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It is known that structural biological materials such as bone or dentin show unprecedented
damage tolerance, toughness, and strength. The common feature of these materials
is their hierarchical heterogeneous structure, which contributes to increased energy
dissipation before failure occurring at different scale levels. These structural properties are
the key to achieve superior nanocomposites. Here, we develop a numerical model in order
to simulate the mechanisms involved in damage progression and energy dissipation at dif-
ferent size scales in composites, which depend both on the heterogeneity of the material
(defects or reinforcements) and on the type of hierarchical structure. Both these aspects
have been incorporated into a 2-D model based on a Hierarchical Lattice Spring Model
approach, accounting for geometrical non-linearities and including statistically based
fracture phenomena. The model has been validated by comparing numerical results to
linear elastic fracture mechanics predictions as well as to finite elements simulations, and
then employed to study how hierarchical structural aspects influence composite material
(mainly 2d, e.g., graphene based) properties, which is the main novel feature of the
approach. Results obtained with the numerical code highlight the dependence of stress
distributions (and therefore crack propagation) on matrix properties and reinforcement
dispersion, geometry, and properties, and how the redistribution of stresses after the
failure of sacrificial elements is directly involved in the damage tolerance of the material.

Keywords: hierarchical lattice spring model, numerical modeling, fracture mechanics, composite materials,
hierarchy

Introduction

Biological materials often display mechanical properties that differ from traditional engineering
materials in that they are capable of simultaneously optimizing competing properties, such as
stiffness and density or strength and toughness (Gao et al., 2003; Meyers et al., 2008; Giesa et al.,
2011; Ritchie, 2011). The optimizationmechanisms found in biomaterials can usually be traced back
to their internal structure, which includes various characteristic features, principally heterogeneity
and a hierarchical arrangement of microstructural and base components (Zhang et al., 2011; Bosia
et al., 2012; Meyers et al., 2013). The challenge in recent years has therefore been to fully understand
the mechanisms responsible for such outstanding properties and to replicate them in synthetic
materials (Munch et al., 2008; Pugno et al., 2012; Wegst et al., 2015). Composite materials already
base their lightweight and directional strengthening properties to the combination of materials with
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considerably different properties, but have yet to achieve the
simultaneous strength/toughness or stiffness/density combina-
tions obtained in biocomposites (Ashby et al., 1995). New pos-
sibilities for super-composites have emerged with the recent
introduction of micro and nano reinforcements like carbon nan-
otube (CNT) or graphene reinforcements (Coleman et al., 2006;
Pugno, 2006; Stankovich et al., 2006; Young et al., 2012). The chal-
lenge to further develop new materials with radically improved
properties is thus to apply biomimetic strategies to synthetic com-
posite materials (Beese et al., 2014) and where possible to imple-
ment complex hierarchical structures (Dimas et al., 2013). To do
this, numerical approaches are essential, since there are limited
possibilities in experimentally exploring different geometries and
structures. Therefore, the formulation of reliable numerical mod-
els becomes critical. Formodels to be predictive, theymust be able
to capture the main relevant aspects, i.e., heterogeneity, complex
geometry, scaling, stress concentrations, damage nucleation and
evolution, etc.

In the past, we have developed a so-called hierarchical fiber
bundle model (HFBM) with these features, with the main aim of
modeling fibrous, essentially 1D materials (Pugno et al., 2008).
This code was successfully used to model nanocomposites (Bosia
et al., 2010), hierarchical organization (Pugno et al., 2012), and
fracture and fatigue of self-healing materials (Bosia et al., 2014,
2015). However, this code is insufficient to model more complex
composite geometries where shear effects are not negligible, and
a generalization to 2-D or 3-D is necessary. Additionally, a 2-D
model would be well suited to the simulation of the mechanical
behavior of emerging 2-Dmaterial systems such as graphene, e.g.,
in the evaluation of the influence of the presence and type of
defects in crystal structure on the overall mechanical properties,
which should be considerable given the crystal bi-dimensional
structure (Banhart et al., 2010; Lopez-Polin et al., 2015). A 2-D
or 3-D formulation can be achieved by adopting the so-called
lattice spring model (LSM) approaches, which have been pro-
posed in the past (Buxton and Balazs, 2002; Alava et al., 2006)
and are referred to in various manners in the literature, e.g.,
“Bonded Particle Model” (Potyondy and Cundall, 2004), “Spring
Network Model” (Curtin and Scher, 1990), “Random Spring
model” (Nukala et al., 2005), and others. Brittle materials with
random failure processes can be modeled by introducing random
spatial distributions of springs (Beale and Srolovitz, 1988) and/or
fixed or random fracture thresholds for the springs (Alava et al.,
2006; Zhao et al., 2011). In order to be used for realistic simula-
tions, spring network models need to be verified for consistency
with continuum mechanics through homogenization procedures
and/or need to be mapped into standard finite elements (Absi
and Prager, 1975; Gusev, 2004). More complex versions of the
model exploring complicated lattice energy landscapes (Puglisi
and Truskinovsky, 2000) or large deformations (Friesecke and
Theil, 2002) have also been investigated. A comprehensive review
of Latticemodels inmicromechanics is given inOstoja-Starzewski
(2002).

