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THEORETICAL AND REVIEW ARTICLES

A hierarchical model for estimating
response time distributions

JEFFREY N. ROUDER, JUN LU, PAUL SPECKMAN, DONGCHU SUN, and YI JIANG
University of Missouri, Columbia, Missourt

We present a statistical model for inference with response time (RT) distributions. The model has
the following features. First, it provides a means of estimating the shape, scale, and location (shift) of
RT distributions. Second, it is hierarchical and models between-subjects and within-subjects variabil-
ity simultaneously. Third, inference with the model is Bayesian and provides a principled and efficient
means of pooling information across disparate data from different individuals. Because the model ef-
ficiently pools information across individuals, it is particularly well suited for those common cases in
which the researcher collects a limited number of observations from several participants. Monte Carlo
simulations reveal that the hierarchical Bayesian model provides more accurate estimates than several
popular competitors do. We illustrate the model by providing an analysis of the symbolic distance ef-
fect in which participants can more quickly ascertain the relationship between nonadjacent digits than

that between adjacent digits.

Response time (RT), the time taken to complete a task,
is a common dependent variable that has been used to
draw inferences about the nature of mental processing
(e.g., Luce, 1986). Most researchers tend to analyze only
mean RT, but a growing number are examining whole RT
distributions as a means of providing extensive and in-
sightful tests of cognitive and perceptual theories (e.g.,
Ashby, Tien, & Balakrishnan, 1993; Dzhafarov, 1992;
Hockley, 1984; Logan, 1992; Ratcliff, 1978; Ratcliff &
Rouder, 1998, 2000; Rouder, 2000; Rouder, Ratcliff, &
McKoon, 2000; Spieler, Balota, & Faust, 1996; Theeuwes,
1992, 1994; Townsend & Nozawa, 1995; Van Zandt, Colo-
nius, & Proctor, 2000; Vickers, 1980). Consider the fol-
lowing example, which demonstrates the appeal of distri-
butional analysis.

Sternberg (1966) asked participants whether a probe
item was presented in a study set. The resulting data were
well described by a linear relationship between set size
and mean RT, and this pattern is consistent with serial
scanning in immediate memory. Consider the simplest
exhaustive serial model, in which participants match a
probe to each item in memory in succession. Let the time
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to match the probe to the ith item be S;. The RT to answer
for a study set of k items is RT = §; + - - - + §, + R,
where R is the time for residual processes, such as encod-
ing the probe item and executing the response. In the sim-
plest model, it is assumed that the times to match items
follow a common distribution (S) and are independent.
This model yields a number of predictions about how the
data vary as a function of the number of items (%), includ-
ing the following: mean(RT) = mean(R) + k£ X mean(S).
This prediction about mean RT holds in experimental data
(Atkinson, Holmgren, & Juola, 1969; Sternberg, 1966).

Townsend and colleagues, however, have repeatedly
pointed out that this pattern among mean RTs can be con-
sistent with other models, such as those based on parallel
scanning with capacity limits (see Townsend & Ashby,
1983, for a review). Instead of relying on model predictions
about mean RT alone, researchers can examine whole RT
distributions. For the case of the simple model above, there
are two other predictions: one about the variability and the
other about the shape of RT distributions. The variability
of an individual’s RT distribution follows: Var(RT) =
Var(R) + k X Var(S). The shape of an individual’s RT dis-
tribution approaches that of a normal distribution as study
set size (k) is increased (an application of the central limit
theorem). Ashby et al. (1993) provided an exceedingly
comprehensive analysis of RT distributions for the Stern-
berg memory-scanning task. They tested a number of
distribution-level predictions for a wide class of serial
and parallel models. They concluded that both serial
models and unlimited-capacity parallel models are not
consistent with the data. They favored a limited-capacity,
self-terminating parallel model such as Ratcliff’s (1978)
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diffusion model. This example shows how distribution-
level analysis may provide deeper insight into cognitive
processes than just mean-level analyses do.

The main disadvantage of distribution analysis is that
it requires a large number of observations to be effective.
Moreover, these observations need to be independent
replicates from a common source. To meet this require-
ment, researchers need to gather several hundred obser-
vations in each condition from each participant. For ex-
ample, in testing distributional properties in memory
scanning, Ashby et al. (1993) analyzed about 1,500 ob-
servations per participant per study set size. Each par-
ticipant took part in 17 sessions and observed about
6,000 total trials. Likewise, in their analysis of RT dis-
tributions, Ratcliff and Rouder (1998, Experiment 1)
collected about 10,000 total observations per participant.

The requirement of several replicates per participant
and condition is often burdensome and prohibitive. In
practice, many researchers have access to college partic-
ipant pools. In these pools, it is convenient to gather data
from a large number of participants who take part in a
single session of a few hundred trials. These trials must
be partitioned across several conditions. The upshot is
that in many applications, the number of RT observa-
tions in conditions is in the tens, rather than in the hun-
dreds or thousands.

This requirement of a large number of independent
replicates would not raise problems if participants did
not vary substantially from each other. If data from all
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participants were samples from the same underlying dis-
tributions, we could simply pool all the data and consider
them as independent replicates from a common source.
There is, however, often great variability in distribu-
tional properties across participants themselves. Figure 1
shows an example from a very simple experiment in which
participants had to indicate the location of an asterisk on
the screen. The distributional properties highlighted in
the figure are shift (the time at which the distribution
first attains mass), scale, and shape. Even though this
task is simple, there is still substantial across-participant
variability in these distributional properties. The first
column shows 2 participants whose distributions vary in
shift by a factor of two. The middle column shows 2 par-
ticipants whose distributions vary in scale by a factor of
two, and the last column shows 2 participants whose dis-
tributions vary from very skewed to nearly symmetrical.
This variability in distributional properties across par-
ticipants eliminates the possibility of considering all of
the RTs as independent replicates from a common source.!
One of the major challenges in using RT distributions is
accounting for variability both within individuals and
between them.

The goal of this article is to provide a statistical model
for the estimation of RT distributions in cases in which
researchers have data from several participants, but with
only a small number of observations per participant. The
model has three main properties. First, it is parametric;
each participant’s RTs are assumed to follow a three-
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Figure 1. Histograms of response times (RT's) for selected pairs of participants. The left-
hand column emphasizes differences in shift across participants. The middle and right-hand
columns emphasize differences in scale and shape, respectively. Histograms are scaled so that
the total area is one. The area of the rectangles, as opposed to their height, yields the pro-
portion of observations within the corresponding interval. Figure reprinted with permission
from Rouder, Sun, Speckman, Lu, and Zhou (2003).
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Figure 2. The Weibull parameters of shift, scale, and shape. Each plot shows the effect of
changing one parameter while holding the other two constant.

parameter Weibull distribution? (Johnson, Kotz, & Bala-
krishnan, 1994). The Weibull is a flexible form whose
parameters correspond to the heuristics of shift, scale,
and shape.3 The meaning of these parameters is depicted
graphically in Figure 2. Second, it is hierarchical, with sep-
arate model components for variability within a participant
and between participants. Each participant is accorded
unique Weibull parameters, but a common underlying
distribution describes the variability of these parameters.
Third, the method of parameter estimation and hypothe-
sis testing is Bayesian. Researchers typically have sev-
eral choices of methods in performing inference in non-
hierarchical models, including classical methods such as
maximum likelihood (ML) and least squares. We choose
Bayesian methods for the hierarchical models because of
feasibility. Since the three-parameter Weibull is outside
the family of generalized linear models, we know of no
method to perform inference on the hierarchical version
other than Bayesian methods. There has been a great
deal of progress in the last decade in estimating hierar-
chical models with Bayesian methods (e.g., Gelman,
Carlin, Stern, & Ruben, 1995), and this progress makes
inference with the presented models feasible.

Before discussing the model, we provide a context for
its intended role. It is important to differentiate between
statistical modeling and substantive modeling. Statistical
models, such as the analysis of variance (ANOVA), re-
gression models, and structural equation models, are used
in a different spirit than more substantive models, such as
the diffusion model (Ratcliff, 1979) or the interactive ac-
tivation model (McClelland & Rumelhart, 1981). The for-
mer are used for estimation and inference, whereas the
latter are tested as truthful models of phenomena. We
view our hierarchical Weibull model as best used in the
spirit of the former; its usefulness is derived from the in-
terpretability of its parameters, its ability to provide prin-
cipled inference on these parameters with small samples
per participant, its ability to provide reasonable infer-
ence even when model assumptions have been violated
(this ability is termed robustness to misspecification), and
its ability to provide a reasonable fit to data. We do not
claim that the hierarchical Weibull models provide the
best fit to all data. Other forms, such as the ex-Gaussian,
may indeed do well. We do claim that hierarchical Weibull

models are highly appropriate for inference on character-
istics of RT distributions such as shift, scale, and shape in
the common case in which researchers collect a limited
number of observations from many participants.

This article is divided into three sections. First, we
will present the model and method of parameter estima-
tion. Then we will test the model’s ability to provide ac-
curate parameter estimates vis-a-vis other contemporary
methods, such as ML estimation (MLE), Vincentizing,
and quantile-based estimation (e.g., Heathcote, Brown,
& Mewhort, 2002; Jiang, Rouder, & Speckman, 2004).
The model outperforms all of these methods in estimat-
ing both individual- and group-level parameters. After
demonstrating the benefits of the model, we will discuss
other aspects, including the fit of the Weibull, the inter-
pretation of the parameters, and the model’s robustness
to misspecification. Finally, we will fit the model to an
experiment with a symbolic distance effect. Observers
in the experiment had to decide whether a presented digit
was less than or greater than 5. Digits far from 5 (e.g., 2
and 8) were more quickly classified than digits close to
5 (e.g., 4 and 6). The hierarchical Weibull model re-
vealed a locus for the symbolic distance effect in terms
of distributional properties. Symbolic distance affects
the scale of RT distributions.

THE MODEL

The model that we will discuss was first presented by
Rouder, Sun, Speckman, Lu, and Zhou (2003). They pro-
vided a detailed and formal account. We will provide a
less formal and more accessible account of the advantages
of the model for experimentalists. As has been mentioned,
the model is parametric and hierarchical, and inference is
done with Bayesian methods. Although the Bayesian ap-
proach has played a large role in theories of decision mak-
ing (e.g., Edwards, 1965; Luce, 1959; Phillips & Edwards,
1966; Tversky & Kahneman, 1990), it has not been used
extensively for data analysis in cognitive psychology (for
notable exceptions, see Edwards, Lindman, & Savage,
1963; Myung & Pitt, 1997; Pitt, Myung, & Zhang, 2002;
Sheu & O’Curry, 1998). Likewise, hierarchical modeling
is better known in social and clinical psychology. Because
of this lack of long-standing tradition in either Bayesian
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data analysis or hierarchical modeling, we will motivate
our model with a true anecdote from a baseball game.

