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Executive Summary

In the analysis of data for the Law School Admission Test (LSAT) and other similar standardized tests, a
mathematical model called item response theory (IRT) is commonly used to estimate both the characteristics
of the test questions (items) and the ability level of the test takers. Such analyses are based on the test takers’
correct and incorrect responses to the test items. When a test is administered in a computerized mode, the
capability of recording the amount of time a test taker has spent on each item provides us with additional
information about the test-taking experience of individuals as well as the characteristics of items.

The practical goal of this paper is to use response times on test items as an additional source of
information in estimating the abilities of the test takers when the test is delivered in a computerized mode. It
is only possible to use this additional source when we have a mathematical model that (i) relates the speed at
which a test taker works to his/her ability (accuracy) on the test and (ii) separates the test taker’s speed on
the test from the time intensities of the items.

A hierarchical framework of modeling is introduced that has two different levels, one for the individual
test taker and one for the population of test takers. Each level includes two components: one to model speed
and the other to model accuracy. At the level of the individual test taker, the framework models the test
taker’s responses to items (correct or incorrect) and the time he or she spent on each item. Both component
models have separate parameters for the item and person effects. At the second level, the framework has a
model for the population of test takers that explains how the speed and accuracy of the test takers tend to be
related. In addition, it has an item-domain model that relates the time intensities of the items to such features
as their difficulties.

A method is applied to estimate all unknown parameters from the responses and times on the test items.
A description of how the second level model can be used to predict a test taker’s accuracy from his speed or
the difficulties of the items from their time intensities is also included.

Abstract

Current modeling of response times on test items has been influenced by the experimental paradigm of
reaction-time research in psychology. For instance, some of the models have a parameter structure that was
chosen to represent a speed-accuracy tradeoff, while others equate speed directly with response time. Other
response-time models seem to be unclear as to the level of parameterization they represent. A hierarchical
framework of modeling is proposed to better represent the nature of speed and accuracy on test items as
well as the different levels of dependency between them. The framework allows a “plug-and-play approach”
with alternative choices of response and response-time models to deal with different types of test items as
well as population and item-domain models to represent key relations between their parameters. Bayesian
treatment of the framework with Markov chain Monte Carlo (MCMC) computation facilitates the approach.
Use of the framework is illustrated for the choice of a normal-ogive response model, a lognormal model for
the response times, and multivariate normal models for the population and item domain with Gibbs
sampling from the joint posterior distribution.

Introduction

In addition to the responses on test items, the times needed to produce them are an important source
of information on the test takers and the items. Their information may help us to improve such operational
activities as item calibration, test design, adaptive item selection, diagnosis of response behavior for
possible aberrances, and the allowance of testing accommodations. These applications have become
within our reach now that computerized testing with automatic recording of response times is replacing
paper-and-pencil testing.

An important prerequisite for the use of response times is an appropriate statistical model for their
distribution. Over the last two decades, different models for response times have been presented; a selection
of them will be reviewed below. Some of these models appear to be influenced by the experimental
paradigm of reaction-time research in psychology (see, e.g., Luce, 1986). Key features of the paradigm are (1)
the use of standardized tasks, (2) the equating of the subjects’ speed on these tasks with their reaction times,
and (3) experimental manipulation of the conditions under which the subjects operate. The paradigm is
used, for instance, to test hypotheses about underlying psychological processes or to decompose reaction
times into the times needed for certain separate operations.

An important notion from reaction-time research with a special impact on the current modeling of
response times on test items is that of a speed-accuracy tradeoff. The notion is based on the observation that
when working on a task, a subject has the choice between working faster with lower accuracy or more
slowly with higher accuracy. A typical form of this tradeoff is presented in Figure 1, where each of the
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hypothetical observations is for a different combination of speed and accuracy. Observe that speed is an
independent variable but accuracy a dependent variable; a subject has control of his or her speed over a
range of possible levels but has to accept the accuracy that is the result of a choice of speed.

Generally, a speed-accuracy tradeoff can be described as a negative (nonlinear) correlation between the
speed and accuracy levels at which a person can operate. These combinations can be observed, for instance,
when a subject is instructed to repeat a task at different levels of speed. For the sequel of this paper, it is
important to note that a speed-accuracy tradeoff is a within-person phenomenon. As will be shown later,
some of the current models confound this level of observation with that of a single observation of a fixed
person or a population of persons. This is incorrect; for example, it is perfectly possible for a population of
persons to show a positive correlation between speed and accuracy while for each individual person the
choice between speed and accuracy is constrained by the negative correlation in Figure 1.

In our review in the next section, we show how the parameter structure of some response-time models in
the test-theory literature is the result of an attempt to incorporate a speed-accuracy tradeoff in the model.
Other ideas from experimental reaction-time research with an impact on response-time modeling in test
theory are the direct equating of time with the speed at which a person operates and the assumption of
identically distributed times for a given person across tasks. We will argue that these ideas are inappropriate
for response times on test items and then present a hierarchical framework for the analysis of speed and
accuracy that is expected to better suit their specific nature. The framework also disentangles the levels of
modeling that seem to be confounded in the current literature. Basically, the framework consists of an item
response theory (IRT) model and a model for the response-time distribution along with a higher-level
structure to account for the dependences between their parameters. The framework is flexible in that we can
substitute any IRT or response-time model that fits the format of the test items best. The same holds for the
models for their parameters.