Here, we develop and validate a 2-D hierarchical lattice spring
model (HLSM), implementing themethod in amultiscale scheme,
and present preliminary results relative to defective reinforced

FIGURE 1 | Schematic of the adopted hierarchical lattice spring model
(HLSM), illustrating the network of “springs” connecting nodes in
which the material is discretized at different size scales. Different
mechanical properties assigned to the springs (represented in different colors
on the right) correspond to different material portions, e.g., matrix and
reinforcements in a composite material (right).

nanocomposites, elucidating specific mechanisms of damage
progressions and crack propagation.

Materials and Methods

To simulate the behavior of heterogeneous and hierarchical com-
plex structures, we adopt and extend a LSM approach based on a
2-D cubic lattice interacting via harmonic springs between nearest
and diagonal neighbors, as in Friesecke and Theil (2002). The
adopted force–displacement relationship considered here is linear
for the sake of simplicity, as discussed below (but this hypothesis
can be relaxed). The regular grid consisting of nodes and springs
used to discretize the 2-D material portion is shown in Figure 1.
Asmentioned, spring properties need to be assigned appropriately
in order to obtain the equivalence of the strain energy of the
elementary cell UCell with that of a continuum UContinuum (Absi
and Prager, 1975), i.e., UCell =UContinuum. For 2D plane stress
problems, we have:

UContinuum = V*
[

νE*

2(1− ν2)
(εxx + εyy)2 + G* (εxx2 + εyy2

)

+2G*εxy2
]

(1)

where V* is the volume of the elementary cell, E* its Young’s
modulus, G* its shear modulus, v its Poisson’s coefficient, and εxx,
εyy, εxy, are the components of the strain tensor. Using the relation
G* = E*/2(1+ ν), Eq. (1) becomes:

UContinuum =
V*E*

2(1+ ν)

[ ν
1− ν (εxx + εyy)2 + εxx2 + εyy2 + 2εxy2

]

(2)
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The stored energy of the unit cell of the considered spring
network UCell is obtained by taking the sum of the strain contri-
butions of each spring:

UCell =

6
∑

i=1
Ui =

1
2EV

(

2εxx2
)

+
1
2EV

(

2εyy2
)

+
1
2EV

′

(

1
2 εxx +

1
2 εyy + εxy

)2

+
1
2EV

′

(

1
2 εxx +

1
2 εyy − εxy

)2
(3)

where E is Young’s modulus of the springs (taking for simplicity
springs with the same stiffness), V the volume of the springs along
themain axes and V’ the volume of the diagonal springs. Equating
(2) and (3), and considering for simplicity E=E* (but the analysis
can be generalized to heterogeneous materials), we have:



















ν =
1
3

V′ = 2V

V =
3
8V

*

(4)

These conditions are therefore enforced for the spring network.
The condition on Poisson’s ratio of the material is not excessively
limiting, since in this study we are interested in discussing general
concepts and highlighting qualitative effects, rather than studying
specific materials.

As mentioned, linear elastic springs are considered. However,
in the considered simulations, non-negligible rotations and/or
translations deriving from fracture growth in the modeled mate-
rial elicit the need for an iterative scheme to avoid large errors
in the solution that could be committed in the case of a sim-
ple linear analysis. This is due to the occurrence of geometri-
cal non-linearities, due to large displacements and deformations.
Therefore, a total Lagrangian formulation is employed, where the
governing equations are derived from the Green strain measure
(Bathe and Bathe, 1996).

