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In this article a continuous-time stochastic model (the Ornstein–Uhlenbeck process) is presented to model

the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our

affective experiences. The process model that we propose can account for the temporal changes in core

affect on the latent level. The key parameters of the model are the average position (also called home

base), the variances and covariances of the process, and the regulatory mechanisms that keep the process

in the vicinity of the average position. To account for individual differences, the model is extended

hierarchically. A particularly novel contribution is that in principle all parameters of the stochastic

process (not only the mean but also its variance and the regulatory parameters) are allowed to differ

between individuals. In this way, the aim is to understand the affective dynamics of single individuals and

at the same time investigate how these individuals differ from one another. The final model is a

continuous-time state-space model for repeated measurement data taken at possibly irregular time points.

Both time-invariant and time-varying covariates can be included to investigate sources of individual

differences. As an illustration, the model is applied to a diary study measuring core affect repeatedly for

several individuals (thereby generating intensive longitudinal data).
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Affective experience colors our lives. Feelings like joy, sadness,

anger, and love are the affective tides of our being. A crucial feature

of affect is that it changes and evolves over time. Hence, a genuine

understanding of our affective system must be based on understanding

the affective dynamics. Prominent researchers in the field consider

this a challenging goal that deserves systematic study. For instance,

Scherer (2000) believed that the study of the time course of emotional

experience could bring about a paradigm shift in emotion psychology,

and Boker (2002) claimed that understanding the dynamics of emo-

tion is a challenging goal deserving a comprehensive investigation.

Referring specifically to research into the patterns of change that are

particular to human emotions, Davidson (2003) even coined a partic-

ular term: affective chronometry.

To make such an endeavor possible, the use of dynamic systems

theory has been put forward by a number of researchers (e.g.,

Lewis, 2005; Scherer, 2000; Shoda, LeeTiernan, & Mischel, 2002;

Witherington & Crichton, 2007). However, there are relatively few

recent studies in which dynamical systems models have been

applied to investigate affective dynamics, although there are some

notable recent exceptions (e.g., Boker, 2002; Boker & Laurenceau,

2006; Chow, Ram, Boker, Fujita, & Clore, 2005; Hamaker, Zhang,

& van der Maas, 2009; Hoeksma, Oosterlaan, Schipper, & Koot,

2007). Our contribution in the present article is the development of

a specific substantively grounded dynamic systems model with

individual differences for the crucial parameters. Additionally, we

present the necessary methods to apply it to real data.

Specifically, we will focus on the dynamics of core affect, which

has a central role in current emotion theory (Barrett, Mesquita,

Ochsner, & Gross, 2007; Russell, 2003). Core affect lies at the heart

of our affective experience and consists of hedonic (pleasure–displea-

sure) and arousal (deactivated–activated) dimensions. According to

Russell (2003), core affect does not always actively come to the

surface of our consciousness, but it is at all times consciously acces-

sible, so that people can provide information about their current state.

It is assumed that at least part of the momentary emotional experience

relies on the current core affect state.

When we construct a model for temporal fluctuations in the core

affect state over time, three important factors need to be taken into

account in order to have a plausible, realistic model. First, because

the complexity of the subject makes any description necessarily

incomplete, our model should allow for a fair degree of random-

ness. Second, the model should contain an aspect of control and

regulation. Third, although a single model can underlie the core

affect dynamics, quantitative individual differences can show up in

different places and need to be accounted for.

Central Aspects of Affective Changes: Randomness,

Regulation and Individual Differences

Our emotional life in general, and core affect in particular, is

constantly influenced by external and internal factors (Denissen,

Butalid, Penke, & van Aken, 2008; Russell, 2003; Russell &

This article was published Online First August 8, 2011.

Zita Oravecz, Francis Tuerlinckx, and Joachim Vandekerckhove, De-

partment of Psychology, University of Leuven, Leuven, Belgium.

Correspondence concerning this article should be addressed to Zita Oravecz,

Department of Psychology, University of Leuven, Tiensestraat 102 Box 3713,

B-3000 Leuven, Belgium. E-mail: zita.oravecz@psy.kuleuven.be

Psychological Methods
2011, Vol. 16, No. 4, 468–490

© 2011 American Psychological Association
1082-989X/11/$12.00 DOI: 10.1037/a0024375

468



Barrett, 1999; Watson, Wiese, Vaidya, & Tellegen, 1999). Listing

all these minor and major impacts would be a cumbersome, if not

an impossible task, and measuring them would be an even greater

challenge. External factors may include environmental effects like

the weather, food intake, drugs, ionization in the air, physical

activity, social company, and so on. Internal effects, on the other

hand, involve important physiological and psychological processes

(e.g., the level of certain critical hormones, perception of one’s

own emotion). Because most of these effects exhibit continuous

change over time, the resultant core affect state will also be subject

to incessant variation. This suggests that, at least in theory, sub-

sequently visited states in the core affect space should form some-

thing like a random trajectory (i.e., a kind of random walk in two

dimensions). Unfortunately, when we attempt to explain such a

core affect trajectory of a person by linking it to external and

internal effects, we may realize that the obtainable information is

very limited: It would be overly optimistic to believe that we are

able to find all events influencing the core affect at a given

moment. As a result, we are left with describing the summed

influence of many contributing unknown factors. The current core

affect state can then be considered the culmination of numerous,

simultaneously occurring small and large impacts. Consequently,

we can assume a considerable degree of uncertainty in the core

affect dynamics, and therefore we will introduce stochastic models

to model the inherent randomness. These models assume that noise

drives the changes in the true score of the variable. Note that in the

model to be presented, measurement noise will also be added, so

that we will be able to distinguish between two sources of random

variation.

A second aspect that we need to consider is the degree of control

present in the emotional life. At the substantive level, our model

should be anchored in the principles of emotion regulation: the

conscious or unconscious efforts people make to exert some in-

fluence on their emotions (Frijda, 2007; Gross, 2007; Gross &

John, 2003; Hemenover, 2003). Many theories based on homeo-

static principles (see, e.g., Carver & Scheier, 1990; Chow et al.,

2005; Forgas & Ciarrochi, 2002; Hemenover, 2003; Larsen &

Prizmic, 2004) suggest that each person has an “ideal point” in the

two-dimensional core affect space to which he or she is drawn

back to a varying extent. If an individual’s current position is

further from the ideal point, the “traction” or restoring force will

become stronger. On a metaphorical level, this assumption might

conjure up the picture of an elastic band connecting the ideal point

with the current position: The force exerted by the elastic will be

stronger for positions farther from the ideal point but will be very

small close to the ideal point.

Finally, individual differences are present at different levels and

locations in the emotion system (see, e.g., Kuppens, Stouten, &

Mesquita, 2009; Kuppens, Van Mechelen, & Rijmen, 2009). To

take the individual differences into account, we could define a

separate model per individual. However, it may happen that the

number of observations for a certain individual is low and the

within-subject estimate might become overly noisy. For this rea-

son, we prefer hierarchical modeling (see also Gelman & Hill,

2007). In a hierarchical model, some of the parameters of the

model can differ across individuals (these parameters are also

called random effects), but given the hierarchical structure of the

model, the parameters of individuals that contribute less informa-

tion to the sample (e.g., because they have fewer measurements)

can nevertheless be reliably estimated. In addition, constraining

parameters to be equal across participants is not problematic, and

one may regress the random effects on covariate information.

Introducing a Dynamical Approach Based on the

Ornstein–Uhlenbeck (OU) Model

On the basis of these important aspects of affective changes, we

turn to the branch of mathematics that deals with random phenom-

ena, namely the theory of stochastic processes. Stochastic pro-

cesses have proven very useful in describing probabilistically

governed change in other domains (e.g., statistical physics, ecol-

ogy), and they seem to be appropriate for modeling complex

human phenomena as well. In the present article, we focus on a

dynamical model built on a particular stochastic differential equa-

tion (SDE), which leads to the OU (Uhlenbeck & Ornstein, 1930)

process. This stochastic process combines elements of stochastic

variability and deterministic control in an elegant way. Moreover,

the OU process is continuous in time (it is the continuous-time

analogue of a first-order autoregressive model), which is appro-

priate for modeling core affect because it does not cease to exist

between observations.1 Also, due to the continuous-time property,

the measurements can be taken at person-specific time points, with

varying numbers of observations per person. Our approach also

allows for the data to be unbalanced and unstructured. The afore-

mentioned complications (unequally spaced measurements, unbal-

ancedness and unstructured data) are very common in data stem-

ming from diary studies. Therefore, from a data-analytical

perspective, such flexibility is a key advantage in several applica-

tions in the field of emotion psychology. In our model, the OU

process represents the change in the true core affect position for a

single person over time. However, it is reasonable to assume that

the subjectively reported or observed core affect positions will

typically be perturbed by measurement error. Incorporating mea-

surement error in the OU model results in a model representation

that belongs to the general class of state-space models (see, e.g.,

Fahrmeir & Tutz, 2001; Jazwinski, 1970; Oud & Jansen, 2000;

Ringo Ho, Shumway, & Ombao, 2006). This stochastic process

may be appropriate to describe the core affect dynamics in a single

individual, but an extension is needed to take into account indi-

vidual differences in the parameters governing the process. There-

fore the key parameters of the state-space OU model will be

allowed to differ across persons. In addition, it will be possible to

link them to person-specific covariate information. Because of the

hierarchical extension, we denote our model as the hierarchical OU

(or HOU) model.2

1 Moreover, simplifying continuous time to discrete may compromise

the possibilities of inference on the dynamics of change (for an example,

see Delsing, Oud, & De Bruyn, 2005).
2 Readers who are interested in an accessible introduction to the topic of

SDE modeling in general and the OU process in particular are referred to

Tuma and Hannan (1984). More general and detailed introductions to

stochastic processes are in Cox and Miller (1972), Gardiner (2004), Karlin

and Taylor (1981), Lawler (2006), and Ross (1996). In this article, we

explain the HOU model in an informal and intuitive way so that no

previous background in SDE or stochastic processes is required.
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The structure of the remainder of the article is as follows: In the

next section, the basic OU model for a single individual is intro-

duced first. It is followed by a hierarchical extension allowing for

the inclusion of individual differences. Then we describe briefly

how statistical inference can be carried out for this model within a

Bayesian framework. Following that, the HOU model will be

applied to data from a diary study. After a discussion of model fit,

the Conclusion section ends the article.

Modeling the Affect Dynamics of a Single Individual:

The OU Model With Measurement Error

In this section, we describe the OU process with measurement

error as a model for the measured state of a single person. Let us

start with some notation. The true or latent position in a two-

dimensional latent space at time t will be denoted by the vector

�(t) defined as �(t) � �1(t), �2(t)T, and the superscript T indi-

cates the transpose operation. In the core affect application, �1(t)

refers to the position on the first dimension (pleasantness) and

�2(t) to the position on the second dimension (arousal). We will

define the model for two dimensions here and we refer specifically

to core affect, but generalizations to more dimensions and other

application areas are possible. In the model formulation, it is

assumed that the true core affect changes continuously throughout

time, but the measurements are taken at a finite number of time

points: t1, t2, . . . , ts, . . . tn, where n stands for the number of

measurements (Time 0 can be defined arbitrarily by, for instance,

setting it equal to the first time point: t1 � 0). We define the vector

Y(ts) � (Y1(ts), Y2(ts))
T as the observed pleasantness and arousal

scores at time point ts. The general model can then be written as

follows:

� d��t� � B�� � ��t��dt � �dW�t�
Y�ts� � ��ts� � ��ts�

, (1)

where � is a vector with two components and � and B are

positive-definite 2 � 2 matrices. The measurement error is repre-

sented by �(ts), which is a random draw from a bivariate normal

distribution with mean (0,0)T and covariance matrix ��. The

component W(t) stands for the standard bivariate Wiener process.

The interpretation of these parameters is elaborated below.

At this point, it is important to note that the model in Equation

1 consists of two parts. The first equation describes the change in

the true core affect position and is therefore a transition equation;

it represents the dynamical aspect of the model. The second

equation maps the true process onto the observed variable and is

called the observation equation.

In the remainder of the section, we explain, step by step, the

model in Equation 1, by first defining the one-dimensional version

of the transition equation. Accordingly, we will introduce the

properties of the full, two-dimensional form. In the end, the role of

the observation equation is clarified.

A Unidimensional SDE

Let us take the transition equation of Equation 1, transform it

into an equation for a unidimensional variable �(t) (e.g., we can

consider either the pleasantness or the activation dimension at

once, but we cannot see how they influence each other). The result

is a linear first-order SDE that describes the dynamics of the OU

stochastic process in one dimension:

d��t� � ��� � ��t��dt � �dW�t�, (2)

where we assume that � 	 0.3 The right hand side of Equation 2

can be divided into two parts: The first part of the sum is deter-

ministic, and the second one is stochastic. Considering only the

deterministic part, it can be deduced that the instantaneous change

in �(t), that is, d�(t), depends on how far the current state �(t) is

from the point �. If �(t) is below � (i.e., � 
 �(t) 	 0), the first

derivative is positive, and consequently �(t) will increase. The

opposite holds when � is above �. Hence, �(t) will always change

in the direction of � and never the other way. Because the process

settles itself at �, this parameter is called a steady state or attractor.

However, we will use the term home base to refer to �, as in the

context of emotions, one may think of � as an ideal point to which

one is drawn. The parameter � controls the magnitude of the

“drawing” effect: If � is large (� 		 1), the difference between the

actual state and � tends to be magnified; therefore a faster change

will occur in the direction of �. With small �s (i.e., � close to

zero), the change becomes substantially slower. Based on this

property, the parameter � is often called the dampening force or

centralizing tendency. If we considered only this deterministic part

as a model for the core affect dynamics, we would encounter a

major disadvantage: The model assumes a gentle but certain return

to the attractor or home base, and then the process remains there.

This appears unrealistic, because over the course of time, many

effects will lead to a divergence between the home base and the

actual state, as has been pointed out in the introduction. Therefore

a realistic model should incorporate an element of randomness,

like the second, stochastic part of the right side of Equation 2. In

this, parameter W(t) stands for a unidimensional Wiener process or

Brownian motion.4 However, it is not the Brownian motion as

such that is added but rather the quantity �dW(t), where � is the

scale of the stochastic term. The random variable dW(t) can be

interpreted loosely as the change in a standard Brownian motion

3 Note that we put all SDEs in the differential form. This differs from the

prime notation often encountered with deterministic differential equations.

However, when the stochastic term is added, not all derivatives are defined

in the traditional way (see, e.g., Jazwinski, 1970), and therefore we prefer

to keep the differential form.
4 In 1828 the English botanist Robert Brown observed that when part

of a pollen of grain is suspended in water, it exhibits an irregular

“animated” motion, and the phenomenon was named after him. The

random Brownian motion was explained by Einstein (1905) by suppos-

ing that the movements are the result of frequent impacts on the particle

by the molecules of the water. Because these impacts are incessant,

complicated, and highly numerous, the resulting movement path of the

particle requires a probabilistic description; a deterministic one is not

feasible. Norbert Wiener (1923) provided a rigorous mathematical

formalization of the Brownian motion, and therefore the Brownian

motion is often called the Wiener process.
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process in very small time interval.5 It can also be written as

dW(t) � �(t)dt, where �(t) is called a white noise process, the

simplest stochastic process in continuous time on the real line

(Gardiner, 2004). It is a mathematical model for a continuous-time

process with independent realizations.

In summary, it follows that in the model of Equation 2, the

change in �(t) is a function of two factors. First, there is stochastic

innovation driving the change process, which is represented by

dW(t). This stochastic innovation term incorporates the multiple

smaller and larger “impacts” that the emotional system undergoes

at a given moment. Second, the control exerted is captured by the

centralizing tendency parameter �.

