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I. INTRODUCTION

This thesis presents a novel architecture for a data
processing system based on a large number of identical
modules containing microprocessors. It is intended that
this architecture provide a flexible, effective data pro-
cessing system that may be dynamically restructured to
simplify its use and enhance its reliabi lity. A major
emphasis maintained throughout this work has been to
assure that the architecture developed is practical. As
a consequence, the description of modules and the discus-~
sion of the examples have been couched in terms of devices
that are currently available. Hopefully, parts more speci-
fically adapted to an architecture of this nature will
become available in the future and will provide improved
performance and simpler construction. The examples dis-
cussed have been chosen in part because they are somewhat
atypical of applications proposed for the efficient ap-
plication of multiprocessors. This is to emphasize the
flexibility and general purpose nature of this system
architecture. 1In addition, the constraints placed upon
the software and firmware by the system are mectioned and

a few convenient features are specified,

The discussion of the system architecture begins
with a brief description of the goals derived for the
system. Next, the historical background of computer
ural development is discussed along with gene-
ral, historically significant multiprocessor schemes
illustrating the typical tightly coupled system. A brief
description of the work of T.C. Chen [13] concerning the
efficiency of tightly coupled systems is included to

provide some motivation for the de pment of the
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The second major section of this thesis describes



councepts and major submodules incorpcrated within this
architecture, The description is presented at a rela=-
tively abstract level to provide the reader with an over=
all conceptual view of the system and its operations

without becoming bogged down in detail unnecessarily,

The interprocessor communication facility is
basically a set of Pierce Loops with modifications for
incorporation in this architecture, The aspects of this
communication structure related to delay and the over=
head added to the system operation are analyzed in de=
tail, The results of this analysis provide a general
characterization of the system operation, Strategies
for the application of the architecture are developed
based on this analysis, For a further discussion of
Picrce Loops, the reader is encouraged to refer to the
excellent papers by Pierce [34] , Avi-itzak [3] , and
Hayes and Sherman [25], Verification of the heart of
the analysis is provided by the results of a computer
simulation of a series of processors communicating via

this structure.

Gue ol the common defliclisncies vf Lradiiiovual
multiprocessors is programming difficulty, In learning
from these examples, we can see that it is important to

congider the scoftware aspects of a2 new gtructure to

(D

ure that the system can be made effective in the

nsu
lution of problems without unreasonable software de=

)
[»]

mands, On the other hand, it would be impossible to
discuss ceompletely the wide range of preogramming tech-
niques available on as versatile an architecture as
described here, The majority of the software aiways
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oftware is presented and includes several examples, One

example is presented in extreme detail for a simple,



narrow problem; a second is discussed at a much higher

level for a more complex problem and includes routines
typical of those that would be found in an operating
system for this architecture,



A, Goals

The goal of this thesis is to develop an archi -
tecture for a computing system employing a large number
of microprocessor based modules as building blocks.
These modules will be linked together by a collection
of busses in such a manner that the total system archi-
recture will be extremely flexible, allowing the re-
sources of the system to be configured to satisfy the
requirements of the particular application. In addi-
tion, it is intended that as the application changes,
the structure and distribution of the resources may also
change. This flexible, restructurable control system
will also provide enhanced reliability through the use
of redundant modules that may be incorporated into the
operation by dynamic reconfiguration and other pro-

visions for graceful degradation.

It is not the purpose of this work to provide a
detailed implementation of this system but rather to

provide the necessary background required before a

system of iliis natuvre 15 comstructed. Digouggions of
possible implementation of hardware and software are
included. These are intended to further the reader's

understanding of the architecture and indicate how the
d

It is assumed throughout this thesis that there
will be a large number of modules within the system,
each of which is of insignificant cost. 1Im order to

maintain this assumption, extreme simplici s stressed
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computer{microprocessor and memory). In addition, a

large supply of redundant modules 1is assumed to be avail-



able. Although it is not basic to this study, it is
also assumed that each microcomputer is relatively

slow in comparison to conventional computers or mini -

computers.