Assuming a quasi-static load case, the equilibrium is based on
an iterative procedure to impose the balance between internal
(f int) and external (f ext) forces using a Newton–Raphson iterative
scheme:

f int − f ext = 0 (5)

with

f int =
ns
∑

i=1
fi
int =

ns
∑

i=1

∫

Vi

(B0
TFE ε)i dVi (6)

where ns is the number of springs in the domain, B0 the transfor-
mation matrix, Vi the spring volume, F the deformation gradient
matrix, E the spring’s Young’s modulus and ε the spring’s strain
tensor. Considering the discrete governing equation:



























uh (X) =
nn
∑

i
Ni (X) ui=Nu

ε (X) =
nn
∑

i
Ni,Xui=B0u

F (X) =
nn
∑

i
Ni,Xxi=B0x

(7)

where nn is the number of nodes used for the discretization of the
domain, uh the trial solution, N a set of linear trial functions, X
the domain undeformed configuration, x the domain deformed
configuration, and u the displacement.

Simulations are carried out in displacement control, as pro-
posed in Batoz and Dhatt (1979). Fracture is implemented based
on a failure strain criterion on the single springs. At each load step,
a spring is removed from the lattice if its maximum strain εimax is
exceeded, simulating local failure:

f inti =

{
∫

Vi

(BT
0FEε)idVi εi < εimax

0 εi > εimax

(8)

At the smallest considered scale in simulations, ultimate strain
values εimax can be assigned deterministically or according to
Weibull statistical distributions (Weibull, 1952) to account for
material heterogeneity and defectivity occurring at a lower size
scale than that considered in the simulation. The cumulative
distribution function of a Weibull distribution is given by:

W
(

εimax ; λ; k
)

= 1− e
−

( εimax

λ

)k

(9)

Where k is the shape parameter and λ the scale parameter of
the distribution. For example, if the lowest simulation scale is of
the order of various nanometers in a CNT-reinforced composite,
a Weibull distribution to describe the dispersion in CNT ultimate
tensile strain values, accounting for their defectivity, can be esti-
mated from experimental or numerical data from the literature.

To model heterogeneous materials, e.g., composites, different
mechanical properties are assigned to the springs (e.g., elastic
modulus, ultimate strain) as a function of the material type
(typically matrix or reinforcement). Since we are primarily
interested in evaluating the role on strength of hierarchical and
structural effects, brittle fracture is modeled with a linear elastic
behavior up to failure. This also allows a reduction in simulation
times with respect to a plastic constitutive law; moreover,
plasticity at the crack tip is accounted for thanks to the discrete
nature of the model.

As discussed in the introduction, structural biomaterials
present a hierarchical structure that often differs from one scale
level to another. To model these structures extensively using the
LSM approach above would lead to huge computational costs,
and therefore a multiscale approach is adopted, i.e., subsystems
at different size scales in the considered material are modeled.
The mechanical properties of a domain obtained as output from
a certain hierarchical level become the input for the hierarchical
level above. This is illustrated schematically in Figure 2. The
presence of both defects and reinforcements can be modeled
at each hierarchical level, which is simulated separately using
representative portions of the domain, starting with the smallest
scale or level n, supposing that the structure can be modeled
with n hierarchical levels. Mechanical properties (i.e., Weibull
distribution parameters) at level n-1 are derived from simulations
at level n and so on. Given the hierarchical nature of the model,
we refer to it as “HLSM.” Although in principle the procedure can
be extended to a high number of hierarchical levels, and three are
shown in Figure 2, for simplicity in the following only two levels
of hierarchy will be considered.
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FIGURE 2 | Schematic illustration of an example, of hierarchical
multiscale procedure adopted in HLSM simulations. Both defects (or
porosity) and reinforcements can be integrated in the model of a material
portion at any given size scale, to derive mechanical properties at the
hierarchical level above.

