SCISPACE

formerly Typeset

@ Open access « Proceedings Article « DOI:10.1109/ATNAC.2018.8615255

A Hierarchical Intrusion Detection System using Support Vector Machine for SDN
Network in Cloud Data Center — Source link [

Quentin Schueller, Kashinath Basu, Muhammad Younas, Mohit Patel ...+1 more authors

Institutions: Oxford Brookes University, Indian Institute of Technology Bombay

Published on: 01 Nov 2018

Topics: Intrusion detection system, Network architecture, Network packet, Software-defined networking and
Cloud computing

Related papers:

« An Intrusion Detection System Based on Network Processor

« TCP/IP Model and Intrusion Detection Systems

« Suspicious Traffic Detection in SDN with Collaborative Techniques of Snort and Deep Neural Networks
« XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-Based Cloud

« Design and Implementation of High-Performance Intrusion Detection System

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-
30d4tbivagf

https://typeset.io/
https://www.doi.org/10.1109/ATNAC.2018.8615255
https://typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-30d4tbivqf
https://typeset.io/authors/quentin-schueller-qmc1x7b28q
https://typeset.io/authors/kashinath-basu-1hhkufci9n
https://typeset.io/authors/muhammad-younas-3o5xke9qbk
https://typeset.io/authors/mohit-patel-uhrus1bhsi
https://typeset.io/institutions/oxford-brookes-university-1u3peiwe
https://typeset.io/institutions/indian-institute-of-technology-bombay-4kw03i7u
https://typeset.io/topics/intrusion-detection-system-musw5wdq
https://typeset.io/topics/network-architecture-gjr5x64w
https://typeset.io/topics/network-packet-2x03c3ea
https://typeset.io/topics/software-defined-networking-39cfrgsh
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/papers/an-intrusion-detection-system-based-on-network-processor-3jrohm82ai
https://typeset.io/papers/tcp-ip-model-and-intrusion-detection-systems-2c2n9gu2fd
https://typeset.io/papers/suspicious-traffic-detection-in-sdn-with-collaborative-3pncrfq2kd
https://typeset.io/papers/xgboost-classifier-for-ddos-attack-detection-and-analysis-in-15hsi0u655
https://typeset.io/papers/design-and-implementation-of-high-performance-intrusion-3xxmn1te1t
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-30d4tbivqf
https://twitter.com/intent/tweet?text=A%20Hierarchical%20Intrusion%20Detection%20System%20using%20Support%20Vector%20Machine%20for%20SDN%20Network%20in%20Cloud%20Data%20Center&url=https://typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-30d4tbivqf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-30d4tbivqf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-30d4tbivqf
https://typeset.io/papers/a-hierarchical-intrusion-detection-system-using-support-30d4tbivqf

A Hierarchical Intrusion Detection System using

Support Vector Machine for SDN Network in Cloud
Data Center

Quentin Schueller
Kashinath Basu
Muhammad Y ounas
School of Engineering, Computing and
Mathematics
Oxford Brookes University
Oxford, United Kingdom
{kbasu, m.younas}(@brookes.ac.uk

Abstract— Software-Defined Networks (SDN) has emerged
as a dominant programmable network architecture for cloud
based data centers. Its centralised programmable control plane
decoupled from the data plane with a global view of the network
state provides new opportunities to implement innovate security
mechanisms. This research leverages this features of SDN and
presents the architecture of a hierarchical and lightweight
Intrusion Detection System (1DS) for software enabled networks
by exploiting the concept of SDN flows. It combines advantages
of a flow-based IDS and a packet-based IDS in order to provide
a high detection rate without degrading network performances.
The flow-based IDS uses an anomaly detection algorithm based
on Support Vector Machines (SVM) trained with DARPA
Intrusion Detection Dataset . This first line of defence detects
any intrusions on the network. When an attack is detected, the
malicious flow is mirrored to a packet-based IDS, for further
examination and actions. The results show that this scheme
provides good detection rates and performances with minimal
extra overhead.

