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Adaptive neurofuzzy inference systems (ANFIS) represent an efficient technique for the solution of function approximation
problems. When numerical samples are available in this regard, the synthesis of ANFIS networks can be carried out exploiting
clustering algorithms. Starting from a hyperplane clustering synthesis in the joint input-output space, a computationally efficient
optimization of ANFIS networks is proposed in this paper. It is based on a hierarchical constructive procedure, by which the
number of rules is progressively increased and the optimal one is automatically determined on the basis of learning theory in order
to maximize the generalization capability of the resulting ANFIS network. Extensive computer simulations prove the validity of
the proposed algorithm and show a favorable comparison with other well-established techniques.

1. Introduction

In this paper, a new procedure for the structural optimization
of adaptive neurofuzzy inference systems (ANFIS) is pro-
posed, whose synthesis is based on the hyperplane clustering
in the joint input-output space of the data set. ANFIS net-
works are being widely used to many applicative tasks, such
as rule-based process controls, pattern recognition, and func-
tion approximation. They solve a general regression problem
by means of a set of M rules of Sugeno first-order type [1].
The kth rule, k = 1 . . .M, has the following form:

If x1 is B(k)
1 and . . . and xn is B(k)

n then

y(k) =

n∑

j=1

a(k)
j x j + a(k)

0 ,
(1)

where x = [x1 x2 . . . xn]T is a column vector (or pattern)
in the n-dimensional input space and y(k) is the scalar output
associated with the rule. The latter is characterized by the

MFs µB(k)
j

(x j) of the fuzzy input variables B(k)
j , j = 1 . . . n,

and by the coefficients a(k)
j , j = 0 . . . n, of the crisp output.

Several alternatives are possible for the fuzzification of
crisp inputs, the composition of input MFs, and the way rule

outputs are combined [2]. Usually, the structure of the fuzzy
inference system is the following one:

ỹ =

∑M
k=1 µB(k) (x)y(k)

∑M
k=1 µB(k) (x)

, (2)

where B(k) is the overall fuzzy input variable, µB(k) (x) is the

corresponding MF, and ỹ the output estimated for an input
x.

The numerical parameters of rules are obtained through
a learning process, by using a training set of P input-output
pairs (xi, yi), i = 1 . . . P. The crucial problem during the
ANFIS learning is to obtain a good generalization capability.
This issue has been deeply investigated in the literature;
usually, the generalization capability of ANFIS networks is
optimized by checking data set for overfitting model valida-
tion [3].

The generalization capability is maximized only if the
ANFIS network consists of a suitable number of rules. How-
ever, the determination of the optimal number is a very crit-
ical problem to be solved, since the neural network might be
easily overfitted in the case of noisy or ill-conditioned data. In
this paper, a new hierarchical constructive procedure for the
automatic determination of the ANFIS rules is proposed. It
aims to a regularization of the network architecture based on



2 Advances in Fuzzy Systems

learning theory and hyperplane clustering-based techniques
[4–7]. The underlying idea of such techniques received in the
literature many acknowledgments as, for example, in the case
of theoretical models [8–14] as well as applications to specific
fields [15–26].

The paper is organized as follows. The synthesis tech-
nique for determining the parameters of ANFIS rules is
described in Section 2. Successively, the structural optimiza-
tion for the automatic determination of the rules number,
which is based on the proposed hierarchical constructive
procedure, is illustrated in detail in Section 3. Finally, the
numerical results obtained by extensive computer simula-
tions on synthetic benchmarks and a real-world application
are summarized in Section 4.

2. Hyperplane Clustering for
the Synthesis of ANFIS Rules

When dealing with numerical data, the rules of ANFIS
networks are commonly synthesized by using clustering tech-
niques, which reduce the redundancy of data so that signifi-
cant rules are determined directly from the clusters modeling
the training set. Clustering algorithms can use joint input-
output data, input data only, or output data only; this choice
heavily affects the way ANFIS rules are built [27–34].

When modeling ANFIS networks, the main drawback
due to conventional clustering approaches is that induced
clusters do not always reflect the real data structure. An
innovative approach, dubbed hyperplane clustering synthesis
(HCS), was firstly proposed in [4]. By HCS, hyperplane-
shaped clusters are determined in correspondence to the con-
sequent part of each Sugeno rule. Namely, the ANFIS archi-
tecture can be considered as a smoothed piecewise linear
model, where (2) can be rewritten as

ỹ = f (x), f : ℜn −→ ℜ. (3)

The regression model is identified by the set of M
hyperplanes, each associated with a cluster. Therefore, the
prototype of the kth cluster in the joint input-output space

will be represented by the set of coefficients a(k)
j , j = 0 . . . n,

evaluated by means of standard least-squares techniques.
It is worth summarizing in the following the core

steps for clustering in the “hyperplane space,” which is
fundamentally an alternating optimization technique aiming
to identify the cluster prototypes. Let Γ = {Γ1,Γ2, . . . ,ΓM} be
a set of M clusters (i.e., hyperplanes) and let every pattern
of the training set be assigned to one of these clusters; this is
obtained according to a suitable criterion, as well established
in the following of the paper. Then, the hyperplane clustering
with M prototypes is based on the following iterative steps.

Step 1. The coefficients of each hyperplane are evaluated by
using the following procedure. For the kth hyperplane Γk,
k = 1 . . .M, a set of linear equations has to be solved; the
generic equation is

yt =
n∑

j=1

a(k)
j xt j + a(k)

0 , (4)

where index “t” spans only the pairs of the training set
assigned to the kth cluster. Suited least-squares techniques
can be used to solve the set of linear equations in (4).