Baseball Example

In the late summer of 2000, the struggling Kansas
City Royals were hosting the Boston Red Sox. Pitching
for Boston was Pedro Martinez, who was having a truly
phenomenal year. Many in the crowd came to see Martinez
and his dominant pitching. Contrary to expectation, in
the first inning, Kansas City scored five runs, and Boston
none. At the end of the first inning, one of our colleagues,
who is a loyal Royals fan and an APA editor, predicted a
final score of 45—0. The reason this prediction is humor-
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ous is because it is both quite logical and wildly implau-
sible. It is logical because 45—0 is obtained by multiply-
ing the first inning scores by 9, the number of innings in
a baseball game. It is wildly implausible on three ac-
counts. First, there has never been a baseball game with
such an extremely high score. Second, Boston was far
superior to Kansas City. Third, Boston had the best pitcher
in baseball on the mound. After the first inning, Martinez
pitched well, allowing only one additional run. Kansas
City lost the game by a score of 7-6; Martinez was the
winning pitcher.

The reason the logical prediction of 45—0 was so bad is
that it was based on a small sample, the result of a single
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Figure 3. An illustration of shrinkage in a hierarchical model. Estimates of shape from histograms re-
flect sampling variability. When these estimates are constrained by a plausible parent distribution, they

can be adjusted to more reasonable values.



inning of play. One way of improving the estimate is to
combine it with our previous knowledge of baseball. Sim-
ply put, any person with any inkling about baseball could
have produced a better estimate. This prior knowledge
does not need to reflect anything more than a knowledge
of the distribution of baseball scores. One need not know
about pitchers and teams; all one needs for a vastly better
estimate is the final score of a few hundred previous base-
ball games. Of course, the estimate would be even further
improved by a detailed knowledge of baseball.

This technique of using a small amount of prior knowl-
edge to improve estimates can be used in the analysis of
human performance in psychology experiments. Partic-
ipants’ data, especially when obtained from a small sam-
ple, are highly variable. The effects of this variability are
acute for estimating higher order properties, such as
scale and shape. By using the higher order properties of
all the participants together as a baseline, we can better
assess whether extreme estimates come about from sam-
pling variability, and if they do, we can correct our esti-
mates accordingly. The baseline need not be overly sub-
jective; in our model, it reflects the contribution of the
participants in the present experiment.

Hierarchical Prior Distributions

The key concept in the model is its hierarchical nature.
In hierarchical models, parameters are assumed to come
from underlying parent distributions.* Figure 3 provides
an illustration of the advantage of using hierarchical
models with parent distributions. The example is for the
shape parameter, although any distributional parameter
can be treated in a hierarchical manner. Panel A shows
hypothetical histograms of 30 RTs from each of 6 par-
ticipants. In fact, each of these histograms was sampled
from a three-Weibull distribution with the same shift
(200 msec), scale (200 msec), and shape (1.7). Due to
sampling variability, the histograms are diverse. The
best-fitting Weibull distributions are drawn over the his-
tograms. The estimated shape parameters are shown, and
these are also diverse, ranging from 0.74 (skewed right)
to 4.37 (skewed left). Panel B shows a hypothetical par-
ent distribution of the shape parameters. For the purpose
of the example, let’s assume that this distribution accu-
rately reflects the distribution of shapes in a population.
In practice, we only assume a parametric form for the
parent distributions and estimate parent distribution pa-
rameters from the data. The six shape estimates from the
histogram in panel A are indicated by Xs. On the basis
of the parent distribution, it is obvious that the two ex-
treme shape values are implausible and reflect a large de-
gree of sampling variability. A reasonable correction is
to adjust it toward a more probable value. This adjust-
ment is shown by thick lines with arrows, and the result-
ing parameter estimates are denoted by Hs (for hierar-
chical estimates). As can be seen, these new values,
which reflect the influence of the parent distribution, are
closer to the true shape (1.7 in this case) than the original
individual estimates are. The adjustment of an extreme
estimate to a more moderate one is termed shrinkage.
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The gains from hierarchical models have been well un-
derstood within the statistical literature (e.g., Dey, Ghosh,
& Mallik, 2000; Kreft & de Leeuw, 1998). The main prob-
lem is that of tractability; although it is easy to postulate
hierarchical models, it has traditionally been computa-
tionally difficult to analyze them. Over the last decade
or so, there have been steady gains in Bayesian statistics
that have made these hierarchical models more tractable
(Gelman et al., 1995; Tanner, 1993). One recent example
of success of Bayesian analysis in psychology is that in
item response theory (Fox & Glas, 2001; Wang, Bradlow,
& Wainer, 2002). Our model is based on these statistical
advances and would not have been possible a decade ago.

In our model, the scale and shape parameters are treated
hierarchically, but the shift parameter is not.> The parent
distributions for scale and shape are gamma distribu-
tions. The gamma distribution is a two-parameter form;
it is quite flexible and can be arbitrarily broad or narrow.
The gamma was chosen on the basis of tractability and
convenience. The parameters that determine the specific
form of the parent distribution are themselves free pa-
rameters that are estimated from the data. A more tech-
nical specification of the model is given in Appendix A,
and an extensive discussion of issues related to param-
eter estimation may be found in Rouder, Sun, et al.
(2003). Software in Splus/R and in WinBUGS (Lunn,
2003; see the WinBUGS Development web-site) may be
found at www.missouri.edu/~pcl.

THE ADVANTAGES OF THE
HIERARCHICAL WEIBULL MODEL

In this article, we claim that the hierarchical Weibull
model is useful in the analysis of RT distributions for four
reasons: (1) It allows researchers to pool data across sev-
eral participants, resulting in vastly improved inference
with small samples per participant; (2) its parameters are
interpretable in terms of psychological process; (3) it fits
data reasonably well; and (4) it is reasonably robust to
misspecification. In the following sections, we will ex-
amine all four of these reasons in turn.

Estimation With Small Samples

In this section, we will compare Bayesian estimation of
the hierarchical Weibull model (HB) with that of other
methods. The gold standard of estimation of distributions
is ML estimation. ML is an accepted and recommended
method in both the statistical literature (e.g., Hogg &
Craig, 1978; Lehmann, 1991) and the psychological liter-
ature (e.g., Dolan, van der Maas, & Molenaar, 2002; Ulrich
& Miller, 1994; Van Zandt, 2000; see Myung, 2003, for a
tutorial review). Several good introductory texts cover ML,
including Hogg and Craig (1978) and Lehmann (1991).

There is a problem encountered if ML is used to esti-
mate Weibull parameters when the shape parameter is
less than 1. When the shape is less than 1, the Weibull re-
sembles an exponential but is even more skewed. In this
case, ML estimates of the Weibull are not necessarily
consistent (Cheng & Amin, 1983). In our opinion, shape
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Figure 4. Maximum likelihood and hierarchical Bayesian estimates for Stadler’s data.
Adapted with permission from Rouder, Sun, Speckman, Lu, and Zhou (2003).

certain participants, the estimates are different. After
that, we will describe a large simulation in which 10 es-
timation methods are compared. The Bayesian method
with the hierarchical Weibull model provided more ac-
curate estimates than any other method did.

parameters are always greater than 1 in most perceptual
and cognitive experiments. Therefore, ML has ample
theoretical justification.

In the following subsection, we will estimate param-
eters from a data set, using HB and ML estimation. For
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Figure 5. Histograms and fits for 4 selected participants. The solid and dotted lines
show Weibull density with parameters from maximum likelihood and hierarchical
Bayesian estimates, respectively. These particular participants were selected to max-
imize the difference between estimation methods. Reprinted with permission from
Rouder, Sun, Speckman, Lu, and Zhou (2003).



Application to a Data Set

Rouder, Sun, et al. (2003) have provided an example in
which both ML and HB estimates are produced from the
same data set. The set, collected by Michael Stadler, con-
sists of 80 observations for each of 80 individuals.® Fig-
ure 4 shows the relationship between ML and HB esti-
mates as scatterplots. The points represent estimates from
individuals. The x-axis value of a point denotes the ML es-
timate, and the y-axis value denotes the HB estimate. Over-
all, many of the points cluster on the diagonal, indicating
concordance between the HB and the ML estimates. The
big difference is in the shape parameter. Here, the points
deviate substantially from the diagonal. The slope is less
than 45°, indicating greater variability for the ML esti-
mates than for the HB estimates. To better understand the
nature of these differences, it is helpful to show the fits of
the Weibull density to individuals’ data (Figure 5). The top
two panels show data that are fairly skewed, and the ML
predictions track this skew well. HB predictions are a little
less skewed. According to the hierarchical interpretation,
the degree of skew in the data is atypical, given the rest of
the participants, and may reflect sampling variability. The
Bayesian prediction, which takes this into account, is more
moderate. The same dynamics are evident in the bottom
panels. Here, the data are atypically symmetric, and the
Bayesian predictions are more skewed than the ML pre-
dictions. Overall, the extreme Bayesian estimates are less
extreme than their ML counterparts and are more like
those from typical participants.

Simulation Study

The above analysis shows where HB estimation diverges
from more conventional ML estimation. To assess which
estimation method is most accurate, we performed a
Monte Carlo simulation study. In addition to HB and ML,
we included several other methods used or proposed in
experimental psychology. We split the methods into two
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types: those that estimate individuals’ shift, scale, and
shape parameters and those that estimate group-level
shift, scale, and shape.

Individual-Level Methods

Bayesian estimation with the hierarchical Weibull.
As has been discussed, Weibull parameters are assumed
to be randomly sampled from parent distributions (see
Appendix A for details). Estimation is done through
Monte Carlo Markov chain techniques, with details pro-
vided in Rouder, Sun, et al. (2003). The model yields in-
dividual estimates of shift, scale, and shape parameters.

Maximum likelihood. Parameters are obtained by
maximizing the likelihood function with the simplex
routine (Nelder & Mead, 1965). Each individual’s RT
distribution is fit separately, yielding individual esti-
mates of shift, scale, and shape.

Quantile maximum likelihood. Quantile maximum
likelihood (QML) is a new method from Heathcote et al.
(2002). Unlike conventional ML, estimates are based on
sample quantiles.” The basic idea is that the likelihood of
the parameters can be expressed as a function of the sam-
ple quantiles. The estimates are those values that maxi-
mize the likelihood of the parameters, given the sample
quantiles.® QML is applied to an individual’s sample
quantiles to obtain individual parameter estimates. We
experimented with several choices of sample quantiles
and found that estimators were most accurate when all of
the data points served as sample quantiles.® Choices with
fewer quantiles, such as 5 or 10, led to dramatically worse
estimation.

Quantile least-squares. In the quantile least-squares
(QLS) method, the parameter estimate is that which min-
imizes the summed squared error between the sample
quantiles and the predicted quantiles. Jiang, Rouder, and
Speckman (2004) have shown that QLS is the most effi-
cient means of estimating parameters from sample quan-
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tiles for a restricted class of distributions called location—
scale models. Although the three-parameter Weibull is
not a location—scale model, it is reasonable to suspect
that this method will do well. Rouder and Speckman
(2004) used this method to estimate parameters from the
Weibull, ex-Gaussian, and shifted-Wald with varying de-
grees of success. To use the method, it is necessary to
choose a set of sample quantiles, and we chose to use all
of the data points as sample quantiles.!® Choices with
few quantiles, such as 5 or 10, led to dramatically worse
estimation.