B. Background

The history of computer development shows a con-
stant demand for more processing power and speed. This
demand has been held in check, however, by the econo-
mics of the technology involved. The size, power, and
speed for a system have been limited by the financial
constraints on the builder and his customers. As a
consequence, a major emphasis throughout computer re-
search and development has been directed at the reduc-
tion of price and size for a given performance or the
improvement of the price performance ratios. Generally,
a major means of providing this improvement has been the
introduction of a new technology in which the basic
switching elements are constructed. Each new technology

introduced has usually increased the speed of switching

elements by an order of magnitude while simultaneously
reducing its. cosit. The results have been gsignificant
improvements in price performance ratios. A second means

of improvement that has also been dramatic has beemn the
innovation in memory systems producing an almost linear
decraase in cost versus bits of information stored. 1Imn
addition, the improvement in memory systems has contin-
ually increased their speed.

As impressive as technology's past advances have
been, it is clear that we are currently approaching a
turning point that will have 2a significant impact on the
path of continued computer development. The increased
A
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mpared to the propagation delays of the transmission

nes connecting gates. Indeed, it is generally accepted
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yat little advance in computing speed can be expecied
from future advances in the technology of basic gates
[Hobbs, 27].



Simultaneously with the increase in the speed of
switching circuits, the size of a logic gate has been
diminishing. large scale integration (LSI) has provided
the ability to place several thousand logic gates in one
package with a highly automated process, The resultant

efficiency of production of a gate prov1des cost/gate
and price=-performance indexes that are much better than

previously available.

This evolution in digital hardware has taken us
from room sized central processing units (CPU's) to
CPU's that can be placed in the palm of a hand. The
associated prices have been reduced from hundreds of
thousands of dollars to hundreds of dollars or less for
a CPU of comparable power. Today, the cost of a CPU is
generally an insignificant fraction of total system
cost, The historically consistent demand for faster,
more powerful machines is still being maintained, how-
ever. We can be sure that it wiil continue to exceed
the capability provided by improved switching elements
alone [Chen, 13]. As a result, this demand must be

satisfied with innovative architectures.

Historically, economics has also forced the effi-
cient utilization of a CPU. The users have been re-
quired to maximize the processing capability of a com-
puting system and realize the CPU's full potential.

To satisfy this requirement, an enormous effort and ex-
pense was often directed toward the software used on
the system, Thus, the cost of the hardware and soft-

ware have often been of comparablie orders of magnitude.
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le tasks. Although the majority of the processor's



capability might be wasted, the savings in design effort
and lower maintenance costs are far more significant, 1In
addition, the parts cost using microprocessors will often
be less than that of the discrete gate logic performing
an equivalent function., This is due to the increased

production efficiency of LSI,

The result is that the computer architect today 1is
now released from the incessant demand for efficient pro=-
cessor utilization and should begin to intensify the
search for innovative applications of processoxs, Instead
of using a single microprocessor at the limits of 1its
capability, the emphasis needs to shift to systems of pro-
cessors, each performing a set of relatively simple tasks,
functioning as a team to provide a quick, economic solu=-
tion to the particular problem at hand, 1In addition,
these systems should be extremely flexible in order to
more adequately fit the computer system to the problem at
hand. This flexibility can be realized by employing the
inherent power of the processor not otherwise required in
the team concept above. The flexibility of a multipro-
ceaanr can alan ha saxnlaited tn pravide for fault tol=
erance and graceful degradation, This assumes that pro-
visions for dynamic reconfigurability and triple modular
redundancy of a '"hard core" test and repair section are
incorporated into the system architecture, The STAR
computer developed by JPL and discussed by Martin [30]
has demonstrated.that these techniques can produce highly
reliable systems with calculated, apriori probability of

- . = _ 1, P - o = - e mm - —m B . 3 _— - b B - - ~ Lot ]
faiiure during a ten year period &35 1ow as U,01 .

Although software is secondary to this vesearch, it
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reducing the demand for wmaximum ef-
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ication of a processor, parilitioning

ficiency in the appi
the problem into conceptually simple blocks and employing
a flexible system that easily and naturally adapts to the



problem, the cost of software should also be reduced.

As a place to begin the development of a new multi-
processor architecture, let us first consider the general
multiprocessor. In the quest of performance beyond that
provided by circuit speed alone, several alternative ap-
proaches to multiprocessor design have been taken., One
alternative is to subdivide the job to be performed and
distribute the sections among many identically constuc-
ted processing units. This is commonly termed '"parallel-
ism". Another is to form a general purpose arrangement
of processing units capable of execution of a portion of
a task concurrently with the execution of a succeeding,
independent portion of the same overall task. This is

generally called "overlap" or "pipelining" [chen, 13].