Keywords—intrusion detection system, machine learning,
support, vector machine, software defined network, cloud
computing

1. INTRODUCTION

Cloud based data center provide a wide range of services
such as Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS) and Infrastructure-as-a-Service (IaaS). The very nature
of the cloud based service model requires that services are
open ended and available to its customers with appropriate
level of quality of service (QoS). The SDN network has
emerged as a popular networking choice for managing the
networking aspects of complex QoS requirements within the
cloud [1]. A key requirement of the networking infrastructure
is also to provide adequate level of cyber security and
protection to cloud services without compromising QoS and
preserving the openness appropriate to the service. Though
SDN is extremely robust in handling different categories of
traffic with varying QoS requirements it lacks in-built security
mechanisms. Similar to traditional networks, additional layers
of security are required to protect data sent over the networks.
The typical security lines of preventive defence are anti-virus,
encryption, firewall, access control list (ACL), etc. However,
even with a strong defence line, security threats still exist and
an intrusion may occur. Thus, complementary reactive

Mohit Patel
Department of Computer Science and
Engineering
Indian Institute of Technology Bombay
Mumbai, India
mohitpatil@cse.iitb.ac.in

Frank Ball
Frank Ball Consulting
Oxford, United Kingdom

mechanisms of security like IDS are required [2]. An IDS
detects intrusions by analysing the information that can be
gathered from the system. In the case of network-based IDS
(NIDS), data is collected directly from the network through an
inspection of transiting packets. However, traditional IDS like
Snort [3] or Suricata [4] analyses every packet. However, due
to large volume of data, this degrades the performance of the
network and results in increase in the network delay and
additional processing overhead on the infrastructure.

Traditional network has inherently a stateless core and
services each packet individually. But in an SDN the concept
of stateful core with flows and centralised control can be
exploited to provide better security features. Based on these
advantages of SDN, this research presents the architecture of
a hierarchical IDS scheme that is both lightweight and scalable
and provides identical performance of that of a traditional
packet-based scheme. The designed solution is composed of a
lightweight flow-based IDS that implements an anomaly-
based detection scheme trained with a SVM engine. At the
next level, any malicious flow that is detected is passed
through a packet-based IDS using a signature-based detection
for further investigation. The proposed scheme exploit the
advantages of SDN as well as recent development in machine
learning to provide a solution that is modular and can be
regularly updated by training the algorithm with new data set.

The rest of the paper is organised as follows: section 11
provides a background and analysis on SDN, IDS, SVM
machine leaning scheme and the dataset used in the research;
section III presents the architecture of the proposed IDS;
section IV explains the testbed and the evaluation criteria;
section V presents the analysis of the experiment results; and
finally section VI concludes with a reflection of the key
achievements and potential future work.

II. BACKGROUND

A. Software-Defined Networks

The traditional networks are built on proprietary devices
with embedded software requiring manual configurations of
each device. This concept is error-prone and complex.
Moreover, response to changes based on network conditions
is extremely slow and labour intensive [5]. The SDN model
decouples the network into application, control and

infrastructure (or data) plane. The infrastructure plane (both
physical and virtual) consists of the data forwarding devices
such as routers, switches, access points, etc. which are
managed by the control plane. A controller sits in the control
plane and manages a high level network wide state of the
relationship between network resources, policies and services.
The application plane can host third party applications for
network monitoring, load, balancing, QoS, security, etc. The
IDS developed in this research is hosted on this plane. The
communication between the planes is via the northbound and
southbound interfaces. The three planes can be developed
independently and services added to them as long as the
communication interfaces between the planes are compatible.
In this research, the OpenFlow (OF) [6] signalling protocol
has been used at the southbound interface for communication
between the control and infrastructure plane and the rest API
at the northbound for communication between the IDS and the
controller. Both these protocols are actively developed and are
popular choice for future emerging SDN based data center
solutions.