Group-Level Methods

Vincentizing + quantile maximum likelihood. Vin-
centizing is a popular nonparametric method for con-
structing group-level RT distributions (Heathcote,
Popiel, & Mewhort, 1991; Ratcliff, 1979; Vincent, 1912).
The basic idea is that individuals’ sample quantiles are
averaged to produce a group distribution.!! For example,
the 10th percentile of the group distribution is the aver-
age of individuals’ 10th percentiles. The method of esti-
mating parameters from a Vincentized form is a well-
used method of obtaining stable estimates with small
sample sizes (e.g., Andrews & Heathcote, 2001; Logan,
1992; Ratcliff & Rouder, 2000; Spieler et al., 1996).
Hence, a comparison of Vincentizing with the HB esti-
mation is of particular interest. In the Vincentizing +
QML (V+QML) method, estimates are obtained from
averaged quantiles by the QML method described above.

Vincentizing + quantile least squares. This method
is identical to V+QML, with the exception that QLS is
used to estimate parameters from averaged quantiles.

Parameter averaging. An obvious method for con-
structing group-level estimates is to average individual pa-
rameter estimates. This method can be implemented with
all the individual parameter estimation methods listed
above. When using this method, we add the suffix PA (for
parameter averaging) to the method label. For example,
HB +PA refers to the method of averaging individual pa-
rameters obtained with the HB method. There are four PA
methods: HB+PA, ML+PA, QML+PA, and QLS+PA.

Simulation Method

To assess the relative performance of the individual-
and group-level estimation methods, we performed a set
of simulation studies. Figure 6 provides a schematic of
the simulations for the individual-level methods. The
first step is to pick “true” values for the simulations. To
ensure that we started with a realistic degree of partici-
pant variability, we used the ML estimates of the Weibull
parameters from Stadler’s data set as true values (see
Figure 4). There are three estimates per individual and
80 individuals in the set. The resulting 240 true values are
depicted in Box 1 in Figure 6 as “T—Shift,” “T—Scale,” and
“T—Shape.” We defined the true group parameter as the
arithmetic average across the true individual parameters—
for example, the true group shift parameter is the average
of the individual true shift parameters (see Box 2 in the
figure). Artificial data were simulated using individual
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true values (see Box 3). Individual-level parameters were
estimated (Box 4) and then averaged to produce group-
level estimates (Box 5). The artificial data were Vincen-
tized (Box 6), and the resulting averaged quantiles were
used to produce group-level estimates (Box 7). The pro-
cess of generating data from true values and estimating
parameters was repeated 600 times to obtain the sam-
pling properties of all of the methods.

Two sample sizes were used in the simulations. In the
first test, an artificial data set consisted of 80 observa-
tions for each of the 80 individuals (shown in Figure 6).
These sample sizes are fairly typical for large experi-
ments in cognitive and perceptual psychology. In the sec-
ond test, the number of observations per individual was
reduced to 20. Although 20 seems like a small number,
it is typical of the numbers of trials per cell in multifac-
tor experiments. According to conventional wisdom, 20
observations per individual is not sufficient for distribu-
tional analysis without the aid of Vincentizing (e.g., An-
drews & Heathcote, 2001). Therefore, this small-sample
simulation provides a stringent test for HB estimation.

Results

The appropriate statistic to consider is estimation error:
the difference between the true value of a parameter and its
estimate. By considering errors across all of the data sets,
it is possible to construct the sample error distributions.
The root mean square error (RMSE) serves as a summary
statistic. Table 1 shows RMSE for the first test (80 ob-
servations per individual) under the columns “RMSE.”
The columns labeled “HB Gain” provide a convenient
comparison of each method to HB. It is the RMSE of es-
timates from an alternative method divided by the RMSE
of the HB estimates. If the HB estimates are more accu-
rate, the gain is greater than 1. For example, if the gain
of the HB estimate over an alternative is 2.0, HB esti-
mates are, on average, twice as accurate as the estimates
from the alternative.

The HB method is best for estimating individuals’ pa-
rameters. The results, however, are more equivocal for
estimating group averages. All of the PA methods as a
group fared well and outperformed the Vincentizing-
based methods. As has been pointed out by Rouder and
Speckman (2004) and Thomas and Ross (1980), Vin-
centizing is not a theoretically justified method for three-
parameter distributions, such as the Weibull or the ex-
Gaussian. The reason is that in these cases, Vincentized
estimators are not consistent; that is, they do not become
arbitrarily accurate with sufficiently large sample sizes.!2
The PA methods discussed above are consistent, and
given a sufficiently large sample, they can be made arbi-
trarily accurate. This lack of consistency in estimates
from Vincentizing explains its relatively weaker perfor-
mance with larger sample sizes. Although all of the PA
methods performed well, averaged HB estimates held a
slight edge for estimating group shift and group scale,
whereas averaged ML was best for estimating group
shape. Overall, HB+PA and QML +PA were the most
accurate group-level methods.



Table 1
Estimation Errors: 80 Observations per Participant

Error in Shift

Error in Scale

(sec) (sec) Error in Shape

Method RMSE HB Gain RMSE HB Gain RMSE HB Gain
Individual-Level Methods
HB .0222 - .0271 - 388 -
ML .0302 1.36 .0347 1.28 489 1.26
QML .0330 1.49 .0371 1.37 531 1.37
QLS .0521 2.37 .0557 2.06 7156 1.94
Group-Level Methods

HB+PA .00335 - .00354 - .0766 -
ML+PA  .00600 1.79  .00772  2.18 .0628 .82
QML+PA .00340 1.01 .00383 1.08 .0663 .86
QLS+PA .00738 2.20 .00787  2.22 .0843 1.10
V+QML .00994 2.97 .00995  2.81 .1390 1.82
V+QLS 01240 3.70  .01201 3.39 2369 3.09

Note—RMSE, root mean square error; HB, hierarchical Bayesian; ML,
maximum likelihood; QML, quantile ML; QLS, quantile least squares;
PA, parameter averaging; V, Vincentizing.

Table 2
Estimation Errors: 20 Observations per Participant

Error in Shift

Error in Scale

(sec) (sec) Error in Shape
Method (RMSE) (RMSE) (RMSE)
Individual-Level Methods
HB 0.0381 0.0448 0.548
ML 58,173 58,173 1,120,786
QML 89,420 89,420 1,491,868
QLS 93,887 93,877 1,034,443
Group-Level Methods

HB+PA 0.0076 0.0084 0.147
ML+PA 7,502 7,502 142,739
QML +PA 11,434 11,434 189,261
QLS+PA 10,636 10,636 117,951
V+QML 0.0177 0.0186 0.191
V+QLS 0.0150 0.0137 0.329

Note—RMSE, root mean square error; HB, hierarchical Bayesian; ML,
maximum likelihood; QML, quantile ML; QLS, quantile least squares;
PA, parameter averaging; V, Vincentizing.

Table 2 shows the results from the second simulation,
in which there were only 20 observations per individual.
The results are dramatic. Reasonable individual esti-
mates could be obtained only by HB. The ML, QML, and
QLS methods failed completely. Likewise, for group-
level estimates, HB+PA provided reasonable estimates,
whereas ML +PA, QML +PA, and QLS +PA failed com-
pletely. The Vincentizing methods did not fail dramati-
cally but were about half as accurate as the HB+PA
method.

The reason for the dramatic difference in RMSE stems
from a pathology of the Weibull for distributions that are
skewed left—for example, those with a high shape param-
eter value. In this case, changes in the shape parameter
have little effect on the distribution. Figure 7 shows this
phenomenon. Here, three Weibull densities are drawn.
Each density has the same mean and standard deviation.
The shapes are varied from 7 to 7,000. Even though the
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parameters vary by several orders of magnitude, the
three densities are very similar. The fact that large dif-
ferences in parameters do not produce large differences
in the densities means that parameter estimation is highly
unstable. Fortunately, this parameter instability is present
only for Weibull distributions with high shape values,
such as those over 4. Typical RT distributions are char-
acterized by Weibulls with shapes between 1.5 and 2.5.

The tradeoff demonstrated in Figure 7 raises problems
when Weibull parameters are estimated from small sam-
ples. Due to random variability, the sample distribution
for small samples may appear to be roughly symmetric
or even skewed left. In this case, the Weibull estimates
may change by several orders of magnitude. Indeed, this
happened in our simulations, and the resulting extreme
values dominated the RMSE measure.!3 The influence
of the parent distribution in the hierarchical model is
greatest in the relatively rare cases in which the samples
are symmetric or skewed left. In these cases, extreme pa-
rameter estimates are inconsistent with the parent distri-
bution and are not obtained.

Extreme estimates in nonhierarchical approaches (ML,
QML, and QLS) are not outliers in the conventional sense.
Often, researchers exclude extreme or outlying points from
RT analyses. The rationale is that these points may re-
flect extraneous psychological processes not under con-
sideration. These extreme estimates in the nonhierarchi-
cal methods are part of the sampling distribution of the
estimators and do not arise from some extraneous pro-
cess. Hence, there is no logical argument for excluding
them. Even if one chooses to exclude extreme estimates,
the sampling distribution has smooth tails, indicating
that there is no natural method with which to classify
whether an estimate is extreme.

The ill-behavior of nonhierarchical estimates comes
from the previously discussed pathology of the Weibull.
This type of pathology is not evident in the ex-Gaussian
and is evident to a far less extent in the shifted Wald
(Rouder & Speckman, 2004). Without HB estimation,
the Weibull is a poor choice as a descriptive model with
small sample sizes, because of these statistical consider-
ations. The HB approach can, in theory, be adopted with
other descriptive distributions. Gains in estimation would
be expected in these cases too, although these gains would
not be as dramatic as with the Weibull.

Researchers may question whether conventional meth-
ods can be used with small sample sizes if outlying ob-
servations are truncated or censored. Unfortunately, these
poor estimates do not result because of extreme obser-
vations. In fact, in all cases, no simulated RT was below
the smallest true shift parameter of 180 msec. The poor
estimates occur when the overall shape of the distribution
is skewed left—that is, when typically long observations
do not occur in sufficient numbers. Truncation of ex-
treme observations will not lead to good estimation for
conventional methods in these cases.

Overall, the results are clear and consistent. The HB
method is superior especially for those researchers who
gather a few observations per condition from several par-
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Figure 7. The Weibull distribution is “ill behaved” when skewed left. Distributions with vastly
different parameters mimic each other. This behavior raises problems for all of the individual-
based methods except the hierarchical Bayesian.

ticipants. We have run these simulations with other true
values and for different sample sizes (Jiang, 2002; Rouder,
Sun, et al., 2003). The HB method always provides more
accurate estimates (has smaller RMSEs) for individual pa-
rameters than does any other method.

Interpretation of Weibull Parameters

One of the reasons we find the hierarchical Weibull
model useful is that its parameters are interpretable, often
in terms of psychological processes. In this section, we
will describe three different approaches to interpreting
Weibull parameters.

The Weibull as a Descriptive Model

At the least-committed level, the Weibull can be re-
garded as a convenient descriptive form. The goal then
is to provide robust measures of shift, scale, and shape in
different experimental conditions with few observations
per participant. Shift, scale, and shape are fairly mean-
ingful characteristics of distributions. Accurately mea-
suring the effects of manipulations and group member-
ship on these characteristics can provide motivation for
new theories and test beds for existing ones. In this sense,
the Weibull model is used analogously to the ANOVA,
except that the distributional assumptions are far more
realistic and the dependent variables are shift, scale, and
shape, rather than the mean.