The “plug-and-play approach” allowed by this framework is greatly facilitated by a Bayesian treatment
of their parameters with Gibbs sampling from their joint posterior distribution. The replacement of an
individual model in the framework by a different plug-in leads only to the replacement of the corresponding
steps in the Gibbs sampler. We will illustrate the treatment for the choice of a normal-ogive response model,
a lognormal model for the response times, and multivariate normal models for their parameters. For an
appropriate choice of prior distributions, all distributions in the sampler are known and its application
becomes straightforward.

Current Models

Verhelst, Verstraalen, and Jansen (1997) present a model that is based on the assumption of a generalized
extreme-value distribution of a latent response variable given the time spent on the item and a gamma
distribution for the time. Capitalizing on the fact that the compound of these two distributions is a
generalized logistic (Dubey, 1969), they arrive at the following model for the probability of a response on
item i by person j

pi(θj) = [1 + exp (θj –ln τ j – bi)
�π i ], (1)

where bi is the difficulty parameter for item i, θj the ability parameters for person j, τ j is interpreted as a
speed parameter for person j, and π i is an item-dependent shape parameter. For π i = 1, the model reduces to
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a Rasch (1980) type model with ξj = θj – ln τ j replacing the traditional ability parameter. Observe that the
term θj – ln τ j is person-dependent only and governs the probability of a correct response; the accuracy at
which a test taker operates is thus controlled by this composite parameter as opposed to the ability
parameter θj in a regular IRT model.

The authors highlight the fact that the model incorporates a speed-accuracy tradeoff. If a person decides
to increase the speed τ j for fixed θj, parameter ξj decreases and the effect is lower accuracy. Also, note that
the model is only for the response distribution on the item. Since it nevertheless does have a time parameter
estimated from the response times, it implies that, in spite of their history of success in operational testing,
IRT models that ignore response times can never fit response distributions.

A similar model is derived in Roskam (1987; see also Roskam, 1997). His model is a Rasch model with its
additive parameter structure extended with the logtime on the item as a regressor,

pi(θj) = [1 + exp(θj + ln tij – bi)]
–1. (2)

This model assumes a speed-accuracy tradeoff directly between the ability of the test taker and the
actual time spent on a test item; less time on an item indicates a higher speed and results in lower accuracy.
The model also implies that none of the existing response models in IRT can fit a response distribution. In
addition, unlike the preceding model, (2) measures speed by the actual time spent on the item.

An entirely different type of model was introduced in Thissen (1983). This model assumes the following
parameter structure for the logtime on an item:

ln Tij = μ + τ j + β i – ρ(aiθj – bi) + ε ij , (3)

with

ε ij ~ N(0, σ). (4)

Parameters τ j and β i can be interpreted as the slowness of the test taker and the amount of time required
by the item, respectively, whereas μ is a general level parameter and ai, θj, and bi are the usual
item-discrimination, ability, and item-difficulty parameters. The term ρ(aiθj – bi) represents a regression of the
traditional parameter structure of a two-parameter (unidimensional) response model on the logtime with ρ
as the regression parameter. The normally distributed random term ε ij in (3) indicates that the model belongs
to the lognormal family.

This model does not seem to be motivated by a speed-accuracy tradeoff. Instead, its main motivation
seems to be the observation that more able persons tend to work faster; a higher ability θj implies a lower
expected logtime on the item. As indicated in the introduction, this observation is not necessarily
inconsistent with a speed-accuracy tradeoff; the observation of a positive correlation between speed and
accuracy holds at the level of a population of persons, whereas a speed-accuracy tradeoff is a within-person
relation. Also, note that the item-difficulty parameter bi plays a role analogous to θj in (3); the expected
logtime on a difficult item is higher than on an easy item.

Analogous to (1) and (2), the model in (3)–(4) implies that a response-time distribution on an item can
never be modeled adequately if any of the features of the item or person usually parameterized in IRT
are ignored.

A model based on a Weibull distribution with a shift or location parameter was proposed in Rouder,
Sun, Speckman, Lu, and Zhou (2003) and Tatsuoka and Tatsuoka (1980). The choice of a Weibull distribution
seems to be inspired by its success in industrial statistics, where it is used to model waiting times for a
system failure as a function of the probabilities of a failure of its components. Rouder et al. posit a
reaction-time distribution for person j on task i with density

f(tij) =
π ψ

σ

π
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, tij > ψ j ,

(5)

where ψ j is a shift, σ j a scale, and π j a shape parameter. This choice of parameterization is motivated by the
nature of the psychological processes typically studied in reaction-time experiments. Tatsuoka and Tatsuoka
drop the restriction on ψ j and treat it as a location parameter for which they substitute the average response
time on the set of test items t j .

Unlike the preceding three models, the two versions of the Weibull model are pure response-time
models. They do not assume anything about the ability of the person or the features of the items. In fact, they
do not even adopt any item parameters at all, but treat the response times for a fixed person as identically
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distributed across items. This assumption seems reasonable for the experimental paradigm for which
Rouder et al. presented their model, but does certainly not hold for the case of response times on test items
addressed in Tatsuoka and Tatsuoka.