Step 2. The assignment of patterns to clusters is updated.
Each pair (xi, yi), i = 1 . . . P, of the training set is now
assigned to the cluster Γq, with q such that

di =

∣∣∣∣∣∣∣∣

yi −
(∑n

j=1 a
(q)
j xi j + a

(q)
0

)
√

1 +
∑n

j=1

(
a

(q)
j

)2

∣∣∣∣∣∣∣∣

= min
k=1...M

∣∣∣∣∣∣∣∣

yi −
(∑n

j=1 a
(k)
j xi j + a(k)

0

)
√

1 +
∑n

j=1

(
a(k)
j

)2

∣∣∣∣∣∣∣∣
.

(5)

The previous choice states that a pattern is assigned
the hyperplane having the minimum orthogonal distance
from it. This assures the best results since other choices, as
for example, the distance along the output axis of yi only,
produces ambiguous results especially in the case of ill-
conditioned data yielding quite vertical hyperplanes.

Step 3. For every cluster Γk, the local approximation error is
evaluated:

Dk =
1

Pk

∑
t

dt , (6)

where index “t” spans only the Pk pairs of the training set
assigned lately (i.e., in Step 2) to the kth cluster.

Step 4. The convergence is based on the quantity:

Θ =

∣∣D −D(old)
∣∣

D(old)
, (7)

where D is the global approximation error over the whole
data set in the current iteration, which is defined by

D =
1

P

P∑

i=1

di, (8)

and D(old) is the global approximation error calculated in the
previous iteration. If Θ is less than a predetermined threshold
θ, then the clustering algorithm is stopped. Otherwise, the
iteration goes back to Step 1 by using the current updated
association of patterns to clusters. The default value θ = 0.01
will be used in the following.

The clustering algorithm described so far yields the linear
consequents of Sugeno rules only. In order to achieve the
complete structure of the ANFIS network, it is mandatory
to determine the firing strengths corresponding to the
antecedents of rules. To this end, once the iterations of hyper-
plane clustering have stopped, each pattern of the training
set can be labeled with an integer q, 1 ≤ q ≤M, representing
the hyperplane it has been assigned during Step 2 of the last
iteration. By using the labeled training set, a classification
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problem can be solved in the input space only; at the end
of the training process, the input space will be tiled by a
classification model able to assign a fuzzy label L(x) to any
pattern x of the input space

L(x) =
[
µB(1) (x) µB(2) (x) . . . µB(M) (x)

]
, (9)

where the kth element of L(x) represents the fuzzy mem-
bership of the pattern to the kth class and hence, it can
be assumed as the firing strength µB(k) (x) of the kth rule
associated with the hyperplane corresponding to that class.

As a reference classification model, we will adopt in the
following well-known Simpson’s Min-Max model [35], since
it has demonstrated the best performance in this regard.
The combination of the hyperplane clustering followed by
the fuzzy classification in the input space defines the HCS
procedure allowing the determination of an ANFIS network
for a given number of rules. HCS will be the basic algorithm
adopted for the hierarchical optimization successively pro-
posed.

It is worth mentioning that the hyperplane clustering
inside HCS is a particular instance of the well-known fuzzy
c-regression models (FCRM) algorithm [27]; in this case,
a set of c = M linear models (hyperplanes) is fit on the
training data and each pattern is assigned during clustering
in a crisp manner (i.e, using hard labels) to a unique
hyperplane, the one at the minimum distance (5). Although
FCRM can use nonlinear models as well, they are basically
adopted for regression in order to fit the training data
only, even if they are not representing a function (i.e, when
several output values y correspond to a same input x).
Conversely, the hyperplane clustering of HCS is successively
completed by the classification in the input space, under the
assumption that the resulting ANFIS model can be used to
approximate/estimate an unknown function represented by
its samples in the training set.

In this regard, when the output ỹ must be estimated
for any input x during the normal ANFIS operation (i.e.,
testing), the classifier is used to determine the fuzzy label (9)
using only the input value x; then, the output ỹ is calculated
using (2) by means of the firing strengths contained in the
fuzzy label L(x) and the linear consequents in (1), early
determined by the hyperplane clustering. In this phase, it is
not necessary, in general, to assign the test sample x a specific
hyperplane cluster. However, a “hard approximation” using
a single ANFIS rule can be obtained by a defuzzification of
the fuzzy label L(x), that is,

ỹ(hard) =

n∑

j=1

a
(q)
j x j + a

(q)
0

q = max
k=1...M

{
µB(k) (x)

}
.

(10)

3. Hierarchical Optimization of
the ANFIS Structure

When training an ANFIS network, the main problems are the
local convergence of estimation algorithms and the correct

determination of the number M of rules. As evidenced
successively, the former problem mainly depends on a good
(usually random) initialization of numerical parameters
associated with each rule. The latter one is a well-known
problem, which is directly related to the generalization
capability of the neurofuzzy network and it can also be
referred to as “structural optimization” problem. In fact, the
ANFIS performance could be inadequate if the training set
is either underfitted or overfitted by a lacking or an excessive
number of rules, respectively.

3.1. The Plain Optimization Approach. A plain solution to
these problems could be based on the use of the HCS
algorithm with different values of M and with different ini-
tializations for every value of M. The HCS algorithm
should be initialized before Step 1 of its first iteration by
setting an association of each pattern with one of the M
hyperplane clusters. The simplest way is to associate patterns
to clusters randomly. In this paper, a different approach will
be followed, by clustering data in the input space only, in
order to obtain a preliminary partition of the training set in
clusters. Consequently, the random initialization is necessary
for the chosen clustering algorithm in the input space as,
for instance, the fuzzy c-means [36, 37]. Once the set of
different ANFIS networks is generated, the best network can
be chosen by relying on the supervised nature of the learning
procedure, that is, by using a cost function measuring the
overall generalization capability of the network in terms of
its complexity and its approximation error. Basic concepts of
learning theory can be adopted in this regard [2, 3]. Namely,
the ANFIS network achieving the best generalization capa-
bility is the one that, under the same performance on the
training set, is characterized by the lowest number of rules.