The Weibull can be used in a descriptive fashion as an
intermediary in the fitting of more complicated, theoret-
ically invested models. For example, consider the follow-
ing possible strategy for fitting Ratcliff’s diffusion model
(Ratcliff, 1978; Ratcliff & Rouder, 1998). The diffusion
model is usually fit when there are hundreds of observa-
tions per participant per condition, since there is a loss of
parameter stability with smaller numbers of observations

per participant. The hierarchical Weibull model advocated
here can be used to potentially increase stability in small-
sample applications. In the first stage, the Weibull param-
eters are obtained by the method presented here. The ad-
vantage is that the hierarchical formulation provides a
sophisticated means of pooling data across several par-
ticipants. Then the diffusion model is fit to these Weibull
parameters, instead of directly to the data. This process of
using one distribution as an intermediary in fitting the dif-
fusion model is not novel. Ratcliff (1978) used the ex-
Gaussian in this capacity. This approach will not yield
consistent estimates, since the Weibull only approximates
the diffusion model densities and should be used with
care, rather than programmatically.

The Weibull as a Stage Model

We offer a stage-based, process-oriented interpreta-
tion of the Weibull. As Balota and Spieler (1999) have
noted, experimental psychologists make a broad, long-
standing distinction between two types of processes:
central and peripheral!4 (often, the terms decision and
residual are used to describe central and peripheral pro-
cesses; see, e.g., Dzhafarov, 1992; Luce, 1986). Periph-
eral processes are quick sensory and motor processes
that occur automatically, whereas central processes are
processes that require conscious control and attention
(e.g., Hasher & Zacks, 1979; Jacoby, 1991; Luce, 1986;
Schneider & Shiffrin, 1977). For example, eye move-
ments to a location of a bright flash rely mainly on pe-
ripheral processes, whereas maintenance of a 10-digit
phone number in memory relies mainly on central pro-
cesses. It is common to assume that the latency of pe-
ripheral processes is small and of low variance, whereas
the latency of central processes is large, variable, and
skewed right (e.g., Hohle, 1965).
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Figure 8. Shift, scale, and shape parameter estimates as a function of the magnitude
of the difference between the background and the target stimulus. Data are from Rat-

cliff and Rouder (1998).

This distinction between central and peripheral pro-
cessing can be implemented within the Weibull distribu-
tion. The Weibull scale and shape parameters index the
central processes, whereas the shift parameter indexes pe-
ripheral processes. Differences in the structure of central
processes across groups or conditions would be mani-
fested as a difference in the shape parameter. Difference
in the structure of central processes would include the in-
sertion of stages (e.g., Ashby & Townsend, 1980; Balota
& Chumbley, 1984) or changes in processing strategy
(e.g., Treisman & Gelade, 1980). However if the central
processes follow the same structure across different groups
or conditions but the speed of execution is different, there
would be differences in the scale parameter, but not in the
shape parameter. Finally, differences in the speed of pe-
ripheral processes are manifested largely in changes in the
shift parameter (e.g., Balota & Spieler, 1999; Hockley,
1984; Ratcliff, 1978). A shift parameter is included in sev-
eral decision-making RT models (e.g., Busemeyer &
Townsend, 1993; Link, 1975; Rouder, 2001) and is a mea-
sure of the irreducible minimum (Dzhafarov, 1992; Hsu,
1999)—that is, the minimum possible latency for encoding
and responding to a stimulus.

The stage model interpretation offered above is plau-
sible but untested. Perhaps the best way to assess this in-
terpretation is to test whether benchmark manipulations
selectively influence model parameters (e.g., Rouder,
2004). The model passes the selective influence test if
benchmark manipulations affect only the intended pa-
rameter. We hope that the community of researchers will
identify selective influence tests of distributional quan-
tities in various domains.

One easy-to-identify selective influence test of the stage
model parameter interpretation is that peripheral processes
(shift parameter) should not be much affected by decision-

critical stimulus variables. These variables presumably
affect only central components. This selective influence
test can be performed with Ratcliff and Rouder’s (1998)
Experiment 1. In that experiment, 3 participants observed
squares that varied in brightness and indicated whether the
brightness was greater than or less than a gray background.
Accuracy in this task ranged from ceiling for dark and
light stimuli to chance for stimuli that were similar in
brightness to the background. According to the stage
model interpretation, the peripheral processes (shift pa-
rameter) should not vary with brightness. We analyzed the
correct response distributions as a function of luminance.!?
Weibull parameters were estimated separately for each
participant and luminance level by maximizing likeli-
hood.!¢ Then these estimates were averaged across par-
ticipants. In this experiment, there was a fair amount of
symmetry, in that correct RTs to the darkest stimuli were
similar to those to the lightest ones. Likewise, correct
RTs (and probabilities) to stimuli slightly brighter than
the background were similar to those to stimuli slightly
darker than the background. Because this symmetry was
evident across several levels of luminance, Ratcliff and
Rouder (1998) collapsed the data. For ease of presenta-
tion, we averaged estimates in the same manner. Esti-
mates for shift and scale are displayed in the left panel of
Figure 8 as a function of the distance in luminance be-
tween the stimulus and the background. Shift estimates
appear invariant across these different conditions, espe-
cially when compared with scale estimates.

It may prove more difficult to specify a selective-
influence test to differentiate scale and shape. Scale in-
dexes the speed of processing, whereas shape indexes the
architecture. It may be more contentious to specify a par-
ticular manipulation as one that affects speed or archi-
tecture exclusively. On a practical level, the example
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Figure 9. Effect of drift rate on performance. The top two pan-
els show how drift rate affects accuracy and mean response time
(RT) for correct responses, respectively. The bottom three panels
show how drift rate affects Weibull parameters of shift, scale, and
shape, respectively. The effects were obtained by simulating the
diffusion model with parameters from Ratcliff and Rouder (1998,
Table 1). The solid, dashed, and dotted lines are for simulations
in which estimates from Participants N.H., J.F., and K.R. served
as true values, respectively.

from Ratcliff and Rouder’s (1998) experiment is infor-
mative. If one believes a priori that stimulus luminance
does not change processing architecture, invariance of
shape will be expected. This does not occur in Figure 8
(right panel). If one maintains the stage-based interpre-
tation, it must be that luminance affects architecture. Of
course, this is not unreasonable; it is plausible that par-
ticipants may engage additional processing steps for ob-
viously difficult stimuli, especially when instructed to be
accurate. If a recheck mechanism is added for difficult
decisions, it may have a very long latency, and the increase
in skew comes about from a mixture of slow trials in
which the mixture is performed with quicker, unchecked
trials. From the figure, it is unclear whether this decrease
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in shape is sudden or is more gradual. The challenge be-
fore theorists is to explain why the shape of the distribu-
tion becomes more skewed with increasing difficulty.

One model that appears to be in conflict with the stage-
based interpretation of the Weibull parameters is the dif-
fusion model. The diffusion model does not give rise to
location—scale—shape RT distribution. In particular, the
drift rate affects both scale and shape. In the luminance
identification paradigm discussed previously, the greater
the difference between the stimulus and the background,
the more extreme the drift rate. As the drift rate increases
in absolute value, the variance of the RT distributions de-
creases, and the shape changes. The direction of the
shape change, whether more skewed or symmetric, de-
pends on the particular parameters of the process. This
shape change poses a challenge to the stage interpreta-
tion presented here. Clearly, a change in drift rate is not
a change in architecture, yet a change in drift rate does
result in a change in shape.

This argument, although true, poses more of a theo-
retical than a practical challenge. The change in shape
predicted by the drift rate changes is quite small, often
within the realm of sampling noise. Figure 9 provides an
informative example. Data were simulated!? from a dif-
fusion model with the parameter values reported in Rat-
cliff and Rouder’s (1998) Table 1 (accuracy—stressed
condition). The five panels show how various properties
change as a function of drift rate. The empirical statis-
tics, accuracy and mean correct RT, vary through the full
range of performance for this task. The effect on the
Weibull parameters is predominantly on scale; impor-
tantly, there is only a small effect on shape. In sum, al-
though the diffusion model does predict some shape
changes within a single architecture, the degree of these
changes is small.

The stage-based interpretation still needs to be bench-
marked, rather than assumed. It is likely that there are
some domains in which the stage-based interpretation
will be quite reasonable and others in which it will not.
It is hoped that, over time, researchers in various do-
mains will perform selective influence tests similar to
those discussed here. If there is sufficient consensus that
parameters behave reasonably within a domain, the stage
interpretation can be especially useful in investigating
which manipulations affect the architecture of process-
ing versus its rate.

The stage-based interpretation has important conse-
quences for data analysis. Shape serves as the primary
characteristic of interest, rather than mean or variance.
Shape indexes cognitive architecture, and it should be
analyzed first because it is difficult to interpret changes
in processing speed (scale) across conditions if there are
accompanying changes in the processing of architecture
(shape). Measures of speed are particular to given archi-
tectures and are not comparable across architectures. For
example, the value of the speed of scanning in a serial
process is not comparable to the value of the speed of in-
formation gain in parallel counters. If there is a signifi-
cant and consistent change in shape, the main theoretical



enterprise should focus on how to explain this shape
change. Only if the shapes are relatively constant can
questions about scale (processing speed) be asked and
answered.

The Weibull as a Race Model

It is possible to commit to the Weibull distribution as
a theoretically oriented model of RT. One interpretation
is provided by Logan (1988, 1992), who capitalizes on a
limit property of the Weibull. The Weibull distribution
describes the distribution of the winning times of a race
process. Logan accounts for the process of automatizing
aresponse, a skill, or a task by assuming that identically
distributed memory traces race each other to be recalled.
The RT is the time of the fastest trace to be recalled. Under
reasonable conditions, RT is distributed approximately
as a Weibull.!8 Hence, the Weibull is a principled choice
when researchers are willing to believe that RT is the re-
sult of a race among latent processes.