A response-time model that does account for differences between test items is one by Oosterloo (1975)
and Scheiblechner (1979; 1985). They model response times as an exponential distribution with density

f(tij) = (τ j + β i ) exp[–(τ j + β i )tij], (6)

with τ j and β i as the person and item parameters. Since it holds for the exponential distribution that

E(Tij) =
1

τ βj i�
,

(7)

the parameters are interpreted by these authors as the speed of the person and the item, respectively.
The model in (6) is also derived from the waiting-time literature. It is known to represent the time for a

Poisson process to produce its first success. Though behavior on some elementary tasks may be modeled as a
Poisson process, we do not believe the model to be generally adequate for response times on test items. For
instance, exponential distributions have their mode at tij = 0, which simply is not realistic for times on test
items that typically run into tens of seconds or even minutes.

This review is not complete. For example, it does not include the Poisson model for reading speed by
Rasch (1980), which has been studied extensively by Jansen (e.g., 1986, 1997a, 1997b; Jansen & Duin, 1992);
the additive and multiplicative gamma models by Maris (1993); and the model for multivariate survival
times with latent covariates by Douglas, Kosorok, and Chewning (1999). The models above have only been
chosen to prepare our discussion in the next section. For a more complete review of response-time models
for test items, see Schnipke and Scrams (2002).

Discussion

The first two models were motivated by the idea of a speed-accuracy tradeoff. The existence of such a
tradeoff is supported by overwhelming evidence. But, unless the test taker changes his or her speed during
the test, there is no necessity whatsoever to incorporate a tradeoff in a response-time model for a fixed
person and a fixed set of test items. The only thing that counts is the actual level of speed at which the test
taker has chosen to operate on the items. As Figure 1 illustrates, once the speed is fixed, accuracy is also
fixed. For the typical hybrid type of test considered in this paper (see below), all we need are two free
parameters to represent the test taker’s speed and accuracy. Any attempt to constrain these parameters easily
leads to a misspecification and, consequently, a less satisfactory empirical fit of the model.

Also, the idea to incorporate a speed-accuracy tradeoff in a model can be viewed as a confounding of the
level of modeling. Three different levels should be distinguished: (1) the within-person level, where each
observation is nested in a series of parameter values changing over time; (2) the fixed-person level, where all
parameters are constant; and (3) the level of a population of fixed persons, for which we have a distribution
of parameter values. The first two models above seem to confound the within-person and fixed-person
levels. The third model is for a fixed person but seems to be built on an observation that can only hold at a
population level (positive correlation between speed and accuracy). Another example of confounding occurs
in Tatsuoka and Tatsuoka (1980), where the same Weibull model in (5) is used for the response times of a
fixed person and a random person from a population. The same happens for a lognormal model in Schnipke
and Scrams (1997, 1999).

In (2), speed is directly equated with the actual response time. Intuitively, (average) speed is a measure
of an amount of ground covered in a time interval. Therefore, measuring speed as the count of items
completed in a time interval or the simple sum of response times is only appropriate if each item has the
same time distribution, a condition that is approximated for the standardized tasks in experimental
reaction-time research. But for test items, which may differ considerably in the amount of information-
processing and problem-solving they involve, the only way to measure speed is with explicit time
parameters that help us disentangle a person’s speed from the effects of the items on the response time
distributions. The models in (3)–(4) and (6)–(7) do contain such time parameters for the items. But they are
absent in (1), (2), and (5).

As already indicated, the first two models above imply that models can never fit a response distribution
on an item unless they have a time parameter for the test taker. This implication is not consistent with the
history of success of the use of regular response models in operational testing. The third model has an
analogous implication for the time distribution. On the other hand, (5) and (6)-(7) are pure response-time
models. In the hierarchical framework below, the models for the response and time distributions are fitted
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independently. They have no common parameters or other constraints that would allow us to predict the fit
of one model from the fit of the other.

General Hierarchical Framework

The type of test modeled in this section is neither a pure speed nor a pure power test but the hybrid type
of test typically administered in a computer-based testing program. Such tests do have items varying in
difficulty; some of them will be difficult for a test taker and are likely to be answered incorrectly, whereas
others typically result in correct answers. The items also differ enough in the amount of information
processing and problem-solving they involve to yield different response-time distributions. Typically, the
tests have a generous time limit; unless something special happens, the test takers are able to finish in time.

Key Assumptions

The first assumption is that of a test taker operating at a fixed level of speed. This assumption of
stationarity excludes changes in behavior during the test due to learning, fatigue, strategy shifts, and the
like. As already indicated, the assumption implies a fixed level of accuracy as well, which is a standard
assumption underlying IRT modeling. This assumption of stationarity does not make the result less
appropriate for test takers with small fluctuations in speed or even a minor trend; such violations can be
detected by a residual analysis. Without a model based on the assumption of stationarity, possible changes
and trends in the behavior of test takers might remain unnoticed.

Second, for a fixed test taker, both the response and the time on an item are assumed to be random
variables. This assumption of randomness pervades test theory but, due to retention and/or learning, does
not lend itself to direct experimental verification for test items with mental tasks. However, it is supported
by empirical observations of variations in performance for persons repeating more physical tasks under
identical conditions (e.g., Townsend & Ashby, 1983).