As a measure of the network performance on the training
set, the mean squared error (MSE) is adopted:

E =
1

P

P∑

i=1

(
yi − ỹi

)2
, (11)

where ỹi is the output generated by the ANFIS network in
correspondence to the ith input pattern of the training set.
The optimal network is selected by using the following cost
function depending upon the number of ANFIS rules:

F(M) = (1− λ)
E(M)− Emin

Emax − Emin
+ λ

M

P
, (12)

where Emin and Emax are the extreme values of the per-
formance E that are encountered during the performance
investigation of the different ANFIS networks; λ is a weight
0 ≤ λ ≤ 1. This weight is not critical, since the results are
slightly affected by its variation in a large interval centered in
0.5. Evidently, for a given value M = M, the ANFIS network
showing the best value F(M) in (12) will be the one whose
initialization and the successive HCS iterations yield the best
performance E(M) on the training set.

The plain minimization of (12) can be obtained by the
constructive technique denoted as optimized HCS (OHCS).
In this procedure, the number of rules is progressively
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increased from 1 to Mmax, where Mmax is a fraction of the
training set cardinality P and it represents the maximum
complexity that is allowed to the network. For each value
of M, different initializations are considered and several
ANFIS networks are generated through HCS. In fact, as
mentioned, the latter is based on a random initialization
of the hyperplanes and hence, different initializations might
produce different networks for the same value of M. This is
mainly due to the hyperplane clustering, which can easily get
trapped at local minima of (8), as for any other alternating
optimization procedure.

If different T initializations are carried out for each
value of M, the OHCS procedure will generate TMmax

networks and the optimal one will be selected according to
(12). This optimization approach still suffers from serious
drawbacks, which basically depend on the number of
different initializations performed for each value of M. The
lower is the number of initializations, the lower is the
probability to obtain a satisfactory ANFIS network after the
HCS algorithm. Conversely, the higher is the number of
initializations, the higher is the computational cost of the
optimization procedure.

3.2. The Hierarchical HCS Procedure. In order to overcome
the previous problems, in this paper, the use of a splitting
hierarchical optimization is proposed, which will be referred
to in the following as hierarchical HCS (HHCS). It is based
on the constructive procedure shown in Figure 1, where M
is increased progressively and only one run of the HCS
algorithm is needed for every value of M. In fact, HHCS
starts with only one hyperplane (i.e., M = 1), which is
initialized without any ambiguity since every pattern of the
training set is assigned to the sole cluster. Then an iteration
starts, involving the succession of the following procedures.

(i) Considering the current association of patterns to
clusters, the HCS algorithm is executed on the ANFIS
network with M hyperplanes.

(ii) An optional fine tuning of the final ANFIS parame-
ters obtained by the HCS algorithm can be performed
by using suited techniques, as outlined in Section 3.5.

(iii) If the maximum number of rules Mmax is reached,
then the iteration is stopped and the best ANFIS
network is chosen among those obtained during the
iterations, once again according to (12). Conversely,
if M < Mmax, a splitting procedure is carried out.

(iv) By means of the splitting procedure, which is illus-
trated successively in Section 3.3, the cluster associ-
ated with the hyperplane showing “in some sense”
the worst local approximation of data is selected to
be split into two new hyperplanes, with the aim
to better approximate the patterns belonging to the
split cluster (as determined by the last execution of
Step 2 within the HCS algorithm.) After the split
is performed, the old cluster is removed from the
ANFIS network and the new ones are inserted,
increasing evidently by 1 the value of M. So, the
iteration starts back with the HCS algorithm applied

Network tuning 

(optional)

No

Yes

M ≤Mmax

Splitting procedure

(M + 1 ←M)

Initialization
(M = 1)

HCS algorithm

(M rules)

Choose the best
ANFIS network

based on F(·) function

Figure 1: Flow chart of the HHCS algorithm. The tuning of ANFIS
networks is an optional step, as discussed in Section 3.5.

to an ANFIS network composed by M+1 rules, where
each pattern of the training set is currently assigned
to exactly one cluster.

It is important to outline that patterns belonging to the
split cluster are assigned exclusively to one of the new gener-
ated clusters, while the association of patterns to the other
clusters is kept unaltered. This evidences the hierarchical
nature of the proposed HHCS procedure. Furthermore, an
unambiguous initialization of HCS is assured for any value
of M and hence, the necessity of random initializations and
to optimize different HCS solutions for a given value of M is
eliminated. Consequently, the computational cost of HHCS
is heavily reduced with respect to the plain OHCS approach.

The algorithm will stop when M reaches the maximum
complexity Mmax. This is not a critical value to be set; in fact,
the same solutions obtained when M spans up to a given
value of Mmax are still found when a larger Mmax is adopted.
So, the quality of the optimal solution can be traded off with
the computational cost of the whole optimization routine
given that the larger Mmax, the more solutions are explored
spending more time. By the way, we have determined as a
value generally acceptable for Mmax the 40% of the training
set cardinality P (i.e., Mmax = 0.4P).