Fit of the Hierarchical Weibull Model

In this section, we will assess the fit of the hierarchi-
cal Weibull model to Stadler’s data. In many endeavors,
researchers search for models that explain the largest de-
gree of variability in their dependent measures. We make
no claims that the hierarchical model is the best model in
this regard. It may be that for several data sets, other
models, such as the ex-Gaussian or the diffusion model,
may do a better job of describing the precise details of
data. We treat our model as a statistical model, rather
than as a substantive one; its benefit lies in the ability to
do estimation and inference in typical applications. Given
the intended statistical use of the model, we show that
the hierarchical Weibull model fits reasonably well. In
the first subsection, we will assess how well the Weibull
accounts for individual RT distributions; in the second,
we will assess how well the gamma distribution accounts
for variation across individuals.
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Fit of the Weibull Distribution

A conventional approach to assessing the fit is to com-
pute chi-square goodness-of-fit statistics. We do so here
with the caveat that because the Weibull is irregular, the
chi-square statistic may not converge to the chi-square
distribution. The distribution of the statistics will be, in
fact, larger than that of the corresponding theoretical dis-
tribution, although the correction is not easily obtained.
To compute a chi-square statistic, we first divided the
range of variability of each participant’s distribution into
eight bins. The inner six bins had the same range; the two
outer bins were twice the range of the inner bins. This
small deviation from uniformly sized bins helps avoid
small bin counts that tend to occur in the outer bins. We
used the simplex routine to minimize the chi-square fit
statistic for each participant separately. This resulted in
80 chi-square statistics. If the model fit well, each chi-
square statistic should be an independent sample from a
chi-square distribution with four degrees of freedom.!?
To assess fit, we compared the empirical cumulative dis-
tribution function of the obtained chi-square statistics
with the theoretical cumulative distribution function
(Figure 10, left panel). The empirical cumulative distri-
bution function of the chi-square statistics is the line
with discontinuities. Chi-square value is plotted on the
x-axis; the proportion of obtained values below a spe-
cific value is plotted on the y-axis. The center dotted line
is the theoretical cumulative distribution function for the
chi-square distribution with four degrees of freedom.
The surrounding two dashed lines denote pointwise 95%
estimation error bounds.?0 Theoretically, for each value
on the x-axis, there is a 95% probability that the empiri-
cal cumulative distribution function would fall within the
upper and lower bounds if the obtained chi-square statis-
tics do follow the appropriate chi-square distribution and,
by extension, if the Weibull assumption is correct. As can
be seen, the obtained empirical distribution function falls
within acceptable ranges, indicating a good fit of the

1.0 TR
> ”:
3 .8 K
®©
s
T 67
g
= 4
©
3
§ 27 Ex—Gaussian
0

I- I [
0 5 10 15
Chi-Square Value

Figure 10. Chi-square fit statistics. The solid line with discontinuities denotes the
empirical cumulative distribution function of individuals’ chi-square fit statistics. The
dotted line is the theoretical cumulative distribution function (CDF) that the chi-
square fit statistics should follow if response time is distributed as a Weibull. The
dashed lines are the 95% estimation error bounds on the CDF.
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Figure 11. Quantile—quantile (QQ) plots for transformed data (left) and simulated data (right). The di-
agonal, which would describe a perfect relationship, is indicated with a white line. The figure shows that
although the QQ plots for data look similar to those for simulated data of the same sample size, there is a
misfit in the tail. The data have slightly heavier tails than those predicted by the Weibull. Data are trans-

formed by hierarchical Bayesian estimates.

Weibull to empirical RT distributions. The right panel of
the figure shows the same plot of chi-square statistics for
the fit of the ex-Gaussian distribution. The fits are com-
parable.

We also used quantile—quantile (QQ) plots to graphi-
cally explore the fits of distributions. Our plots make use
of the fact that Weibull random variables can be trans-
formed to exponential ones. If Y is a Weibull random
variable, X = [(Y — w)/0]8 is a standard exponential
random variable with density f(x) = exp(—x), where y,
6, and f are the shift, scale, and shape of Y. We per-

formed this transformation for each individual’s data,
using each individual’s HB parameter estimates. Quan-
tiles from the transformed data are plotted against those
for a standard exponential (Figure 11, left panel). If the
data were distributed as a Weibull, the relationship in the
QQ plot should be a straight line with a slope of 1 (white
line). There are some evident variations from the ex-
pected line. The curves are below the line for values be-
tween 2 and 3 and above it for values between 3 and 4.
This discrepancy indicates that the data have more mass
in the tail than does the Weibull distribution. The right
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Figure 12. The left panel shows the histogram of maximum likelihood (ML) shape pa-
rameter estimates. The solid line shows the best-fitting gamma density. The dotted line is the
parent distribution from the hierarchical Bayesian analysis, which is, as was expected, nar-
rower than the ML estimates. The right panel shows the same for the function of scale and

shape that was treated hierarchically [g(6,

B) = 6-B; see Appendix A]. In both cases, the as-

sumption of a gamma-distributed parent seems quite reasonable.



panel shows a random sample from the exponential dis-
tribution (80 observations for 80 participants). The com-
parison of the panels confirms that there is a slight mis-
fit with the Weibull: It tends to underestimate the tail in
some of the participants.

The result of the preceding analyses is that the Weibull
distribution fits reasonably well, although not perfectly.
In particular, the Weibull’s tail is not as heavy as that ob-
served in the data. The reason for this misfit is unclear,
but it may very well be that there are a few outliers in the
data that come about from atypical processing. For ex-
ample, if a few participants lost attention on a few trials,
the resulting large RTs would cause the observed misfit
in the QQ plot. As was mentioned earlier, our goal is to
provide a reasonably well fitting statistical model for
pragmatic measurement. The fit of the Weibull is more
than adequate for this purpose.

Fit of the Parent Distribution

Our hierarchical Weibull model assumes that there is
a parent distribution from which individual parameters
are drawn and that this distribution has a gamma form.
It is reasonable to ask whether such a choice is judicious,
especially since it was made without recourse to psy-
chological considerations. The gamma, for example, is
unimodal. In certain cases, it may be that participants’
parameters are not distributed unimodally. It may be that
participants cluster into modes—for example, those that
have a symmetric shape and those that have a skewed
shape, without many in between. To test this possibility,
we plotted the obtained individual ML parameters. Fig-
ure 12 shows that ML estimates were unimodal and well
fit by a gamma distribution (solid line). The actual gamma
distribution that was estimated as the parent in the hier-
archical analysis is shown as a dotted line. The estimated
parent distribution is narrower because the extreme ML
estimates typically reflect a large degree of sampling
noise. It is the narrowness of the parent distribution
(which is not assumed but estimated) that gives rise to
shrinkage in the HB estimation.

Researchers heavily concerned about bimodality can
take solace in three facts. First, the effects of misspecifi-
cation of the prior will be overcome by collecting larger
amounts of data. As the amount of data increases, the im-
pact of the prior becomes smaller and smaller. In the as-
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ymptotic limit, the prior plays no role. Second, as we will
discuss in the next section, the effects of misspecifica-
tion of the parent distribution are rather marginal. Third,
it may be possible to specify reasonable priors that allow
for two or more modes.

Robustness to Misspecification

As was mentioned previously, we treat the hierarchi-
cal Weibull model as a statistical model, rather than as a
more substantive one. One consequence of this treatment
is that the inference should be relatively robust to mis-
specification of the model. In this section, we will ex-
plore the consequences when the underlying data are not
distributed as a Weibull. We show through simulation
that reasonable inferences about location, scale, and
shape are possible even when the data are distributed as
an ex-Gaussian.

The ex-Gaussian is usually parameterized as the addi-
tion of a normal random variable with an exponential
random variable. The distribution has three parameters—
U, o, and =—corresponding to the location and scale of
the normal and the scale of the exponential. There is a
little-known alternative parameterization in the location—
scale form, as is discussed in note 2. The alternative is
based on parameter 7, where 11 = 7/0. In this parame-
terization, U serves as the location parameter, o'serves as
the scale parameter, and 7 serves as the shape param-
eter.2! Figure 13 shows the dependence of the distribu-
tion on the parameters. In this parameterization, o scales
both the normal and the exponential components pro-
portionately. Changes in ¢ alone do not affect higher
order shape-related properties, such as skew and kurto-
sis. Only the value of 77 determines these higher order
properties.

The question at hand is whether we can reliably re-
cover changes in ex-Gaussian location, scale, and shape
parameters with the hierarchical Weibull model. To an-
swer this question, we performed a small simulation ex-
periment in which artificial data were distributed as an
ex-Gaussian. In the simulation, we constructed two groups
of 50 hypothetical participants contributing 50 hypo-
thetical observations each. Each hypothetical participant
had his or her own parameters (U, o, 17), and these pa-
rameters were sampled from parent distributions. There
were two sets of parent distributions, one for each group.

Location Scale Shape

- u o n
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Figure 13. The ex-Gaussian parameters of location, scale, and shape. Each plot shows the
effect of changing one parameter while holding the other two constant.
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Figure 14. Hierarchical Bayesian estimates of shift, scale, and shape from data generated from an ex-Gaussian.

In Simulation 1, there was only a group difference?? in
the ex-Gaussian location parameter. Hence, hierarchical
Weibull analysis should reveal a shift difference but no
scale or shape difference across groups. Figure 14 shows
HB estimates as box plots, and the upper row shows the
results from Simulation 1. Only estimates of shift were
affected by group membership.

There are some minor differences in scale and shape
across the two groups in Simulation 1. Some random
variation is indeed expected, for two reasons. First, al-
though the true population parameters are invariant across
conditions, individuals’ shapes and scales were randomly
sampled. Given that the simulations consist of only 50
individuals, we expect some variation in the distribution
of individual true parameters. Second, in the simula-
tions, there were only 50 observations per individual;
hence, individuals’ samples do not perfectly reflect their
true parameter values.

In Simulation 2, there were only group differences in
ex-Gaussian scale parameters. Consequently, hierarchi-
cal Weibull analysis should reveal a scale difference and
no shape or location difference across groups. The mid-
dle row shows HB estimates: There is a large scale dif-
ference and no shape difference across groups. There is
a small shift difference, and the reason for this deviation
will be discussed below. In Simulation 3, there were only
group differences in ex-Gaussian shape parameters. As

has been discussed previously, hierarchical Weibull analy-
sis should reveal a difference in shape and no difference
in location. There is no interpretation of scale parameters
in this case, since scale (in)variance is fairly meaningless
when shape changes. Differences in scale are interpretable
only when shape is constant. The bottom panel shows a
large effect of group membership on shape estimates,
but not on location estimates.

Overall, the hierarchical Weibull provides a robust
platform for exploring the effects of manipulations and
group membership. The only problem is in measuring
shift: Location parameters may not show appropriate in-
variances when the distribution is misspecified. The
Weibull has a true lower bound parameter, below which
there is no mass. If the underlying distribution has no
such lower bound, the Weibull shift may also change
when scale changes. Although the ex-Gaussian lacks a
lower bound, real human data certainly have a lower
bound (no participant, for example, responds before the
experiment begins). We, along with others, argue that the
inclusion of a lower bound is sensible. The lower bound
is interpretable as a minimum residual, the speed of the
fastest possible response (Dzhafarov, 1992; Hsu, 1999).

There is a misspecification that is worthy of careful
attention: the possibility of fast guesses (e.g., Yellott,
1969, 1971). Even occasional fast guesses, should they
occur, will necessarily have heavy influence on param-



eter estimation. The reason is that the shift parameter es-
timate is always below the smallest observed value. If
this value is not from the processes under consideration,
it is possible to estimate shifts that are too small, scales
that are too large, and shapes that are too symmetric.
Currently, researchers can take one of two mitigating
steps. The first is to use instructions that minimize fast
guesses. Green, Smith, and von Gierke (1983), for ex-
ample, were able to eliminate fast guesses by stressing to
their participants the need to wait for stimuli. The second
is to trim responses in analysis that could not conceiv-
ably be stimulus related. We took this tactic and trimmed
responses below 200 msec. The good fit of the Weibull
(Figure 11), especially for the fast quantiles, indicates that
our trimming was indeed successful in this application.
The most elegant solution is to expand the model so that it
is a mixture of the guessing state and the Weibull. In this
model, the distribution of the guessing state would be spec-
ified beforehand—for example, a uniform distribution
from 0 to 5 sec. The probability of responses coming from
the Weibull or the guessing state would be an additional
free parameter. This type of mixture would allow for more
robust estimation of Weibull parameters. We are currently
developing this type of mixture model for the hierarchical
Weibull. It is worth noting that all models that posit a lower
bound, such as sequential sampling models, are affected
by the presence of fast guesses.