Third, we assume separate item and person parameters both for the distributions of the responses on the
items and the time used to produce them. For a response model, it would be unusual to omit item
parameters. Analogously, we follow the examples set in the models in (3)–(4) and (6)–(7) and introduce item
parameters in the response-time model. An extremely practical consequence of this choice is that it allows us
to compare the speed of test takers across tests with different items, a condition that is frequently met in
computer-based testing.

The next assumption is that of conditional independence between the responses and the response times
given the levels of ability and speed at which the test taker operates. This assumption may seem daring
because both are produced by the same test taker on the same test items. However, the assumption follows
from a heuristic argument analogous to that in IRT for the assumption of conditional independence between
responses given θ (”local independence”): If a response model fits and the same holds for a response-time
model, their person parameters capture all person effects on the response and response-time distributions. If
these parameters are held constant, no potential sources of covariation are left and the response and the
response time on an item become independent.

Finally, we model the relations between speed and accuracy for a population of test takers separately
from the impact of these parameters on the responses and times of the individual test takers. The same will
be done for the relations between the time and response parameters of the items. This approach allows us to
capture such relations between the response and time parameters as the regression structure in (3) but at a
hierarchically higher level of modeling.

If this paper makes any contribution, it might be the replacement of the attempt to incorporate a
speed-accuracy in response-time modeling with the assumption of conditional independence between
response and response time given speed and accuracy, as mentioned above. As already indicated, this
assumption is counterintuitive because both the response and the time are nested within the same person. It
is important to distinguish the assumption from the traditional assumption of conditional independence
between the responses given accuracy across items. (This assumption, as well as an analogous assumption
for the response times, can also be found below.) If the stationarity assumption is violated and a test taker
changes his or her speed because of lack of time, these traditional assumptions will be violated, but it is
perfectly possible for the responses and times on the individual items to remain conditionally independent.

Empirical Levels of Modeling

The items are indexed by i = 1,..., I, and the test takers by j = 1,..., J. For test taker j, we have a
response vector Uj = (U1j,..., UIj) and response-time vector Tj = (T1j,..., TIj) with realizations uj = (u1j,..., uIj)
and tj = (t1j,..., tIj), respectively. On the first level, we specify both a response model and a response-time
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model for each combination of person and item. The relations between the parameters in these models are
represented by two different second-level models. Together, these two levels constitute the empirical part of
the framework. In the statistical treatment of the empirical model later in this paper, we add a third level
with prior distributions for the second-level parameters or hyperparameters.

First-Level Models

We illustrate this level of modeling by choosing two specific models for the responses and times on the
items; alternative choices are discussed below.

As a response model, the 3-parameter normal-ogive (3PNO) model is adopted. That is, each response
variable is assumed to be distributed as

Uij ~ f(uij; θ j , ai, bi, ci), (8)

where f(uij; θ j , ai, bi, ci) denotes a Bernoulli probability function with success parameter

pi(θ j ) � ci + (1 – ci)Φ(ai(θ j – bi)); (9)

θ j ��is the ability parameter for test taker j; ai ��+, bi ��, and ci �[0, 1] are the discrimination, difficulty,
and guessing parameters for item i, respectively; and Φ(.) denotes the normal distribution function.

For the response times, a lognormal model is chosen:

Tij ~ f(tij; τ j , αi, βi), (10)

with

f(tij; τ j , αi, βi) =
α

π
i

ijt 2
exp � � �	



�


�
�

1
2

2[ (ln ( ))]α β τi ij i jt ,
(11)

where τ j ��is a speed parameter for test taker j and βi ��and αi ��+ represent the time intensity and the
discriminating power of item i, respectively. The lognormal family seems an appropriate choice because it
has the positive support and a skew required for response-time distributions. The parameterization in (11)
resembles that of the usual (unidimensional) models for dichotomous responses, such as in (9), except for a
guessing parameter, which is not needed because time has a natural lower bound at t = 0. The model does
not have the regression structure of the lognormal model in (3). In addition, because αi is item dependent, it
is more flexible than (3) in that it allows for differences between the variances of the logtimes on different
items. The model showed excellent behavior in an earlier study; for a report on the fit analysis as well as
several other aspects of the model, see van der Linden (2006).

The vector with the parameters for person j is denoted as n j = (θ j , τ j ); the vector with the parameters for
item i is denoted as w i = (ai, bi, ci, α i , βi); and we use w = (w i ). Because of the conditional independence of Uij
and Tij given (θ, τ), the sampling distribution of (Uj; Tj), j = 1,..., J follows from (8) and (10) as

f(uj, tj; nj, w) = f
i

I

�
�

1

(uij; θ j , ai, bi, ci)f(tij; τ j , αi, βi).
(12)

Second-Level Models

One model describes the joint distribution of the person parameters in a population Ρ from which the
test takers can be assumed to be sampled. We refer to this model as the population model.

Let nj = (θ j , τ j ) be the vector with the person parameters in (8) and (10). We assume that nj is randomly
drawn from a multivariate normal distribution over Ρ; that is,

nj ~ f(nj ; lΡ , R Ρ ), (13)

where the density function is

f(ξ j ; μ Ρ , Σ Ρ ) =
Σ Ρ

�1 1 2

2

/

π
exp � � ��

��
�
��

�1
2

1( ) ( )n l n lj
T

jΡ Ρ ΡΣ
(14)
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with mean vector

lP = (μ θ , μ τ ), (15)

and covariance matrix

R P =
σ σ

σ σ
θ θτ

θτ τ

2

2

�

�
�
�

�

�
�
� .