Any OpenFlow compatible forwarding device such as a
OpenFlow switch will contain a flow table containing
information about flows and the corresponding actions on the
matching flows. Any unknown flow is always passed to the
control for further processing. The controller can also query
and update the flow table with appropriate signalling
primitives. Our IDS uses these primitives to collect
information about the flows and to remove malicious flows.

B. Intrusion Detection Systems

The role of IDS is detecting events occurring in a computer
or network system and identifying any violations of policies,
malicious activities, unauthorized or abuse of computer
systems. Although IDS can be implemented both i host
(Host-based IDS) or network (Network-based IDS), the focus
of this research is on network-based IDS. Some popular open-
source network based IDS include Snort, Suricata and Bro [7].
One way of classifying the different types of IDS is based on
the type of analyser and detection algorithm used.

The detection algorithms can be divided into the signature-
based (or misused based) algorithm and the anomaly-based (or
behaviour based) algorithm. In the former case, detection of
suspicious behaviour is based on string pattern matching with
pre-defined patterns of known attacks stored in a database as
signatures. This type of detection can only detect pre-defined
known attacks with great accuracy, but new attacks cannot be
detected until updating the signature database. Signature-
based IDS has a very low false positive rate but a higher false
negative rate [8]. It also requires every packet to be compared
with a serialised list of signatures. It can be a resource
intensive and a slow process depending on the volume of
traffic and the size of the signature database. Signature based
schemes cannot take advantage of the flow level abstraction
supported in SDN where only flows which needs further
analysis are meant to be forwarded to the controller. This
contradicts with the working process of signature packet-
based IDS scheme such as Snort where every packet transiting
the network needs processing and hence has to be mirrored to
the controller for inspection thus degrading the performance
and overhead on the controller [9]. Hence this type of scheme
is only suitable for suspicious flows which have already been
marked for further analysis. In the proposed IDS, signature
based detection is only used to a subset of the flows identified
as potentially suspicious at the second level of analysis. This

reduces the impact of processing overhead associated with the
scheme.

Anomaly-based detection involves comparing observed
activities with a pre-defined profiles considered as normal
behaviour. If a behaviour deviates from the stored profile, then
this behaviour is considered as an intrusion attempt. Hence,
unlike signature-based detection, anomaly based detection
schemes can detect unknown attacks. The detection schemes
in this category is classified into three classes: machine
learning, knowledge-based engines and statistical engines
[10]. Machine-learning techniques can recognize complex
patterns automatically and make intelligent decisions. The
quality of the detection varies based on the learning algorithm
and training dataset. This research uses the SVM algorithm for
anomaly detection at the top level of the proposed IDS. The
knowledge-based engines are composed of a knowledge-base
that contains the pre-defined profiles and an inference engine
that use the knowledge-base and rules to deduce the claimed
behaviour. The statistical engines determine how far the
observed behaviour is deviating from the previously measured
threshold in terms of metrics such as CPU usage, consumed
network bandwidth, number of service invocations, etc.
Anomaly-based IDS can identify previously unknown attacks
as it does not rely on a database with exact signatures, but the
rate of false positives is higher [11].

C. Machine Learning Algorithms for IDS

Machine learning algorithms are suitable for training an
IDS based on past intrusion detection dataset and prevent
similar intrusion in the future. However, the suitability of an
algorithm and the training dataset are crucial. Machine
learning algorithms can be broadly classified into four
categories: supervised learning, unsupervised learning, semi-
supervised learning and reinforcement learning algorithms.
Supervised learning include learning from pre-labelled
classified dataset and making prediction using classification,
regression or forecasting [12]. Unsupervised learning uses
clustering and dimension reduction techniques to model the
co-relation and relationships within the dataset in the absence
of any pre-labelled data. Semi-supervised algorithms can
process and learn from dataset which are partially labelled
generally due to the unavailability of complete classified
dataset or where the cost and time of full classification
outstrips the benefit. The reinforcement learning category of
algorithms uses feedback in the form of cumulative response
/reward from its actions on the environment to adapt to the
ideal behaviour for a specific context.