The solution of the unidimensional OU process involves inte-

grating over Equation 2 and solving a stochastic integral. The

derivation of this solution, together with a brief overview of the

most important properties of the stochastic integral, can be found

in Appendix A (see also Tuma & Hannan, 1984). The general

solution results in an expression for �(t), given that the process

was at �0 at Time 0. However, for our purposes, it is more useful

to condition on the position d time units before, that is, �(t 
 d),

such that it becomes possible to model a chain of subsequent

measurements. With �(t 
 d) as initial value, the solution of

Equation 2 becomes

��t����t � d� � N�� � e
�d���t � d� � ��,
�2

2�
�1 � e
2�d��.

(3)

This conditional normal distribution will turn out to be very

convenient when estimating the parameters of the model, because

it allows us to construct the likelihood.

From Equation 3, we can see that the position at time t, that is,

�(t), depends on the already introduced parameters and the pre-

viously measured position �(t 
 d). Figure 1 displays some

solution curves for this unidimensional OU stochastic process. The

initial values or starting points, that is, �(t 
 d), are different, but

the home base, the centralizing tendency, and the scale of the

stochastic term remain the same (� � 0, � � 1, and � � 0.1). It

can be seen that for an initial value of �0 � 0, there is no change

at all over time. We can clearly see how the stochastic disturbance

term has a profound influence on the trajectories: The return to the

baseline shows a noisy pattern.

If we let d go to infinity in Equation 3 (i.e., we condition on a

position a very long time ago), then we see that the distribution of

�(t) does not depend on �(t 
 d) anymore:

��t� � N��,
�2

2��, (4)

assuming that � 	 0. This fact indicates that the initial state �(t 


d) is forgotten as d 3 �. Parameter �2/2� is the stationary

variance of the process. Because the stationary variance, which we

will denote  � �2/2�, is easier to interpret than the instantaneous

variance �2, as it corresponds directly to the total intraindividual

variance, and because it offers some computational advantages in

the bivariate model, from now on we use a reparameterized version

of the process in which �2 is replaced by 2�.

The Two-Dimensional SDE

With a two-dimensional model, we can incorporate modeling

pleasantness together with activation in one model, and we can

also investigate how they influence each other. For example, we

can see whether the two dimensions tend to change together, in the

same direction or the opposite, and so on. We have already shown

the SDE of the OU process in two dimensions in the first line of

Equation 1. This equation can also be solved to arrive to a

conditional distributional representation of the two-dimensional

OU process. The derivation of this solution can be found in

Appendix B. Here we present only the solution, which is

��t����t � d� � N2�� � e
Bd���t � d� � ��, � � e
Bd�e
BTd�,

(5)

where N2 refers to the bivariate normal distribution. As in the

unidimensional case, the two-dimensional process converges to a

stationary distribution:

��t� � N2��, ��, (6)

provided that all eigenvalues of B are positive. The latter condition

also ensures that the process is stable (Oud & Singer, 2008).

Equation 6 can be considered as a two-dimensional version of

Equation 4. An informal justification of Equation 6 can be obtained

by letting d go to infinity in Equation 5. The matrix � is the

stationary covariance matrix.

The Parameters of the Two-Dimensional OU Process

In this section, we study the interpretation of the parameters

(i.e., �, �, and B) of the two-dimensional OU process in detail.

This will be done mainly by making use of simulated trajecto-

ries and varying the parameter of interest so that we can

visualize its effect. Such a study will increase the understanding

of the process and will set the stage for allowing for individual

differences.

To simulate the trajectories, first a set of 200 time differences

(i.e., t1, t2 
 t1, etc.) was sampled uniformly between 0.5 and 1.

Next, the two-dimensional process was simulated with the condi-

tional distribution from Equation 5. The vector �(0) was drawn

from the stationary distribution. The specific parameter values for

the parameters are given below.

The home base. As in the unidimensional case, � is again the

ideal point to which the process is drawn (also called the home

base), with the only difference that � is now a two-dimensional

vector. From Equation 6, one can also infer that the home base is

the average of the stationary distribution.

In Figure 2, two trajectories are simulated with different home

bases, but all other parameters are constant. As expected, it can be

noticed that with different home bases, the visits are concentrated

around different areas. Stated otherwise, the stationary distribu-

tions are just simple translations of one another.

5 We use dW(t) notation instead of dW/dt, because the latter would be

undefined, as the path of a Wiener process is not differentiable with respect

to time.
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Intraindividual variation: Fluctuations around the home

base. The positive-definite matrix � is the covariance matrix of

the stationary distribution. To simplify the notation of the separate

elements in �, the matrix is decomposed as follows:

� � �1 ��12

��12 2
�. (7)

The parameters 1 and 2 correspond to the variance in the first

and second dimensions, respectively. The parameter � is the

cross-correlation, and it quantifies the strength of the linear depen-

dency between the two dimensions in the stationary distribution. If

� is close to 1, then positive (negative) displacements on one

dimension go together with positive (negative) displacements on

the other dimension.

In Figure 3, two realized OU processes with different � matrices

are shown. In Figure 3A, low variance values were used for the

simulation, yielding small changes, and therefore the process tends

to stay near the home base. In contrast, because of the larger

variances used for Figure 3B, the simulated process covers a wider

area (i.e., higher volatility and thus more dramatic changes). More-

over, in Figure 3A, the cross-correlation is set to 0, whereas in

Figure 3B it is equal to 0.5. As can be seen, increasing the

correlation leads to displacements that coincide as the shape of the

trajectory clearly suggests. (Again, the other parameters were kept

fixed across the two simulations.)

Regulation: The centralizing tendency. The matrix B is the

matrix equivalent of the scalar � in the unidimensional process,

and as such it governs the strength and the direction with which the

process is pulled back to the home base �. As stated before, it is

required that B be a positive-definite matrix such that there is

always an adjustment toward the home base (and hence the process

is stable). If B were not positive definite, the process would

become “explosive,” meaning that it would be pushed away from

the home base. The HOU model cannot capture such a phenom-

enon, and constantly being pushed away from the ideal point does

not seem to be very realistic to model affective dynamics.6 Besides

positive definite, we will also require that B be symmetric, and we

decompose it in a similar way as was shown for �:

B � � �1 ����1�2

����1�2 �2
�. (8)

The symmetry constraint is specific to our model formulation.

One consequence is that the effects of the first process on the

second and vice versa are equal. The reason why we made this

simplifying assumption is that in a later modeling stage, we allow

for individual differences in the elements of B. Without this

assumption, it is extremely difficult to satisfy a basic condition in

the model, namely that Bp�p � �pBp
T has to be positive definite,

because this sum represents the instantaneous covariance matrix,

as shown in Appendix B (see also Dunn & Gipson, 1977). For this

reason we sacrificed the additional level of complexity in the basic

6 Another possibility could be that B � 0, and in that case the resulting

process is simply the Wiener process or Brownian motion. Then we would

assume only random fluctuations in affect, which also seems unlikely.

Figure 1. Solution curves for Equation 3.
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model (i.e., asymmetry) to allow for the study of individual dif-

ferences later on.7

The parameters �1 and �2 correspond to the centralizing ten-

dency in the first and second dimensions, respectively. The param-

eter �� represents a common cross-centralizing tendency. To get a

clear idea of the interpretation of B, we make use of three distinct

ways of visualizing its effects: via simulations, via autocorrelation

functions, and via orbital portraits. The result for three Bs can be

found in Figure 4. In each row a different visualization method is

used. In each column the parameter settings remain constant, but

across columns the Bs differ systematically. In Figures 4A, 4D,

and 4G, we have chosen �1 � �2 � 0.01 and �� � 0 (low beta and

no cross-effects). In Figures 4B, 4E, and 4H, we have set �1 �
�2 � 0.5 and again �� � 0 (high beta and no cross-effects).

Finally, in Figures 4C, 4F, and 4I, �1 � 0.01, �2 � 0.1, and �� �

0.4 (mixed betas and cross-effects). For all plots, the home base

is located at the origin, and � � 2I (with I being the 2 � 2 identity

matrix).

Figures 4A–4C contain three simulated trajectories. From Fig-

ure 4A, it can be seen that a low � leads to a low centralizing

tendency. The simulated process tends to stay close to the previous

observation and is not strongly attracted by the home base. In

contrast, the simulated trajectory in Figure 4B is based on a large

�, and this corresponds to a large centralizing tendency: The

process fluctuates to a large extent around the mean. Note that for

both simulations, the ultimate (i.e., stationary) covariance matrix is

equal by definition. In Figure 4C, one can see that the small �1

leads again to a slowly moving process, whereas this does not hold

for the second dimension because �2 is large (and therefore the

centralizing tendency in the direction of the second dimension is

also large). Hence, this third simulated trajectory combines the

features of the previous two.

In Figures 4D–4F, the autocorrelation functions for the two

processes are shown. The autocorrelation function value at time

point t can be computed with the matrix exponential (see Appendix

A) as follows: e
Bt. The result of the matrix exponential is a

matrix itself (of the same size as B), and the autocorrelation

function value at time t for the first (second) dimension is then the

first (second) diagonal element. If we let time t vary from 0 to 300

min, we can plot the continuous autocorrelation functions. For the

first two settings (first two columns), the two autocorrelation

functions in the two dimensions are the same, because �1 � �2.

All autocorrelation functions are exponentially decaying. It can be

seen from Figure 4D that if � is low (i.e., a low centralizing

tendency), the autocorrelation function shows a slower decay than

if � is high (see Figure 4E). For instance, for the process in Figure

4D, even after 100 min, the autocorrelation is still around 0.4 (i.e.,

if two subsequent states are 100 min separated, they correlate 0.4).

In Figure 4E, the autocorrelation is practically 0 after 15 min

(about 0.015). The fact that a low � corresponds with a large

autocorrelation is not surprising if one looks at the simulated

trajectory in Figure 4A: The process tends to stay close to the

previous observation, indicating a large autocorrelation. On the

other hand, a large value for � (as in Figures 4B and 4E) leads to

a fast decaying autocorrelation with time. Therefore the simulated

trajectory connects almost independently sampled points from a

7 We tried to remove the symmetry constraint by not taking care of the

Dunn–Gipson condition. However, the numerical algorithm to estimate the

model’s parameters (see below) failed in that case.

Figure 3. Two simulated two-dimensional Ornstein–Uhlenbeck pro-

cesses with different stationary covariance matrices �. For both plots, � �

(0, 0)T and B � 0.1I. In Figure 3A, 1 � 2 � 0.5 and � � 0. In Figure

3B, 1 � 2 � 4 and � � 0.5.

Figure 2. Two simulated two-dimensional Ornstein–Uhlenbeck pro-

cesses with different home bases. For both plots, � � 2I and B � 0.1I, with

I being the 2 � 2 identity matrix. In Figure 2A, � � (
2, 
2)T. In Figure

2B, � � (2, 2)T.

Figure 4. Shows the effect of different B matrices.
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bivariate normal distribution. In Figure 4F, the � values for the two

dimensions differ, and thus two autocorrelation functions appear.

Figures 4G–4I contain so-called orbital portraits. In determin-

istic systems of linear differential equations, the matrix B controls

the type of deterministic trajectories traced out in the state space,

that is, the space defined by the axes �1(t) and �2(t). A collection

of such deterministic trajectories or orbits is called a portrait.

Although we are working with a stochastic model, it is useful to

look at the orbital portraits in the corresponding deterministic case.

Note that these orbital portraits also correspond to the expected

trajectories resulting from the two-dimensional SDE model: Given

that a point on one of the orbits is the previous observation, the

conditional mean is also located somewhere on the orbit but closer

to the home base. In Figures 4G–4I, we find three orbital portraits

corresponding to the three B matrices. It can be seen that an

isotropic matrix (i.e., of the form �1, as used in the first and second

column) gives rise to a so-called star node: The expected trajec-

tories toward the home base are straight lines (in fact, Figures 4G

and 4H are similar because their B is not qualitatively different). In

Figure 4I, the orbital portrait of a model with unequal elements on

the diagonal of B and �� � 0.4 leads to a so-called improper node.

In the latter situation, the adjustment toward the home base falls

along a curved trajectory. Orbital portraits might reveal interesting

patterns in affect regulation in the core affect, as they display the

way that the centralizing tendency force acts to restore the balance

of the dynamic system.8

A time-varying home base �(t). Hitherto we have assumed

that the home base is constant over time. However, it seems

reasonable to expect that the ideal point to which the process is

attracted is subject to changes throughout time. For example,

several studies indicate diurnal patterns in how active and how

pleasant people feel throughout the day (Caminada & De Bruijn,

1992; Haug & Fähndrich, 1990; Rusting & Larsen, 1998). To take

such structural changes into account, we extend the model as

follows:

��t� � N2���t�, ��

and

��t����t � d�

� N2���t� � e
Bd���t � d� � ��t��, � � e
Bd�e
BTd�. (9)

In our application below, �(t) is assumed to be a polynomial (e.g.,

quadratic) function of time of the day. However, in principle one

could take any other function of time (e.g., spline based) or one

could let measured time-varying covariates have an effect on the

home base (e.g., important life events).

It is important to note that we assume the systematic variation

throughout time (as expressed by �(t)) and the stochastic dynam-

ics of the model (i.e., the adjustment to the time-varying home

base) to be two aspects of the model. We have simply changed the

constant value � to the time-varying variant �(t) without affecting

the stochastics of the model. Stated differently, if the time-varying

home base is subtracted from a simulated trajectory, the result is a

simulated trajectory from a model with a constant home base. A

different type of process would result if the time-varying home

base were inserted in Equation 1, because then it would be part of

the intrinsic dynamics of the model.

The Observation Equation

A final aspect of the model for the within-person dynamics

concerns the measurement error. Almost any measurement in

psychology will be affected with measurement error to some

extent, and therefore it is important to take it into account. By

adding measurement error to the latent process, we have discussed

thus far, we will step down to the observational level. In Equation

1, the first part serves as a transition equation in our model by

describing the changes in the true score vector, that is, �(t). To

link the underlying dynamical change �(ts) to the observed data

Y(ts), we use the following observation equation:

Y�ts� � ��ts� � ��ts�, (10)

for observations at time points t1, t2, . . . , ts, . . . , tn. Although the

underlying process is assumed to be continuous in time, it is

impossible to make continuous observations in the contexts we

consider. Therefore the observations will necessarily be restricted

to a discrete set of time points. Jazwinski (1970) called such

models continuous-time models with discrete-time sampling.

The measurement errors �(t1), . . . , �(t2), . . . , �(tn) are assumed

to follow a bivariate normal distribution:

��ts�
iid
� N2�0, ���, (11)

with 0 as mean and �� as covariance matrix. In the remainder of

the article, we will assume a diagonal matrix for �� (i.e., uncor-

related errors for the two dimensions). By establishing the obser-

vation equation, we have completed our description of the OU

model for a single person, as it was given in Equation 1, and now

we move on to the hierarchical part of the model.

The HOU Model

In the previous sections, we have described a model for the affec-

tive dynamics of a single individual. From the interpretation of the

parameters, it becomes clear that they all capture an important aspect

of the dynamics. As argued in the introduction, individual differences

are common in affective processes. More specifically, individual

differences are expected in each of the parameters of the single-person

OU process (with the exception of the measurement error variance).

For instance, in a recent study, Kuppens, Van Mechelen, Nezlek,

Dossche, and Timmermans (2007) found that people differ consis-

tently in the mean level of pleasantness and activation (corresponding

to individual differences in the home base) but also in their variabil-

ities on these dimensions (corresponding to individual differences in

the diagonal elements of �). Moreover, Gross and John (2003) pro-

vided evidence for individual differences in the regulation of affect

(corresponding to the B matrix).