Results

Model Validation
The main mechanisms the computational model needs to cor-
rectly reproduce at microscale are strain concentrations (e.g., at
crack tips), load transfer between the matrix and the reinforce-
ment, fracture nucleation, etc. These aspects are addressed in
preliminary validation simulations, where HLSM results are com-
pared to finite element method (FEM) calculations. For the latter,
the COMSOL Multiphysics commercial package is used, specifi-
cally the Structural Mechanics Module. To validate the developed
HLSM code, we consider the strain distributions arising in (a) a
laterally cracked representative volume element (RVE) and (b) a
RVE with a centrally located reinforcement.

Laterally Cracked RVE
We first consider a pre-cracked RVE subjected to a tensile strain
ε0 = 5%, perpendicular to the direction of the crack (X direction),
as shown in the schematic in Figure 3. The RVE is constituted
by a 200× 150 regular node grid in the HLSM and the initial
crack length l extends to one-third of the RVE width w. A rela-
tively soft material, simulating a polymeric matrix, is considered,
with Young’s modulus Em = 1GPa and Poisson’s ratio νm = 0.3.
The same geometry and boundary conditions are considered in
FEM simulations, using a 2-D plane strain approximation, a free
triangular element mesh refined in the vicinity of the crack tip,
and second-order Lagrange elements. HLSM and FEM results are
compared in the plot in Figure 3 for the vertical strain YY taken
along the line of the crack, in theX direction, with the origin taken
as the crack tip. The agreement is very good, showing that the
adopted HLSM is capable of simulating correct strain fields in the
vicinity of singularities such as crack tips. The small discrepancies
can be physically due to the discrete nature of the material and
thus can be reduced adopting a finer discretization in the HLSM
model. In the plot, we also report the predicted strain profile using
quantized fracture mechanics (QFM) (Pugno and Ruoff, 2004),

FIGURE 3 | HLSM simulation results for a tensile loading experiment
on a laterally cracked RVE (schematic, top left). Vertical strain YY results
along the X axis coincide with those from FEM simulations and quantized
fracture mechanics (QFM) calculations, shown in the plot (top right). HLSM
and FEM simulations also predict the same full-field strain distributions at the
crack tip (bottom left and right, respectively).

for which in proximity of the crack tip the strain ε varies as:

ε(X) = ε0
√

a
a+ X (10)

where a is the fracture quantum, taken as half the discretization
length.

Also shown in Figure 3 is the overall spatial distribution of
strain YY in the pre-cracked RVE. The calculated field, through
HLSM and FEM, is consistent with results in the literature (Irwin,
1957) and the associated graph shows the strain concentration
near and around the crack tip.

Centrally Reinforced RVE
Reinforcements embedded in a softer matrix behave as stiffeners
and take up the strains applied on the surrounding matrix zone.
The strain is transferred through the interface between the two
materials, which is assumed to be perfect in the present case.
The considered RVE is as previously discretized in a 200 by 150
regular node grid, and schematically shown in Figure 4. The
reinforcement is chosen as linear elastic, with a stiffness 100 times
that of the matrix and a high aspect ratio of 80, to model nanor-
einforcements such as CNTs or Graphene nanoplatelets, which
can achieve such high slenderness ratios. The applied displace-
ment corresponds to a 5% strain in the length direction of the
inclusion (Y axis). The calculated strain distributions along the
directions parallel and perpendicular to the reinforcement (Y and
X axes, respectively) are shown in the plots in Figure 4, where
HLSM results are compared to FEM calculations. The agreement
is again very good. The corresponding full-field spatial distribu-
tion of strain in the Y-direction around the inclusion is shown
in Figure 5. It can be seen that deformations inside the matrix
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decrease around the linear inclusion inside the “reinforced area.”
The level of load transfer from the matrix to the reinforcement
is indicative of the efficiency of the reinforced structure. On the
other hand, deformations increase around the tips of the rein-
forcement, and these regions are therefore typically where crack
initiate (as can be observed in the inset of Figure 5) and then
continue to propagate. These results agree with well-known “shear

FIGURE 4 | HLSM simulation results for a tensile loading experiment
on a centrally reinforced RVE (schematic on the left). Strain YY variation
along X and Y axes normalized with respect to width w and length L (bottom
right and top right, respectively) compared to that of FEM simulations.

lag” models (Gao and Li, 2005), and also with experimental data
in the literature (Bigoni et al., 2008), and also show the interface
debonding that can occur near the crack tip. Consequently, in
the case of high aspect ratio inclusions, the presence of reinforce-
ments in the matrix provide a stiffening of the material, but also
anticipate fracture nucleation and growth due to the stress con-
centration at the tips. This illustrates one of the practical aspects
of the conflict between strength and toughness in the design of
composite structured materials.