The proposed IDS scheme is based on SVM for anomaly
detection at the first level of the two-tier hierarchical IDS.
Here the SVM engine matches the SDN traffic flows against
its database of conforming flows. Out of profile flows are then
passed to the next level for more detailed packet level
inspection. There are several advantages of using SVM over
the other algorithms. SVMs do not require a reduction in the
number of features in order to avoid over fitting--an apparent
advantage in applications such as intrusion detection. Another
primary advantage of SVMs is the low expected probability
of generalization errors. SVMs also have significantly shorter
training time in comparison to other suitable supervised
algorithms such as neural networks [ref - Mukkamala, Janoski
and Sung [13]. This makes it ideal choice for building efficient
classifiers that can detect intrusions and unknown attacks in
real time environments. Another advantage of SVM is
scalability: SVMs are relatively insensitive to the number of

data points and the classification complexity does not depend
on the dimensionality of the feature space, so they can
potentially learn a larger set of anomaly patterns and thus be
able to scale better than neural networks. SVM also performs
well on data sets that have many attributes, even if there are
very few cases on which to train the model. There is no upper
limit on the number of attributes, the only constraints are those
imposed by hardware. This enables SVM for higher rate in
IDS than other similar algorithms.

In its basic form, SVM is limited to only supporting binary
classifications unlike neural network which can provide
deeper sub classification of the attacks. However, suitable
optimizing algorithm can be used if necessary for further
feature sub-classification by choosing suitable kernel
function. This, however, 1s resource intensive. Nevertheless,
SVM'’s superior properties of fast training, scalability and
generalization capability give them an advantage in the IDS.

III. ARCHITECTURE OF THE PROPOSED SCHEME

The proposed hierarchical IDS scheme is composed of
both the advantages of a flow-based IDS and a packet-based
IDS in order to provide good detection results with minimal
impact on performance. The flow-based IDS acts as the first
line of defence in the proposed IDS scheme. When an attack
is detected further investigations is done by the packet- based
IDS. The IDS application can run independently on top of the
SDN stack and communicate with the controller via suitable
northbound API (Fig. 1). This can make the IDS independent
of the type of network controller used and the underlying
network topology. In large networks, the intrusion detection
processes at each level of the hierarchy can be run on a
separate server to provide scalability without compromising
the response time.

IDS Application
? Plane

Northbound APIs

+
Controllers Control Plane
7
L Southbound
Signalling Interface Data Plane

Switching infrastructur

Fig. 1. The location of the proposed IDS in a SDN network

A. Components of the IDS
The proposed IDS is made of five modules (Fig. 2):

1) The Layer 2 learning switch is a mandatory module for
the learning process of MAC addresses and the associated
ports in the SDN network. Appropriate flow entries are
inserted and deprecated flow are removed from the flow
tables in order to reduce overhead. In addition, this module 1s

responsible for the connection between the flow-based IDS
and the packet-based IDS through a Unix Socket.

2) The Flow Aggregator is responsible for gathering
flows statistics and ports statistics from OpenFlow switches
in the SDN network. . This module makes periodical requests
to the switches via the controller to retrieve flow statistics,
port statistics and aggregated statistics. OpenFlow switches
responds with corresponding reply event messages. The flow
statistics reply contain information on source/destination
MAC and IP addresses, protocol, byte count, packet count,
duration, etc.; the port statistics reply contain information on
send and received packets, bytes, packets dropped, frame and
CRC errors, collisions, etc.; and the aggregate statistics reply
contains the overall aggregated byte count and the packets
count processed by a switch. In the proposed IDS, only the
flow statistics are used by the detection algorithm. The two
others messages are used to assess the performances of the
solution (see section IV). The flow and port information are
collected, normalised and structured and passed to the Flow
Logger and Extractor module.