Flynn [22] has discussed very high speed computers
and recognized that there are several types of architec-
tural organizations employing concurrent operation. He

has broken computer systems into four groups:

1. Single Instruction Stream-Single Data Stream (SISD)

2. Single Instruction Stream-Multiple Data Stream (SIMD)

3. Muleiple Incetructicn Stream=Single Data Stream (MISD)

4, Multiple Instruction Stream-Multiple Data Stream
(MID)

Stone [ 51] has further discussed these groups with tradi-
tional examples of each (as has Enslow, {15]). A general
characteristic of these systems has been that the control
arrangements have become less flexible as the number of

processors increased.

Consider, as an example, the organization of a some-

what typical SIMD computer. (This description draws

heavily on the discussion of the same topic by Steone
[ -~ B - -~
511 and indi . A typical S

rectly on the ILLIAC 1V
m

computer is shown in block diagra
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Within this system, each major subelement (ie. memory,
arithmetic logic unit (ALU), etc.) is provided with a
means of communication with each other major subelement
of the same type and indirectly to all other subele-
ments. Thus, it is possible to transmit data through-
out the system and to make use of the intermediate re-
sults of one processor in another. The control pro-
cessor is a powerful computer having its own arithmetic
capability, registers, memory and the ability to perform
conditional branches, etc. On the other hand, although
the arithmetic logic units (ALU's) are computers capable
of sequentially executing a series of instructions, they
are required to be in global synchronization. (Each
task or cet gf instructions in each processor starts
simultaneously with that of all other ALU's. No ALU may
initiate a second task until all ALU's complete the
first task.) All ALU's must either pause or perform the
same task. As such, the collection of ALU's is incap-
able of conditional branches., Each ALU's task is speci-
fied by the control processor. It is the function of the
control processor to interpret the instruction stream
provided by the programmer. Each inscruciion is eiihes
a control instruction and executed by the control pro-
cessor, or it is a vector operation and broadcast to

all the ALU's.

Since an SIMD system can support only one instruc-
tion stream, the occurrence of a conditional or data de-

pendent branch can cause difficulties peculiar to this
h

c
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to
"
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tact:

re
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vamnle, suppnse that one of two ope-

13
13

rations is to be performed on the data in each ALU and
that this choice is made based on whether or not an
ATU's accumulator is zero. Those ALU’s with a zero ac-
cumulator must perform the first operation; those with a

non-zero accumulator must perform the second. The SIMD
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architecture cannot support independent, concurrent
operation of each of the two sets of ALU's. Therefore,
the control processor must halt the ALU's that are to
perform the second operation and perform the first
operation in those remaining. It must then halt the
first set of ALU's, enable the previously halted ALU's
and perform the second operation. At the conclusion of
this process, all ALU's will again be enabled and the
program continued. This is i1illustrated in Fig. 1.B.2.
As this example shows, the control processor must serially
simulate the action of a data dependent branch. It

selectively enables only the set of processors on a

such paths sequentially.

Analogous to the SIMD system just described is the
MISD computer. Consider a typical pipeline processor,
a special case of the MISD system. (For example, a
single arithmetic processor of the TI-ASC. See Fig.
I.B.3.) Within the pipe, several different operations
can be in progress simultaneously. However, the system
only has one cource of aperands. Rach stage of the pivpe
gets its data only from the preceding stage.

T. C. Chen[3 ,51] describes pipelining and synchro-
parallelism (SIMD as described above for example) as ty-
pifying multiprocessing by tight coupling. He defines a
repetition ratio, p, for a multiprocessor in terms of the

two dimensional equipment-time space,

[

P
1 2
W, t°
2
where T, is the time during which only one processor 1is

required (for overhead, job setup, etc) and T, is the

time during which W processors are required. If N is the
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number of processors available in the tightly coupled
system, the total efficiency of the synchro-parallel

system is
1 Wi 1.
n=§[(1 o)+pr|wJ
n = T]NifW=N

N My for W < N

Ny is plotted against p for N = 32 in Fig. L.B.4.

In this case, Lt can be seen that the effect on the effi-
ciency of the system is pronounced for very slight de-
viations of p from 1. As Chen points out, the slope of

the curve at p = 1 is (N-1),[ 3].