It is worth considering the violation of the model’s as-
sumptions about the parent distributions. It turns out that
proper specification of these is not critical. The real gain
in estimation comes not from proper specification of the
majority of the parent distribution’s mass, but from the
orderly decrease in its tails. The parent distribution has
its largest influence when an individual’s data lead to ex-
treme estimates. In this case, the individual estimate is
typically in the tails of the parent distribution. Consider
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the previous example in Figure 3, in which the extreme
estimates were in the tails of the parent distribution.
Consequently, they were adjusted to regions of the par-
ent distribution with more mass. In essence, it is the fact
that the parent distribution’s tails fall off in a reasonable
manner that provides much of the gain. Misspecifying
the more central regions will certainly add some bias to
estimates. This bias, however, is minimal, considering the
gain in accuracy from the shrinkage of extreme estimates.

AN APPLICATION TO A SYMBOLIC
DISTANCE EFFECT

In this section, we apply the model to a well-known
symbolic distance effect. In the experimental task, partic-
ipants decide whether a presented digit is greater than or
less than 5. In this task, it typically takes longer to make
decisions about digits close to 5, such as 6 and 4, than to
digits far from 5, such as 2 and 8 (Link, 1990; Moyer &
Landauer, 1967; Poltrock, 1989; Smith & Mewhort, 1998).
The interpretation typically offered is that when perform-
ing this task, participants represent numbers in an ana-
logue fashion (Moyer & Landauer, 1967). The analogue
code of 5 is more similar to 4 than to 2. When the codes
are similar, it takes longer to obtain an accurate compari-
son. This finding is one of several semantic and symbolic
distance effects that have been used to examine whether
there are analogue mental representations (e.g., Kosslyn,
1975; Moyer, 1973). The question we ask is whether the
distance-from-5 symbolic distance affects shift, scale,
shape, or some combination of these distributional prop-
erties. Fifty-four participants each contributed about 40
observations in each of the six conditions.

Method
Participants. Fifty-four University of Missouri undergraduate
students served as participants in partial fulfillment of a require-
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Figure 15. Mean response time (RT) for the six different digits. Error bars denote
95% “within-subject” confidence intervals (Masson & Loftus, 2003).
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Figure 16. Parameter estimates. The top panel shows box plots of the distribution of parameters across participants.
The points and lines denote means. There is no effect of digit for shift, a moderate effect for scale, and an unsubstantial
effect for shape. The bottom row shows the effect of scale and shape on response time (RT) distributions. The difference

is much larger for scale than for shape.

ment in an introductory psychology course. Two were eliminated
for excessive anticipatory responses.

Design. The to-be-classified digit served as the main indepen-
dent variable. The digit was 2, 3, 4, 6, 7, or 8. The levels were ma-
nipulated in a within-subjects design. All of the digits appeared
equally often and in a random order.

Procedure. A trial began with a black screen. After 1,000 msec,
a digit was presented in the center of the screen in a standard DOS
font. The digit remained on the screen until the end of the trial. The
participants were instructed to depress the “z” key if the digit was
less than 5 and the “/” key if the digit was greater than 5. Follow-
ing the response, feedback was provided: A pleasant, rising two-tone
sequence indicated a correct response, whereas a low-frequency buzz
indicated a wrong response. Feedback lasted for 400 msec, after
which the next trial followed. Sixty trials made up a block. The par-
ticipants were instructed to take breaks between blocks. The session
consisted of six blocks and took approximately 20 min to complete.

Empirical Analysis

Visual inspection of mean RT as a function of trial
number revealed that all noticeable practice effects oc-
curred within the first 25 trials. Hence, these trials were
discarded. Additional trials were discarded if (1) the trial
followed a break, (2) the response was incorrect, or (3) the

response time was less than 200 msec or greater than
2,000 msec. Fewer than 1.8% of the responses were er-
rors, and fewer than 0.7% were outside the window from
200 to 2,000 msec. The mean RT for the six digits is
shown in Figure 15. As can be seen, there is a significant
50-msec symbolic distance effect [F(5,255) =42.2,p <
.05]. The latency of the decision varies inversely with the
distance from five.

Hierarchical Model Analysis

We used the hierarchical Weibull model to estimate
each individual’s shift, scale, and shape parameters in all
six digit conditions. We started with a general model in
which there are separate shift, scale, and shape parameters
for every participant—digit combination. This model
yielded a total of 3 X 52 participants X 6 digit condition =
936 primary parameters. Details of this model are pre-
sented in Appendix B. Figure 16 shows the resulting es-
timates as box plots. The top row contains separate pan-
els for shift, scale, and shape estimates. Within each of
these panels, there are box plots of the distribution of the
52 individuals’ parameters tabulated by digit condition.
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Figure 17. Group-level response time (RT) distribution for the digit condi-
tions. The effect of digit is on the scale of the distribution.

The distribution of the shift parameters (top left) shows
that shift hardly varies with digit. This indicates that pe-
ripheral processes are unaffected by digit condition. For
the scale parameter (top-middle panel), there is a clear
dependence on digit with larger scales for digits closer to
5. The effect of digit on shape is less clear. The change
in mean shape across digits is sizable in terms of partic-
ipant variability but fairly small in substantial signifi-
cance (from 1.65 to 1.52). The bottom row of panels
makes this point clear. The first panel shows the differ-
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5| Digit4 vs. Digit 3 /

ence between two Weibull distributions that vary in scale
(shift fixed at 0.4 sec, shape fixed at 1.6). The two scale
values (0.218 and 0.272 sec) were chosen because they
were the most extreme mean scales (from digit condi-
tions 2 and 4, respectively). As can be seen, there is a
moderate difference between these distributions. The
middle panel is the comparable plot for shape. The scales
and shifts are fixed (shift of 0.4 sec, scale of 0.24 sec).
The shape values (1.52, 1.65) were chosen because they
are the most extreme mean shapes (from digit conditions
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Figure 18. Scatterplots for the shift parameter. Each point corresponds to a particular participant. There is a
high degree of correlation, indicating that the participants who had a high shift in one condition tended to have

a high shift in another.
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Figure 19. Scatterplots for the scale parameter. Each point corresponds to a particular participant.

7 and 2, respectively). As can be seen, there is very little
effect of the variability in shape across digit condition
on RT.

It is possible to generate group-level RT distributions
from model-based parameter estimates. The method is
straightforward. We evaluate the Weibull density func-
tion using parameters averaged across participants (in-
dicated by the lines in the top row of panels in Figure 16).
The resulting group-level RT distributions are shown in
Figure 17.

A more refined analysis of participant and condition
effects is shown in Figures 18—20. Each figure is com-
posed of a series of scatterplots. Figure 18 is for the shift
parameter, and each scatterplot shows a participant’s
shift in one condition as a function of his or her shift in
another condition. Each point corresponds to a particu-
lar participant. As can be seen, there is a high degree of
correlation, indicating that the participants who had a
high shift in one condition tended to have a high shift in
another. The fact that points cluster near the diagonal in-
dicates that there is little systematic effect of condition.
One way of characterizing the shift estimates is that there
are large participant-specific main effects, as well as
more modest participant X condition interactions. There
is no digit condition main effect.

Figure 19 shows scatterplots for the scale parameter.
Once again, there is a fair amount of correlation, indi-
cating the presence of participant-specific main effects.
In addition, main effects of condition are evident in this
plot. The y-axis of the plots always represents a digit
closer to 5, whereas the x-axis always represents a digit

further from 5. The fact that most points cluster above
the diagonal indicates greater scale values for digits
closer to 5. Figure 20 shows scatterplots for the shape
parameter. Here, there is little systematic variation. The
interpretation is that there are only participant X condi-
tion interactions but no discernible main effects. This
plot confirms the conclusion that the systematic effects
of digit condition are not in the shape parameter. It sug-
gests that all the participant X item combinations may
have similar if not identical shape-parameter values.

An Additive Hierarchical Model

In the original model, there is a separate parameter es-
timate for each participant X condition combination.
The graphical analyses indicate that a more parsimo-
nious model may be obtained by modeling a main effect
of symbolic distance on scale. In this section, we will im-
plement such a model. The goal is to provide an additive
model that provides a means of estimating the main ef-
fects of symbolic distance, as well as testing whether this
main effect is statistically significant.

We provide an additive model with main effects of
participants and conditions. Ideally, this additive model
would be placed on the scale parameter, but the analysis
of this model appears intractable.2? To meet the goal, we
adopt an alternative parameterization of the Weibull.
Previously, the Weibull was parameterized with shift,
scale, and shape. But, in our additive model, we param-
eterized the Weibull in terms of shift, rate, and shape.
The details of the change of parameterization are given
in Appendix C. In cases in which there is no systematic
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Figure 20. Scatterplots for the shape parameter. Each point corresponds to a particular participant.

change in shape across conditions, rate is inversely re-
lated to scale. The additive model is placed on rate, rather
than on scale, and is given by:

Log(Rate) = Grand Effect + Participant Effect

+ Condition Effect + Noise.

The key concept is that there is a main effect of digit con-
dition on the logarithm of rate. This main effect, which is
separate from and added to the participant-specific effect,
serves as our parameter of interest. The complete model is
provided in Appendix C. This model is one of a family of
additive models we have presented for psychological data
(Lu, 2004; Lu, Sun, Speckman, & Rouder, 2005), and fur-
ther statistical details have been presented there. Peruggia,
Van Zandt, and Chen (2002) presented a similar approach
with the two-parameter Weibull (shift set to zero), in which
they also placed a linear model on logarithm of the rate.

Before discussing the analysis, we will justify the
choice of placing an additive model on the logarithm of
the rate parameter, rather than on the rate parameter it-
self. Once again, the reason for doing so is computa-
tional tractability. It may prove quite difficult to estimate
other additive models. Fortunately, an additive model on
the logarithm of rate is indicated by the previous model
analysis. Figure 21 shows the values of the logarithm of
rate for the different conditions. The plots in the figure
are analogous to those previously displayed for shift,
scale, and shape parameters. An additive model is indi-
cated because the points tend to fall on a line parallel to
the diagonal. The distance of this line from the diagonal
indicates the size of the condition effect.

Figure 22 shows the resulting parameter estimates for
the main effect of digit. The points are the estimates
(mean of the posterior distributions), and the error bars
are 95% credible intervals. Credible intervals in Bayesian
statistics are analogous to confidence intervals in classi-
cal statistics. As can be seen, rate is affected by numeri-
cal distance; it is largest (quickest RTs) for the digits far
from 5 and smallest (slowest RTs) for digits near 5.

To test the statistical significance of the distance main
effect, we will employ the Bayes factor method used by
Lu (2004; Lu et al., 2005). The Bayes factor approach
has been discussed extensively in the statistical literature
(Kass & Raftery, 1995; Meng & Wong, 1996) and has
been imported to the psychological literature (e.g., Pitt
etal., 2002). The Bayes factor is the odds that one model
is true relative to another, given the data (and the priors).
In our case, the first hypothesis is that there are nonzero
main effects, and the second one is that all main effects
are zero. The odds for the first hypothesis relative to the
second are 4.1 X 10!4; hence, we can safely conclude that
the main effects are significant. Details of Bayes factor
computation can be found in Lu et al.; the additive model
discussed here corresponds to their unstructured model.