3.3. Splitting Procedure of Clusters. The key role in the HHCS
algorithm is played by the splitting procedure, which is
intended to determine optimally the cluster (or hyperplane)
to be split and, successively, to initialize the hyperplanes
associated with its offspring. The underlying idea is to pre-
vent the initialization of new hyperplanes in underpopulated
zones of the training set, since this is the typical situation
where the HCS algorithm will converge to a poor local
minimum of (8). Several heuristics are possible in this
regard; the one illustrated in the following steps is based on
the supervised nature of function approximation problems
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and on principal component analysis (PCA). In fact, the
cluster is split orthogonally with respect to the direction of
maximum variance of local data.

(1) Taking into account the local approximation errors
(6), which are determined in the last execution of
Step 3 within the HCS algorithm, the cluster to be
split, denoted as Γs, 1 ≤ s ≤ M, is the one exhibiting
the largest local approximation error

Ds = max
k=1...M

Dk. (13)

(2) Let I(s) be the set of indexes of the Ps patterns
associated to Γs during the last execution of Step 2
within the HCS algorithm. The mean vector µ(s) of
such patterns is assumed in the following to be

µ(s) =
1

Ps

∑

t∈I(s)

xt, (14)

and the covariance matrix C(s) to be

C
(s) =

1

Ps

∑

t∈I(s)

(
xt − µ(s)

)(
xt − µ(s)

)T
. (15)

Using these notations, the principal components (or
directions) q(s)

j
, j = 1 . . . n, of Γs are computed. More

precisely, the column vector q(s)
j

is the jth eigenvector

of C(s) and the eigenvectors are sorted in descending
order, according to the value of the corresponding
eigenvalue.

(3) Let q(s)
1

be the principal component corresponding to

the highest eigenvalue. Then, the projections of pat-
terns of Γs along the principal direction is calculated

ξ(s)
t1 =

(
xt − µ(s)

)T
q(s)

1
, t ∈ I(s). (16)

Finally, the cluster Γs is removed from the ANFIS net-
work together with the corresponding rule; it will be

replaced by the new generated clusters Γ
(+)
s and Γ

(−)
s .

Taking into account the superscript notation of these
clusters, each pattern of Γs will be assigned to either

Γ
(+)
s or Γ

(−)
s , according to the sign of the projection

ξ(s)
t1 in (16).

3.4. A Toy Example to Clarify the HHCS Procedure. The
details of the proposed hierarchical optimization can be fur-
ther clarified with the following example concerning the
approximation of a simple piecewise linear function consist-
ing of 4 different linear models:

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, −15 ≤ x < 0

2x, 0 ≤ x < 5

−4x + 30, 5 ≤ x < 10

−10, 10 ≤ x < 20.

(17)

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

Figure 2: Training set associated with the toy function (17), repre-
sented by the continuous line.

The training set derived from this function is shown in
Figure 2: 50 points per hyperplane, for a total of 200 points,
are randomly sampled using (17) and a small perturbation by
white Gaussian noise is also added in order to have a realistic
data set.

The HHCS procedure starts with one rule and the
hyperplane clustering is uniquely initialized in this case, since
all patterns are initially assigned to the unique hyperplane.
Its final determination, after the convergence of clustering,
is represented in Figure 3. Assuming no network tuning is
performed in this example, the splitting procedure illustrated
in Section 3.3 is applied to the sole hyperplane that will
be removed from the ANFIS network. More precisely, the
patterns belonging to the hyperplane (i.e., all the training
set in the case M = 1) are separated according to the
sign of projection (16) along their principal direction. The
resulting initialization of hyperplane clustering for M = 2
is shown in Figure 4, where the patterns associated with the
new generated clusters are represented by crosses and circles,
respectively. They are used for the first estimation of the
hyperplanes, which are also evidenced in Figure 4.

The hyperplane clustering gets trapped in a local con-
vergence in this case. In fact, the final determination of
hyperplanes illustrated in Figure 5 is obtained after a few
iterations and they are really similar to the initial estimate
in Figure 4. In spite of this, the HHCS procedure continues
and the hyperplane with negative slope will be split because
it marks the largest local approximation error (13). After
the splitting procedure, the initialization of hyperplane
clustering for M = 3 is obtained, as illustrated in Figure 6.
The patterns belonging to the split cluster are separated into
two subsets similarly to the previous case. Obviously, the
patterns associated with the other cluster are not involved in
the splitting procedure.

Also in this case, there is a fast but local convergence
to the configuration evidenced in Figure 7, which is similar
to the former initialization. A hyperplane is then selected
for splitting in order to obtain the initialization of HCS
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Figure 3: Final hyperplane (dashed line) estimated by the hyper-
plane clustering in the case M = 1.

−15 −10 −5 0 5 10 15 20
−15

−10

−5
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5
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15

Figure 4: Initialization of hyperplane clustering for M = 2. Patterns
belonging to the new generated clusters are represented by the
symbols “x” and “o”, respectively; the first estimate of hyperplanes
based on these subsets is shown by the continuous gray lines.

illustrated in Figure 8 for the next HHCS iteration with
M = 4. The convergence of hyperplane clustering is slower
and accurate in this case and it yields the final configuration
shown in Figure 9 where the linear components of (17) are
well modeled now.

Finally, the global approximation performed by the
ANFIS network obtained by the HHCS procedure with 4
rules is illustrated in Figure 10. The plotted function is
obtained using a test set of 35000 patterns uniformly sampled
in the input space, xi = −15 + 0.001(i − 1), i = 1 . . . 35000,
−15 ≤ xi < 20, and determining the corresponding outputs
ỹi using (2).

3.5. Computational Remarks. When dealing with the
hyperplane-based synthesis of ANFIS networks, a number

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

Figure 5: Final hyperplanes (dashed lines) estimated by the
hyperplane clustering in the case M = 2.