(16)

A second model captures the relations between the item parameters. It does so by specifying a joint
distribution for the item parameters in the domain of items I that the test is intended to represent. We refer
to this model as the item-domain model. Analogous to (13)–(16), for parameter vector ψ i , we assume a
multivariate normal distribution

w i ~ f(w i ; l
I

, R
I

), (17)

with density function

f(w j ; l
I

, R
I

) =
R

I

�1 1 2

5 22

/

/( )π
exp � � ��

��
�
��

�1
2

1( ) ( )w l w li
T

iI I I
Σ ,

(18)

mean vector

l
I

= (μa, μb, μc, μ α , μ β ), (19)

and covariance matrix

R
I

=

σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

σ σ

2
α β

α β

α β

α α

a ab ac a a

ba b bc b b

ca cb c c c

a

2

2

b c a

a b c

σ σ σ

σ σ σ σ σ
α α β

β β β βα β

2

2

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

.

(20)

For the full model, the sampling distribution in (12) has to be completed as

f(u, t; n, w) = f
i

I

j

J

��
��

11

(uj, tj; nj, wi)f(nj; lΡ , R Ρ )f(wi; l
I

, R
I

).
(21)

Identifiability

To establish identifiability, we suggest the constraints

μ θ = 0; σ θ
2 = 1; μ τ = 0. (22)

The first two constraints are usual in IRT parameter estimation. The last constraint allows us to equate
μ β to the average expected response time over the population and item domain and to interpret τ j as a
deviation from this average (van der Linden, 2006). Also, these constraints allow us to keep all covariances
between the item and person parameters, which typically are the quantities of interest, as free parameters.

Alternative Models

A graphical representation of the hierarchical framework in the preceding section is given in Figure 2.
The same framework can be specified with other plug-ins for the component models; the only condition is
that the lower-level models have both person and item parameters.
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As a response model, we can choose any current IRT model that would fit the items best. For instance, if
the items are polytomous, a graded response model or (generalized) partial credit could be chosen. If the
items appear to measure more than one ability dimension, a choice of a multidimensional response model
becomes necessary. For a review of these and other options, see van der Linden and Hambleton (1997).

We do not necessarily expect the response format or dimensionality of the items to have an impact on
the time distribution on the items; the nature of the problems formulated in them seems more important.
Since the lower-level models fit independently, we need to focus on the possible impact of the format or
dimensionality of the items on the time distributions only when fitting the response-time model.

The choice of the lognormal model in (8)–(9) was mainly motivated by a curve-fitting approach to
response-time modeling. It has the right support and seems to have a good skew for response-time
distributions whereas its basic parameters give it enough flexibility to capture the differences in time
between persons and items. Nevertheless, if more is known about the processes underlying the responses,
a different model may become possible.

For example, if the items are simple and the problem-solving process has the features of a Poisson
process, the exponential model in (6)–(7) could be fitted. This model already has the type of
parameterization required by the framework. Rouder et al. (2003) explain why psychological processes with
a sensory and problem solving component may fit a Weibull distribution. To make their model appropriate
for test items, the following reparameterization might be helpful:

f(tij) = παπ
i (tij – (β i – τ j ))

π �1 exp{–[α i (tij – (β i – τ j ))]
π }, tij > β i – τ j , (23)

with τ j , α i , and β i parameters having the same interpretation as in (11) and π being a general shape
parameter. (If necessary, the shape parameter can be chosen to be item dependent.) Other choices with a
more psychological motivation can be derived from the gamma models in Maris (1993).

The choice of a multivariate normal as a second-level model has the advantage of means and
covariances as descriptive parameters of the population and item-domain distributions we are interested in.
Also, they give us closed-form expressions for the regression of some of the parameters on others. Because of
these advantages, if their fit is unsatisfactory, rather than fitting different models we recommend
transforming some of their parameters. In fact, the transformations

a* = ln a (24)

c* = logit c (25)

α* = ln α (26)

can be used to improve the range and account for the skewness of typical empirical distributions of the
guessing and discrimination parameters.

For the choice of some first-level models, the total number of parameters may involve a complexity too
great to deal with by the second-level models. If so, a simple strategy is to ignore some of the less interesting
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first-level parameters. For example, removal of one item parameter reduces the number of free hyperparameters
in (19)–(20) by 5. Statistically, the framework should then be treated by choosing prior distributions directly
for the omitted first-level parameter. If a low informative prior is chosen, the impact of the removal of a
first-level parameter on the remaining portion of the second-level model is negligible. We will illustrate the
procedure for choosing priors for guessing parameter ci.

Dependence Between Observed Scores and Times

The assumption of conditional independence between responses and times in this hierarchical
framework does not imply anything for the relations between the observed scores and times on items or
tests that can be observed in samples of test takers. As shown in Figure 2, observed scores and times have
two different sources of covariation: (1) the entries in the covariance matrix Σ Ρ of the person parameters and
(2) the entries in the covariance matrix Σ

I
of the item parameters.