Simulations
Simulations are first carried out on a model reinforced composite
structure to highlight the mechanisms responsible for fracture
nucleation and propagation. The considered reinforcements are
again much stiffer than the matrix (Ef = 100Em), have a high
aspect ratio (l/w= 50), and are distributed homogeneously in a
staggered and aligned arrangement parallel to the loading direc-
tion, with a volume fraction corresponding to approximately
Vf = 6.7%. Figure 6 illustrates the evolution of the simulated
damage and crack propagation in such a composite RVE when
subjected to tensile loading. Again, strains in the Y direction are
represented in color scale. The cracks initiate in regions adjacent
to the tips of the reinforcement where initial strain concentra-
tions are maximum (Figure 6A), propagate horizontally, and are
stopped when they reach the closest reinforcement (Figure 6B).
The load is transferred to the reinforcements through the shear
deformation of the matrix, as discussed in Section “Results.”
At this point, fracture propagates in the direction of the fibers
through shear loading, giving matrix-fiber debonding and thus
connecting different cracks originated at the tips (Figure 6C). This
leads to the ultimate failure of the composite (Figure 6D). The cor-
responding stress–strain curves (not shown in this case) display
a non-linear behavior which can be assimilated to elasto-plastic

FIGURE 5 | YY Strain field calculated using HLSM model for a vertically loaded RVE with a centrally embedded stiff linear elastic inclusion. The inset
highlights the strain concentration at the tips of the reinforcement, giving rise to crack nucleation and propagation.
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FIGURE 6 | Strain fields during tensile test of the heterogeneous matrix/reinforcement structure. (A) linear elastic part. (B) Tips cracks opening leading to
the plastic part. (C) debonding leading to the material failure (D).

behavior deriving from crack nucleation and stopping. Thus,
the non-linearity is only structure related, due to the linear
elastic behavior assumed here for the material constituents.
Similar results have been obtained considering various types
of bi-material heterogeneous structures, in bone- or nacre-like
(“brick/mortar”) configurations (Sen and Buehler, 2011).

Next, the influence of porosity at microscopic level has been
evaluated by including varying defect percentages in the simula-
tions, in a multi-scale hierarchical approach. The lower hierarchi-
cal scale is used to model a matrix containing different volume
fractions of uniformly randomly distributed pores or defects,
represented here by a percentage of randomly assigned broken
springs. Numerical uniaxial tensile tests are performed on these

sub-volumes and the corresponding mechanical properties (stiff-
ness and ultimate strain) are obtained. The resulting properties
display some statistical dispersion, given the random distribution
of the defects which can differ from one simulation to the next,
and are thus fitted using a Weibull distribution, which is widely
used in modeling the strength of solids (Weibull, 1952). The scale
and shape parameters for the derived stiffness and ultimate strain
Weibull distributions then become the input for the single springs
in the upper hierarchical level, which includes both matrix and
reinforcements. The springs in the reinforcements are chosen as
previously 100 times stiffer and stronger than those used for the
matrix, and reinforcement dimensions and distributions are the
same as for those of simulations in Figure 6. Results for the upper
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FIGURE 7 | Calculated percentage mechanical property reductions of
model composite with increasing defect volume fraction (Vf).

hierarchical level (the “composite” level) are shown in Figure 7
for varying volume fractions of defects in the matrix. The figure
illustrates the percentage degradation of stiffness, ultimate strain,
strength, and toughness of the resulting composite, normalized
with respect to the defect-free material. Simulations predict a
toughness reduction of up to 87%and a strength reduction of up to
71% for a 10% defect content, whilst stiffness and ultimate strain
reductions are smaller (51 and 27%, respectively) for the same
defect volume fraction.