In order to describe and explain individual differences, a natural

approach is to use a hierarchical model (see, e.g., Gelman & Hill,

2007; Snijders & Bosker, 1999). In a hierarchical model (or

multilevel or mixed model), the parameters that are subject to

individual differences are random effects, sampled from a popu-

8 Many more orbital portraits are possible (e.g., saddle points, spiral

points), if one allows B to be a nonsymmetric positive-definite matrix.
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lation distribution that is characterized by a set of parameters. In

traditional hierarchical models, the random effects are usually

allowed only for the mean structure. In contrast, in the model and

application we consider, it is meaningful to allow for individual

differences in the variability and centralizing tendency parameters

as well. Hence, the variance and centralizing tendency parameters

will be assumed to be sampled from a population distribution as

well. Note that this allows us in a next step to regress the random

person-specific parameters on individual difference covariates.

In the hierarchical model, it is assumed that each parameter

comes from a specific population distribution. For reasons of

computational and interpretational convenience, we assume nor-

mal distributions for all random effects. However, not all param-

eters are defined on the real line (e.g., the diagonal elements of the

covariance matrix of the stationary distribution can assume only

positive values), and for such parameters we will use appropriate

transformations that map them on the real line and then proceed

with a normal distribution.

Let us introduce some new notation: A specific person p (p � 1,

. . . , P) is measured np times at the following sequence of time

points: tp1, tp2, . . . , tps, . . . , tp,np. The index s denotes the sth

measurement occasion of that individual. As mentioned in the

introduction, a great strength of our model is that we do not require

that measurements occur at regular time intervals nor that the

measurement occasions be identical across participants. For nota-

tional convenience, we will use p and s as the only indices when

denoting parameters or data that are related to the specific obser-

vation at tps. This way, for example, the measured position for

person p in the two-dimensional space at time tps is denoted as Yps

instead of the more cumbersome notation Y(tps).

The model for a single person p for whom the observed data are

a function of an underlying OU process and some measurement

error can now be written as follows:

Yps � �ps � �ps, (12)

where Yps stands for the observed random vector, �ps for the

latent state (or true score), and �ps for the measurement error with

the same distributional assumption as presented in Equation 11. As

expressed in Equation 9, the conditional distribution of �ps given

�p,s
1 is normally distributed as follows (for s 	 1):

�ps��p,s
1 � N2��ps � e
Bp�tps
tp,s
1���p,s
1 � �ps�,

�p � e
Bp�tps
tp,s
1��pe

B

p
T
�tps
tp,s
1)). (13)

For the first observation, �p1, it is assumed that �p1 � N2 (�ps,

�p). Although Equations 12 and 13 are identical to Equations 10

and 9, respectively, we present them again because they are now

defined with a slightly different but more convenient notation.

Note that the presence of the indices p in Equation 13 reflects that

all driving parameters of the OU process are allowed to be person

specific. In the next sections we develop the hierarchical extension

for each of the parameters.

Model for the Person-Specific and Time-Varying

Home Base

As can be deduced from the notation (i.e., the indices s and p),

the home base �ps consists of a time-varying and person-specific

aspect. Corresponding to these two aspects, background measure-

ments may be available. Regarding the person-specific aspect, it is

assumed that k covariates are measured and xjp denotes the score

of person p on covariate j (j � 1, . . . , k). All person-specific

covariate scores are collected into a vector of length k � 1, denoted

as xp � (xp0, xp1, xp2, . . . , xpk)
T, with xp0 � 1. Regarding the

time-varying aspect, suppose that we measure for person p the

scores on m time-varying covariates that are collected in a vector

zps � (zps1, . . . , zpsm)T, where the presence of the index s indicates

that the scores may change from one time point to another. In order

to avoid collinearity problems, no intercept is introduced in the

vector zps.

The regression of �ps onto the two types of covariates and

allowing for a person-specific random deviation is defined as

follows:

�ps � ��zps � A�xp � Ep�, (14)

with Ep� � N2(0, ��). The matrices �� and A� are parameter

matrices of dimension 2 � m and 2 � (k � 1), respectively,

containing the regression weights for the covariates. Furthermore,

the covariance matrix �� is defined as follows:

�� � ���1

2 ��1�2

��1�2
��2

2 �. (15)

Because the vector �ps is bivariate, it may be illuminating to write

the component regression models in more detail:

��ps1

�ps2
� � ���1

T

��2

T � zps � �	�1

T

	�2

T � xp � �ep�1

ep�2

�. (16)

One can consider Equation 14 as a decomposition of the person

and time-specific home base �ps into three components. The first

component allows for the home base to fluctuate over time, but it

is constant over all persons (i.e., ��zps). The time-varying cova-

riates in the vector zps can be anything for which it is meaningful

to assume that it relates to the change of home base across time.

The most straightforward covariates are time and functions of time

itself, which are illustrated in the application section in this article.

However, if one has information on other variables that may be

related to home base and change through time, they can be incor-

porated in as well. A second component allows the home base to

differ because of the effect of person-specific covariates (i.e.,

A�xp). These person-specific effects leave the time-varying part

unaffected. If no person-specific covariates have been collected,

then only the bivariate intercept is present (i.e., the two regression

weights of the constant 1). The last part, Ep�, represents the

contribution of a bivariate person-specific random effect that will

make the home base different from one person to another. It

follows a bivariate normal distribution with 0 mean vector and

covariance matrix �� (see Equation 15). The covariance matrix is

the residual covariance matrix, representing the variability and

associations of home base intercepts that exist in the population

between the individual means of the stationary distribution, after

taking into account the effects of the person covariates and of the

time-varying covariates. If only the intercept is present in the

covariate vector, then the model just describes the population mean

vector of the home bases and the variability in the population.
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The so far presented fixed and random effects in the home base

(i.e., mean structure) are strongly related to the so-called growth

curve models (see, e.g., Pan & Fang, 2002). The particular novel

contribution of our HOU model is that also the variance and

centralizing tendency parameters will be turned into random ef-

fects. In this way, individual differences in intraindividual varia-

tion and regulatory dynamics can be described and explained. Such

an extension is covered in the next sections. However, it should be

mentioned that only the home base is allowed to change as a

function of time-varying covariates (and thus time), whereas the

other parameters cannot be affected by time-varying covariates.

Model for the Person-Specific Stationary Variances

and Cross-Correlation

As was clear from Figures 3A and 3B with simulated OU

process, changing the stationary variance matrix has a profound

effect on the appearance of the simulated trajectories. Such inter-

individual differences may even be seen in real data. An example

is shown in the application section (in Figure 5). A convenient way

to model the individual differences in the stationary covariance

matrix �p starts with the decomposition presented in Equation 7, in

which �p is split into two variances (i.e., 1p and 2p) and a

cross-correlation (i.e., �p). We will discuss these in turn.

First, the person-specific intraindividual variance 1p is assumed

to be drawn from a population distribution. The most straightfor-

ward choice would be to assume a normal distribution, but 1p is

constrained to be positive (while the normal distribution has sup-

port on the whole real line). However, we may put a normal

population distribution on a transformation of 1p. The most con-

venient choice is a logarithmic transformation:

log�1p� � xp
T	1

� ep1
,

with ep1
� N�0, �1

2 � and xp
T the vector of covariates with k � 1

components (of which the first one is the constant 1). The vector

�1 contains the (fixed) regression coefficients for the covariates.

The parameter �1

2 is the residual variance in the random log

variance of the first dimension, after having taken the covariate

effects into account. If only the intercept is present in the model,

�1

2 reflects the total amount of variance present in the population

in the log variance of the first dimension. A similar logic applies

to the modeling of 2p. The population distributions of 1p and 2p

are assumed to be log normal on the original scale.

The final parameter of the matrix �p is the person-specific

cross-correlation parameter �p. Because �p
is a correlation

bounded between 
1 and 1, Fisher z transformation is imple-

mented in order to be able to use a normal distribution to model the

random effects. The Fisher z transformation

F��p
� �

1

2
log

1 � �p

1 � �p

to get a function value on the whole real line is

1

2
log

1 � �p

1 � �p

� xp
T	�

� ep�
,

with ep�
� N�0, ��

2 �. The density of the original �p
can be derived

by applying the transformation of variables technique (see, e.g.,

Mood, Graybill, & Boes, 1974). Again, 	�
contains k � 1 regres-

sion coefficients, xp the k covariate values for person p with 1 for

the intercept, and ��

2 represents the variation in the population in

terms of cross-correlation.

It should be noted that for reasons of simplicity, the population

distributions for the log variance parameters and Fisher z-trans-

formed cross-correlations are modeled unidimensionally. That is,

we do not allow for correlations among ep1
, ep2

, and ep�
.

Model for the Person-Specific Centralizing Tendencies

and Cross-Centralizing Tendencies

A crucial part of the model is the regulatory mechanism that is

included. It is parameterized by the matrix Bp, which is decom-

posed (see Equation 8) into two centralizing tendencies, one for

each dimension (i.e., �1p and �2p) and a standardized cross-

centralizing tendency parameter (��p
). As with the stationary vari-

ance matrix, all three elements of Bp are assumed to be person

specific. This way some people might show only a mild level of

regulation or almost no regulation, whereas others might have a

very strong regulatory force. The centralizing tendency is a much

less straightforward property of observed core affect trajectories

than, for instance, the home base or the variabilities, because it

affects the trajectories in more subtle ways. In a graphical repre-

sentation of the trajectory, it might be covered by the effects of

measurement noise. Nevertheless, when fitting the model to the

data, one can clearly see there is a considerable amount of inter-

individual variability in this aspect of the model (see the applica-

tion section below). The two centralizing tendencies of each di-

mension will be discussed first and then the cross-centralizing

tendency.

Because the diagonal elements of Bp are required to be positive,

a similar approach for �1p and �2p as for stationary variances is

taken to model the corresponding population distributions:

log��1p� � xp
T	�1

� ep�1
, (17)

with ep�1
� N�0,��1

2 � and xp the vector of covariates with k � 1

components (of which the first one is the constant 1). The vector

	�1
contains the (fixed) regression coefficients for the covariates.

The parameter ��1

2 is the residual variance in the random log-

Figure 5. Person trajectories in the core affect grid: in the left plot,

participant nr.1 (62 self-reports); in the right plot, participant nr.3 (62

self-reports). The visits falling in the same cell are jittered for a clearer

graphical representation.

476 ORAVECZ, TUERLINCKX, AND VANDEKERCKHOVE



centralizing tendency specific to the first dimension, after having

taken the covariate effects into account. If only the intercept is

present in the model, ��1

2 reflects the total amount of variance

present in the population in the log-centralizing tendency of the

first dimension. The model for �2p is analogous. The population

distributions for �1p and �2p are assumed to be log normal on the

original scale.

The standardized off-diagonal element (��p
) controls the trajec-

tory of the return to the home base (see Figures 4G–4I). It is

assumed to have the same population distribution as �p
; that is,

after taking the Fisher z transformation, it is normally distributed:

1

2
log

1 � ��p

1 � ��p

� xp
T	��

� ep��
,

with ep��
� N�0,���

2 �. We can interpret the parameters in the same

manner as for Equation 17.

Bayesian Inference for the HOU Model

Although the hierarchical extension is both substantively inter-

esting (because all parameters may differ across persons) and

straightforward (one has to assign population distributions to the

individual difference parameters), statistical inference for such

models is not a trivial task. For the model presented here, statistical

inference with maximum likelihood would involve a high-dimen-

sional integration over the numerous random effect distributions.

Because most of these integrals have no closed-form solutions,

these would have to be approximated by finite sums, which is

computationally prohibitive. An additional problem with the like-

lihood method for this case lies in the nonlinear function of latent

variables (multiplication of latent variables, exponentiation, etc.;

see, e.g., Klein & Moosbrugger, 2000; Schumacker & Marcou-

lides, 1998). The latent variables (parameters that are allowed to

vary in the population) are normally distributed, but because of the

nonlinear functions, the marginal distribution of the data Y (after

integrating out the latent variables) will not be normal anymore. In

frequentist mixed model inference, it is precisely the marginal

likelihood that is maximized (Verbeke & Molenberghs, 2000).

However, these difficulties are avoided in the Bayesian paradigm

in which the explicit integration over the random effects is

avoided, because the inference is based on the full joint posterior

distribution of the parameters (and not on the marginal). Integra-

tion in the Bayesian context typically occurs only to obtain sum-

mary measures of the posterior distribution and is based on pos-

terior samples from a Monte Carlo procedure (Klein &

Moosbrugger, 2000). In sum, choosing for a Bayesian framework

to perform the statistical inference carries some obvious pragmatic

value. But additionally, the Bayesian approach is more appropriate

for investigating problems in behavioral sciences than the classical

statistical inference framework. Parameters in the Bayesian frame-

work have a probability distribution, which offers an intuitively

appealing way of thinking about uncertainty and the knowledge

one has about the parameters. Moreover, the Bayesian framework

is a coherent method for making decisions. A lot of recent meth-

odological work in psychology makes use of the Bayesian frame-

work (see, e.g., Gallistel, 2009; Klein Entink, Kuhn, Hornke, &

Fox, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009;

Rouder, Tuerlinckx, Speckman, Lu, & Gomez, 2008; Smith &

Batchelder, 2010).

An advantage of Bayesian statistical inference is that we can

apply algorithms to sample from the posterior density of the

parameters. The posterior density represents the probability distri-

bution of the parameters given the data, and it is directly propor-

tional to the product of the likelihood of the data (given the

parameters) and the prior distribution of the parameters. Formally,

p(
�Y) � p(Y�
)p(
), where 
 stands for the vector of all param-

eters in the model and where Y stands for the data.9 The prior

distribution incorporates prior knowledge about the parameters,

and if there is none, it is best as vague or diffuse as possible. The

more data one acquires, the less influential the prior becomes on

the posterior. Because the presented model yields a high-dimen-

sional posterior (due to the large number of parameters), we will

opt for Markov chain Monte Carlo (MCMC) methods to draw

values from the posterior. Practically speaking, these algorithms

perform iterative sampling: Values are drawn from approximate

distributions, and they are improved in each step, in such a way

that they converge to the targeted posterior distribution. After a

sufficiently large number of iterations, one obtains a Markov chain

with the posterior distribution as its equilibrium distribution, and

the generated samples can be considered as draws from the pos-

terior distribution (it is said that the Markov chain has converged

to its equilibrium distribution). More details about the Bayesian

methodology and MCMC can be found in Gelman, Carlin, Stern,

and Rubin (2004) and Robert and Casella (2004).

For our model we have implemented a specific MCMC algo-

rithm, the Gibbs sampler. In this algorithm, alternating conditional

sampling is performed: The parameter vector is divided into sub-

parts (a single element or a vector), and in each iteration the

algorithm draws a new sample from the conditional distribution of

each subpart given all the other parameters and data; these condi-

tional distributions are the so-called full conditionals. More details

on the sampling algorithm, as well the derived full conditionals of

each parameter and simulation studies testing the accuracy of the

algorithm, can be found in the supplemental materials.

In the estimation algorithm, several of these Markov chains are

initiated from different starting values, thereby offering a way to

check for convergence of the algorithm (because one has only

draws from the posterior after the Markov chain has converged to

its equilibrium distribution). The particular convergence check

statistic that is used is the Gelman–Rubin R̂ statistic (for more

information, see Gelman et al., 2004).

Sampling from the posterior distribution was performed with a

custom-written MATLAB program.10 To decrease the computa-

tion time, we translated some of the more computationally de-

manding subroutines into C and applied parallel computing where

possible (different sample chains are independent and can be

computed on separate processors). The computation time for the

example shown in the next section (six chains of 10,000 iterations

each) was around 90 min on a computing node with an AMD

Opteron 250 processor and 2 GB RAM.