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

Figure 6: Initialization of hyperplane clustering for M = 3. Patterns
belonging to the new generated clusters are represented by the
symbols “x” and “o”, respectively; the first estimate of hyperplanes
based on these subsets is shown by the continuous gray lines.
Patterns represented by simple dots belong to the cluster associated
with the hyperplane that has not been split (dashed line).

of considerations can be taken mostly pertaining to the
inference of rules’ antecedents from the consequents
associated with the hyperplanes and to the fine tuning of
ANFIS parameters after the HCS procedure. For example,
when the nonlinear functions to be approximated are quite
complicated, the number of HBs generated by the Min-Max
classifier is often larger than the number of hyperplanes
determined by the hyperplane clustering. Thus, a same
hyperplane induces several HBs in the input space and can
approximate patterns belonging to well-separated regions of
the input space, each associated with a different HB.

Furthermore, a tuning procedure of ANFIS parameters
can be applied after every HCS procedure or, alternatively,
to the optimal ANFIS network only. A simple tuning step is
considered in this paper, it is applied after every execution
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Figure 7: Final hyperplanes (dashed lines) estimated by the hyper-
plane clustering in the case M = 3.

−15 −10 −5 0 5 10 15 20
−15
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−5
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15

Figure 8: Initialization of hyperplane clustering for M = 4. Patterns
belonging to the new generated clusters are represented by the
symbols “x” and “o”, respectively; the first estimate of hyperplanes
based on these subsets is shown by the continuous gray lines.
Patterns represented by simple dots belong to the clusters associated
with the hyperplanes that have not been split (dashed lines).

of the HCS both in OHCS and HHCS procedures. The

coefficients a(k)
j , j = 0 . . . n, k = 1 . . .M, calculated during the

hyperplane clustering are updated by a fuzzy least-squares
solution of a set of (n + 1)M linear equations, which are
obtained by using the training set and by setting to zero the
derivatives of the MSE (11) with respect to every unknown

a(k)
j :

〈
yiγ

(k)
i j

〉
i
=

M∑

h=1

n∑
r=0

a(h)
r

〈
γ(h)
ir γ(k)

i j

〉
i

j = 0 . . . n, k = 1 . . .M,

(18)
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Figure 9: Final hyperplanes (dashed lines) estimated by the hyper-
plane clustering in the case M = 4.
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Figure 10: Approximation of the toy function (17) using the ANFIS
network obtained by the HHCS procedure with 4 rules.

where 〈·〉i denotes the average over subscript i and

γ(k)
i j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

µB(k)

(
xi
)

∑M
h=1 µB(h)

(
xi
) xi j , 1 ≤ j ≤ n

µB(k)

(
xi
)

∑M
h=1 µB(h)

(
xi
) , j = 0

k = 1 . . .M, i = 1 . . . P.

(19)

What is more important to remark is that HHCS allows
the structural optimization of ANFIS networks and this is
obtained by controlling the computational cost. Moreover,
the increasing complexity of networks during training
makes HHCS structurally constrained, similarly to other
deterministic annealing or entropy constrained approaches
[38–40]. In other words, overfitting due to the presence of
outliers in the training set can be prevented when M is low,
ensuring robustness with respect to noise in the function to
be approximated.
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Figure 11: Prediction accuracy of the HCS algorithm: single
execution in HHCS (continuous line); best execution in OHCS
(dashed line).

Although the convergence of HHCS is guaranteed by the
inner convergence of HCS algorithm and by the maximum
complexity Mmax allowed to the network, it should be
noticed that HHCS does not ensure the determination of
the global minimum of (8) for any value of M. As said,
achieving a global optimum is inherently prevented by
the HCS algorithm, being this an alternating minimization
scheme. HHCS algorithm aims to obtain a suboptimal
minimum ensuring an acceptable accuracy of the resulting
ANFIS network, although the peculiarity of HHCS is to
keep limited the computational cost of the whole structural
optimization procedure. In fact, the methods commonly
adopted in the literature for searching the global optimum
are often characterized by an expensive requirement of
computational resources. By the way, in the case of HCS
algorithm, one can use some particular modifications that
have been proposed in this regard [40–42] or more general
approaches for searching the global minimum based, for
example, on simulated annealing, genetic algorithms, or tabù
search.

A characteristic behavior that usually occurs, revealing
all the HHCS potentiality, is illustrated in the example
pertaining to the approximation problem f1(x) described
in Section 4. The final MSE of the data set versus the
number of rules is plotted in Figure 11, while the number
of HCS iterations needed to reach convergence is plotted in
Figure 12. The continuous line is related to the single HCS
execution in HHCS that generates just one ANFIS network
for each value of M; the dashed line corresponds to the HCS
execution yielding the ANFIS network that showed the best
performance, among those differently initialized by applying
the plain OHCS procedure (10 different initializations have
been used for each value of M). It is evident that the perfor-
mance of ANFIS networks obtained by HHCS is comparable,
and even better, with respect to the ones obtained by OHCS.
This also means that the faster HCS convergence in HHCS
does not implies a poor local convergence. On the contrary,
the lower number of HCS iterations in HHCS is due to the
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Figure 12: Convergence of the HCS algorithm: single execution in
HHCS (continuous line); best execution in OHCS (dashed line).

change of only one rule in the fuzzy inference system when
M is increased.

4. Numerical Results

The validity of the HHCS procedure has been proved by
extensive computer simulations. Some illustrative examples
are summarized in the following, considering the numerical
results obtained by well-known neural and neurofuzzy
models applied to specific function approximation problems.