Flow Aggregator

Featwre Extractor

[Flow-based IDS

(Anomaly Detection Engine)

Anomaly
Detected?

v

Packet-based IDS
Signature based detection)

Signature
matched?

Normal flow

Intrusion
alarm raised

False alarm

Fig. 2. The components of the proposed 1DS

3) The Flow Logger and Feature Extractor module
processes the flow information passed by the Flow
Aggregator and computes 6 tuples based on [14]. These
include average number of packets per flow, average number
of bytes per flow, average duration of a flow, percentage of
symmetric paired flows, rate of increase in the number of
single flows and growth of new ports. These six key signature
feature captures relevant flow characteristics which is then
passed to the flow-based IDS. In addition, this module also
logs all flow information into log files for future analysis.

4) The Flow-based IDS acts as the first line of defence in
the proposed IDS scheme. It operates on all traffic entering
the network. An anomaly-based scheme is used as the
detection algorithm. As discussed in section I1.B, compared
to signature-based detection, anomaly based scheme can

detect unknown attacks and is comparatively lightweight
with low overhead. This 1s particularly suitable in this case
since it operates on all traffic entering the network. The
chosen detection algorithm uses machine learning through
SVM. The classification and prediction of flows use the 6-
tuples received from the Flow Extractor and Logger. The
inherent model of the SDN network with its support for flow
level probing and statistics gathering is exploited by the
anomaly based scheme for computing the tuples used for
classification.

When a suspected intrusion is detected by the flow-based
IDS, it would request a deeper analysis by mirroring and
redirecting the corresponding flow to a packet-based IDS.
This reduces the amount of false positive prevalent in an
anomaly-based scheme as discussed in section IL.B. The
flow-based IDS also records and logs flows information,
alarms and packets for further analysis.

5) The Packet-based IDS acts as the second level of
defence in the proposed hierarchical system. It uses a
signature-based intrusion detection that analyses only packets
from flows considered as suspicious by the flow-based IDS.
It has got a comparatively high overhead and processing
delay because of packet by packet processing. However,
since it only operates on a small fraction of the traffic, its
effect is negligible on the overall system. This intrusion
detection system can be any popular IDS (e.g. Bro, Suricata,
Snort, etc.). There are trade-offs of using one over the other.
For example, Suricata provides more detailed alerts
compared to Snort but it has considerable higher processing
overhead [15]. In the current prototype, Snort was chosen.
Snort can operate in three modes: In the sniffer mode, it reads
packet from the NIC and dumps them on the standard output;
in logger mode Snort can store the trace files on disk in
various format ranging from flat ASCII, XML, database, etc.
for later analysis; and in /DS mode Snort can be configured
with a variety of intrusion detection signature rules and the
network traffic cross-checked against those rules for potential
intrusion. In the proposed system, Snort has been configured
in the IDS mode (see section IV.A). After analysing the
traffic Snort sends back results in the form of alerts. These
alerts could then be used by the controller to remove
suspicious flows from flow tables of the target switches using
OpenFlow signalling primitives.

IV. EXPERIMENT SETTINGS

A. Testbed

The cloud network topology was constructed using the
Mininet network simulator [16]. It consists of eight OpenFlow
v1.3 enabled switches with five switches forming edge of the
network and each connected to 16 server hosts (Fig. 3).
Addressing of the hosts is based on the DARPA dataset
(section IV.B). The switches in the infrastructure plane is
connected to the Ryu SDN controller [17]. Ryu was primarily
selected because of its support for REST API and for being
Python native. However, for a cloud level data center
implementation other controllers can be suitable (Table 1).
The Flow Aggregator, Logger and Flow-based IDS were
implemented as northbound application on top of the Ryu
controller. The SVM classification algorithm was
implemented using scikit-learn [18] Python library. This part

of the topology was setup on an Ubuntu virtual machine
(VM).