9 The normalization constant, p(Y), does not depend on the parameter

and is therefore not considered.
10 The MATLAB codes are available on request from the first or second

author.
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An Experience Sampling Study of the Core Affect

In this section, the HOU is applied to longitudinal core affect

measurements. In the present study (for more information on the

design of the study, see Kuppens et al., 2007), 80 students from the

University of Leuven were paid to provide self-reports about their

position in the core affect space over 1 week. Such a study is called

an experience sampling study (Csikszentmihalyi & Larson, 1987;

Larson & Csikszentmihalyi, 1983). The average age of the partic-

ipants was 22 years (SD � 5), and 60% of them were women. In

practice, participants received special booklets containing the so-

called affect grid (Russell, Weiss, & Mendelssohn, 1989). The

participants carried a preprogrammed wristwatch that beeped nine

times a day (at semirandom moments), and upon beeping, they

were supposed to indicate their emotional position in the grid.

Ideally, each participant completed 63 core affect assessments

during the study.

The time difference between two measurements was semiran-

dom. In an introductory session, the participants provided infor-

mation about their daily routine, more specifically about the time

they wake up and go to sleep. Their awake time was divided into

equal intervals, and a random beep was scheduled into each of

them. As a result of this procedure, the wristwatch did not beep

while the participants were sleeping. Occasionally, a participant

failed to notice the beeping wristwatch. The most frequent reason

for missing a beep was that they simply did not hear the signal

(e.g., they were taking a shower without wearing the wristwatch).

We assume that the core affect is not an influencing factor for

skipping a measurement, and thus the missing data mechanism is

assumed to be ignorable (Little & Rubin, 2002), and such an

occasion was treated as if there had not been an observation at that

particular time. The missingness will create an unbalanced data

structure (not all participants have an equal number of measure-

ments), but this does not present special problems for the HOU

model. On average we acquired 60 measurements (SD � 3) per

person.

Because the HOU parameters can be regressed on covariates,

interindividual differences can be analyzed and related to stable

traits. In this study the five dimensions of the five-factor model of

personality (Big Five) were measured (with the Dutch version

NEO Five-Factor Inventory; see Hoekstra, Ormel, & De Fruyt,

1996). The NEO Five-Factor Inventory consists of 60 items di-

vided equally into five scales assessing Neuroticism, Extraversion,

Openness (to experience), Agreeableness, and Conscientiousness.

All items are rated on a 5-point scale ranging from 1 (strongly

disagree) to 5 (strongly agree). The items are then summarized

into five averaged scores per person, corresponding to the five

dimensions.

The data were subjected to an exploratory analysis; some results

of this analysis are presented here. For instance, the observed

trajectories of two randomly sampled individuals are shown in

Figure 5. The trajectories are obtained by connecting subsequent

measurements. From the figure, it can be seen that the average

position is different for the two persons. Moreover, another obser-

vation is that there are different levels of intraindividual variation

in core affect. Such observations suggest that there is substantial

interindividual variability that can be captured, both in location

and in intraindividual variability. Combining the data from all

participants in a heat map or three-dimensional histogram over the

core affect grid (graph not shown because of space constraints)

reveals that the most frequently visited area ranges from the central

part of the core affect grid (neutral point) to the center of the upper

right quadrant (corresponding to higher activation and pleasant-

ness values).

In Figure 6, an estimated velocity plot is drawn of the core affect

grid based on the data of all the participants: The thick black lines

are the two-dimensional escape velocity vectors for the corre-

sponding cell (the gray lines are explained later). The length of a

vector is proportional to the speed of escape from the cell, and the

direction indicates the area toward which one moves (the begin-

ning of the vector is always the middle of the square). One can

observe that at the average position in the grid, the average speed

is very small (i.e., short vectors), but the farther we move from the

average position, the higher the escape speed becomes. Most

vectors point more or less directly to the central location, and with

increasing distance from the central point, the vector length in-

creases. This observation corresponds to the implied OU model

assumption about the centralizing tendency, which increases as the

distance from the home base extends. However, at the border cells,

we notice more irregularities. These are due to sampling variability

because there are much fewer measurements in these outer cells.

In the next two sections, the fitted model is discussed. First, we

take up the model fit issue: Several models will be compared by

means of the deviance information criterion (DIC), and the best

model will undergo a series of statistical tests to evaluate how well

it fits the data. In the next part, we discuss the interpretation of an

empty model and the best fitting model. The first model is an

empty model, containing only the time-varying home base effect

but no predictors on the level of the individual differences. As can

be judged from the results below, the time effect on the home base

needs to be taken into account. The results from the empty model

can then be used to interpret the size of the individual differences

for the different parameters. In the second, and best fitting, model,

the individual difference covariates will be regressed onto a set of

person-specific covariates (i.e., the Big Five).

Figure 6. Estimated vector field of the core affect grid. It shows the angle

and speed of leaving core affect grid positions. The black lines are

calculated based on the observed data, and the gray lines are calculated

based on simulated data.
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Application of the HOU Model to the Experience

Sampling Study: Model Fit

Computational Aspects

A series of different HOU models were estimated for the expe-

rience sampling data with a Bayesian procedure. Estimation was

carried out by sampling six chains of 10,000 values from the

posterior distribution via the Gibbs sampler. The six Markov

chains started out from sufficiently different values: These initial

values of the chains are strongly randomly perturbed values de-

rived from the data (e.g., the sample average for the home bases).

The first 5,000 iterations were discarded (the so-called burn-in

period), to avoid any residual influence of the random starting

values on our chain. Inference will be based on a total of 30,000

draws. In the left plot of Figure 7, the first 300 iterations of all six

chains for the parameter �1
in a model without person-specific

covariates are shown (in this model �1
is then the population

mean of the intraindividual log variance parameter 1p of pleas-

antness). It can be seen that the chains start from fairly different

values, but they all move quickly to the same region, which is an

indication of convergence. It should also be noted that this happens

already within the first 300 iterations. The right plot displays the

smoothed estimated posterior density of the same parameter.

As mentioned above, an appropriate way to check convergence

is to calculate the R̂ value (Gelman et al., 2004), which roughly

equals the ratio of the between- and within-chain variances (from

the left plot in Figure 7, it can be seen that after iteration 200, the

between- and within-chain variances are approximately equal). As

a rule of thumb, the chains are considered converged if the R̂ value

is below 1.1. We use R̂ to assess convergence but also checked the

chains visually, and there were no problems (all R̂s � 1.1).

Convergence was fast for all parameters, typically within the first

500 iterations.

To test goodness of fit, we did not calculate traditional indices

like R2 measures. The reason is that it is not fully clear how such

measures should be calculated even in the case of simple linear

multilevel models (for different alternatives, see, e.g., Gelman &

Hill, 2007; Snijders & Bosker, 1999). Because the HOU model is

a hierarchical nonlinear model, it is far more complicated than the

simple multilevel cases, so that finding an appropriate R2 type of

measure seems infeasible. Moreover, we do not regard it a good

indication of model fit, since sometimes high R2 values can be

associated with relatively poorly fitting models (Ramsey & Scha-

fer, 2002). Our chosen strategies for testing model fit incorporate

relative goodness-of-fit testing and graphical comparison of the

observed data and replicated data sets based on the model param-

eters.

Testing Model Fit With the DIC (Relative Goodness

of Fit)

To compare different models, we will make use of the DIC

statistic (Spiegelhalter, Best, Carlin, & van der Linde, 2002). As its

frequentist counterparts (i.e., Akaike information criterion, Bayes-

ian information criterion), it simultaneously takes into account two

important features of the model: the complexity (based on the

number of parameters) and the fit (typically measured by a devi-

ance statistic). The DIC formula is the sum of the effective number

of parameters and the posterior mean of the deviance (defined as


2 times log-likelihood). Theoretically, the model with smaller

DIC would better predict a replicate data set of the same structure.

Figure 7. Illustration of the sampling of the parameters. The left plot shows the posterior sampling of the

population mean of the variability in the pleasantness dimension, and the right plot displays its estimated

posterior density.
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For model selection purposes, we have constructed four alter-

native models, which all have the time-varying home base in-

cluded. The first model is an empty model with all parameters

differing across individuals but no person-specific covariates. In

the second model, the covariate information is introduced. The

third model is a variant of the first but without individual differ-

ences in the centralizing tendency (i.e., an equal B matrix for all

persons). In the fourth model, the cross-effects for the variance and

centralizing tendency were set equal to 0 (i.e., �p
� 0 and ��p

� 0

for all persons). The home bases and stationary variances were

allowed to differ among persons in all models and were not altered,

because the exploratory data analysis suggested that these param-

eters tend to differ substantially between individuals.

The results are displayed in Table 1 (a lower DIC value suggests

a better fit). The best fitting model has all parameters person

specific and covariates included. As one can see, the model with-

out person-specific centralizing force shows a relatively poor fit

(compared with the empty model). The decrease in the fit index is

less dramatic when the person-specific cross-effects are taken out,

but nevertheless it goes down (compared with the first model and

suggesting that the two dimensions are connected).

Testing Model Fit With Graphical Posterior

Predictive Checks

The idea behind posterior predictive checks is that if the

model fits, then replicated data generated under the model

should look similar to observed data (Gelman et al., 2004). On

the basis of the estimated model parameters, we can replicate

observations and see how well they resemble the original data.

With graphical model checking, we display the data alongside

simulated data. If they look similar, we can say that the ob-

served data look plausible under the posterior predictive distri-

bution. Systematic discrepancies indicate poor model fit. In

what follows, we simulated new data sets from the empty model

(instead of the model with covariates) because that gives a

simpler simulation and test procedure.

Comparing observed and replicated trajectories. First, let

us look at the data from individual persons. Plotting a specific

person’s data in the two-dimensional core affect space and

connecting subsequent points with a line results in an observed

person-specific core affect trajectory. Based on the fitted HOU

model, such trajectories can also be simulated from the model

(keeping the same time differences as in the observed data). If

the model fits the data, the replicated trajectories should closely

resemble the observed trajectories with respect to the spatial

characteristics.

In Figure 8, we plotted the observed data of six students in the

first column. In the following four columns, generated data are

displayed based on the estimated person-specific parameters and

population values (for the measurement error and the time-varying

coefficients). It is important to stress that the replicated trajectories

cannot follow exactly the same path as the observed trajectory

because the HOU model is inherently stochastic. However, it is

important that the key characteristics of the trajectories that are

captured by the model parameters are similar. For demonstrational

purposes, we selected the six persons according to their HOU

parameter values. With the first two people (first two rows), the

differences in the home bases are demonstrated: The first person is

below population average with respect to person-specific home

base values (4.65 and 4.95), where the second one is above (6.82

and 6.19). The third and the fourth rows correspond to individuals

with low (0.81 and 1.11) and high (5.64 and 5.58) intraindividual

variance, whereas the fifth and the sixth rows display participants

with low (0.0063 and 0.0103) and high (0.0333 and 0.0199)

centralizing tendencies. The graphs in Figure 8 suggest that the

important characteristics of the observed trajectories are preserved

very well in the replicated ones.

Comparing observed and simulated escape velocities for the

core affect grid. Figure 6 displays the escape velocities from

the core affect grid positions with length proportional to the speed

of escape from the cell and direction indicating to which area it

tends toward. We can also calculate such velocity vectors based on

simulated data. In Figure 6, the black lines correspond to the

vectors calculated from the observed data, and the gray lines

correspond to those of the simulated data.

It can be seen that for the majority of the cells, the observed

velocity vectors (in black) fall nicely within the range of velocity

vectors predicted by the model (in gray). A few exceptions occur,

mostly on the left side (low pleasantness), where there is somewhat

more deviation between the observed and the replicated data. This

is probably due to the fact that there are only a couple of obser-

vations with very low pleasantness values, and the observed data

vectors could therefore be calculated based only on a handful of

data points.

Application of the HOU Model to the Experience

Sampling Study: Interpretation of Two Models

In this section, we discuss more in detail the two best fitting

models from the previous section. Both models allow all OU

parameters to differ across individuals and include a time-varying

home base; the difference lies in the presence of time-invariant

(i.e., person-specific) covariates.

Model 1: Empty Model With a Time-Varying Home

Base but No Time-Invariant Predictors

The first model we investigate is an empty (or unconditional)

model that contains a quadratic time effect for the home base but no

time-invariant individual difference covariates. In the right plot of

Figure 7, an example is given of a smoothed histogram of the samples

of �1
from its posterior. Like this one, most parameters have mar-

ginal posteriors that are very close to normal, except for the posteriors

of the two measurement error variances, which are a little bit more

Table 1

Deviance Information Criterion (DIC) Values for

the Fitted Models

Number Model type DIC

1 Fully person-specific model without covariates 
6524

2 Fully person-specific model with covariates 
6834

3 Model without person-specific centralizing tendency 
1639

4 Model without cross-effects 
5940
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skewed to the right. The estimated posterior means, posterior standard

deviations, and associated credibility intervals for all population pa-

rameters are shown in Table 2. In the following three subsections we

interpret the most interesting findings from this model.

The time-varying home base. Both home bases vary as a

quadratic function of time, where time is measured in hours and the

scores were centered around noon, so that zps � 0 is at 12 noon for all

persons. This means that the person-specific intercepts (contained in

the vector �p) can be considered as the expected pleasantness and

activation scores for the different individuals in the middle of the day

(i.e., at noon). Moreover, the parameters ��1
and ��2

are the popula-

tion means of these intercepts (because xp � 1). We can summarize

the findings about the home base in the core affect space by depicting

how it changes with time for each individual separately and compare

it to an averaged trajectory. In the case of the pleasantness dimension,

as we can see in the left plot of Figure 9, there is a steady increase

during the day that is almost linear. We can observe that during the

course of the day, the students start feeling more and more pleasant.

Because the quadratic time effect for pleasantness is negligible, we

may say that with every 2 hr the average pleasantness increases with

Figure 8. Observed and simulated person-specific data trajectories. Each row corresponds to a different

individual. The first column depicts the observed data for these individuals, the following four columns display

simulated trajectories based on Ornstein–Uhlenbeck estimates.
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0.14 units. There is substantial interindividual variability with respect

to the intercept of pleasantness: The estimated population standard

deviation equals �0.3928 � 0.63, which is considerably larger than

the average increase. On the whole, we can conclude that a partici-

pant’s mood is pleasant and that it increases slightly during the day in

a linear way.

Unlike the home base of pleasantness, the home base of activa-

tion clearly shows a quadratic evolution during the day, as we can

Figure 9. Home base of the pleasantness (left plot) and the activation dimensions (right plot) evolving with time.

The thick line depicts the averaged trajectory over persons, and the thin lines correspond to the person-specific values.