Chen also observes that true job parallelism is
difficult to find or exploit due to the conditional
branches otten required (as mentioned in the discussion
of SIMD.) Handling conditional branches is difficult
and often involves draining pipelines and disabling

parallel processors. With the extreme sensitivity of n

(4

¢ small changes in the job parallelism, it is difficult
to maintain a high performance level for reasonably paral-
lel jobs not specifically suited to a particular machine
configuration. {(i.e., 33 x 33 matrix or 31 x 31 matrix
operations on a system designed ideally for 32 x 32

matrix operations).

in order to obtain an effective, efficient system
architecture, Chen maintains that muitiprogramming with

the roper overall j0b mix 1s regquired in addition ¢
J g

Q

multiprocessing. The system must actively reassign the
pricrity of 3obse to fit the available resources in am at-
tempt toward self-optimization. The parallel system can

no longer rely on the synchronization of elements within
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it. Instead it must become a number of loosely coupled,
nearly self-sufficient, processors, each having a large

degree of independence and local autonomy.

17
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Criteria

The system architecture under consideration here

is intended to provide enhanced speed, flexibility, re-

liability, etc., while avoiding the difficulties en-

countered in previously developed architectures. It pro-

vides a loose coupling of processors that may cooperate

or act independently.

In the attempt to meet these goals, the following

criteria have been established for the system architec-

ture:

1.

The use of a large number {(>100) of processor
modules should be possible.

The communication/control structure should be uni-
form throughout the system.

Each processor module should be capable of communi-
cation with all (or most) other processor modules.
The control system should be capable of monitoring
and intervening in a process as well as provide for
the independent action of a processor. Blocks of
processors shouid be able to functionm as a ceam
independently of other teams.

The control scheme should be simple, uniform, and
effective. One such scheme i{s a hierarchy of comn-
trol.

A dynamic ability to

r
[0

configure the systez (i.e
rearrange the hierarchy of control) should be in-

cluded. This will £it the system to the problem al-
lowing the system to appear as a Von Neuman machine,

a parallel array or as an associative parallel pro-

cessor, etc,, Aas requived,
in addition, considerations such as reliiability,
fault tolerance, and graceful degradation demand



the incorporation of redundancy and a capability
for dynamic reconfiguration as well as the uni-
formity of structure previously mentioned. This
redundancy can be applied to the parallel or con-
current execution of tasks which could be performed
serially as the resources of the system are limited

through failures of elements.

Just as structured programming concepts and the
hierarchical program development of Dijkstra,[ZO] pro-
vide for simple, effective development of software in a
hierarchy of routines, the same basic philosophy, when
applied to hardware, should result in an organization ef-
fective for the problem at hand., In addition, industry,
business, and military organizations have demonstrated
the advantage, flexibility, and efficiency of such control
schemes. A hierarchical organization will provide the
necessary control structure to satisfy the consideratians
above without relying on a ‘“super® cenctral conirolilier
(i.e., it distributes the control allowing each control-
ling element to be simpler, cheaper, slower, etc., while
sti1l producing an effective operation). Although over-
head may be increased, this will hopefully be offset by
the advantages of a simple, cheap control for a large

number of modules. (See Fig. I.C.1l).

19
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II. DESCRIPTION OF BASIC SYSTEM

A, General Overview

As can be seen in Fig. II1.A.1, the system configu-~
ration consists of a number of system modules containing
microcomputers and ancillary circuits connected by a
series of busses, loops, LOOP SHORT and BUS SHORT modules.
All interprocessor communication takes place along the
various busses and loops. (Previous multiprocessors have
employed star networks of 1/0 channels, multi port memories
or crossbar switching matrices, etc., to provide inter-
processor communication. These techniques suffer the de-
ficiencies of cost, complexity, etc., that rise 1linearly
as the number of processors grows. In addition they tend
to have a fixed maximum practical size. The cost/complex-
ity of a bus tends to grow limearly with log2 of the
number of processors, i.e. only an additional bus ad-
dress bit is required every time the number of proces-

sors doubles.)

Each processor has its own independent memory and
generally is capable of performing any of the system
tasks assuming it has been suitable programmed. Along
with the various elements of hardware in the system, a
basic system philosophy and set of protccols is also re-
quired. It is intended that this system implement a
hierarchical, restructurable organization. As such,
there will generally be one processor (any processor)
responsible for overall system action. This processor
designates subordinates, establishes the chain of
command and directs its immediate subordinates in the

tasks they are Lo perfiorli.

Iin order to implement this philosophy, the follow-

ing basic characteristics/protocols will be incorporated
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into the design:

1.

;_\
.

