
(2)
r |x̂

(1)
i ), the field parameters of

layer 2 i.e., θ(2) were obtained by maximizing the lower

bound on the log likelihood of (2),

l′(θ(2)) ≥
∑

m

∑

h

{

P (h|b(x(1)m))

log P (x(2)m|h, b(x(1)m), θ(2))
}

(7)
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The derivatives of the above lower bound also have similar

forms as in (5) and (6) except that the gradients are now

the expectations with respect to P (h|b(x(1)). In addition,

the gradient for the unary parameters w
(2)
k at a site r will

have the features scaled by the product of transition proba-

bilities for all the nodes in S
(1)
r . To deal with the problem

of summing over h, in principle, one can use full MCMC

sampling. However, by using a data-driven heuristic de-

scribed in Section 4, samples from high probability regions

of P (h|b(x(1)) can be obtained using local search. Usu-

ally, the resulting partitions will not be restricted to the valid

space Hv. In that case, the training label at node r in layer

2 is obtained by using a majority vote of labels at the nodes

in S
(1)
r .

For inference, in this work we used the sum-product ver-

sion of loopy BP to find the maximum marginal estimates

of the labels on the image sites. The desired label estimates

for each node i in set S can be obtained as,

x̂i = arg max
k

∑

h,r:i∈S
(1)
r

{

Γ
(

Pr(x
(2)
r = k|h, b(x(1)))

)

P (h|b(x(1)))
}

(8)

where Γ(.) simply replicates a value on node r ∈ S(2) to the

corresponding nodes in S
(1)
r in the layer below, and Pr(.) is

the marginal for site r in layer 2 estimated using loopy BP.

4. Experiments and Discussion

We conducted experiments to test the capability of the

proposed hierarchical approach to incorporate three dif-

ferent types of contextual interactions i.e., region-region,

object-region and object-object, as described in Section 1.

Four datasets for two different applications (image labeling

and contextual object detection) were used for testing. For

the object detection experiments, the aim was to investigate

if the performance of the existing classifiers could be im-

proved by feeding their outputs in the hierarchical model.

4.1. Region-Region Interactions

The first set of experiments was conducted on the

’Beach’ dataset from [9], which contains a collection of

consumer photographs. The goal was to assign each im-

age pixel one of the 6 class labels: {sky, water, sand, skin,

grass, other}. This dataset is particularly challenging due

to wide within-class variance in the appearance of the data

(see Figure 5 or [9] for more images). The dataset contained

123 images, each of size 124×218 pixels. This set was ran-

domly split into a training set of 48 images and a test set of

75 images.

The layer 1 of the proposed hierarchical model imple-

mented the smoothness of pixel labels as the local context.

Hence, the sites in layer 1 were the image pixels and the

neighborhood was defined to be the 4-nearest neighbors on

a grid. Similar to [9], three HSV color features and two tex-

ture features, based on the eigenvalues of the second mo-

ment matrix, gave a 5 dim unary feature vector. Further,

we used a quadratic kernel to obtain a 21 dim feature vec-

tor hi. To implement label smoothing, the pairwise fea-

ture vector µij was set to 1, resulting in a Potts model

i.e., vkl = 0 if k �= l. The parameters of layer 1 i.e.,

θ(1) = {w
(1)
k , v

(1)
kk }∀k were all learned simultaneously us-

ing the maximum likelihood procedure described Section 3.

The training time was about 10 min on a 2.8 GHz Pentium

class processor.

Before proceeding to layer 2, we describe how we do

local sampling of partition h in a high probability region

of P (h|b(x(1))). As explained in Section 2.4, good parti-

tions are those that promote homogeneous labeling within

a region. So, given the beliefs from layer 1, first a binary

map is generated for each class by thresholding the pixel-

wise beliefs at a small value. Then, a partition is obtained

by simply intersecting these binary maps for all the classes,

i.e., by dividing bigger regions into smaller ones whenever

there is an overlap between regions from any two maps. By

varying the threshold for generating the binary maps, one

can have the desired number of samples. We observed that

even less than 5 samples were sufficient to give good results.

This was because the beliefs from layer 1 are smoothed due

to message passing between the nodes in this layer while

implementing the local context.