Packet-based IDS Kali VM

v

Flow-based IDS

Ubuntu VM

Logger & Feature Extractor
Flow Aggregator

80 Cloud Servers

Fig. 3. The topology ofthe testbed

The packet IDS, Snort, was running on a separate Kali
Linux 2.0 VM and communicating with the controller through
a Unix Domain TCP socket using pigrelay [19]. Snort is
installed as a classical configuration along with optional
modules in order to simplify administration and maintenance.
PulledPork [20] updates Snort with the latest available
signatures for up-to-date detection. When the flow-based IDS
detects an attack, the packet-based IDS receives the mirrored
copy of the malicious flow to analyse. After analysis, the
result is sent back to the controller in the form of alerts. The
controller can then remove any malicious flow from the flow
table of the corresponding switch. In addition, Barnyard2 [21]
converts the binary unified2 logs produced by Snort into
readable events that are then inserted into a MySQL database
and can then be viewed on Snorby by network administrators
for analysis. [22].

B. Dataset

Selecting the right dataset is a critical part because the
overall efficiency of the proposed IDS relies on it, both for
training and testing. Producing a dataset from scratch is time
consuming, prone to errors and could be biased [23]: hence a
subset of the DARPA dataset from the MIT Lincoln
Laboratory was used [24]. This dataset is widely used for IDS
research [25]. The dataset consists of three weeks of training
data and two weeks of testing data. The week one and three
from the training data are composed of normal traffic. The
week two of training data consisted of some of the common
attacks seen in a cloud data center which includes: Probe -
scanning the network or host to retrieve IP addresses, ports,
OS versions, etc. ; Denial of Service (DoS) - disruption of host
or network; Remote to Local (R2L) - gains access to local
machine remotely; User to Remote (U2R) - elevation of

privileges; and Data attacks - extraction of non-authorized
data.

C. Evaluation criteria

The efficiency of the proposed IDS is analysed in terms
of its capabilities in detecting attacks and the overheads used
in the process such as computing resources and false alarms.
In that context, the following evaluation criteria has been
used:

The Detection Rate (DR) gives a measurement of the
fraction of attacks that has been detected and is computed as:

TP

TP+FN 1
where True Positive (TP) 1s the number of attacks detected
and False Negative (FN) 1s the number of attacks missed by
the IDS. Their sum gives the total number of attacks in the
system. DR provides a measurement of the accuracy of the
systeni.

The False Alarm Rate (FAR) gives a measurement of the
proportion of false alarm and is computed as:

FAR= (2)

TP+FP

where False Positive (FP) is the amount of normal traffic
classified incorrectly as malicious. A high false alarm rate
results in unnecessary removal of ordinary legitimate flows
and has additional overhead of further analysis and
processing on the part of network administrator.

The Error Rate (ER) gives a measurement of the overall
incorrect classification by the system and is represented as:

FP+FN
ER

= — 3

TP+TN+FP+FN)
where True Negative (TN) is the amount of correctly detected
ordinary flows and the sum of the denominator represents the
total number of flows in the system.

The additional overhead of the IDS on the performance of
the SDN network is evaluated by the processing overhead to
compute the periodical flow statistics requests sent to

switches which is then used by the IDS for intrusion detection.

The overhead 1s calculated as follows:

i n X Frame size "
e Total Traffic “)

where n corresponds to the number of flow statistics events
captured within the testbed by the controller. Wireshark
exposes a frame size of 162 bytes for these events. Finally,
the Total Traffic is the total number of bytes sent by
OpenFlow switches during the evaluation.

V. RESULTS

Before replaying weeks four and five of the dataset, the
data was converted from the tcpdump format into the pcap

format to replay the file with tcpreplay. The controller and the
simulated Mininet network were launched in separate
terminals on the Ubuntu Machine.

A. Performance Evaluation

Table I and Il shows the breakdown of the results of
running the dataset of week four and five respectively on the
IDS. The Flow-based IDS column shows only the results
from the anomaly based SVM whereas the Packet-based IDS
column shows only the results from processing the packets
classified as malicious by the flow-based 1DS. The
Flow+Packet-based IDS shows the overall results from the
proposed hierarchical IDS. Although the subset datasets of
the two weeks are quite varied, the performance in terms of
DR, FAR and ER shows identical trends.