Each module will be named, both with a unique,
permanent, physical name (P-name) and with a
variable, logical or symbolic name (V-name).

Each V-name consists of two parts, a block name

and an element name. In addition there is a "“uni-
versal"™ name to which all modules respond. This
universal name may be employed as either the block
name or the element name or both. 1In this discus-
sion this universal name will be represented as "Xx"
All communication is carried out by tagging or
addressing information packets with their destina-
tion name and placing them on a bus. The bus then
carries the packets to the receiving module. Data
or commands may be passed to a group of modules by
specifying only the block name and "XX" for the
element name. Likewise, information can be passed
to all modules simultaneously by specifying

"XX ,XX" as the V-name.

As is common with communication links between asyn-
chronous systems, all commands sent by a master or
controliing moduie must be received by iis subouidi-
nate and acknowledged. The subordinate queues the
commands pending the arrival of the appropriate
operands. (See S5 below).

Task completion must be signaled.

Several adjacent processcrs may be strung together
to form a wider arithmetic ability than would other-
wise be available. (This facility is provided

through the FUNCTION/CARRY LOOP).

All communication throughout the system wiil consist

of in

I

orma

e

ion packers containing the data to be

o

transfierred and a ser

ies of tags. Since each pro-
cessor is identified by a name, all ambiguities
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associated with the transfer of information are
resolved through the use of the processor names.
Every packet of information placed on a bus con-
tains the destination address or name (either the
permanent modules number or its V-name). 1In addi-
tion to the destination, each packet will contain
tags uniquely associating the operands with the
commands stored in a queue or other temporary
storage medium. For data packets, a 1 bit tag will
also indicate the order of the operands for non-

commutative operations.
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B. Description of System Elements

The heart of each system module is the microcomputer
itself. Each microcomputer, the microprocessor with its
memory, will be microprogrammed to provide all t he basic
functions of a standard processor and respond appro-
priately to the actions of the system. It should perform
overhead type tasks as automatically as is practical for
a given microprocessor. For example, the processor could
be microprogrammed to automatically remove items from the
busses and place them in temporary storage. It could also
provide for automatic maintenance of a queue of commands.
Additionally, the microcomputer would be programmed by the
user in a more conventional manner. Generally, the pro-
grams would consist of a series of subroutines whose call
would be initiated by commands received from more superior

elements of the hierarchy.

Each processor must have a priority interrupt cap-
ability that masks interrupts occurring below the pro-

cessor's priority level. It must also have lines for

F

" B i ~
i a ~

b) P

"

~ -~
LR -

e

* gonerated hy an arithmetic opération or
left shift. Likewise, it should also have & "carry in"
capability. (Several currently available processors
organized on a bit slice basis provide these features
[Rattner,38]). There is no requirement as to word length,
speed, etc. for the processor imposed by the network
architecture. (Obviously, one would want to use the best
available processors consistent with these constraints,

economics, etc.).

Communication between processors is provided b

R <

a
C-

h
l
.
f
3
H
[

syscem of cizcu ng busses. The circulating bus

o

2}
[
rh
(<]
3]
3}

Bus moves a packet of data in a fixed direction a u

distance in each unit of time. Thus, the C-Bus functions
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much like a shift register and could be considered to

be a Pierce Loop (34, 23 1. Aany processor can transmit
by placing an information packet on the bus anytime a gap
in the circulating traffic appears at its location. By
application of the processors interrupt facility, all
users will continually monitor the traffic passing their
locations. When a processor recognizes that a packet
passing its location contains its address (or name), the
processor removes the packet from the bus. The packet's
former position in the traffic stream is now a gap, free
to be filled with a new packet by any user. The C-Bus
thus provides temporary storage of information and is
means by which several independent data transfers can be

carried out simultaneously {Pierce, 347].