4.1. Synthetic Benchmarks. First of all, the HHCS procedure
is compared with the plain OHCS in terms of accuracy, com-
plexity and the computational cost necessary to determine
the optimal network. Such quantities can be represented,
respectively, by MSE, number of rules, overall number of
HCS iterations (i.e., the cumulative sum of iterations in
all the HCS executions required by the whole optimization
procedure), and normalized time. We consider for the
sake of comparison the well-known function approximation
problems proposed in [43]:

(i) f1(x) = Ca/(1 + e−Cbx2 ) + Θ(x1);

(ii) f2(x) = Cc sin2(2π
√

((5− x1)2 + (5− x2)2)/10);

(iii) f3(x) = Cd(5− x2)2/(3 · (5− x1)2 + (5− x2)2);

with x = [x1, x2], x1, x2 ∈ [0, 1], Θ(x1) is a small pertur-
bation of the output surface of the first example. A uniform
spiral distribution was used to produce a training set of 400
examples for each function. As mentioned, the default values
also used in the subsequent tests are λ = 0.5; Mmax = 160
(i.e., 40% of the training set cardinality); T = 10 (i.e., 10
different initializations carried out for every value of M in
OHCS). The results shown in Table 1 evidence that HHCS
has a computational cost considerably smaller than OHCS,
while maintaining a good approximation accuracy and con-
trolling the overall complexity in order to avoid overfitting.
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Table 1: Comparison between HHCS and OHCS for different approximation problems.

Method
HHCS OHCS

Rules MSE Iterations Time Rules MSE Iterations Time

f1(x) 21 3.06 1753 1.0 18 3.26 4187 3.51

f2(x) 48 1.86 2420 1.0 81 1.14 4154 2.66

f3(x) 41 1.07 1819 1.0 37 1.23 4183 3.27

MSE values are scaled by 10−2.

Table 2: Comparison with other neural and neurofuzzy models.

Method HHCS OHCS SOFRG RBF SMLP IMLP

f1(x) 3.06 3.26 4.90 3.10 2.60 5.20

f2(x) 1.86 1.14 3.80 9.80 17.30 7.80

f3(x) 1.07 1.23 1.20 1.90 2.10 2.70

MSE values are scaled by 10−2.

The normalized time spent in OCHS with respect to HHCS is
more than expected by considering the number of iterations
only. As said, this is due to the slower convergence of the
HCS procedure within OHCS since random initializations
are used whenever.

By using the same data sets, the HHCS procedure is
also compared with respect to other neural and neuro-
fuzzy paradigms, in particular the self-organized fuzzy rule
generation (SOFRG) method proposed in [43], where also
the results of the well-known radial basis function (RBF)
[44–46], standard multilayer perceptron (SMLP) [47], and
momentum-improved multilayer perceptron (IMLP) [48]
are reported. The MSE obtained by these systems on the
said data sets are illustrated in Table 2 and once more, they
prove that HHCS compare favorably with respect to the other
systems and the related learning algorithm. We outline that,
in order to obtain comparable results, we have considered the
parameters setup of the benchmarks already reported in the
literature, where the complexity of RBF, SMLP, and IMLP
neural networks was optimized in advance to 25 neurons
by using suited cross-validation experiments. Conversely,
HHCS, OHCS, and SOFRG determine automatically the
complexity of the neurofuzzy network.

The efficacy of the proposed HHCS approach is also
evaluated in terms of generalization capability, which is
the crucial characteristic of any neural system. Other well-
known methods for ANFIS synthesis are considered [49]:
the combination of the resilient propagation (RPROP) and
the recursive least-squares error (RLSE) technique [50];
the gradient descent (GD) optimization joined to the
RLSE method. The following three-input nonlinear function
should be modeled:

(iv) f4(x) = 1 + x0.5
1 + x−1

2 + x−1.5
3 ,

where 216 points are used in the training set and other 125
points in the test set. The performance results are reported
in Table 3 in terms of MSE. The optimal number of rules
reported in the literature in the case of RPROP + RLSE and
GD + RLSE algorithms is M = 9, while the constructive
optimization of OHCS and HHCS yields ANFIS networks
having fewer rules and showing a lower error on the test set

and hence, a better generalization capability especially using
HHCS.

Finally, the comparison with some gradient descent
optimization techniques for the learning of fuzzy rule bases,
in particular the Sugeno rules (TS-A) and centered-Sugeno
rules (C-TS-A), is considered. Both training and test sets
consist of 250 patterns, obtained by random sampling of the
following two-input nonlinear function [51]:

(v) f5(x) = (3e2x1 + 2e−4x2 )/170, x1, x2 ∈ [−1, 1].

The numerical results are shown in Table 4; the optimal
number of rules obtained in [51] by the TS-A and C-TS-A
approaches is M = 16; also in this case HHCS attains a good
generalization capability on the test set even if a reduced
number of rules is used with respect to OHCS, TS-A, and
C-TS-A methods.

4.2. Time Series Prediction. The synthesis procedure pro-
posed in this paper is also validated by considering the use of
the resulting ANFIS network in a typical real-world applica-
tion. More precisely, we focus on the prediction of biological
time series, which are relevant to health monitoring and risk
prevention in many daily activities as in clinical applications,
telemedicine, road safety, and so on [52].