Table 2

Summary of the Results Estimated With the Hierarchical Ornstein–Uhlenbeck Model Without Covariates

Model parameter Description Posterior mean

95% PCI

Posterior SDLL UL

Pleasantness

��1
Average home base 5.7552 5.5921 5.9160 0.0821

��1

2 Variance of the average home base 0.3928 0.2606 0.5733 0.0802

�L�1
Linear time effect 0.0715 0.0426 0.1004 0.0148

�Q�1
Quadratic time effect 
0.0012 
0.0048 0.0023 0.0018

s��1
� Average intraindividual variability 2.7885 2.3995 3.2700 0.2213

s��1

2 � Variance of the intraindividual variability 3.3927 1.7887 6.2642 1.1847

s���1
� Average centralizing tendency 0.0187 0.0149 0.0242 0.0024

s���1

2 � Variance of the centralizing tendency 0.0002 0.0000 0.0006 0.0001

�1ε
2 Measurement error 0.1291 0.0817 0.1903 0.0277

Activation

��2
Average home base 5.1761 5.0209 5.3316 0.0790

��2

2 Variance of the average home base 0.3388 0.2236 0.4968 0.0700

�L�2
Linear time effect 0.2936 0.2606 0.3273 0.0170

�Q�2
Quadratic time effect 
0.0329 
0.0369 
0.0288 0.0021

s��2
� Average intraindividual variability 3.2714 2.8796 3.7370 0.2174

s��2

2 � Variance of the intraindividual variability 3.1039 1.7271 5.5096 0.9782

s���2
� Average centralizing tendency 0.0209 0.0165 0.0275 0.0028

s���2

2 � Variance of the centralizing tendency 0.0003 0.0001 0.0008 0.0002

�2ε
2 Measurement error 0.1069 0.0633 0.1678 0.0267

Cross-effects

��1�2
Covariance between the home bases 0.0568 
0.0447 0.1680 0.0534

��
Average Fisher z-transformed cross-correlation 0.0227 
0.0460 0.0912 0.0349

���
Average Fisher z-transformed off-diagonal of B 
0.0494 
0.1329 0.0357 0.0431

Note. The s(.) notation stands for a scale transformation for that model parameter. The reason for this notation is that the population distributions for 
and � are normal on the log scale. However, in this table we transformed these values back to the original scale of  and �, but because no specific notation
was introduced for the corresponding population parameters on the original scale, we simply indicate them by adding an s(.) operator to the log-scale
notation. PCI � posterior credibility interval; LL � lower limit; UL � upper limit.
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see in the right plot of Figure 9. This pattern is not surprising: In

the literature on diurnal variation, it is often found that daily

variation in the self-reported arousal level shows an inverted

U-shaped function (for a summary on these findings, see Caminada

& De Bruijn, 1992). In our student population, the average arousal

home base starts low in the morning: At 7 a.m., for example, it is

on average 2.97. In the next 5 hr, the activation level increases by

more than 2 points, so that at noon the intercept is ��2
� 5.17. The

activation home base reaches its apex around 4:50 p.m., and

afterward it decreases when evening comes. It may appear that this

daily maximum falls late during the day, but we have to keep in

mind that the examined population consists of college-aged stu-

dents (who tend to be awake later than people in the general

population). Also, the individual differences in the intercept of the

time-varying activation component of home base are shown. Based

on the spread of the person-specific lines around the population

mean, it appears that the interindividual variability is substantial

here as well: The estimated population standard deviation equals

�0.3388 � 0.58. The source of the individual variation with

respect to the person-specific intercepts of both dimensions may be

explored by time-invariant covariates, as we see later when esti-

mating the second model.

To get a better idea of the individual differences in the home

base intercept, we will use some simulated trajectories. In Figure

10, several simulated OU processes based on the estimated OU

population values from Table 2 are displayed (but without the

structural time-varying home base, which we left out when simu-

lating the trajectories). Figures 10A–10C contain three simulated

trajectories in which the home base is varied. In Figure 10B, a

trajectory was simulated with the mean home base in the population.

In Figure 10A, one population standard deviation was subtracted from

each of the two components of the mean home base vector (i.e., 0.63

and 0.58 for pleasantness and activation, respectively). In Figure

10C, the above-mentioned two population standard deviations

were added to the two components of the mean home base vector.

It can be seen that this variation in the home base has a profound

effect on the simulated curves: The majority of the visits in Figure

10C are concentrated in a slightly more pleasant and activated area

(compared with Figure 10B), whereas in Figure 10A the OU

process tends to be drawn more into a slightly unpleasant and

deactivated area.

Stationary variance matrix and measurement error vari-

ance. Looking at Table 2, we can see that overall there is

substantial intraindividual variation in the core affect space and

that it is slightly larger with respect to arousal (i.e., 2.79) than with

respect to valence (i.e., 3.27). If we compare the intraindividual

variabilities of the two dimensions with the measurement error

variances, it turns out that the latter are relatively small in both

dimensions: �1ε
2

� 0.13 and �2ε
2

� 0.11, suggesting that the

variability in the data is mainly due to the intraindividual varia-

tions of the OU process.

As emphasized before, an important aspect of the model is that

it allows for interindividual variability in the intraindividual vari-

ation. The existence of such individual differences was already

visible during data exploration in a simple plot of the core affect

measurements of two participants (see Figure 5). Now from Table

2, we can see that in terms of HOU model parameters, in both

dimensions the population variance of the intraindividual variation

is quite large (i.e., 3.39 and 3.10 for pleasantness and activation,

respectively). The size of these individual differences was illus-

trated again by means of simulation. In Figures 10C–10F, we

graphically display three simulated OU processes in which the

intraindividual variability is systematically changed. Figure 10E is

a trajectory simulated with the means of the population distribu-

tions of the parameters; in Figures 10D and 10F, a standard

deviation was subtracted from (added to) the intraindividual log

variances (we performed the calculations on the scale in which the

statistical inference is done). The figures suggest that individual

differences are indeed quite substantial. A further step after dis-

covering such variation is to try to tie the person-specific intrain-

dividual variabilities onto predictors.

As part of the intraindividual stationary variance matrix �p, we also

estimate the cross-correlation between the measurements. On average,

this correlation between the changes in the two dimensions is not

substantial: ��
equals 0.0227, on the Fisher z-transformed scale,

which corresponds roughly to the same value on the normal scale, as

the transformation is close to linear around zero. However, with the

person-specific correlation values, there is considerable variability

among them: Although their mean value is almost zero, the popula-

tion standard deviation is 0.27 (not shown in Table 2 because of space

limitations), which suggests sizable interindividual differences. In the

next subsection, we also look into the explanation of this individual

variability with the second model.

The centralizing tendency. Taking into account individual

differences in the centralizing tendency matrix Bp is one of the

most interesting parts of the model. First, let us look at the

population means and variances of the diagonal elements of Bp

(i.e., �1p and �2p). There does not seem to be any substantial

difference in these values between the two dimensions. Both

population variances again show the existence of some individual

variability, which we displayed again in the same manner as before

in Figures 10G–10I. The construction of Figures 10G–10I is sim-

ilar as before: Figure 10G shows an OU process with one popu-

lation standard deviation subtracted from the mean centralizing

tendencies; Figure 10H is simulated with the population means; in

Figure 10I, the trajectory is based on the mean centralizing ten-

dencies plus one population standard deviation. Comparing Fig-

ures 10G–10I, we see that in Figure 10G, with the lower central-

izing tendency, when the process moves away from the home base,

the return is not fast, whereas in Figure 10I, the visits are more

concentrated around the population home base, leading to a density

in the home base area. In core affect terms, this means that when

our mood changes in terms of pleasantness or activation, with low

centralizing tendency we will be staying longer in that state, and

the adjustment to our comfort zone is slower. As before, finding

connections between the different levels of regulation and stable

personality traits might lead to interesting new discoveries; an

attempt for that will be made by adding covariates to the model in

the next subsection.

With the third element of the centralizing tendency matrix Bp,

the cross-centralizing tendency �p�, it turns out that the population

mean of the off-diagonal element ��p�
equals 
0.05, and applying

the inverse Fisher z transformation yields roughly the same value.

This small off-diagonal value suggests that there is on average no

strong dependence between the two dimensions in the adjustment.

Described in terms of orbital portraits, the current population

would have a very similar picture for its expected dynamics around
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the home base as it is shown in Figure 4G. Also, there is some

degree of individual difference in the cross-centralizing tendency

(population standard deviation equals 0.21, not displayed in Table

2 because of space limitations).

As mentioned before, we can also look at the centralizing

tendency from another perspective, as is graphically done in Figure

11: The centralizing tendency values can be converted into auto-

correlation functions (see, e.g., Oravecz, Tuerlinckx, & Vandeker-

ckhove, 2009). The reason for this relationship can be understood

intuitively: If the adjustment to the average level in the process is

large, the autocorrelation function will decrease quickly (because

the next value does not influence the current one substantially);

whereas if the adjustment is small, there will be a strong relation

between the current and next observation (implying a high auto-

correlation). In Figure 11, the person-specific autocorrelation func-

tions are shown together with the autocorrelation functions for the

two dimensions based on the average � value. We can see a high

degree of individual variability here. Although the autocorrelation

Figure 10. Simulated Ornstein–Uhlenbeck processes based on the estimated population values. B, E, and H

show processes based on the estimated OU parameters in Table 2. The home bases (A–C), intraindividual

variances (D–F), and centralizing forces (G–I) are manipulated by first subtracting (first column) and then adding

(third column) one population standard deviation to these parameters in both dimensions.
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is not substantial after 2 hr for many students, some of them do

tend to stay in the same core affect region for a longer period. With

the help of the covariates, we can see whether these people share

some other features as well. This question is investigated in the

next subsection.

Model 2: Predicting Core Affect Characteristics From

Person-Specific Covariates

In the second estimated model, all the person-specific parameters

(i.e., the home bases, intraindividual variances, the cross-correlation,

the centralizing tendencies, and the cross-centralizing tendency) were

regressed on person-specific predictors. In the presented experience

sampling study, these predictors were the five personality dimensions

of the Big Five. We discuss only the regression coefficients for which

the 95% posterior credibility interval did not contain 0. Table 3

summarizes these coefficients.

With respect to the home base, we have the rather unsurprising

finding that neurotic individuals tend to have a lower level of

pleasantness. A similar finding can be found in Kuppens et al.

(2007), although they use the raw sample average of the pleasant-

ness ratings as outcome (and not a model-based parameter). From

Table 3, it can also be deduced that students who score high on

neuroticism tend to show higher variability with respect to their

pleasantness level—a finding that is consistent with the research of

Kuppens et al.

A more surprising result is that neuroticism is positively asso-

ciated with a higher degree of association between the two dimen-

sions. On the other side, conscientiousness is inversely related to

the cross-correlation, which is also new. This means that for highly

conscientious people, when their mood becomes more pleasant,

their arousal levels drop, and vice versa. For neurotic individuals

with a positive cross-correlation coefficient, higher activation lev-

els are associated with more pleasant feelings. These findings are,

Figure 11. The autocorrelation based on the estimated population means for the centralizing tendencies of the

pleasantness and activation (black lines) with all person-specific autocorrelation functions (gray lines). The

higher black line corresponds to pleasantness, and the lower corresponds to activation.

Table 3

Summary of the Regression Coefficients With a 95% Posterior Credibility Interval Not Containing Zero

Model parameter Description Covariate Posterior mean

95% PCI

Posterior SDLL UL

Pleasantness

��1N Home base Neuroticism 
0.32 
0.58 
0.07 0.13

�1N Variability Neuroticism 0.26 0.01 0.51 0.12

Cross-effects

��N Cross-correlation Neuroticism 0.13 0.01 0.25 0.06

��C Cross-correlation Conscientiousness 
0.18 
0.30 
0.05 0.06

���A Off-diagonal of B Agreeableness 
0.25 
0.45 
0.07 0.09

Note. Model parameters refer to the regression weights. For example ��1N is the regression weight for neuroticism relating to the home base in the
pleasantness dimension (�1).
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to the best of our knowledge, new and have not yet been described

in the literature.

The current study did not find any remarkable connection be-

tween the Big Five personality dimensions and the centralizing

force in the core affect space. However, the results did show an

effect on the off-diagonal element of the centralizing tendency

matrix: Agreeable persons seem to have a lower off-diagonal

value. This might mean that when their regulation in one dimen-

sion increases, the level of centralizing tendency in the other one

decreases. Also, the orbital portrait of agreeable individuals would

be more like the improper node as in Figure 4I.

Conclusion

In this article, we have introduced a hierarchical model for

analyzing change in longitudinal variables. The model is based on

the stochastic OU process, which can represent latent states that

change over time. Although the model comprises many attractive

features, it has not been introduced in psychology so far for

modeling affective dynamics. The most important assets of the

model are the following. First, the dynamics of the OU process

provide a sound theoretical framework: We can account for the

observed changes with an underlying dynamical concept. The OU

process-based parameterization offers a reasonable description of

the dynamics of change and is especially fit for modeling core

affect variation. By conceptualizing the parameters of the OU

process as random effects, we are able to account for interindi-

vidual differences. Furthermore, we may attempt to explain this

variability by introducing covariate information. Because we

model two longitudinal variables simultaneously, we can also

investigate cross-effects. Finally, the time-varying nature of the

home base parameter allows us to readily include explanatory

variables that are functions of time.

Our approach has many links to other types of models. For

example, because we incorporate both structural and random ef-

fects, there is a clear connection with mixed or multilevel models

(e.g., Diggle, Heagerty, Liang, & Zeger, 2002; Verbeke & Molen-

berghs, 2000). But several things set the HOU model apart from

the traditional mixed models. First, we do not focus exclusively or

even primarily on the mean structure but rather on the dynamical

aspects of the model. The former is usually the point of attention

in mixed modeling. Second, our model is derived from a stochastic

process, and it has substantive roots in emotion theory. Because of

the specific assumptions from which it is derived, its applicability

is not as general as for a linear mixed model (see below). Third, all

parameters of the model, including the variance and (auto)corre-

lation parameters, are allowed to vary randomly over persons,

whereas traditional mixed models typically allow individual dif-

ferences only in the mean structure. As a consequence, individual

differences at different locations in the model can be investigated

with the HOU model.

The HOU model also shares some similarities with structural

equation models (Bollen, 1989) because of the presence of a

measurement (or observation) model and a structural (or transi-

tion) model. However, the HOU model is based on a continuous-

time stochastic process that cannot as such be represented in a

structural equation model. Moreover, our type of data can be

highly unbalanced and very unequally spaced. In addition, there

may be many more measurements for each person than there are

persons. Such situations are typically hard to handle for structural

equation models, but the HOU model does not have any problem

with them. Besides these constraints, it is not conventional in

structural equation models to allow all driving parameters to vary

randomly.

SDE models have been used before in different areas in the

behavioral sciences. Oud (2007) and Singer (2007) demonstrated

the use of a stochastic second-order differential equation to model

oscillatory patterns in the data. Compared with their approach,

ours assumes a more simple first-order SDE on the latent level.

However, we allow for individual differences in all aspects of the

model, also in the dynamical part, which is rather exceptional.

Moreover, our model is fitted with methods from the Bayesian

framework, whereas Oud and Singer use classical techniques.

The HOU model can be applied to other areas beyond emotion

psychology, but it is not a data-analytical panacea. First, the

theoretical assumptions about the modeled psychological construct

should be in line with the specific assumptions of the stochastic

model. For instance, it should be reasonable to assume the exis-

tence of a centralizing tendency or a regulatory mechanism such

that the process reverts to the mean. Such an assumption may not

be realistic for various learning or developmental processes. In

addition, there is a considerable computational cost that comes

with fitting the model, because we make use of computationally

intensive MCMC techniques. Therefore, if one is interested mainly

in individual differences in the mean structure, traditional methods

(mentioned above) should be considered first.

Concerning the issue of regulation, its parameter B also has

some constraints. Because our focus was also on modeling inter-

individual differences, we sacrificed the asymmetry property of B

to be able to allow for interindividual differences. However, in

other areas, like autoregressive cross-lagged panel designs (Oud &

Delsing, 2010), an asymmetric B is estimated. However, in such

approaches, modeling interindividual differences in � or B is

generally not considered.

Overall, we find that the OU diffusion process is an intuitively

appealing way of describing the continuous change of certain

phenomena over time, certainly for constructs related to emotion

and mood. Future challenges that may lead to new model exten-

sions may consist of measuring important impacts on the modeled

processes and possibly discovering physiological connections. The

HOU model allows such information to be entered into the model

in a time-dependent fashion as well, which makes it especially

useful when the emphasis lies on the dynamical aspects of the

psychological constructs.

References

Arnold, L. (1974). Stochastic differential equations: Theory and applica-

tions. New York, NY: Wiley.

Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The

experience of emotion. Annual Review of Psychology, 58, 373–403.

doi:10.1146/annurev.psych.58.110405.085709

Boker, S. M. (2002). Consequences of continuity: The hunt for intrinsic

properties within parameters of dynamics in psychological processes.

Multivariate Behavioral Research, 37, 405– 422. doi:10.1207/

S15327906MBR3703_5

Boker, S. M., & Laurenceau, J.-P. (2006). Dynamical systems modeling:

An application to the regulation of intimacy and disclosure in marriage.