The layer 2 encodes interactions among different regions

given the beliefs at layer 1 and a partition. Each region of

the partition is a site in layer 2. Note that the sites are not

placed in a regular grid as in layer 1. For this dataset, the

number of sites at layer 2 varied from 13 to 49 for different

images. Since we want every region in the scene to influ-

ence every other region, each node in the graph was con-

nected to every other node. The computations over these

complete graphs are still efficient because of the small num-

ber of nodes in the graph. The unary feature vector for each

node r consists of normalized product of beliefs from all

the sites i in S
(1)
r and the normalized centroid location of

the region r. This gives an 8 dim feature vector. Further,

quadratic transforms were used to obtain a 44 dim vector

hi. Similar to [13], we use pairwise features between re-

gions to be binary indicator attributes. These were: a region

is above, beside or enclosed within another region. The

maximum likelihood learning took about 5 minutes.

Two example results from the test set are shown in Figure

5. The top row shows that good accuracy is obtained even

for the pixels from the other class which has traditionally

been hard to model because of large within class variations.

Table 1 gives a quantitative comparison of the results on

the test set. The use of the local context (label smoothing)
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Table 1. Pixelwise classification accuracy (%) for image

labeling on two different datasets. Final results of the

hierarchical approach are shown in bold. The column

’Others’ gives the results for the techniques proposed

by other researchers.

Datasets Softmax Layer1 Full MRF Others

Beach 62.3 63.8 74.0 61.5 64.0 [9]

Sowerby 85.4 85.8 89.3 81.8 89.5 [5]

improves the accuracy slightly (’Layer 1’ in Table 1) over

the softmax which uses no context. However, the main use

of the local context is to propagate improved beliefs and

partitions to layer 2. The full hierarchical model (’Full’ in

Table 1) performs significantly better than the others. The

time taken for inference was about 6 sec for each image.

For the MRF, results were obtained using the Potts model.

Next, the hierarchical model was applied to the stan-

dard Sowerby dataset. The dataset contained 104 images

(64 × 96 pixels). The training and the test set contained 60
and 44 images respectively. As used by [5], the CIE Lab

color features and oriented DoG filters based texture fea-

tures gave a 30 dim feature vector that was used as input

to layer 1. The rest of the features, parameter learning and

inference were the same as for our implementation on the

Beach dataset. Figure 5 shows two typical test results. Note

the road marking in the bottom image, which is preserved

in the final result even though layer 1 tends to smooth it out.

The quantitative comparisons are given in Table 1. Note

that we achieve almost the same accuracy as reported in [5]

even though their technique is specifically tuned for the im-

age labeling problems, while our approach is more general,

integrating different applications in a single framework.

4.2. Object-Region Interactions

We conducted the next set of experiments on a build-

ing/road/car dataset from [15].1 The dataset contained 31
images, each of size less than 100 × 100 pixels. The size

and pose of the object (car) was roughly the same in all the

images. As shown in Figure 6, the local appearance of cars

is impoverished due to low resolution, making the car de-

tection hard using stand-alone detectors. In addition, high

variability in the appearance of the building data also makes

it difficult to disambiguate them from roads just on the basis

of intensity and texture features. However, the relationships

among the object (car) and the two regions (building and

road) provide strong context to improve the detection of all

the three entities simultaneously.

For object detection, layer 1 models the relationship

among parts of an object. Ideally, in layer 1 one can im-

plement a CRF on object parts similar to [12][8]. However,

1Only a partial dataset was available in the public domain.
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Figure 3. Left: The ROC curves for contextual car de-

tection compared to a boosting based detector. Right:

Confusion matrices (as % of overall pixels) for building

and road detection. Rows contain the ground truth. No

context implies the output of the Softmax classifier.

to investigate if our framework can be used for improving

the performance of a standard boosting-based detector, we

use the detector output in layer 1. Rectangular patches cen-

tered at the locations that have a score above a threshold are

designated as sites for both layer 1 and 2. The threshold is

chosen to be small enough to make the false negatives rel-

atively rare. Of course, it increases the false positives con-

siderably. So, the question is: can our framework handle a

large number of false positives?

In the hierarchical model, the set of sites S(1) in layer

1 contains all the image pixels and the object patches. The

neighborhood structure for the pixels was 4 nearest neigh-

bors. Since each object patch represents a possible hypothe-

sis about the full object, there is no interaction among these

patches in layer 1. The set of sites in layer 2, S(2), consists

of image regions and the same object patches as in layer 1.

Note that the sites in S(2) induce a partition on the nodes

in S(1). The label sets L(1) and L(2) for the sites in the

two layers were the same as {building, road} for pixels and

regions, and {car, background} for the patches.