We also study the influence of reinforcement size or shape in
the matrix. A single-scale model can be used in this case, and
different aspect ratios l/w= 20, 40, 80, 120 for the reinforce-
ments are considered, with the same staggered distribution and
material properties as considered previously. Volume fractions
of reinforcements between the different cases vary minimally
between 5.5% (l/w= 20) and 6.5% (l/w= 120). Results are shown
in Figure 8 and demonstrate how increasing aspect ratios lead
to a stiffening and strengthening of the composite. Since volume
fractions are virtually the same for the various cases, these effects
are due to the non-trivial stress distributions occurring in the
matrix for increasing aspect ratios and reinforcement overlap,
which lead to amore efficient stress transfer from thematrix to the
stiffer reinforcements. Such an effect cannot be captured, e.g., by
a widely used simple rule of mixtures, and the example illustrates
how structure, as well as material constituents, can control the
overall mechanical behavior. The toughness of the composite
remains approximately constant for varying reinforcement aspect
ratios (a 4% decrease for l/w= 120 with respect to l/w= 20). This
is because two competing effects are at play: on the one hand, crack
path lengths increase for increasing aspect ratios (schematically
shown in Figure 8, top), which implies an increase in toughness,
on the other hand, the discussed overall material stiffening leads
to reduced ultimate strains and a decrease in toughness.

To further highlight this effect, a hierarchical structure is now
considered. Results from Figure 6 show that in a uniaxially loaded
heterogeneous structure the matrix sub-regions are subjected to
varying loading conditions of tension/shear, depending on the
direction of the reinforcements. Therefore, if we consider a hier-
archical composite with multiple scale levels each presenting a
specific architecture, it is clear that the overall behavior depends
on the direction-dependent response of the structure at the lower

FIGURE 8 | Top: structure of model composites with varying
reinforcement aspect ratios (l/w=40 and l/w= 80), with schematic
crack propagation paths. Bottom: corresponding stress–strain curves for
varying reinforcement aspect ratios. Increasing aspect ratio leads to
increasingly stiff behavior.

FIGURE 9 | Schematic of the adopted RVE (top left) in a hierarchical
multi-scale simulation, and its resulting stress–strain behavior (top
right). The element is stiffer and stronger in the longitudinal direction (Y axis)
with respect to the transverse direction (X axis), while springs in the diagonal
direction (XY) have intermediate properties. The resulting deformation for
loading in the X and Y directions is illustrated at the bottom left and right of
the figure, respectively.

scale, which must be derived in different loading conditions and
subsequently injected at the next hierarchical level. To illustrate
this, we consider a 2-level hierarchical composite constituted

Frontiers in Materials | www.frontiersin.org July 2015 | Volume 2 | Article 517

http://www.frontiersin.org/Materials
http://www.frontiersin.org
http://www.frontiersin.org/Materials/archive


Brely et al. Hierarchical spring model for nanocomposites

FIGURE 10 | Incorporation of “A” type and “B” type RVEs in the matrix of a reinforced composite in a multi-scale hierarchical scheme. The
corresponding stress–strain plots are shown on the right. As expected, “A” type RVEs give rise to a stiffer, stronger composite, while “B” type elements yield a softer,
tougher composite.

by a directionally defected/porous material at the lowest scale,
schematically shown in Figure 9, which can appropriately model
various systems such as fiber-reinforced foams (Vaikhanski and
Nutt, 2003), bioscaffolds (Huang et al., 2013), or the so-called
nanolattices or metamaterials (Meza et al., 2014). The hollow
structure considered here contains a 20% volume fraction of voids
(thus reducing the overall density and increasing the specific
stiffness of the matrix, as in Meza et al. (2014), and is composed
of overlapping “pores.” Simulations show that the representative
RVE for this structure displays an anisotropic response in its
stress–strain curves, also shown in Figure 9 (top right). The
stiffness and strength as well as toughness of the structure increase
with alignment of the load along the direction of the elongated
pores, when the beam-like elements are working under tension, as
opposed to loading perpendicular to the pores, when the beam-
like elements are mainly subjected to bending (as highlighted in
Figure 9, bottom).