Data transfers are generally carried out on the
DATA C-Bus. A data item is placed on the DATA BUS in the
form of an information packet containing the data and the
destination processor name. As the packet circulates
around the bus, the destination name is compared to the
name of each processor. When a match occurs between the
name on a data item and a processor, that processor is

gnaled and the data item is removed £

eV

[N}
(oY

om the bus,

<

In order to control the system efficiently, busses
providing command and control capabilities have been
grouped together into several sets. Each set of busses
will collectively be termed a control group (C.€.)
Each control group competes for attention from each pro-
cessor on a priority basis much as in the case of a
priority interrupt system., The master control group
(M,C.G.) is the nighest, most significant priority or Oth

level (Cc.G.[0]). Each additional control group is on

~ 1
(SR T

3

Lo
-

[

MR TS -~
leve co roup cther than the mast

]

1 A R n
1Ly, €cc, I 1 r

1]

can be blocked/shorted at the left edge of any processor

by activation of the BUS SHORT module. This means that
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each circulating bus is '"shorted" or the loop is closed
(see Fig. ILI.B.1) dividing the bus into several independ-
ent sections. Each control group consists of a command
(CMD) bus, and an acknowledge/done (ACK/DONE) bus. The
CMD BUS carries commands to the processors., Acknowledg-
ment of receipt and acceptance of the command is returned
to the originator on the ACK/DONE bus as well as notifica-
tion of task completion. When a processor name matches
the name attached to a command on a CMD BUS at level '"n",
an interrupt to the processor is generated on interrupt
priority "n". If the processor priority value is set
higher than or equal to '"n", the interrupt is accepted
and the command is recognized as destined for this pro-
cessor. A processor recognizing a command is obligated
to reply on the ACK/DONE BUS with an ACK or positive
acknowledge if t he command can be accepted into the pro-
cessors command queue. Otherwise, the processor replies

with a negative acknnwledge or NAK.

Basic bus formats for information packets with an

explanation of the various fields are given below:

Dusd rormacs
CMD |B Orig P Dest Operation CMD
v Name \Y Name Number
DATA | P Orig P Dest Qperation/ 170 DATA
\') Name ' Name Sequence Number
DONE | P Orig P Dest Operation ACK/DONE
v Name v Name Number /ERROR
Wentanairdan o § ';{Q‘-n"::-‘
u“r‘.._..‘_ —em W m - = e e o= = -
P/V -- 1 bit that indicates that the contents of the name

field are to be interpreted as a module's permanent

name {P), or its V-name (V).
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[3.] [3.2] [a.1] [4.2]
1,1 CONTROLS 2,1 AND 2,2 ON CONTROL GROUP 0

(MASTER C.G.)
2,1 CONTROLS 3,1 AND 3,2 ON C. G. 1 (SECTION 1)

2,2 CONTROLS 4,1 AND 4,2 ON C. G. 1 (SECTION 2)

(WY
)
»3
r
z
to
.

1,1 CAUSES B/S a TO BE ACTIVE
3,2. CAUSES B/S b TO BE ACTIVE
4,2 CAUSES B/S c¢ TO BE ACTIVE

TLLUSTRATION OF A CONTROL HIERARCHY ESTABLISHED BY ACTIVATING

Fig. II.B.1
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the name of a processor. When interpreted as a

V-name, it consists of 2 parts, the block and the

element name.

-- Each command sent to a module is numbered
and held in memory in numerical order by the re-
ceiving processor until its operands are present
and there are no commands having operands present
and a lower number in memory. The operands are
uniquely identified as belonging with a particular

command by a matching Operation #.

Sequence # -=- This is a re-interpretation of the Operation

1/0

CMD

DATA

ACK

DONE/ERROR --

# field on the data bus to allow a block of data to
be transmitted between processors and ordered upon
receipt. This requires, however, that the re-
ceiving processors have no commands pending or in
progress (except the command to accept this

block of data).

In the DATA BUS format, this indicates the order

of the two operands for non-commutative operations.
The command code indicating the operation to be
performed.

The actual operands, etc., transmiiicd ui
BUS.

Oon the ACK/DONE bus,

[+
>
&)

>

cr
-
[(}]
"
r

the two ACK codes indicate
the positive acknowledgment (AY cf the receipt
and acceptance of

a command or a negative ack-
{(¥) indi
c

nowledgment

(2]
]

ting that the named module
T

is unable to a

(ng
[e]
L2

cep perform the required ope-
ratlion.
on the ACK/DCNE bus, i t
the operation whose number is indicated
field has terminat
as indicate

cessfully or

LIS R0 8

code.
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The FUNCTION/CARRY LOOP also transfers data
throughout the system and is designed to transfer infor-
mation shifted or "carried out"™ from the arithmetic sec-
tion of one processor to the arithmetic section of
another processor, This allows several processors to
function as a single multiprecision arithmetic unit.

The FUNCTION/CARRY LOOP passes through each processor
module and has no storage of information (i.e., does not
shift packets as a C-Bus does). By activation of the
appropriate LOOP SHORT modules, the FUNCTION/CARRY LOOP
may be gated through the processor proper or past it.