486 ORAVECZ, TUERLINCKX, AND VANDEKERCKHOVE



In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal

data (pp. 195–218). New York, NY: Oxford University Press.

Bollen, K. A. (1989). Structural equations with latent variables. New

York, NY: Wiley.

Brown, R. (1828). A brief account of microscopical observations made in

the months of June, July, and August, 1827, on the particles contained

in the pollen of plants; and on the general existence of active molecules

in organic and inorganic bodies. Philosophical Magazine, 4, 161–173.

Caminada, H., & De Bruijn, F. (1992). Diurnal variation, morningness–

eveningness, and momentary affect. European Journal of Personality, 6,

43–69. doi:10.1002/per.2410060105

Carver, C. S., & Scheier, M. F. (1990). Origins and functions of positive

and negative affect: A control-process view. Psychological Review, 97,

19–35. doi:10.1037/0033-295X.97.1.19

Chow, S.-M., Ram, N., Boker, S. M., Fujita, F., & Clore, G. (2005).

Emotion as a thermostat: Representing emotion regulation using a

damped oscillator model. Emotion, 5, 208–225. doi:10.1037/1528-

3542.5.2.208

Cox, D. R., & Miller, H. D. (1972). The theory of stochastic processes.

London, England: Chapman & Hall.

Csikszentmihalyi, M., & Larson, R. (1987). Validity and reliability of the

experience sampling method. Journal of Nervous and Mental Disease,

175, 526–536. doi:10.1097/00005053-198709000-00004

Davidson, R. J. (2003). Darwin and the neural bases of emotion and

affective style. In P. Ekman, J. J. Campos, R. J. Davidson, & F. B. M de

Waal (Eds.), Annals of the New York Academy of Sciences (Vol. 1000,

pp. 316–336). New York: New York University Press.

Delsing, M. J. M. H., Oud, J. H. L., & De Bruyn, E. E. J. (2005).

Assessment of bidirectional influences between family relationships and

adolescent problem behavior: Discrete vs. continuous time analysis.

European Journal of Psychological Assessment, 21, 226–231. doi:

10.1027/1015-5759.21.4.226

Denissen, J. J. A., Butalid, L., Penke, L., & van Aken, M. A. G. (2008).

The effects of weather on daily mood: A multilevel approach. Emotion,

8, 662–667. doi:10.1037/a0013497

Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis

of longitudinal data (2nd ed.). Oxford, England: Oxford University

Press.

Dunn, J. E., & Gipson, P. S. (1977). Analysis of radio telemetry data in

studies of home range. Biometrics, 33, 85–101. doi:10.2307/2529305
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Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendi-

erten Teilchen [On the movement of small particles suspended in a

stationary liquid demanded by the molecular-kinetic theory of heat].

Annalen der Physik, 332, 549–560.

Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based

on generalized linear models (2nd ed.). New York, NY: Springer-

Verlag.

Forgas, J. P., & Ciarrochi, J. V. (2002). On managing moods: Evidence for

the role of homeostatic cognitive strategies in affect regulation. Person-

ality and Social Psychology Bulletin, 28, 336–345. doi:10.1177/

0146167202286005

Frijda, N. H. (2007). The laws of emotion. Mahwah, NJ: Erlbaum.

Gallistel, C. R. (2009). The importance of proving the null. Psychological

Review, 116, 439–453. doi:10.1037/a0015251

Gardiner, C. W. (2004). Handbook of stochastic methods: For physics,

chemistry and the natural sciences (3rd ed.). New York, NY: Springer-

Verlag.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian

data analysis (2nd ed.). New York, NY: Chapman & Hall.

Gelman, A., & Hill, J. (2007). Data analysis using regression and multi-

level/hierarchical models. Cambridge, England: Cambridge University

Press.

Gross, J. J. (Ed.). (2007). Handbook of emotion regulation. New York. NY:

Guilford Press.

Gross, J. J., & John, O. P. (2003). Individual differences in two emotion

regulation processes: Implications for affect, relationships, and well-

being. Journal of Personality and Social Psychology, 85, 348–362.

doi:10.1037/0022-3514.85.2.348

Hamaker, E. L., Zhang, Z., & van der Maas, H. L. J. (2009). Using

threshold autoregressive models to study dyadic interactions. Psy-

chometrika, 74, 727–745. doi:10.1007/s11336-009-9113-4

Haug, H. J., & Fähndrich, E. (1990). Diurnal variations in depressed

patients in relation to severity of depression. Journal of Affective Dis-

orders, 19, 37–41. doi:10.1016/0165-0327(90)90007-U

Hemenover, S. H. (2003). Individual differences in rate of affect change:

Studies in affective chronometry. Journal of Personality and Social

Psychology, 85, 121–131. doi:10.1037/0022-3514.85.1.121

Hoeksma, J. B., Oosterlaan, J., Schipper, E., & Koot, H. (2007). Finding

the attractor of anger: Bridging the gap between dynamic concepts and

empirical data. Emotion, 7, 638–648. doi:10.1037/1528-3542.7.3.638

Hoekstra, H. A., Ormel, J., & De Fruyt, F. (1996). NEO-PI–R, NEO-FFI

Big Five persoonlijkheidsvragenlijsten: Handleiding [NEO-PI–R, NEO-

FFI Big Five personality questionnaire: Manual]. Lisse, the Netherlands:

Swets & Zeitlinger.

Jazwinski, A. H. (1970). Stochastic processes and filtering theory. New

York, NY: Academic Press.

Karlin, S., & Taylor, H. M. (1981). A second course in stochastic pro-

cesses. New York, NY: Academic Press.

Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of

latent interaction effects with the LMS method. Psychometrika, 65,

457–474. doi:10.1007/BF02296338

Klein Entink, R. H., Kuhn, J.-T., Hornke, L. F., & Fox, J.-P. (2009).

Evaluating cognitive theory: A joint modeling approach using responses

and response times. Psychological Methods, 14, 54–75. doi:10.1037/

a0014877

Kuppens, P., Stouten, J., & Mesquita, B. (2009). Individual differences in

emotion components and dynamics: Introduction to the special issue. Cog-

nition & Emotion, 23, 1249–1258. doi:10.1080/02699930902985605

Kuppens, P., Van Mechelen, I., Nezlek, J. B., Dossche, D., & Timmer-

mans, T. (2007). Individual differences in core affect variability and

their relationship to personality and adjustment. Emotion, 7, 262–274.

doi:10.1037/1528-3542.7.2.262

Kuppens, P., Van Mechelen, I., & Rijmen, F. (2008). Toward disentangling

sources of individual differences in appraisal and anger. Journal of

Personality, 76, 969–1000. doi:10.1111/j.1467-6494.2008.00511.x

Larsen, R. J., & Prizmic, Z. (2000). Affect regulation. In R. F. Baumeister

& K. D. Vohs (Eds.), Handbook of self-regulation: Research, theory,

and applications (pp. 40–61). New York, NY: Guilford Press.

Larson, R., & Csikszentmihalyi, M. (1983). The experience sampling

method. New Directions for Methodology of Social and Behavioral

Science, 15, 41–56.

Lawler, G. F. (2006). Introduction to stochastic processes. New York, NY:

Chapman & Hall/CRC.

Lewis, M. D. (2005). Bridging emotion theory and neurobiology through

dynamic modeling. Behavioral and Brain Sciences, 28, 169–245. doi:

10.1017/S0140525X0500004X

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing

data (2nd ed.). New York, NY: Wiley.

Mood, A. M., Graybill, F. A., & Boes, D. C. (1974). Introduction to the

theory of statistics. New York, NY: McGraw-Hill.

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2009). A hierarchical

Ornstein–Uhlenbeck model for continuous repeated measurement data.

Psychometrika, 74, 395–418. doi:10.1007/S11336-008-9106-8

Oud, J. H. L. (2007). Comparison of four procedures to estimate the

damped linear differential oscillator for panel data. In K. van Montfort,

487HIERARCHICAL LATENT SDE MODEL



J. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioral and

related sciences (pp. 19–40). Mahwah, NJ: Erlbaum.

Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling

of panel data by means of SEM. In K. van Montfort, J. Oud, & A.

Satorra (Eds.), Longitudinal research with latent variables (pp. 201–

244). Heidelberg, Germany: Springer-Verlag.

Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space

modeling of panel data by means of SEM. Psychometrika, 65, 199–215.

doi:10.1007/BF02294374

Oud, J. H. L., & Singer, H. (2008). Continuous time modeling of panel

data: SEM versus filter techniques. Statistica Neerlandica, 62, 4–28.

doi:10.1111/j.1467-9574.2007.00376.x

Pan, J.-K., & Fang, K.-T. (2002). Growth curve models and statistical

diagnostics. New York, NY: Springer.

Ramsey, F. L., & Schafer, D. W. (2002). The statistical sleuth: A course in

methods of data analysis (2nd ed.). Pacific Grove, CA: Duxbury.

Ringo Ho, M.-H., Shumway, R., & Ombao, H. (2006). The state-space

approach to modeling dynamic processes. In T. A. Walls & J. L. Schafer

(Eds.), Models for intensive longitudinal data (pp. 148–175). New

York, NY: Oxford University Press.

Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods (2nd

ed.). New York, NY: Springer.

Ross, S. M. (1996). Stochastic processes (2nd ed.). New York, NY: Wiley.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.

(2009). Bayesian t tests for accepting and rejecting the null hypoth-

esis. Psychonomic Bulletin & Review, 16, 225–237. doi:10.3758/

PBR.15.6.1201

Rouder, J. N., Tuerlinckx, F., Speckman, P., Lu, J., & Gomez, P. (2008).

A hierarchical approach for fitting curves to response time measure-

ments. Psychonomic Bulletin & Review, 15, 1201–1208. doi:10.3758/

PBR.15.6.1201

Russell, J. A. (2003). Core affect and the psychological construction of

emotion. Psychological Review, 110, 145–172. doi:10.1037/0033-

295X.110.1.145

Russell, J. A., & Barrett, L. F. (1999). Core affect, prototypical emotional

episodes, and other things called emotion: Dissecting the elephant.

Journal of Personality and Social Psychology, 76, 805–819. doi:

10.1037/0022-3514.76.5.805

Russell, J. A., Weiss, A., & Mendelsohn, G. A. (1989). Affect grid: A

single-item scale of pleasure and arousal. Journal of Personality and

Social Psychology, 57, 493–502. doi:10.1037/0022-3514.57.3.493

Rusting, C. L., & Larsen, R. J. (1998). Diurnal patterns of unpleasant

mood: Associations with neuroticism, depression, and anxiety. Journal

of Personality, 66, 85–103. doi:10.1111/1467-6494.00004

Scherer, K. R. (2000). Emotions as episodes of subsystem synchronization

driven by nonlinear appraisal processes. In M. D. Lewis & I. Granic

(Eds.), Emotion, development, and self-organization: Dynamic systems

approaches to emotional development (pp. 70–99). New York, NY:

Cambridge University Press.

Schumacker, R. A., & Marcoulides, G. A. (1998). Interaction and nonlin-

ear effects in structural equation modeling. Mahwah, NJ: Erlbaum.

Shoda, Y., LeeTiernan, S., & Mischel, W. (2002). Personality as a dynam-

ical system: Emergence of stability and distinctiveness from intra- and

interpersonal interactions. Personality and Social Psychology Review, 6,

316–325. doi:10.1207/S15327957PSPR0604_06

Singer, H. (2007). Stochastic differential equation models with sampled

data. In K. van Montfort, J. Oud, & A. Satorra (Eds.), Longitudinal

models in the behavioral and related sciences (pp. 73–106). Mahwah,

NJ: Erlbaum.

Smith, J. B., & Batchelder, W. H. (2010). Beta-MPT: Multinomial pro-

cessing tree models for addressing individual differences. Journal of

Mathematical Psychology, 54, 167–183. doi:10.1016/j.jmp.2009.06.007

Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An intro-

duction to basic and advanced multilevel modeling. Thousand Oaks,

CA: Sage.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002).

Bayesian measures of model complexity and fit [With discussion].

Journal of the Royal Statistical Society: Series B. Statistical Methodol-

ogy, 64, 583–616.

Tuma, N. B., & Hannan, M. T. (1984). Social dynamics: Models and

methods. New York, NY: Academic Press.

Uhlenbeck, G. E., & Ornstein, L. S. (1930). On the theory of Brownian

motion. Physical Review, 36, 823–841.

Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longi-

tudinal data. New York, NY: Springer-Verlag.

Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general

activation systems of affect: Structural findings, evolutionary consider-

ations, and psychobiological evidence. Journal of Personality and So-

cial Psychology, 76, 820–838. doi:10.1037/0022-3514.76.5.820

Wiener, N. (1923). Differential space. Journal of Mathematics and Phys-

ics, 58, 131–174.

Witherington, D. C., & Crichton, J. A. (2007). Frameworks for understand-

ing emotions and their development: Functionalist and dynamic systems

approaches. Emotion, 7, 628–637. doi:10.1037/1528-3542.7.3.628

488 ORAVECZ, TUERLINCKX, AND VANDEKERCKHOVE



Appendix A

Properties of the Stochastic Integral and the Solution of the Stochastic Differential Equation for One-Dimensional

Ornstein–Uhlenbeck Process

First, we discuss some properties of the standard Brownian

motion process:

1. For every t, W(t) has a normal distribution.

2. E(W(t)) � 0 and Cov(W(s), W(t)) � min(s,t).

3. It has independent increments: For every ordered se-

quence t1 � t2 � t3 � t4 of four time points, W(t2) 

W(t1) is independent of W(t4) 
 W(t3).

Note that a direct consequence of the second property is that

Cov(W(t), W(t)) � Var(W(t)) � t, and consequently a Brownian

motion process is not stationary because its variance changes over

time. However, the increments of the Brownian motion process are

stationary; hence, the distribution of W(t � h) 
 W(t) does not

depend on t, only on the time difference h, and is thus identical for

all t.

The solution of a stochastic integral relies on a specific calculus,

mostly Itô calculus, although other possibilities exist (see, e.g.,

Arnold, 1974). To define the stochastic integral, suppose G(t) is an

arbitrary function of time and W(t) is the standard Brownian

motion. The stochastic integral �t0
t G�u�dW�u� is defined (Gardiner,

2004) as a limit of the partial sums:

Sn � �
i�1

n

G��i��W�ti� � W�ti � 1��,

where it holds that ti
1 � �i � ti and tn � t so that

lim
n 3 �

Sn �	
t0

t

G�u�dW�u�.

In principle, the function G( � ) could be deterministic or (nonan-

ticipatory) stochastic, but we consider in this article only the first

option.

Here we highlight three important properties. For the full de-

scription of properties, we refer to Arnold (1974) and Tuma and

Hannan (1984). The first one is the following:

E
	
t0

t

G�u�dW�u�� � 0,

which is to say that the expected mean of the stochastic integral is

0. This property can be understood easily by taking the expectation

of limn3�Sn. The second property states that

E
�	
to

t

G�u�dW�u�)�	
t0

s

G�u�dW�u��� �	
t0

s

G2�u�du,

where t0 � s � t, which is an ordinary integral of time. As a third

property, we mention that the distribution of the stochastic integral

with respect to a Wiener process is normally distributed (and the

mean and variance of this distribution are derived above).

Let us consider now the specific case of the solution of the

stochastic differential equation for the Ornstein–Uhlenbeck pro-

cess:

d��t� � ��� � ��t��dt � �dW�t�.

First, we integrate over this equation, which results in

��t� � � � e
�t��0 � �� � �e
�t	
0

t

e�udW�u�,

where the last term in the solution is a stochastic integral (it is an

integral with respect to the Brownian motion process W(t)).

We will often not condition on the position at Time 0 but on the

position d time units before, that is, �(t 
 d), so that the solution

then becomes

��t� � � � e
�d���t � d� � �� � �e
�t	
t
d

t

e�udW�u�.