Discussion

The analyses above provide a locus for the symbolic
distance effect: It is largely in scale (rate) and not in
shape. The results are not consistent with a theory that
postulates that the effect is due to a processing change,
such as the insertion of recheck stages for numbers close
to 5. Some caution is necessary for an outright rejection
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Figure 21. Scatterplots for logarithm of the rate parameter. Each point corresponds to a particular participant.

of theories of architecture change, such as rechecking.
The present analysis reveals that if shapes vary system-
atically across conditions, they do so slightly. It may be
possible to construct an architecture change theory that
yields a sufficiently small shape effect, so as not to be
contradicted by the present analysis.

Symbolic distance is not typically modeled as an ar-
chitecture change; instead, it is modeled as a diffusion
process or random walk (e.g., Link, 1990; Poltrock, 1989;
Schwarz, 2001; Smith & Mewhort, 1998). Changes in
scale are broadly consistent with either a change in drift
rate or a change in bounds. For a small change in drift
rate, such as the type needed to produce the 50-msec ef-
fects observed here, the changes in shape are minimal
(see Figure 9). The results indicate that the effect can be
accounted for parsimoniously with a model that postu-
lates that symbolic distance affects scale (speed) of pro-
cessing, rather than functional architecture.

GENERAL DISCUSSION

Summary

In this article, we have presented a framework for es-
timating the shift, scale, and shape of RT distributions.
The framework is parametric, hierarchical, and Bayesian.
It is suited for cases in which there are several partici-
pants but only a few observations per participant per con-
dition. The main advantage of a hierarchical model is that
it allows for the pooling of information across several
participants. The Weibull hierarchical model has four ad-
vantages. (1) It allows for superior parameter estimation.

(2) The Weibull parameters can be interpreted at several
levels, including that of a process-oriented stage model.
At this level, differences in shift index differences in pe-
ripheral processes, differences in scale index differences
in central processing speed, and differences in shape
index differences in processing architecture. (3) The hi-
erarchical Weibull model fits the data well. (4) The model
is fairly robust to misspecification. The main reason we
prefer the Bayesian approach is tractability. Although sta-
tistical analysis with Bayesian methods is not simple, it is
feasible. We do not know how to analyze the models pre-
sented here with classical methods.

Application of the method to a symbolic distance ef-
fect revealed a clear locus for the effect in scale. The en-
suing interpretation is that increasing numerical distance
increases the rate of processing but does not change the
form or architecture of the underlying process.

The question of addressing shape need not be done in
the context of the Weibull, the ex-Gaussian, or any other
parametric form. It can be done in a nonparametric man-
ner by studying higher order distributional properties,
such as skew or interquartile skew. We recommend para-
metric, rather than nonparametric, analysis for increased
power. The hierarchical implementation presented here
increases the accuracy of parameter estimates in a prin-
cipled manner.

The General Benefit of Hierarchical
Models in Cognition

We believe that there are several domains in which hi-
erarchical models can be of service. The strength of this
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approach is that it provides a principled and powerful
method of pooling data across disparate individuals. We
have illustrated how they can be used to assess manipu-
lation effects on RT distribution properties in cases in
which participants are assumed to have their own unique
shift, scale, and shape. Below, we will mention a few
other domains in which future hierarchical approaches
may prove valuable.

Learning is one such domain. There are several theo-
retical and methodological issues involved in describing
the speeding of tasks from practice. Although the power
law of practice has been widely believed to describe this
effect, it has recently come under considerable scrutiny
(e.g., Heathcote et al., 2000). The power law states that
RT decreases as a power function of the number of prac-
tice trials. Other alternatives are that practice follows an
exponential (Heathcote, Brown, & Mewhort, 2002), fol-
lows a mixture of power laws (Rickard, 1997), or makes
a sharp transition (Haider & Frensch, 2002). A number
of authors have pointed out that averaging RT across in-
dividuals will distort the shape of empirical-learning
curves, and these distortions tend to artificially favor a
power law interpretation (Brown & Heathcote, 2003;
Estes, 1956; Haider & Frensch, 2002; Heathcote et al.,
2000; Myung, Kim, & Pitt, 2002). Hence, studying
participant-averaged curves provides a misleading pic-
ture of how each individual’s RT changes with practice.

We have presented a set of hierarchical models of
learning similar to that for symbolic distance (Lu et al.,
2005). Each individual’s RT on each trial is described by
a three-parameter Weibull, with parameters drawn from
parent distributions. Practice is postulated to affect the
scale parameter, and the form of this effect, whether as a
power function or as an exponential, is assessed. We are
in the process of analyzing practice effects in an alpha-
bet arithmetic task (Logan, 1988) with these models
(Rouder, Lu, Sun, Speckman, & Morey, 2003).

Hierarchical models also may be useful in domains in
which there is variability over items, such as in verbal
learning or memory experiments. There has long been a
concern about unaccounted variability from stimulus

items in ANOVAs. Clark (1973) argued that unaccounted
variance from items in a memory test could inflate the
true Type I error rate. Fortunately, Wickens and Keppel
(1983) showed that this type of variability represents only
a minor concern in well-counterbalanced experiments.
The situation, however, is not as sanguine with regard to
nonlinear models, such as the process dissociation pro-
cedure (Jacoby, 1991) or other sequential stage type
multinomial models (e.g., Batchelder & Riefer, 1999;
Riefer & Batchelder, 1988). Curran and Hintzman (1995)
have pointed out that variability across items or individ-
uals can greatly bias estimation and inference (see also
Ashby, Maddox, & Lee, 1994; Luce, 1959). Their cri-
tique was aimed at Jacoby’s process dissociation model,
a model that seeks to isolate the effects of conscious rec-
ollection from automatic forms of recognition, such as
feelings of familiarity. Curran and Hintzman’s critiques
center on latent covariation in psychological processing.
They speculate that participants who are better at recall-
ing items from conscious recall may be better at recalling
items from familiarity. Likewise, items that are more eas-
ily consciously recalled may give rise to greater feelings
of familiarity. They show that these types of covariation
will bias estimates.

Unfortunately, Curran and Hintzman’s (1995) critique
is applicable to just about every nonlinear model. For ex-
ample, Rouder and Batchelder (1998) proposed a multi-
nomial model for separating storage and retrieval factors
in memory. The effectiveness of the model, however, is
undermined if items that are more easily stored are also
more easily retrieved. Psychologists, in general, have not
sufficiently addressed the possibility of the deleterious
effects of unaccounted variability and correlation in non-
linear models.

We believe that hierarchical modeling provides an at-
tractive means of accounting for and assessing variabil-
ity and correlation at several different levels. In particu-
lar, correlation among parameters across individuals or
items may be modeled at the level of parent distributions.
For example, in the case of the process dissociation pro-
cedure, correlations in recollectability and familiarity
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across items or participants may be modeled by assum-
ing that the participant and the item effects are sampled
from a correlated bivariate distribution. Theoretically,
the degree of correlation would be a free parameter; one
would obtain not only corrected estimates, but an esti-
mate of correlation as well.

Although the hallmark of experimental psychology is
rigorous control, there are always sources of variability
that cannot be reduced. When these sources occur simul-
taneously at different levels, researchers can gain better
statistical control with hierarchical models. Bayesian
analysis is well suited to hierarchical models and can
often provide a tractable means of inference. In this arti-
cle, we have postulated a hierarchical model to account
for both within-subjects and between-subjects variability
in RT. We believe that the same modeling approach may
be applicable across a number of domains within cogni-
tive and perceptual psychology.
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NOTES

1. To assess whether the displayed variation in distributional properties
reflects differences in underlying true properties or sample noise, we fit a
Weibull distribution to individuals’ RT data. Two models were fit: a gen-
eral one in which individuals had their own free parameters, and a re-
stricted one in which a distributional property was equated across pairs of
participants. To test whether the difference in shift in the left panels is sig-
nificant, both participants’ shifts were equated. The resulting log-
likelihood test revealed that the shifts are statistically different [GX(1) =
53.2, p <.05]. Analogous tests were performed on the difference in scale
(center panels) and shape (right panels) [G%(1) = 113.7, p < .05, and
G2(1) = 26.1, p < .05, for scale and shape, respectively].

2. The density of the three-parameter Weibull is given by

AT YA
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for 6, > 0and y=1t.

3. Concepts of shift, scale, and shape can be given precise meanings.
Let the density of a random variable exist everywhere and be expressed
as f(¢]©,,...,0,), where O, ...,0, are the parameters. Let

t-06
z=——.
6,
We refer to the density as being in location—scale form if there exists
some function g such that

ft1©,,....0,) =0;'g(|6;,...,0,). )

If Equation 1 holds, then ©, is referred to as the location parameter, and
0, as the scale parameter. Parameters ©; through ©, are the shape pa-
rameters. Many random variables have densities that can be expressed
in location—scale form. For the normal, for example, ©, = u, ©, = ¢,
and g(z) = (2m)~! exp(—z%/2). The location parameter corresponds to
the mean, the scale parameter corresponds to the standard deviation,
and there are no shape parameters. For the exponential, @, = 0, ©, =
A~1, and g(z) = e~=. The scale parameter corresponds to the inverse of
rate, and there are no shape or location parameters. The three-parameter
Weibull can be expressed in location-scale form; ©, = y, ©, = 6, and
g(z| B) = BzP 1 exp(—2zP). In general, the location parameter may cor-
respond to any of a number of characteristics of a distribution, includ-
ing the mean, mode, or point at which a distribution first attains mass.
For the Weibull, the location parameter defines where the distribution
first attains mass. We refer to the location parameter as the shift pa-
rameter, since it aptly describes how changes in location affect the den-
sity function.
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There is an asymmetric relationship between location, scale, and
shape parameters and the central moments of a distribution. Changes in
location certainly imply changes in mean, but not in moments of higher
order than the mean. Changes in scale certainly imply changes in vari-
ance, but not in moments of higher order than variance. Changes in
scale, in general, may imply changes in the mean too. For example, the
exponential has a single parameter, the rate, which is a scale parameter.
Increasing the rate not only decreases the variance, but also decreases
the mean as well. Changes in shape, in general, imply changes in mo-
ments higher than variance.

4. We use the term parent distribution because it emphasizes the hi-
erarchical relations among levels of variability. Parent distributions are
also known as latent-trait distributions (as in item response theory). The
equivalence of the terms is realized by conceptualizing parameters as
personal traits.

5. Itis possible to place a hierarchical prior on the shift parameter. We
do not do so for computation simplicity. A hierarchical model on shift
would entail using a Metropolis—Hastings step in Gibbs sampling. Im-
plementation of this step would present a number of additional compu-
tational concerns.

6. Participants had to identify in which of four locations an asterisk
was presented by depressing one of four keys. Each participant re-
sponded to 120 such trials. The last 80 correct observations between
200 and 1,200 msec served as data.

7. The term quantile is used by statisticians to generalize median
and percentile. The pth quantile of a distribution is the value for which
a probability of observing an observation below the value is p. We refer
to p as the probability of the quantile—for example, the .1 quantile is
the same as the 10th percentile.