TABLE L WEEK 4 RESULTS
Flow-based Packet-based | Flow +
IDS IDS * Packet based IDS
TN 588 84 672
TP 1.377 1,369 1369
FN 259 8 267
FP 146 62 62
DR 84.17% 99.42% 83.68%
FAR 9.59% 4.33% 4.33%
ER 17.09% 4.60% 13.88%
TABLE 1L WEEK 5 RESULTS
Flow-based Packet-based | Flow +
IDS IDS * Packet based IDS
TN 647 22 669
TP 461 448 448
FN 71 13 84
FP 58 36 36
DR 86.65% 97.18% 84.21%
FAR 11.18% 7.44% 7.44%
ER 10.43% 9.44% 9.70%
* only flows identified as suspicious by flow-based IDS are

The DR of the packet-based IDS is high for both the
weeks (99.42% and 97.18% respectively) as it only operates
on traffic classified as malicious by the flow-based IDS. The
DR ofthe flow+packet IDS is slightly lower compared to only
the flow-based part (difference of 0.049% and 2.44%
respectively) is a small penalty for the performance gain in
terms of FAR (improvement of 5.25% and 3.74% respectively
for the two weeks) and ER (reduction by 3.2% and 0.73%
respectively) which has a bigger impact in a cloud data center.
Table III shows the cumulative performance of the IDS over
the two weeks.

TABLE IIL OVERALL RESULTS
Flow-based Packet-based | Flow +
IDS IDS * Packet based IDS
TN 1235 106 1341
TP 1838 1817 1817
FN 330 21 351
FP 204 98 98
DR 84.78% 08.86% 83.81%
FAR 9.99% 5.12% 5.12%
ER 14.80% 5.83% 12.45%

B. Overhead

The overhead generated by periodical flow statistics
messages required by the flow-based IDS has a minimal
impact on the performance (Table IV) with only an overhead
of 0.88% and 0.56% over week four and five respectively.
OpenFlow also has a number of additional state, port and
aggregate signalling messages but these are not used in the
IDS and hence not used here for computing the IDS specific
overhead.

TABLE IV. OPENFLOW SIGNALLING OVERHEAD
Week 4 Week 5
EventOFPFlowStatsReply 1,748 752
Total traffic (bytes) 32,048,629 | 21,587.087
Overhead 0.88% 0.56%

VI. CONCLUSION

Compared to related research, the dataset used here had a
very low number of redundant records making intrusion
detection more challenging. Still, the results shows that the
proposed hierarchical IDS scheme has a good detection rate,
a low false positive and error rate and operates with a
negligible overhead. The research provides an architectural
framework of integrating different categories of intrusion
detection schemes hierarchically by exploiting the strengths
ofindividual schemes and addressing their weaknesses at the
next level of the hierarchy to provide an overall robust IDS
system. One notable aspect of the implementation is the
modularity of the components and the bi-directional
communication channel via the centralised controller. Both
the SVM learning engine and the Snort module can be readily
replaced based on the scenario and requirements. Moreover,
to achieve higher scalability in an enterprise environment, the
controllers can be distributed and the individual northbound
applications can be hosted on dedicated servers.

REFERENCES

[1] A. Singh, et. al., “Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google's Datacenter Network”, In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM '15). ACM. New York, NY, USA, vol.
45, no. 4, pp. 183-197.

[2] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems (idps)”, NIST special publication, vol. 800, no. 2007, pp. 9
14, 2007.

[3] Snort, Network intrusion detection and prevention system, 2016.
[Online], https://www.snort.org/ (accessed: 11.06.2018).

[4]

[5]

[6]

[7]

[10]

[11]

[12

[13

[14]

[15

[16]
[17]

[18]

[19]

[20]

[24]

[25

[26]

Suricata, Open source ids / ips / nsm engine. [Online]. Available:
https://suricata-ids.org/ (accessed: 07.06.2018).