Depending on these entries, almost any pattern of correlation between observed scores and time can be
produced. For example, if ability and speed correlate positively but all correlations between the item
parameters are negligible, we will observe a positive correlation between observed scores and times in a
sample of persons. But if some of the item parameters are negatively related, the correlation may vanish or
even become negative. The change from conditional independence to different patterns of dependence
illustrate what is more generally known in statistics as Simpson’s paradox.

The dependency between observed scores and times becomes particularly unpredictable if different
persons take different sets of items. An interesting example arose in an earlier study of differential
speededness in computerized adaptive testing (van der Linden, Scrams, & Schnipke, 1999; see also the report
in van der Linden, 2005, sect. 9.5). In this study, there was no correlation between θ and τ, but we
nevertheless found a substantial positive correlation between the ability of the test takers and the actual
amount of time they spent on the test. The reason was a positive correlation between the difficulty and time
intensity of the items (ρ βb = .65). Because an adaptive item-selection algorithm tends to give more difficult
items to the more able students, a positive correlation between the observed times and ability levels arose.
Thus, in order to predict the dependencies between test scores and times, in addition to the two covariance
matrices, we also need to account for the sampling design for the persons and items.

Because of the unpredictability of observed correlations between test scores and times in samples of test
takers, it may be misleading to take these correlations as descriptive and relate them to the features of the
items or the scores of the test takers (Swanson, Featherman, Case, Luecht, & Nungester, 1999; Swanson,
Case, Ripkey, Clauser, & Holtman, 2001).

Parameter Estimation

For the specifications in (8)–(20), a full Bayesian treatment of the model with the Gibbs sampler
is attractive.

For the version of the 3PNO model in (9) without guessing parameter ci and independent priors for the
other parameters, Albert (1992) introduced Gibbs sampling with data augmentation. An extension to the full
3PNO model was suggested in Johnson and Albert (1999, sect. 6.9). The suggestion was further developed in
Béguin and Glas (2001) and Fox and Glas (2001). Bayesian estimation with Gibbs sampling of the lognormal
model in (11) was used in van der Linden (2006). Gibbs sampling for a version of the 3PNO model for item
families with normal distributions of the ability parameters and multivariate normal distributions of the
item parameters is given in Glas and van der Linden (tentatively accepted). The treatment below uses
several elements from these references.

To illustrate the treatment of less interesting first-level parameters, we leave ci out of the item-domain
model in (17)–(19) and specify priors directly for these parameters.

Prior Distributions

For the population and item-domain models, we choose (independent) normal/Inverse-Wishart prior
distributions; that is,

R Ρ ~ Inverse-Wishart(R Ρ 0
−1 , ν Ρ 0 ), (27)

lΡ | R Ρ ~ MVN(lΡ 0 , R Ρ /κΡ 0 ), (28)

R
I

~ Inverse-Wishart(R
I 0
−1 , ν

I 0 ), (29)

l
I

| R
I

~ MVN(l
I 0 , R

I
/κ

I 0 ), (30)
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where ν Ρ 0 � 2 is a scalar degrees-of-freedom parameter, R Ρ 0 is a 2 � 2 (positive definite symmetric) scale
matrix for the prior on R Ρ , and lΡ 0 and κΡ 0 are the vector with the means of the posterior distribution and
the strength of prior information about these means, respectively. The parameters for the prior distributions
of R

I
and l

I
are defined analogously.

We assume a common prior distribution for the guessing parameters in the first-level model in (9):

ci ~ beta(γ, δ), i = 1,..., I. (31)

Because of this separate treatment, we will use the notation w i = (ai, bi, αi, β i ) and c = (ci). For this choice
of prior distributions, the joint posterior distribution of the parameters factors as

f(n, w, c, lΡ , l
I

, R Ρ , R
I

| u, t) � f
i

I

j

J

��
��

11

(uij ; θ j , ai, bi, ci)f(tij; τ j , α i , β i )

� f(n j ; lΡ , R Ρ )f(w i , ci; l
I

, R
I

)f(lΡ , Σ Ρ )f(l
I

, R
I

)f(c). (32)

The Gibbs sampler iterates through draws from the full conditional distributions of one block of
parameters given all remaining parameters. In the next section, we specify these draws.

Gibbs Sampler

For convenience, the model in (9) is reformulated to have parameter structure aiθj – bi. Let Zij be a latent
variable underlying the response of test taker j on item i, with

Zij ~ φ(zij; aiθj – bi) (33)

and φ(.) being the standard normal density. In addition, we assume indicator variables Wij defined as Wij = 1
if j knows the answer to item i and Wij = 0 if j does not know the answer. It is postulated that

Pr{Zij < 0} if Pr{Wij = 0};

Pr{Zij � 0} if Pr{Wij = 1}. (34)

Step 1

The values zij, i = 1,..., I, j = 1,..., J are drawn from their posterior distributions given w = (wij), h = (θj),
and w. From (33)–(34),

zij|w, h, w ~ {φ(zij; aiθj – bi)}/{Φ(aiθj – bi)
1 �w ij [1 – Φ(aiθj – bi)]

w ij }, (35)

which is a normal density truncated at the left at zij = 0 when wij = 0, and at the right when wij = 1.