The general approach to solve a prediction problem is
based on the solution of a suitable function approximation
problem. In fact, a prediction problem can be solved by syn-
thesizing the function that links the current sample to be
predicted to a suitable set of past ones [53]. Let S(t) be the
sample of the time series to be predicted at time t and let the
past samples be known up to time t − 1, the estimated value

S̃(t) can be obtained as

S̃(t) = f (x), f : ℜn → ℜ,

x = [S(t − 1) S(t − 2) . . . S(t − n)].
(20)

Hence, the implementation of a predictor coincides with
the estimation of an approximation model as in (3), by using
any data driven function approximation technique. Neuro-
fuzzy networks are useful to solve such problems, because of
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Table 3: Comparison with RPROP + RLSE and GD + RLSE methods.

Method HHCS OHCS RPROP + RLSE GD + RLSE

Rules 3 4 9 9

MSE (training set) 4.75 · 10−4 1.39 · 10−4 6.67 · 10−6 8.60 · 10−4

MSE (test set) 7.92 · 10−3 1.27 · 10−2 4.74 · 10−2 6.69 · 10−2

Table 4: Comparison with TS-A and C-TS-A methods.

Method HHCS OHCS TS-A C-TS-A

Rules 13 19 16 16

MSE (training set) 12.13 3.32 10.40 7.20

MSE (test set) 5.41 5.73 34.40 37.60

MSE values are scaled by 10−6.

Table 5: Prediction of biological time series (dB).

Predictor Glucose Heart rate Conductivity

LSE (training set) 4.541 27.082 12.879

LSE (test set) 2.845 21.258 12.614

RBF (training set) 22.127 29.435 14.707

RBF (test set) 21.817 23.582 11.787

MoG (training set) 23.996 28.133 16.269

MoG (test set) 22.195 22.329 12.136

HHCS (training set) 26.745 27.992 17.032

HHCS (test set) 23.576 24.855 12.863

the intrinsic nonlinearity and complexity of the underlying
functions to be estimated [54]. The ANFIS network obtained
by the HHCS procedure is compared with several data
driven modeling techniques useful for approximation: a
linear model determined by the well-known least-squares
approximation (LSE); the RBF neural network; the Mixture
of Gaussian (MoG) neural network, which is particularly
suited to the solution of multivalued and nonconvex func-
tion approximation problems [40, 55].

The glucose time series is sampled every 20 minutes;
the time series of heart rate is sampled every 5 seconds; the
skin conductivity is sampled every one second. On the basis
of a preliminary analysis of such time series, performed by
experts in the context of clinical trials, three past samples are
sufficient to predict the future value, that is, n = 3 is used
in (20). Each predictor is trained on the first 500 samples
of every time series (training set); the related performance is
evaluated as the signal-to-noise ratio (SNR) in predicting the
successive 150 samples (test set). The SNR is defined as the
ratio, measured in decibels (dB), between the mean squared
error of prediction and the variance of the time series to be
predicted.

The performances obtained on both training and test
set of the considered time series are illustrated in Table 5.
Except for the linear model, RBF and MoG neural networks
have been optimized by cross-validation and constructive
procedures similarly to HHCS, in order to find the opti-
mal number of parameters that maximizes the generaliza-
tion capability. Looking at the performance on the test set,

the ANFIS networks generated by the HHCS procedure
obtain a higher SNR with respect to the other models for all
the considered time series.

5. Conclusion

This paper focuses on the training of ANFIS networks
with the aim to find effective solutions for improving the
accuracy in actual regression problems. The novel HHCS
procedure is proposed in the paper within the framework
of hyperplane clustering synthesis of ANFIS networks; it
involves a constructive approach that progressively increases
the number of rules. This procedure ensures a structural
robustness of the resulting network with respect to the
overfitting phenomenon, while improving the convergence
and reducing the computational cost in correspondence to
any given number of rules. Thus, it is characterized by a high
robustness and it is well suited to play the core role in more
complex modeling systems.

The numerical results illustrated in the paper encourage
to a further development of the HHCS approach, since
the resulting ANFIS networks perform better than several
neurofuzzy models and the related learning algorithms
applied to well-known benchmarks and real-world problems
reported in the literature.

References

[1] J. S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference
system,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 23, no. 3, pp. 665–685, 1993.

[2] J. S. Jang, C. Sun, and E. Mizutani, Neuro-Fuzzy And Soft Com-
puting: A Computational Approach to Learning and Machine
Intelligence, Prentice Hall, Upper Saddle River, NJ, USA, 1997.

[3] S. Haykin, Neural Networks, A Comprehensive Foundation,
Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition, 1999.

[4] M. Panella, A. Rizzi, F. M. Frattale Mascioli, and G. Martinelli,
“ANFIS synthesis by hyperplane clustering,” in Proceedings of
the Joint 9th IFSA World Congress and 20th NAFIPS Interna-
tional Conference, vol. 1, pp. 340–345, Vancouver, Canada, July
2001.

[5] M. Panella and A. S. Gallo, “An input-output clustering
approach to the synthesis of ANFIS networks,” IEEE Transac-
tions on Fuzzy Systems, vol. 13, no. 1, pp. 69–81, 2005.

[6] Z. He and A. Cichocki, “An efficient K-hyperplane clustering
algorithm and its application to sparse component analysis,”
in Proceedings of the 4th International Symposium on Neural
Networks: Part II, Advances in Neural Networks, D. Liu, S. Fei,
Z.-G. Hou, H. Zhang, and C. Sun, Eds., vol. 4492 of Lecture
Notes in Computer Science, pp. 1032–1041, Springer, Nanjing,
China, 2007.

[7] A. Sharma, R. Podolsky, J. Zhao, and R. A. Mcindoe, “A mod-
ified hyperplane clustering algorithm allows for efficient and



Advances in Fuzzy Systems 11

accurate clustering of extremely large datasets,” Bioinformatics,
vol. 25, no. 9, pp. 1152–1157, 2009.