These results obtained for RVEs at the first hierarchical level are
then used as the input of for the second hierarchical level, which
is a fiber-matrix structure similar to that considered previously
(e.g., in Figure 6). The fibers are again 100 times stiffer and
stronger than the matrix material, not considering voids. The
fiber aspect ratio is l/w= 50, with a volume fraction of 6.7% and
maximal reinforcement overlap. The results reported in Figure 10
highlight the impact of anisotropy at the first hierarchical level
on overall properties. In the first case (A), the matrix RVEs are
oriented so as to obtain maximal strength in the direction of
the fibers. Therefore, crack nucleation at the reinforcement tips
requires a higher load level. When the matrix in the tip region
fails, debonding directly ensues due to the low strength required
to damage the matrix in the fiber direction. It is important to
notice that only few cracks have opened during the test, and that
the evolution to a traversing crack is direct, leading to a brittle
fracture with virtually elastic behavior up to failure. In the second
case (B), the low strength of the matrix in the fiber direction leads
to the opening of various cracks at reinforcement tips. In this
case, a higher load can be transferred between fibers before failure
occurs, and the overall stress–strain behavior is therefore elasto-
plastic. Maximum strength is obtained for case A, and maximum
ultimate strain and toughness for case B.

Despite its simplicity, this case study highlights the complex
interaction between structural architectures at different hierar-
chical levels. Even considering only two levels of hierarchy, it is
possible to simulate and design preferential material orientations
depending on the type of expected loading, in order to opti-
mize and calibrate the architectures for improved global material
response. This becomes more feasible when increasing the num-
ber of hierarchical levels (e.g., seven in the case of bone) and the
corresponding range of size scales involved, from nano to macro.

Conclusion

Complex hierarchically built composite structures are the way
forward to design materials with exceptional or tailor-made
mechanical behavior. Designing and realizing these structures is
experimentally challenging, and therefore the need for reliable
numerical models to characterize and optimize their behavior is
acute. In this study, we have presented a novel numerical HLSM
to design structural biomaterials and hierarchical nanocompos-
ites, which correctly accounts for defects/porosity and material
heterogeneity at different hierarchical levels, and allows the evalu-
ation of the corresponding stress concentrations, crack nucleation,
and propagation. As examples, the influence of reinforcement
aspect ratios and defect distributions on crack nucleation and
propagation inside the matrix have been studied, using a multi-
scale approach, in order to model nacre-like composites. Sim-
ulations show how structure at lower hierarchical levels affects
global properties such as stiffness, ultimate strain, strength, and
toughness. Moreover, results show that interaction between these
lower level hierarchical properties and macroscopic properties
such as the overlapping of the reinforcements in thematrix are key
parameters that lead to non-trivial changes in material behavior,
e.g., from brittle to ductile. Numerical simulations carried out
by Sen and Buehler (2011) show similar results on the behavior
of the hierarchical composite structure, i.e., from linear elastic
base components, an elasto-plastic stress–strain behavior deriv-
ing from crack nucleation and stopping emerges. The additional
contribution of the present paper is to further investigate how
the composite organization and hierarchical architecture strongly
influence the mechanical properties of the material and how it
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is possible to optimize those using specific criteria, using the
same starting matrix/reinforcement materials. This is obtained,
for example, by varying the dimension of the reinforcements at a
single scale level and considering different orientations in a 2-level
hierarchical material.

Thus, the developed HLSM 2-D code has shown reliability
in simulating heterogeneity, hierarchy, and fracture propagation
inside structured layers, showing promise for the application
to more complex hierarchical structures. Thanks to the rapidly
developing field of nanocomposite manufacture, it is already
possible to artificially create materials with multi-scale hierar-
chical reinforcements. The developed code could be a valuable
support in the design and optimization of these advanced mate-
rials, drawing inspiration and going beyond biological materi-
als with exceptional mechanical properties. Further, the model
can prove useful in the modeling of 2-D materials such as
graphene and graphene-reinforced composites, where defects
can play a major role in determining the overall mechanical
properties, and their composites. In future works, more com-
plex geometries will be studied by considering 3-dimensional
structures and more scale levels (as observed in nature) to
further capture optimization aspects in toughening/stiffening

strategies in hierarchical materials. Other interesting features that
are potentially linked to energy dissipation in biomaterials will
also be evaluated, such as non-linear properties of the matrix,
non-local bonding, and imperfect matrix/reinforcement interface
properties.
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