(A1)

From Equation A1, we can see that the position at time t, that is,

�(t), depends on the already introduced parameters and the pre-

viously measured position �(t 
 d).

Making use of the properties of the stochastic integral as intro-

duced above, the conditional distribution of �(t) given �(t 
 d)

can be derived from Equation A1, and is as follows:

��t����t � d� � N�� � e
�d���t � d� � ��,
�2

2�
�1 � e
2�d��.

(Appendices continue)
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Appendix B

Solution of the Stochastic Differential Equation for Two-Dimensional Ornstein–Uhlenbeck Process

Based on the extensive treatment of the unidimensional case, the

two-dimensional process will not appear entirely novel. As estab-

lished before, �(t) represents the position in a two-dimensional

space at time t. The stochastic differential equation describing the

change in the vector �(t) is then as follows:

d��t� � B�� � ��t��dt � �dW�t�. (B1)

The vector � now stands for the home base in a two-dimensional

space. The adjustment to � is no longer determined by a single

scalar � but the matrix B. The dW(t) represents the already

introduced white noise in two dimensions. The matrix � controls

the variances and covariances of the two driving white noise

processes. The instantaneous covariance matrix � can be derived

from � as follows: � � ��T.

The solution of the two-dimensional stochastic differential

equation in Equation B1 is very similar to the unidimensional

solution (assuming we condition on �(t 
 d)):

��t� � � � e
Bd���t � d� � �� � �e
Bd	
t
d

t

eBudW�u�,

where d denotes the time difference and e
X is the matrix expo-

nential defined as

e
X
� I � X �

X2

2!
�

X3

3!
�

X4

4!
�

X5

5!
� · · ·.

We follow the reparameterization that was already introduced in

the case of a unidimensional process. Instead of using the

Cholesky decomposition of the instantaneous covariance matrix

(i.e., �), we prefer the parameterization based on the stationary

covariance matrix � (see Gardiner, 2004):

� � ��T
� B� � �BT,

where � is the instantaneous covariance matrix and � its Cholesky

decomposition. Then the conditional distribution of �(t) given

�(t 
 d) equals

��t����t � d� � N2�� � e
Bd���t � d� � ��, � � e
Bd�e
BTd�,

where N2 refers to the bivariate normal distribution. Also in this

two-dimensional case, the process converges to a stationary dis-

tribution:

x��t� � N2��, ��.

Received November 7, 2008

Revision received September 29, 2010

Accepted February 26, 2011 �

490 ORAVECZ, TUERLINCKX, AND VANDEKERCKHOVE



Bayesian statistical inference for the hierarchical
Ornstein-Uhlenbeck model: An online supplement to “A

hierarchical latent stochastic differential equation model for
affective dynamics”

Zita Oravecz, Francis Tuerlinckx, & Joachim Vandekerckhove

Department of Psychology

Department of Psychology

University of Leuven, Belgium

The hierarchical Ornstein-Uhlenbeck model

Modeling the affect dynamics of a single individual: The OU model with mea-

surement error

The true or latent position in a two-dimensional latent space at time t will be denoted by the vector

Θ(t) defined as: Θ(t) = (Θ1(t), Θ2(t))
T and the superscript T indicates the transpose operation.

In the core affect application, Θ1(t) refers to the position on the first dimension (pleasantness)

and Θ2(t) to the position on the second dimension (arousal). (We will define the model for two

dimensions here and we refer specifically to core affect, but generalizations to more dimensions and

other application areas are possible.) In the model formulation, it is assumed that the true core

affect changes continuously throughout time, but the measurements are taken at a finite number

of time points: t1, t2, . . . , ts, . . . , tn, where n stands for the number of measurements. We define the

vector Y (ts) = (Y1(ts), Y2(ts))
T as the observed pleasantness and arousal scores at time point ts.

The general model can then be written as follows:






dΘ(t) = B

(

µ − Θ(t)
)

dt + σdW (t)

Y (ts) = Θ(ts) + ǫ(ts),
(1)

where µ is a vector with two components, σ and B are positive definite 2 × 2 matrices. The mea-

surement error is represented by ǫ(ts), which is a random draw from a bivariate normal distribution
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with mean (0, 0)
T

and covariance matrix Σǫ. The component W (t) stands for the standard Wiener

process.

Let us first reparametrize the model such that Σ is replaced by Γ, which has the following

relation to Σ (see Gardiner, 2004):

Σ = BΓ + ΓB
T.

The matrix Γ is called the stationary covariance matrix. By integrating over the transition equation

(Eq. 1, first line), we arrive at the conditional distribution of the two-dimensional OU process (see

Appendix B of the paper for a derivation):

Θ(t)|Θ(t − d) ∼ N2

(

µ + e−Bd
(

Θ(t − d) − µ
)

, Γ − e−Bd
Γe−B

Td
)

, (2)

where N2 refers to the bivariate normal distribution. As in the unidimensional case, the two-

dimensional process converges to a stationary distribution:

Θ(t) ∼ N2(µ,Γ), (3)

provided that all eigenvalues of B are positive.

The hierarchical OU model

The hierarchical extension requires the specification of population distributions. To proceed with

the model description, assumptions about these distributions will be introduced now.

The hierarchical formulation of the OU model is based on the previously presented equations,

but some new notation has to be introduced. A specific person p (p = 1, ..., P ) is measured np

times at the following sequence of time points: tp1, tp2, . . . , tps, . . . , tp,np . The index s denotes the

sth measurement occasion of that individual. For notational convenience, we will use p and s as the

only indicies when denoting parameters or data which are related to the specific observation at tps.

The model for a single person p for whom the observed data are a function of an underlying

OU process and some measurement error can now be written as follows:

Y ps = Θps + ǫps (4)

where Y ps stands for the observed random vector, Θps for the latent state (or true score) and ǫps

for the measurement error. The conditional distribution of Θps given Θp,s−1 is normally distributed

as follows (for s > 1):

Θps|Θp,s−1 ∼ N2

(

µps + e−Bp(tps−tp,s−1)(Θp,s−1 − µps),Γp − e−Bp(tps−tp,s−1)
Γpe

−B
T
p (tps−tp,s−1)

)

. (5)
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For the first observation, Θp1, it is assumed that Θp1 ∼ N2(µps,Γp).

The regression of µps onto the two types of covariates and allowing for a person-specific

random deviation is defined as follows:

µps = ∆µzps + Aµxp + Epµ, (6)

with Epµ ∼ N2 (0,Σµ). The matrices ∆µ and Aµ are parameter matrices of dimension 2×m and

2 × (k + 1), respectively, containing the regression weights for the covariates. Furthermore, the

covariance matrix Σµ is defined as follows:

Σµ =

(

σ2
µ1

σµ1µ2

σµ1µ2 σ2
µ2

)

(7)

For implementation purposes, it is helpful to use another formulation:

µps =
(

I2 ⊗ zps

)

δ + Aµxp + Epµ, (8)

with ⊗ denoting the Kronecker product. Vector δ = vec(∆µ) is a (2m) × 1 vector of regression

coefficients (the coefficient vectors of each dimension are stacked on top of each other).

As explained in the paper, also the other person-specific OU parameters (γ1p, γ2p, ργp , β1p,

β2p and ρβp
) can be made functions of time-invariant covariates. The population distribution for the

other parameters is unidimensional. As an example, the population distribution for γ1p is defined

as

γ1p ∼ LN(xT
pαγ1 , σ

2
γ1

),

where the density function is:

f(γ1p) =
1

γ1p

√

2πσ2
γ1

e
−

1
2

(log(γ1p)−x
T
p αγ1 )2

σ2
γ1 . (9)

The same properties are valid for γ2p, β1p and β2p.

In the case of the standardized off-diagonal elements (ργp and ρβp
), it is assumed that their

Fisher-z transformed values F (ργp) = 1
2 log

1+ργp

1−ργp
and F (ρβp

) = 1
2 log

1+ρβp

1−ρβp
are drawn from a normal

population distribution, the mean of which mean depends on covariates. As an example, let us

consider ργp (ρβp
follows the same reasoning):

F (ργp) ∼ N(xT
pαργ , σ2

ργ
).
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The density of the original ργp then equals (applying the transformation of variables technique, see

e.g. Mood, Graybill, & Boes, 1974):

f(ργp) =

∣

∣

∣

∣

dF (ργp)

dργp

∣

∣

∣

∣

φ(F (ργp);x
T
pαργ , σ2

ργ
)

=
1

(1 − ργp)(1 + ργp)

1
√

2πσ2
ργ

× exp

(

−
1

2

(

1
2 log

(1+ργp

1−ργp

)

− xT
pαργ

)2

σ2
ργ

)

, (10)

where F (·) is the Fisher-z transform and φ(x; µ, σ2) is the normal density evaluated at x with mean

µ and variance σ2. Again, αργ contains k + 1 regression coefficients.

Having completed the description of the model, we will summarize in the next section how

the statistical inference is carried out.

Bayesian inference in the OU model

As explained in the paper, we opt for the Gibbs sampler whereby, in each iteration, a new value of

each parameter is sampled, based on the full conditional distribution of the parameter in question

(i.e., the probability distribution of the parameter, given the values of all other parameters as

obtained in the previous iteration, as well as the data). The full conditional of all parameters have

to be derived. If such a full conditional is a known distribution, then drawing a random sample

from it is straightforward. If the full conditional does not correspond to a known distributional

form, however, we will implement a Metropolis-Hastings (M-H) step (Gelman, Carlin, Stern, &

Rubin, 2004, p. 291) in the Gibbs sampling structure.

As a first general step for describing the inference, we give the contribution of one person to

the likelihood:

Lp = L(µp,Bp,Γp,Σǫ, {Θps}
np

s=1 | {Y ps}
np

s=1)

= f({Y ps}
np

s=1 | {Θps}
np

s=1,Σǫ, µp, δ,Bp,Γp),

where {Yps}
np

s=1 and {Θps}
np

s=1 stand for the indexed lists {Yp1,Yp2,. . .,Yp,np} and

{Θp1,Θp2,. . .,Θp,np}, respectively. Instead of presenting the posterior distribution hereby,

we immediately go on with describing the full conditionals of each parameter. Note that we will

represent µp in these derivations as the person-specific home base (i.e., the random intercept) with

a mean possibly different from zero.
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The full conditional of the latent state Θps

We use a single move sampler (as opposed to a multimove sampler) to draw each latent state value

separately (Carter & Kohn, 1994). We choose a normal distribution as a prior for Θps:

Θps ∼ N2(Θ0,ΦΘ).

To achieve a relatively uninformative prior, we set the mean Θ0 to 0 and choose a high variance

(ΦΘ = 1000× I2). If we combine its normal likelihood with this normal prior, the full conditional

also has normal distribution.

For convenience, we introduce some new notations, which will stand for time differences.

With dp,s+1, we denote the time difference between tp,s+1 and tp,s. Also dp,s stands for the time

difference between tp,s and tp,s−1. Finally dp,np equals tp,np − tp,np−1.

The values of the latent state Θps are drawn sequentially. Since for the first point the

likelihood is a bit more simple (it is estimated with the stationary distribution), the full conditional

of the first observation (s = 1) is different from the rest:

(Θp1 | µp1,Γp,Σǫ, Y p1) ∼ N2(MΘp1 , V Θp1),

with covariance matrix

V Θp1 = (Φ−1
Θ + Σ

−1
ǫ + Γ

−1
p )−1

and mean

MΘp1 = V Θ1(Φ
−1
Θ Θ0 + Σ

−1
ǫ Y p1 + Γ

−1
p µp1).

As we can see, the full conditional of Θp1 only depends on µp1, Γp, Σǫ and Y p1. On the

other hand, for s > 1, Θps is conditional on the previous latent state value (Θp,s−1), the next latent

state value (Θp,s+1), some of the model parameters (µp, δ, Bp, Γp and Σǫ), the corresponding data

point (Y ps) and the time-varying covariate information (zps) :

(Θps | µps,Bp,Γp,Σǫ, Y ps,Θp,s−1,Θp,s+1) ∼ N2(MΘps , V Θps),

since

V Θps = (Φ−1
Θ + Σ

−1
ǫ + V −1

ps + (e−Bpdp,s+1)TV −1
p,s+1(e

−Bpdp,s+1))−1
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and

MΘps = V Θps(Φ
−1
Θ Θ0 + Σ

−1
ǫp

Y ps + V −1
ps µps

+V −1
ps e−BpdpsΘp,s−1 − V −1

ps e−Bpdpsµps

+(e−Bpdp,s+1)TV −1
p,s+1Θp,s+1

−(e−Bpdp,s+1)TV −1
p,s+1µp,s+1

+(e−Bpdp,s+1)TV −1
p,s+1e

−Bpdp,s+1µp,s+1),

where V ps is defined as:

V ps =

{

Γp if s = 1

Γp − e−Bp(tps−tp,s−1)
Γpe

−B
T
p (tps−tp,s−1) if s > 1.

(11)

. The definition of V p,s+1 is analogue (with the appropriate changes of indices).

Naturally, the likelihood of the last point Θp,np can not depend on the next observation point

Θp,s+1, therefore its posterior has a simpler form:

(Θp,np | µps,Bp,Γp,Σǫ, Y p,np) ∼ N2(MΘp,np
, V Θp,np

),

with covariance matrix

V Θp,np
= (Φ−1

Θ + Σ
−1
ǫ + V −1

p,np
)−1

and mean

MΘp,np
= V Θp,np

(Φ−1
Θ Θ0 + Σ

−1
ǫp

Y p,np + V −1
p,np

µp,np

+V −1
p,np

e−Bpdp,npΘp,np−1 − V −1
p,np

e−Bpdp,np µp,np
).

The full conditional of the person-specific parameters

In the case of the two-dimensional parameter µp, its bivariate normal prior) combined with its

bivariate normal likelihood results in a bivariate normal full conditional density:

(µp | {Θps}
np

s=1,Bp,Γp, δ, αµ,Σµ) ∼ N2(Ωp,Φp).
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where

Φp =
(

Σ
−1
µ + Γ

−1
p +

np
∑

s=2

V −1
ps −

np
∑

s=2

V −1
ps e−Bpdps

−

np
∑

s=2

(e−Bpdps)TV −1
ps +

np
∑

s=2

(e−Bpdps)TV −1
ps e−Bpdps

)−1

Ωp = Φp

(

Σ
−1
µ zT

pαµ − Γ
−1
p F p1δ + Γ

−1
p Θp1 +

np
∑

s=2

V −1
ps Θps

−

np
∑

s=2

V −1
ps e−BpdpsΘp,s−1 −

np
∑

s=2

(e−Bpdps)TV −1
ps Θps

+

np
∑

s=2

(e−Bdps)TV −1
ps e−BdpsΘp,s−1 −

np
∑

s=2

V −1
ps F psδ

+

np
∑

s=2

(e−Bpdps)TV −1
ps F psδ

)

, (12)

and we define F ps = I2 ⊗ zps − e−BpdpsI2 ⊗ zps, and F p1 = I2 ⊗ zp1.