Step 2

The values wij, i = 1,..., I, j = 1,..., J are drawn from their posterior distributions given u, h, w, and c.
Rewriting (8)–(9) as

pi(Uij = 1) �Φ(aiθj – bi) + ci[1 – Φ(aiθj – bi)] (36)

shows that Pr{Wij = 1|Uij = 1} �Φ(aiθj – bi) and Pr{Wij = 1|Uij = 0} = 0. Therefore, the conditional posterior
distribution of wij has density

f(wij; u, h, w, c) =
1

1
1

�

� � �

�
�

w

K a b c a b

uij

i j i

w

i i j i

w
ij

ij ij

,

( ) [ ( ( ))] ,Φ Φθ θ

if 0
1

,
,if uij �

	


�

�� (37)

with K as a normalizing constant equal to the right-hand side of (36).
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Step 3

The person parameters θj, j = 1,..., J are drawn from their posterior distributions given z = (zij), s = (τj), lΡ ,
and R Ρ .

From (33), zij + β i = ai θ j + εij with εij ~ N(0, 1). Therefore, θj is a parameter in the regression of
zij + β i on ai with a normal error term. Because θj is normally distributed with mean μ θ τ| j

and variance σ θ τ| j

2 ,
the conditional posterior distribution of θj is also normal:

θj|z, s, lΡ , R Ρ ~ N

σ μ

σ

σ
θ τ θ τ

θ τ

θ τ

| |

|

|

( )

,
j j

j

j

a z b

a

i ij i
i

I

i
i

I

�

�

�

�

�

� �

�

�

�

2

1

2

1

2

1

1

�
�

�
�
�

�

�
�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�ai
i

I

,

(38)

where the conditional means and variances μ θ τ| j
and σ θ τ| j

2 follow directly from lΡ and R Ρ in (15)–(16) as

μ θ τ| j
= μ θ + (σ θτ /σ τ

2 )(τj – μ τ )
(39)

and

σ θ τ| j

2 = σ τ
2 – σ θτ

2 /σ θ
2 .

(40)

The two expressions simplify because of (22).

Step 4

The item parameters (ai , b i ), i = 1, ..., I are drawn from their posterior distributions given zi = (zi1, ..., ziJ),
h, a =(α i ), b = (β i ), l

I
, and R

I
.

(ai , b i ) is a random parameter in the regression of zj on X = (h, –1), with 1 being a unit vector of length J.
Because (ai , b i ) has a bivariate normal conditional distribution given (α i , β i ) with a mean la b i i, |α ,β and
covariance matrix R a b i i, | ,α β , its posterior distribution is also bivariate normal:

ai , b i |zi, h, a, b, l
I

, R
I

~ N
l R

R
R

a b a b
T

i

a b
T a

i i i i

i i

, | , , | ,

, | ,( )
,α β α β

α β

�

� �

�

�

1

1 1

X z

X X
 !, | ,b

T

i iα β
� �

�
�

�

�
�

�

�

�
�

1 1
X X ,

(41)

where la b i i, |α ,β and covariance matrix R a b i i, | ,α β follow directly from lΡ and R Ρ in (19)–(20).

Step 5

The guessing parameters ci, i = 1, ..., I are drawn from their posterior distributions given ui and wi = (wi).
The number of test takers guessing on item i is ni = J – j

J
ijw�� 1 , whereas the number of correct guesses is

xi = j
J

ij iju w� �� 1 0( | ). Since ci is the probability of a correct guess, it follows that xi is binomially distributed

with parameters ni and ci. From (31),

ci|ui, wi ~ beta(γ + xi, δ + ni – xi). (42)

Step 6

The person parameters τj, j = 1, ..., J are drawn from their posterior distributions given tj, h, a, b, lΡ ,
and R Ρ .

The density in (11) implies a normal distribution of ln tij with mean β i – τj and variance α i
�2 . Hence,

β i – ln tij is normally distributed with mean τj and variance α i
�2 . Because τj is normally distributed with mean

μ τ θ| j
and variance σ τ θ| j

2 , the posterior distribution of τj is also normal:
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τ j |tj, h, a, b, lΡ , R Ρ ~ N

σ μ α β

σ

σ
τ θ τ θ

τ θ

| |

|

( ln )

,(

�

�

�

�

� �

�

�

�

2 2 2

1

2 2

1

j

j

i i ij
i

I

i
i

I

t

a
τ|θ j

ai
i

I
� �

�

�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

�2 2 1

1

) .

(43)

The conditional means μ τ θ| j
and variances σ τ θ| j

2 follow directly from lΡ and R Ρ in (15)–(16).

Step 7

The item parameters β i , i = 1, ..., I are drawn from their posterior distributions given t j , s, a, b, a, l
I

,
and R

I
.

Analogous to the preceding step, lntij + τ j is normally distributed with mean β i and variance α i
�2 .

Because β i is normally distributed with mean μ β α| , ,a bi i i
and variance σ β α| , ,a bi i i

2 , the posterior distribution of β i
is also normal:

β i |tj, s, a, b, a, l
I

, R
I

~ N

σ μ α τ

σ

β α β α

β

| , , | , ,

| ,

(ln )a b a b i ij j
j

J

a b

i i i i i i

i

t�

�

� ��2 2

1  !
i i

i i iJ
J

i

a b i

,

| , ,, .
α

β α
α

σ α
�

� �

�
�

�

�

�
�
�
�
�

�

�

�
�
�
�
�

2 2

2 2 1

(44)

The conditional means μ β α| , ,a bi i i
and variances σ β α| , ,a bi i i

2 follow directly from l
I

and R
I

in (19)–(20).