A. L. Valdivieso Caraguay, A. Benito Peral, L. I. Barona Lopez, and
L. J. Garcia Villalba, “SDN: Evolution and Opportunities in the
Development loT Applications”, International Joumal of Distributed
Sensor Networks, vol. 2014, pp. 1-5, 2014.

Open Networking Foundation: OpenFlow switch specification.
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf.
(2013) (accessed: 07.06.2018).

Bro, The bro network security monitor, 2014. [Online]. Available:
https://www.bro.org/ (accessed: 07.06.2018).

M. Alenezi and M. J. Reed, “Methodologies for detecting dos/ddos
attacks against network servers”, in The Seventh Intemational
Conference on Systems and Networks Communications ICSNC, 2012,
pp. 92-95.

D. Alsmadi lzzatXu, “Security of sofiware defined networks: A
survey”, Computers and Security, vol. 53, pp. 79-108, 2015.

V. Kumar, J. Srivastava, and A. Lazarevic, Managing cyber threats:
Issues, approaches and challenges. Springer Science & Business
Media, 2006, vol. 5.

M. Alenezi and M. J. Reed, “Methodologies for detecting dos/ddos
attacks against network servers,” in The Seventh Intemational
Conference on Systems and Networks Communications ICSNC, 2012,
pp. 92-98.

C.F. Tsai, Y.F. Hsu, C.Y. Lin and W.Y. Lin, “Intrusion detection by
machine leaming: A review. Expert Systems with Applications; vol.
36(10):11994-2000, 2009.

M.J. Kang, and J.W. Kang, Intrusion detection system using deep
neural network for in-vehicle network security. PloS one, 11(6),
p.e0155781, 2016.

R. Braga, E. Mota and A. Passito, "Lightweight DDoS flooding attack
detection using NOX/OpenFlow.," IEEE Local Computer Network
Conference, Denver, CO, pp. 408-415, 2010.

B. Brumen and J. Legvart, "Performance analysis of two open source
intrusion detection systems," 39th International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO 2016), Opatija, pp. 1387-1392, 2016.
Mininet, An instant virtual network on your laptop, 2016. [Online].
Available: http://mininet.org/ (accessed: 26.05.2018).

RYU the Network Operating System(NOS), Available:
https://ryu.readthedocs.io/en/latest/index.html (accessed: 15.05.2018).
S. Jain, et. al., “B4: Experience with a globally-deployed software
defined wan”, SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp.
3—14, Aug. 2013.

PigRelay. 2015. [Online]. Available:
Lin/pigrelay (accessed: 15.05.2018).
Pulledpork, Pulled pork for snort rule management, 2016. [Online].

https://github.com/John-

Available: https://github.com/shirkdog/pulledpork (accessed:
15.05.2018).
Bamyard2, 2016. [Online]. Available:

https://github.com/fimsy/bamyard2 (accessed: 4.06.2018).

Snorby, Network security monitoring tool, [Online]. Available:
https://github.com/Snorby/snorby (accessed: 7.06.2018).

C. Jeong, T. Ha, J. Narantuya, H. Lim, and J. Kim, “Scalable network
intrusion detection on virtual sdn environment”, in Cloud Networking
(CloudNet), IEEE 31d International Conference on, 2014, pp. 264-265.

Lincoln Laboratory. Massachusetts Institute of Technology., Darpa
intrusion detection data sets, 1998, [Online]. Available:
https://www.ll.mit.edw/ideval/data/index.htm (accessed: 2.05.2018).1.
C. Thomas, V. Sharma, and N Balakrishnan, “Usefulness of darpa
dataset for intrusion detection system evaluation”, in SPIE Defense and
Security Symposium, Intemnational Society for Optics and Photonics,
2008, 69730G-69730G

M. Young, The Technical Writer's Handbook. Mill Valley, CA:
University Science, 1989.