The conditional distributions for the unidimensional person-specific parameters do not have

a known form. Therefore for these parameters we give the product of the likelihood and the prior,

which is proportional to the full conditional. The prior distributional assumptions for these param-

eters are represented by their population densities, which have been specified in Equations 9 and

10. In the derivation of the conditionals, we have to distinguish between two groups of parameters.

In the case of γ1p, γ2p and ργp, the first observation of the chain must be taken into account, while

for β1p, β2p and ρβp it does not. As a result, their likelihoods differ slightly. Within these two

groups, however, the likelihoods are identical. In the first group, we multiply over all observations:

f(γ1p | {Θps}
np

s=1, µp, γ2p, ργp,Bp)

∝ f(γ1p)

np
∏

s=1

|V ps|
−

1
2 e−

1
2

(

MT
psV −1

ps Mps

)

, (13)

where Mps is defined as:

Mps =

{

µps if s = 1

µps + e−Bp(tps−tp,s−1)(Θp,s−1 − µps) if s > 1
(14)

and V ps are defined as in Equation 11. The same derivation can be done easily for γ2p and ργ as

well.
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For the second group, we start multiplying from the second observation (s = 2) onward:

f(β1p | {Θps}
np

s=1, µp,Γp, β2p, ρβp)

∝ f(β1p)

np
∏

s=2

|V ps|
−

1
2 e−

1
2

(

MT
psV −1

ps Mps

)

. (15)

The full conditional of the regression terms

First, we start with the regression coefficients of the time-varying covariates, which have a rather

special design: the coefficients of the two dimensions are stacked below each other in a vector δ, as

defined in Equation 8. As prior for δ, we choose a multivariate normal distribution:

δ ∼ N2E(Mδ0 ,V δ0).

To achieve a relatively uninformative prior, we set Mδ0 to 0 and we choose a high variance

(V δ0 = 1000× I2E). By combining the normal prior with the normal likelihood, we can derive the

conditional distribution of δ, which is a multivariate normal distribution:

(δ | {Θps}
np

s=1,Bp,Γp, Mδ0 ,V δ0) ∼ N2E(Mδ, V δ).

with the following parameters:

V δ =



V −1
δ0

+

P
∑

p=1

F T
p1Γ

−1
p F p1 +

P
∑

p=1

np
∑

s=2

F T
psV

−1
ps F ps





−1

Mδ = V δ

(

V −1
δ0

Mδ0 +
P

∑

p=1

F T
1Γ

−1
p Θp1 −

P
∑

p=1

F T
1Γ

−1
p µp

+

P
∑

p=1

np
∑

s=2

F T
psV

−1
ps Θps −

P
∑

p=1

np
∑

s=2

F T
psV

−1
ps µp

−
P

∑

p=1

np
∑

s=2

F T
psV

−1
ps e−BpdpsΘp,s−1 +

P
∑

p=1

np
∑

s=2

F T
psV

−1
ps e−Bpdpsµp

)

,

where F ps and F p1 are defined as for Equation 12.

Second, we deal with regression coefficients of the the time-invariant predictors. They can

appear in all population distributions of the person-specific OU parameters, thereby allowing every

dynamic model parameter to be turned into a random effect. Let us first specify the priors. A

uniform distribution is used as a prior for the regression coefficients

f(αh) ∝ 1,
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where h can be equal to µ1, µ2, γ1, γ2, ργ , β1, β2 or ρβ . For the residual variance parameters, we

choose a uniform prior on log σg such that:

f(σ2
h) ∝ σ−2

h ,

where h again equals one of the unidimensional parameters γ1,γ2, ργ , β1, β2 or ρβ . For the two-

dimensional µ, a prior has to be set on its covariance matrix Σµ, which can be specified as:

f(Σµ) ∝| Σµ |
−3/2,

which is the bivariate Jeffreys prior. All these priors can be considered non-informative.

For deriving the full conditional distributions of the regression terms for the person-specific

parameters, we again separate µ from the unidimensional parameters (γ1, γ2, ργ , β1, β2 and ρβ).

The distributional forms for the regression terms of the latter ones are identical. Here we give the

example of the full conditionals of αγ1 and σ2
γ1

(but γ1 could be substituted by γ2, ργ , β1, β2 or ρβ

as well):

f(αγ1 | γ11, . . . , γ1P , σ2
γ1

) ∝ exp
(

−
1

2
(αγ1 − Xα̂γ1)

T V −1
g (αγ1 − Xα̂γ1)

)

, (16)

where X is a P × (k + 1) matrix defined by stacking the person-specific covariate vectors xT
p

underneath each other. If we denote g = (log(γ11), . . . , log(γ1P ))T such that α̂γ1 = (XTX)−1XTg

and V g = σ2
γ1

(XTX)−1, it can be seen that the full conditional of αγ1 is a normal density with

mean Xα̂γ1 and covariance matrix V g.

The full conditional for σ2
γ1

, the residual variance of αγ1 , has the following form:

f(σ2
γ1

| γ11, . . . , γ1P ) ∝ (σ2
γ1

)−
(

P−k−1
2

+1
)

e
−

(P−k−1)s2

2σ2
γ1 ,

with

s2 =
1

P − k − 1
(g − Xα̂γ1)

T(g − Xα̂γ1),

which corresponds to a scaled inverse-χ2 distribution with scale s2 and degrees of freedom P −k−1

(see e.g. Gelman et al., 2004, Appendix A); and where g, X, and α̂γ1 are defined in the same way

as in Equation 16.

The full conditional of αµ and its covariance matrix Σµ are also known densities. Their

derivation involves a bivariate regression problem. Here we just give the solution for the parameters

in question (for a general step-by-step treatment of the problem, see Zellner, 1971). First, the data



HIERARCHICAL LATENT SDE MODEL 10

have to be rearranged. We define the matrix M as the P × 2 matrix of individual home base

intercepts, that is M = (µ1, . . . ,µP )T. Then the least squares regression coefficient matrix (of the

regression of M on X, where the latter is defined in Equation 16), equals Âµ = (XTX)−1XTM .

Stacking columns of Âµ below each other results in α̂µ = (Â
T

µ1
, Â

T

µ2
)T. In the same vein, let us

also define ~αµ = (αT
µ1

, αT
µ2

)T and S = (M −XÂµ)T(M −XÂµ). The full conditional of Σµ then

equals

f(Σµ | µ1, . . . ,µP ) ∝ |Σµ|
−v/2 e−

1
2
tr(Σ−1

µ
S),

where v = P − k + 2, and tr(·) denotes the trace operator. This density corresponds to an inverse-

Wishart distribution with P − k + 2 degrees of freedom and scale S. In the estimation algorithm,

Σµ has to be sampled first, and based on its value the matrix αµ can be sampled from the following

conditional density

f(αµ | Σµ,µp, x) ∝ e−
1
2
(~αµ−α̂µ)T(Σ−1

µ
⊗xpxT

p )(~αµ−α̂µ),

which is a bivariate normal density with mean α̂µ and covariance matrix Σµ ⊗ (xpx
T
p )−1.

The full conditional of Σǫ

The covariance matrix of the measurement error is constrained to be a diagonal matrix:

Σǫ =

[

σ2
1ǫ 0

0 σ2
2ǫ

]

.

We will sample σ2
1ǫ and σ2

2ǫ in identical ways. First, we assume prior independence for σ2
1ǫ and σ2

2ǫ,

and we demonstrate the inference with σ2
1ǫ. As a prior, we take a scaled inverse-χ2 distribution:

σ2
1ǫ ∼ inv-χ2(ν0, s

2
0).

If we combine this with the likelihood of σ2
1ǫ, which is univariate normal, the result is another scaled

inverse-χ2 distribution:

(σ2
1ǫ | {Y (t1s)}

n1
s=1, . . . , {Y (tPs)}, {Θ(t1s)}

n1
s=1, . . . , {Θ(tPs)})

∼ inv-χ2(νσ2
1ǫ

, sσ2
1ǫ

),

with parameters

νσ2
1ǫ

= ν0 +
P

∑

p=1

np
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and

sσ2
1ǫ

= (ν0s
2
0 + s2)/νσ2

1ǫ
,

where

s2 =

P
∑

p=1

np
∑

s=1

(

yps1 − θps1

)2
.

Sampling specifications

As has been discussed above, we use the Gibbs sampler for sampling from the full conditionals

with a known form, which is the case for most of the parameters. Only for γ1p, γ2p, ργp , β1p,

β2p and ρβp
(the elements of Γp and Bp), we need to implement a Metropolis-Hastings step. For

this purpose, reasonable candidate generating distributions have to be assigned. With regard to

the two matrices Γp and Bp, there is also a constraint which has to be met. According to the

theory of the OU process, the matrix product BpΓp + ΓpB
T
p has to be positive definite, since it

represents the instantaneous covariance matrix (see e.g., Dunn & Gipson, 1977). Implementing such

a restriction is a complex task, so most of the applications on the OU process have opted for an

isotropic constraint on Bp with positive diagonal elements (Blackwell, 1997; Oravecz, Tuerlinckx, &

Vandekerckhove, 2009), in which case the aforementioned criterion is always automatically fulfilled.

However, our present model incorporates a more general representation of Bp. Accordingly, a

technique is needed to preserve the positive definiteness of the matrix product BpΓp + ΓpB
T
p .

Our method is the following. First of all, Bp and Γp matrices are decomposed into subelements,

as has been shown in the paper. The idea is to sample each of the subelements (γ1p, γ2p, ργp ,

β1p, β2p and ρβp
) subsequently in Metropolis-Hastings steps in such a way that their candidate

generating distributions are constrained as a function of the previously accepted values of the

other five subelements. We infer the form of the function by constraining the determinant of the

result of the matrix-product BpΓp + ΓpB
T
p to be always positive (this is a sufficient condition

for positive-definiteness in the two-dimensional case with positive diagonal elements, based on

Sylvester’s criterion). First BpΓp + ΓpB
T
p has to be solved based on the decomposed elements.

This way the resulting 2-by-2 matrix consists of four elements which are sums and products of the

six subelements in Bp and Γp. Second, we calculate the determinant of this form and constrain it

to be larger than 0, which results in a fourth order polynomial. Finally, solving this polynomial

for the six different subelements gives us its roots. We can sufficiently constrain the candidate

generating distributions based on these values. In practice, truncated normal distributions were
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implemented with the previously accepted value as a mean and with a variance which ensured a

reasonable acceptance ratio (around 0.44, see Gelman et al., 2004, p. 306).

A software program to sample from the joint posterior was written in MATLAB. Since the

process is computationally demanding, some subroutines of the code have been written in C++,

which then can be called from MATLAB in a straightforward way. Consequently, the computation

time is reduced. To demonstrate the program, we present a simulation in the next section.

Simulation

To demonstrate the algorithm, we performed two simulation studies. In each study, we simulated

ten datasets with 100 subjects and 100 observations per subject, according to the presented model

assumptions. To imitate the properties of a dataset the model is most likely to be used for, we

assumed that the data came from consecutive measurement during ten days, ten measurements per

day at random intervals. The observation time points are arranged according to this design, and

are calculated in minutes. As time-varying covariate information, we use the measurement times

and their squared value in hours, this way accounting for linear and quadratic time-effects (δLµ1 ,

δQµ1 , δLµ2 , δQµ2) in the home base.

The presented model was fitted to the simulated datasets by using the aforementioned MAT-

LAB routine. For each parameter, three chains were run with different starting values to explore

the full conditional densities. The different starting values are used to test whether the algorithm

does not get stuck in a local maximum. The results are based on 30000 draws from each full

conditional (10000 iterations per chain). These iterations were preceded by a discarded burn-in

period (5000 iterations in each chain), avoiding the incorrect starting values to influence the final

estimates. No matter what starting values are set, the chains have to converge around the same

value. Convergence can be checked visually and mathematically as well. The mathematical way

to check convergence is to calculate the R̂ value (Gelman et al., 2004), which expresses the ratio

of the between- and within chain variances. In the literature on Bayesian statistics, the chains are

considered to have converged if the R̂ value is below 1.1. We used the visual and the mathematical

criteria as well to asses the convergence of the simulated chains, and we experienced no problems

with it in the current analyses.

The computation time per chain was about 4 hours on a computing node with an AMD

Opteron250 processor and 2Gb of RAM. Tables 1 and 2 summarize the most important results

for the two simulation studies. In the first simulation study, we choose most of the parameters
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in correspondence with a real life application, except for the measurement error of the second

dimension (σ2
2ǫ), which was increased. In the second study, we increased the measurement error

even further, and we slightly altered the other parameters as well. The main difference between

the two studies is in the magnitude of the supposed measurement error (σ2
1ǫ and σ2

2ǫ): the second

simulation setting corresponds to a rather noisy dataset. In each table, the first column contains

the notation of the selected variables of interest. The second column shows their true values as

simulated. The third column is the averaged recovered posterior mean: the average of the posterior

means over the simulation studies. The fourth column is the standard deviation of these posterior

means.

The recovery in the first simulation study (Table 1) can be considered sufficient. However,

there were minor issues in the second study (Table 2), where the parameter settings corresponded

to a noisy dataset. As we can see, the algorithm does especially well at estimating the home bases

and the related time-varying coefficients. With regard to the more problematic parameters, the

estimate of αγ1 seems somewhat biased in the second simulation. The value itself overestimates the

true (simulated) value, and its variance σ2
γ1

is lower than expected. However, we have to remark

on the fact that the second simulation study has rather a extreme setting on this parameter, in

terms of comparing the level of this so-called stochastic variability to the level of the measurement

error variance. The expected stochastic variance in the first dimension (based on the mean (αγ1)

and the variance (σ2
γ1

) of the lognormal distribution for γ1) is around 3.5, which is lower than the

variance of the noise (σ2
1ǫ = 4.00). Such a ratio might make it very difficult to correctly estimate

these two parameters, as some trade-offs are likely. Clearly, the estimation procedure can still be

improved in that respect. However, based on experience, we do not typically expect a very high

level of measurement noise in substantive applications. In the second dimension, where the ratio

of the measurement error (σ2
2ǫ) and the stochastic variability (αγ2) favors the latter, the estimation

algorithm is more accurate.
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Table 1:: Summary of the results of simulation study 1.

Model Simulated Mean posterior SD of the posterior

Parameter value estimate estimates

αµ1 6.00 5.99 0.04

αµ2 5.00 4.97 0.07

σµ1 0.40 0.42 0.07

σµ1µ2 0.05 0.04 0.04

σµ2 0.30 0.27 0.05

δLµ1 1.00 1.00 0.12

δQµ1 0.00 −0.01 0.12

δLµ2 4.00 3.96 0.12

δQµ2 −4.00 −4.00 0.14

αγ1 0.80 0.77 0.07

σ2
γ1

0.40 0.38 0.04

αγ2 1.00 1.01 0.10

σ2
γ2

0.20 0.20 0.03

αγρ 0.01 0.09 0.03

σ2
γρ

0.10 0.08 0.01

αβ1 −4.20 −4.21 0.04

σ2
β1

0.40 0.39 0.10

αβ2 −4.00 −3.93 0.09

σ2
β2

0.50 0.49 0.18

αβρ
−0.10 −0.11 0.03

σ2
βρ

0.10 0.08 0.02

σ2
1ǫ 0.20 0.21 0.04

σ2
2ǫ 1.00 0.88 0.13
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Table 2:: Summary of the results of simulation study 2, with a higher level of measurement error

Model Simulated Mean posterior SD of the posterior

Parameter value estimate estimates

αµ1 0.00 −0.04 0.12

αµ2 0.00 −0.01 0.14

σµ1 2.00 2.14 0.32

σµ1µ2 0.70 0.71 0.23

σµ2 1.00 0.93 0.17

δLµ1 2.00 1.86 0.22

δQµ1 0.00 0.10 0.22

δLµ2 0.00 −0.01 0.26

δQµ2 4.00 3.99 0.26

αγ1 1.00 1.32 0.11

σ2
γ1

0.50 0.28 0.05

αγ2 2.00 1.95 0.10

σ2
γ2

0.10 0.10 0.02

αγρ 0.50 0.41 0.05

σ2
γρ

0.10 0.05 0.01

αβ1 −4.00 −3.75 0.24

σ2
β1

0.50 0.40 0.26

αβ2 −3.50 −3.44 0.20

σ2
β2

0.10 0.18 0.13

αβρ
0.50 0.38 0.07

σ2
βρ

0.10 0.06 0.03

σ2
1ǫ 4.00 3.20 0.24

σ2
2ǫ 2.00 2.13 0.73
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