8. Previously, we have shown that Heathcote et al. (2002) maxi-
mized a function that was not the likelihood of the parameters, given the
sample quantiles (Speckman & Rouder, 2004). However, we note that
in some cases, maximizing their function works better than maximizing
the likelihood itself. Here, we competitively test Heathcote et al.’s
(2002) function in estimating Weibull parameters.

9. Heathcote et al.’s (2002) method involves constructing bins and
assigning counts to them. We followed their algorithms for doing this.
For 80 observations, there are 81 bins. The first bin has a right-hand
bound at the smallest observation and is assigned half a count. The in-
termediate 79 bins are defined by successive order statistics and are as-
signed a single count each. The last bin has a left-hand bound at the
largest observation and is assigned half a count. Other bin constructions
are possible with regard to the extreme bins. Alternative construction
will have a marginal effect on estimates.

10. The ith ranked observation serves as a sample quantile forp =i/
(M + 1), where M is the number of observations. This formula for es-
timating sample quantiles is commonly used in statistical software
packages (e.g., SAS’s Proc-Univariate).

11. There are a few variants of the Vincentizing procedure, as has
been discussed by Heathcote (1996). In this article, we average sample
quantiles across individuals. See Heathcote or Van Zandt (2000) for a
discussion of alternative averaging methods.

12. The phrase sufficiently large sample sizes in the context of esti-
mating group-level parameters refers to both a sufficient number of
samples per individual and a sufficient number of individuals.

13. Extreme values are extreme enough to dominate mean absolute
error as well. For example, for the ML individual estimates with 20 ob-
servations, mean absolute error was on the order of 5,000.

14. The terms central and peripheral do not necessarily refer to lo-
cations in the body or the brain. It is known that central processes are
located in the cortex, but peripheral processes may be cortical or sub-
cortical. Peripheral processes include processes that may occur outside
of the brain—for example, the processes of encoding sensory stimula-
tion or producing motor processes.

15. We analyzed the accuracy—stress condition of Ratcliff and Roud-
er’s (1998) data because this condition yielded the largest variation in
RT distributions as a function of luminance.

16. In Ratcliff and Rouder’s (1998) experiments, 3 participants ob-
served about 10,000 trials each. With such large individual sample sizes
and few participants, ML and HB methods yield near identical estimates.



17. Per condition, 10,000 observations were simulated.

18. Colonius (1995) provides a critique of this justification. His main
concern is that the minimum of random variables may degenerate to a
constant well before the Weibull shape is observed. More recently,
Cousineau, Goodman, and Shiffrin (2002) have shown that this degen-
eracy is avoided if the constituent distributions are not identically dis-
tributed but have variability in the location and scale parameters.

19. The four degrees of freedom come about as follows. The data are
partitioned into eight bins, yielding seven overall degrees of freedom.
The model has three parameters; hence, the total degrees of freedom
left over for fit is four.

20. Estimation error bound intervals are obtained by adding =1.96 X
S {F(x)[1 — F(x)]/80}, where F(x) is the theoretical cumulative distrib-
ution function. The assumption behind this formula is that the sample
distribution of the cumulative distribution function is normal, instead of
binomial. Although this approximation is quite good for most of the
range of probabilities, it is less valid at the extremes. The small devia-
tions of the error bounds above one and below zero are a consequence
of the normal approximation.

21. The density of the ex-Gaussian is expressed in location—scale
form as f(#; i, 0, n) = 6~g(z, n), where z = (t — u) / cand
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exp(zrfl)+.5n72 |
DO i A YR
@ is the cumulative distribution function for the standard normal. In ac-
cordance with note 2, u, o, and 1 are location, scale, and shape param-
eters, respectively.

22. In the simulations, each individual’s parameters were sampled
from parent distributions. For Simulation 1, the group difference was in
location, with t; ~ uniform(1.2, 1.8) and y, ~ uniform(1.5, 2.1). For
both groups, o ~ uniform(0.1, 0.3) and ) ~ lognormal (0.69, 0.2). (In
the lognormal, the first and second parameters are the mean and vari-
ance of the normal before exponentiation, respectively.) For Simula-
tion 2, the group difference was in scale, with o, ~ uniform(0.1, 0.3)
and o, ~ uniform(0.3, 0.5). For both groups, t ~ uniform(1.2, 1.8) and
n ~ lognormal(0.69, 0.2). For Simulation 3, the group difference was
in shape, with 17; ~ lognormal(0, 0.2), and 717, ~ lognormal(1.39, 0.2).
For both groups, ¢ ~ uniform(1.2, 1.8), and ¢ ~ uniform(0.1, 0.3).

23. We spent several months attempting to devise a suitable hierar-
chical model on scale. None of our attempts yielded a set of priors ca-
pable of the robust estimation. This failure provided the motivation to
use the shift, rate, shape parameterization of the Weibull.

APPENDIX A

The basic model is described in this Appendix. A more detailed treatment can be found in Rouder, Sun,
etal. (2003). Each participant provides a series of observations. Let y,; denote the RT of Participant i on Trial
j( =i=1I1=j=J). Each observation is assumed to be independent and identically distributed from a

three-parameter Weibull distribution with density

B, (yij -V )ﬂ‘_l

f(y,j ll//l’ei’ﬁi): 0P

i

exp| —

(y,,- —Vi )ﬁl
&

i

, for Y >V (A1)

Parameters y;, 6;, and f3; denote the shift, scale, and shape of the ith participant, respectively. The param-
eters are assumed to come from a prior distribution. The prior on each individual’s shift parameter y; is a uni-
form distribution from zero to some large number 4. The precise value of 4 is unimportant as long as it is
greater than the minimum value for the ith participant. The other two parameters, shape and scale, are assumed
to be samples from a two-stage hierarchical prior distribution, whose first stage prior is given by

(ﬁi \771’772) % Gamma(nl,nz) restricted to 3, >0.01,

(9’*[3, |§1=§2) “ Gamma(fl,éz),

(A2)

(A3)

where Gamma(1),, 1,) denotes the gamma distribution with density
F(t1mumy) =03 " exp(~nyt)/ T(m) for £ > 0.

For the first stage, the prior for the shape parameter f; is a gamma distribution with parameters 1, and 1,
restricted to the range 3; > 0.01. This somewhat unusual restriction is a technical one needed to ensure that
posterior moments exist for 6,. This choice of priors is quite general, in the sense that it is flexible and can
model a reasonably broad class of prior distributions. Importantly, the choice is convenient and tractable, in
that all of the Gibbs sampling can be done without a more computationally extensive Metropolis—Hastings

step.

The parameters (&, &, 1y, 17,) of the first-stage prior serve as hyperparameters. These hyperparameters de-
scribe how the shape and scale vary across individuals within the population. The second-stage prior is given

by mutually independent distributions:

&, ~ Gamma(ay, b)), k = 1, 2,
N, ~ Gamma(c, d), k =1, 2.

(A4)
(AS5)

The prior values used in fitting are as follows: a; = 2.0, b, = 0.1, a, = 2.0, b, = 2.85,¢; = 1.0, d, = 0.02,
¢, = 2.0, d, = 0.04. These priors are somewhat informative and were chosen on the basis of our general ex-
perience with RT distributions. In particular, our goal was to have broad coverage of shape in the range from
1 to 5 (these values are typical in Logan, 1992) and broad coverage of scale in the range of 0 to 0.4 sec.
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The marginal prior distributions over shape and scale are shown in Figure A1l. Included in this figure are
two representative posterior distributions as well. Two points are evident: First, the priors are broadly distrib-
uted over a range of plausible values, and second, the posterior is fairly narrow and centered away from the
mass of the prior. This is an initial indication that the posterior is not unduly influenced by the choice of prior.
Rouder, Sun, et al. (2003) provide a more detailed analysis in which they manipulate the priors. The conclu-
sion is the same; with these choices, the posterior distribution mostly reflects the influence of the data, rather
than the specification of the prior. Parameter estimation is done through Monte Carlo Markov chain methods
(see Gelfand & Smith, 1990, for a review, or Lee, 1997, for a basic introduction to Bayesian methods). Rouder,
Sun, et al. (2003) have provided a detailed discussion of the implementation, as well as a discussion of the
burn-in period and chain convergence.

APPENDIX B

This Appendix describes the general model for the numerical similarity experiment. The model is a simple
extension of that in Appendix A. Let y;; denote the kth RT for the jth participant in the ith condition. Each ob-
servation is assumed to be independent and identically distributed from a three-parameter Weibull distribution:

Priors on parameters are
iid . .
v~ Umform{O,m}l{n(yijk )} (B2)
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40 —
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2
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Figure B1. Prior and posterior densities of the scale (6) and shape () parameters for 2
representative participants. Reprinted with permission from Rouder, Sun, Speckman, Lu,
and Zhou (2003).
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(B,1m.m,) % Gamma(n,.n,) restricted to B, > 0.01. (B3)
(9,.;’3” Iél,éz) 'Z]Gamma(é,é), (B4)
& “Gamma(a,.b,), [=1,2, (BS)
n % Gamma(c,.d,), [=1,2. (B6)

The hierarchical priors are random effects models in which all participant—digit combinations are assumed to
come from a common parent distribution. Values of (a, b, ¢, d ) were the same as those discussed in Appendix A.

APPENDIX C

This Appendix describes a restricted model for the numerical similarity experiment. Let y,; denote the kth
RT for the jth participant in the ith condition. Each observation is assumed to be independent and identically
distributed from a three-parameter Weibull distribution:

Vi ~ Weibull(y, 4,5, B;), (93]
where 4;; = 9,-;-[3!‘/‘.

To model the effects of symbolic distance in rate, we assume log A;; = 4 + @ + % + ¢;. The rationale is
exactly the same as that in ordinary linear models. Parameter ¢ is the random effect for the jth participant, ¥
is the effect for the ith condition, and €;; is included for extra unexplained variance.

The priors on the parameters are:

v, "EUniform|:0,min(y,jk):|, (C2)

(B, 1m,.m,) * Gamma(n,.n,) restricted to 8, > 0.01, (C3)
logh; = p+o,+y,+e,, (C4)

n, %Gamma(q,d,), =12, (C5)

u~ N(uo,su), (Co)

(,18,) “N(0,8,), (C7)
8 ~ 1G(ay.b,), (C8)

, ~ 1G(a,.b,), (C9)

(v18,) “N(0.5,). (C10)
8, ~ 1G(a,.b,), (C11)

where N(u, s) denotes the normal distribution with mean u and variance s, and IG(a,, b,) denotes the inverse
gamma distribution, whose density function is

[8, 1ay.b, ] by exp(=b, 18,), &,>0.

1
~ 87"'T(ay)
To estimate this model, it is necessary to choose values for parameters of the priors on parent distributions.
We chose u, = 0.0, s, = 50.0, ay = —.5, b, = 0.0,a, = —.5,b, = 0.0, a;, = —.5,b, = 0.0,¢, = 2.0,d, =
.02, ¢, = 2.0, d, = .04. The priors associated with these choices are all fairly noninformative. Details about
these choices, the prior distributions, and the estimation of this model are available in Lu et al. (2005).

(Manuscript received July 2, 2003;
revision accepted for publication May 24, 2004.)
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