The features used by layers 1 and 2 for image pixels and

regions were the same as described for the Sowerby dataset

in the previous section. The output of the object detector

was used as a feature for a patch in layer 2. All the nodes in

layer 2 were connected with each other inducing a complete

graph. The pairwise features between the object patches

and the regions in layer 2 were simply the difference in the

coordinates of the centroids of a region and a patch.

In all the experiments we used a detector trained by gen-

tle boosting as the base detector [15]. The classification re-

sults for two typical examples from the test set are given in

Figure 6. The classification accuracy of building and road

detection goes up from 70.66% to 98.05% as shown in Fig-

ure 3. Also, the ROC curve for the car detection shows that

the number of false positives is reduced considerably com-

pared to the base detector.

4.3. Object-Object Interactions

The final set of experiments was conducted on the mon-

itor/keyboar/mouse dataset from [15], which contained 164
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Figure 4. The ROC curves for the detection of keyboard

(left) and mouse (right). Relatively high false alarm rates

for mouse were due to very small size of mouse (about

8 × 5 pixels) in the input images.

images of size less than 100× 100 pixels each. The dataset

was randomly split in half to generate the training and the

test sets. The main challenge in the dataset was the detec-

tion of the keyboard and the mouse, which spanned only

a few pixels in the images. In this section we show that

by taking interactions among the three objects, one can de-

crease the false alarms in detection significantly.

For each object, we use a detector which was also trained

using gentle boosting as the base detector. Since the size

of the mouse in the input images was very small (on aver-

age about 8 × 5 pixels), the boosting based detector could

not be trained for the mouse. Instead, we implemented a

simple template matching detector by learning a correlation

template from the training images. A patch at a location

where the output of any of the three detectors is higher than

a threshold, represents a site in S(1). The set of sites S(2)

in layer 2, was the same as in layer 1 , indicating a triv-

ial partition.. The label set for the sites in S(1) and S(2)

was {monitor, keyboard, mouse, background}. Since layer

1 uses the output of a standard object detector, interactions

among sites take place only at layer 2.

The unary features at layer 2 consisted of the score from

each detector yielding a 3 dim feature vector. The differ-

ence of coordinates of the patch centers resulted in a 2 dim

pairwise feature vector. Each node was connected to ev-

ery other node in this layer. Figure 7 shows a typical result

from the test set. It is clear that the false alarms were re-

duced considerably in comparison to the base detector. The

use of context did not change the results for the monitor,

since the base detector itself was able to give good perfor-

mance. This is reasonable because one hopes that context

will be more useful when the local appearance of an object

is more ambiguous. The ROC curves for the keyboard and

the mouse detection are compared with the corresponding

base detectors in Figure 4.

5. Conclusions and Future Work

We have presented a unified approach to modeling dif-

ferent types of contexts in images using a hierarchical field

formulation. The benefits of the proposed approach, in spite

of a few simplistic assumptions, were demonstrated on the

problems of image labeling and contextual object detection.

In the future, we will explore the use of variational approxi-

mations to relax some of the assumptions made in this work.

We also plan to develop efficient ways of learning the pa-

rameters of the two layers simultaneously. Finally, it will

be interesting to explore the possibility of adding other lay-

ers in the hierarchy, which could encode more complex re-

lations between different scenes in a video, leading to event

or activity recognition.
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Input image Softmax classifier Layer 1 output Final result Belief map

Figure 5. Results on the Beach dataset (top two rows) and the Sowerby dataset (bottom two rows) using context based on

region-region interactions. Note the correct classification of ’other’ class in top row. In the bottom row, road markings are

preserved in the final result. In a belief map, higher intensity indicates higher confidence.

Input image Build/road (NC) Detector score Car (NC) Build/road (WC) Car (WC)

Figure 6. Detection results for buildings, road and car using context based on object-region interactions. ’Build’ - Building,

NC - No Context, WC - With Context. Detector score shows the output of the base detector. Black indicates ’road’ and white

’buildings’. Green and red indicate true detections and false alarms respectively.

Input image Monitor (NC) Keyboard (NC) Mouse (NC) Keyboard (WC) Mouse (WC)

Figure 7. Detection results for monitor, keyboard and mouse using context based on object-object interactions. NC - No

Context, WC - With Context. Monitor detection was good with the base detector itself due to less appearance ambiguity. Note

the impoverished appearances of the keyboard and the mouse. The detection color coding is the same as above.
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