[8] J. Echanobe, I. del Campo, and G. Bosque, “An adaptive neuro-
fuzzy system for efficient implementations,” Information Sci-
ences, vol. 178, no. 9, pp. 2150–2162, 2008.

[9] S. D. Nguyen and K. N. Ngo, “An adaptive input data space
parting solution to the synthesis of neuro-fuzzy models,” Inter-
national Journal of Control, Automation and Systems, vol. 6, no.
6, pp. 928–938, 2008.

[10] S. H. Hosseini and A. H. Etemadi, “Adaptive neuro-fuzzy
inference system based automatic generation control,” Electric
Power Systems Research, vol. 78, no. 7, pp. 1230–1239, 2008.

[11] I. D. Silva and R. Flauzino, “Efficient parametric adjustment of
fuzzy inference system using error backpropagation method,”
in Proceedings of the 19th International Conference on Artificial
Neural Networks: Part I (ICANN ’09), vol. 5768 of Lecture Notes
in Computer Science, Springer, 2009.

[12] M. Panella and G. Martinelli, “Neurofuzzy networks with non-
linear quantum learning,” IEEE Transactions on Fuzzy Systems,
vol. 17, no. 3, pp. 698–710, 2009.

[13] M. Alizadeh, M. Lewis, M. H. F. Zarandi, and F. Jolai, “Deter-
mining significant parameters in the design of ANFIS,” in
Proceedings of the Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS ’11), March 2011.

[14] M. Panella and G. Martinelli, “Neural networks with quantum
architecture and quantum learning,” International Journal of
Circuit Theory and Applications, vol. 39, no. 1, pp. 61–77, 2011.

[15] H. Hui and J. H. Li, “Fingerprint matching using ANFIS,” in
Proceedings of the IEEE International Conference on Systems,
Man and Cybernetics, vol. 1, pp. 217–222, October 2003.

[16] F. Sun, H. Zhang, and H. Wu, “Neuro-fuzzy hybrid posi-
tion/force control for a space robot with flexible dual-arms,”
in Proceedings of the International Symposium on Neural Net-
works, Advances in Neural Networks (ISNN ’04), vol. 3174 of
Lecture Notes in Computer Science, Springer, 2004.

[17] X. K. Zhang, Y. C. Jin, and G. Guo, “ANFIS applied to a ship
autopilot design,” in Proceedings of the International Confer-
ence on Machine Learning and Cybernetics, vol. 2006, pp. 2233–
2236, August 2006.

[18] C. Mazzetti, F. M. Frattale Mascioli, F. Baldini, M. Panella, R.
Risica, and R. Bartnikas, “Partial discharge pattern recogni-
tion by neuro-fuzzy networks in heat-shrinkable joints and
terminations of XLPE insulated distribution cables,” IEEE
Transactions on Power Delivery, vol. 21, no. 3, pp. 1035–1044,
2006.

[19] P. Civicioglu, “Using uncorrupted neighborhoods of the pixels
for impulsive noise suppression with ANFIS,” IEEE Transac-
tions on Image Processing, vol. 16, no. 3, pp. 759–773, 2007.

[20] S. Y. Na, D. Shin, J. Y. Kim, S. J. Baek, and S. H. Min, “Obstacle
recognition and collision avoidance of a fish robot based on
fuzzy neural networks,” Advances in Soft Computing, vol. 40,
pp. 337–344, 2007.

[21] D. Shin, S. Y. Na, J. Y. Kim, and S. J. Baek, “Fuzzy neural net-
works for obstacle pattern recognition and collision avoidance
of fish robots,” Soft Computing, vol. 12, no. 7, pp. 715–720,
2008.

[22] E. Joelianto, S. Widiyantoro, and M. Ichsan, “Time series esti-
mation on earthquake events using ANFIS with mapping
function,” International Journal of Artificial Intelligence, vol. 3,
no. 9, pp. 37–63, 2009.

[23] M. Kang and H. Kim, “A design of RFTOG model for dis-
tributed real-time applications,” Journal of Intelligent Manu-
facturing, vol. 20, no. 3, pp. 311–319, 2009.

[24] J. Zhang, J. Cheng, and L. Li, “Forecasting coal and rock
dynamic disaster based on adaptive neuro-fuzzy inference sys-
tem,” in Proceedings of the 2nd International Conference on
Computational Collective Intelligence: Technologies and Appli-
cations (ICCCI ’10), vol. 6422 of Lecture Notes in Computer
Science, Springer, 2010.

[25] M. Hayati, A. Rezaei, M. Seifi, and A. Naderi, “Modeling and
simulation of combinational CMOS logic circuits by ANFIS,”
Microelectronics Journal, vol. 41, no. 7, pp. 381–387, 2010.

[26] R. Khatibi, M. A. Ghorbani, M. H. Kashani, and O. Kisi,
“Comparison of three artificial intelligence techniques for dis-
charge routing,” Journal of Hydrology, vol. 403, no. 3-4, pp.
201–212, 2011.

[27] R. J. Hathaway and J. C. Bezdek, “Switching regression models
and fuzzy clustering,” IEEE Transactions on Fuzzy Systems, vol.
1, no. 3, pp. 195–204, 1993.

[28] M. Sugeno and T. Yasukawa, “Fuzzy-logic-based approach to
qualitative modeling,” IEEE Transactions on Fuzzy Systems, vol.
1, no. 1, pp. 7–31, 1993.

[29] S. Chiu, “Fuzzy model identification based on cluster estima-
tion,” Journal of Intelligent & Fuzzy Systems, vol. 2, pp. 267–
278, 1994.
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