Step 8

The item parameters α i , i = 1, ..., I are drawn from their posterior distributions given tj, s, b, l
I

, and R
I

.
From (17)–(18),

f(α i |lΡ , R Ρ ) = φ(α μ σα β α| βi a b a bi i i i i i
; ,| , , , ,

2 ). (45)

Hence, for the posterior distributions of α i given tj, s, b, l
I

, and R
I

,

f(α i |tij, τ j , β i ) � f t ij
j

J

(
�
�

1

; τ j , α i , β i )φ(α μ σβ α| βi a a b a bi i i i i i
; ,| , , , ,

2 ),
(46)

where the first factor is given in (10). Since the density has no closed form, we suggest a Metropolis-Hastings
step: At iteration t, a value ait

" is sampled from a proposal density ϕ(α it , α i t( )�1 ), which is accepted
with probability

max 1
1

1,
( | , , )

( | , , )

(

)

(f a t

f t
it ij j i

i(t ij j i

i t
"

�

�
�

τ β

α τ β

ϕ α )

( )

, )

( ,

α

ϕ α α

it

it i t

"

"
�

	


�

��


�
�

��1

;
(47)

otherwise, the value at the preceding iteration is retained; that is, α it = α i t( )�1 . The ratio of the posterior
densities in (47) simplifies to

α

α
it

i t

J
"

�

�

�

�
�

�

�

�
�

( )1

exp � � � � �
�

"
�

"
1
2

2
1

2 2( ) (ln ( ))
(

( )

| ,
α α β τ

α μ
it i t ij i j

it a a b
t i i , ( ) | , ,

| , ,

) ( )β β

β

α μ

σ
i i i i

i i i

i t a a b

a a bj

J 2
1

2

2
1

� ��

�

�
�

�
�

�
�

�

�
�

	


�

��


�
�

��
. (48)
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Step 9

Population parameters lΡ and R Ρ are sampled from their posterior distribution given n. Since the
normal/Inverse-Wishart prior is conjugate with the multivariate normal population model, the posterior
distribution is also in the normal/Inverse-Wishart family:

R Ρ |n ~ Inverse-Wishart(R Ρ "
�1 , ν Ρ "); (49)

lΡ |n, R Ρ ~ MVN(lΡ " , R Ρ /κΡ " ); (50)

where

R Ρ " = R Ρ 0 + Sn +
κ

κ
Ρ

Ρ

0

0

I

I�
(n n� )(n n� )T;

(51)

ν Ρ " = ν Ρ 0 + I; (52)

κΡ " = κΡ 0 + I; (53)

l l nΡ
Ρ

Ρ
Ρ

Ρ
" � �

�
�

κ

κ κ
0

0
0

0 1I
I

;
(54)

and Sn is defined as

Sn = (
i

I

�
�

1

n n� )(n n� )T.
(55)

Step 10

The sampling of the item-domain parameters l
I

and R
I

from their posterior distributions given ψ is
similar to (48)–(54) with lΡ R Ρ , n, and I replaced by l

I
R

I
, w, and N.

Discussion

In spite of the complexity of the framework for the current choice of component models, Gibbs sampling
is straightforward due to conjugacy between the model and prior distributions at each stage in the hierarchy.
The only exception is for the discrimination parameter in the response-time model (Step 8). The proposed
Metropolis-Hastings (MH) step for this parameter need not involve a substantial loss of efficiency of the
sampler. An obvious strategy is to repeat Step 8 within each cycle until a new draw is accepted. For this and
other issues related to the use of an MH step in a Gibbs sampler, see Carlin and Louis (2000, sect. 5.4).

Goodness of Fit of the Lognormal Model

The two most important component models are the lower-level response and response-time models.
Response models have been applied routinely in operational testing. An application of the lognormal model
for the adaptive version of a test in the Armed Services Vocational Aptitude Battery (ASVAB) in van der
Linden (in press) showed an excellent fit. Figure 3 gives an impression of the best-fitting and worst-fitting
item in the set of 48 items calibrated in this study. Each plot shows the cumulative distribution of the
probabilities of exceedance for the actual response times (”Bayesian p-values”) for the 2,000 test takers in the
sample. A perfect fit is obtained if the curve coincides with the identity line. The two plots seem to imply a
satisfactory fit for the entire range of items in this study.
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Concluding Comment

The presence of both a response model and a response-time model at the lower level gives the
hierarchical framework large applicability in educational and psychological testing. In particular, the
second-level link between the item and person parameters in the framework allows us to predict
response-time parameters from the responses, and conversely.

The model can also be used for analyzing reaction time data in psychological experiments. It does not
force us to use the same standardized tasks in one experiment. Further, it allows us to equate results from
different experiments and to study the same type of task performed under different conditions of speed. In
fact, if the same set of tasks is repeated under different conditions of speededness, a version of the
framework with the population model replaced by a within-person model could be used to estimate a
tradeoff between speed and accuracy.
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