In a similar manner, it may also be shorted at the left
edge of each processor module (i.e., it may be broken
into 2 closed loops at the left end of the module). (See
Fig. I1.B.2).

In addition to the various busses, the items men-
tioned previously as BUS SHORT modules and LOOP SHORT

moduies perform au Lmportant fun n in the

4 Tam
PSS Yy LR Y'Y PN T

({4

ta-

Q

<4
o

[¢]
re

imp
tion of a hierarchical structure. The BUS SHORT modules
are a part of every Control Group except the Mastexr Con-
trol Group. Their function is to divide a Control Group
into independent sectioms. This allows several teams of
modules to operate independently on the same Control

Group. Each BUS SHORT module is controlled by the pro-

0

essor to its immediate left. As an example, see Fig.

1II1.B.3.

c. G. [1] is broken into two independent parts with

each section functioning just as if it were a complete

= _ - N . . .- o P # - - N - o~ ~\
C.G. Processor (2,1, can then controi (3,1, and 2,4/
without any interaction with other processors on c.c. [11].
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MODULES

Fig. II.B .2

31



A 1,1 IS MASTER OF ALL
2,2 IS MASTER OF 4,1 4,2
2,} 2,2 7,1 7,2 8,1 8,2

.
-

- Ta,1] [a,2 4,2 IS MASTER OF 8,1 8,2

(71] [%2] (] [82] BTC-

- [FRFR ) 3 B PR Y B PR PRI B -
H :' !:r j1 l 2.8 1T 3 e !.” s s lll
i i 1 ]
W\J

BETWEEN THESE LIMITS, C.G. 1
HAS EXACTLY THE SAME CAPABILIT:
AS C.G. 0 ,ETC.

i€,

ILLUSTRATION OF HIERARCHY ESTABL
THRU USE OF SHORT BUS MODU

Fig. II.B.3
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C. Basic Illustration

The system, when viewed in an unstructured, idle
configuration, will appear as a collection of processors
arranged in a cylindric fashion connected by a collection
of busses. However, this structure, when viewed in an
active state, will generally be divided into a collection
of processor teams in a hierarchy of responsibility and
control. Structuring takes place in the following
fashion:

1. Initially, the user will designate a processor as
the master and load its memory with the appro-
priate programs. This processor then begins execu-
tion.

2, The master would decide which of the various pro-

cessors will perform particular tasks (e.g. proces-

sors {(3) and {10) could be assigned to perform an
internal double precision ADD on receipt of a com-

mand code of 0001 and a single precision ADD when
commanded with a code of 0010).

3. The master commands each processor inm turn to load
the program being sent to it over the DATA BUS.

4, Upon a command of the master, each processor sets
its V-name and priority to the values sent it on the
DATA BUS.

5. The appropriate modules are then commanded to acti-
vate their BUS SHORT or LOOP SHORT moduies, as
required.

For example, the hierarchy shown in Fig. II.C.1 may
be defined in the system by activating the appropriate

BUS SHORT modules, naming the processors appropriately

1
4

.
“

&l
Cik

3

n VT masmn?l o~ ’
e level on which

and specifiying their prioriiies (v

I
»

the module expects commands). The O module has been

established with the V-name of (2,1) and designated as
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the most superior element in this structure. Modules
1 and 5, assigned V-names of (2,2) and (2,1), respec-
tively, are both directly controlled by {(1,1) and expect

commands at the oth priority level (i.e., from the master

control group).

Module 1 (named {2,2)) controls directly the three
modules, 2, 3, and 4 (named {(3,1), (3,2), (3,3) respect-
ively) through commands on the control group at the 1St
priority level. Note that since the BUS SHORT modules
between modules O and 1 and between modules &4 and 5 have
been activated, this group of processors is capable of
completely independent action without imteraction with
other modules on the Control Group at level 1. Assuming
that the appropriate control modues in the FUNCTION/
CARRY LOOP have been activated as shown, the modules

named {3,XX) could be considered to be an arithmetic

functional unit of 3.n precision where n 1is the word
size of a given module, Medule (2,2) would be the con-
troller for this arithmetic section.

As another example, consider a parallel array pro-
cessor. This configuration, using an arithmetic capabil-

. 1I1.C.2,

ity of 2-n bits, would appear as in Fig

Again each level in the hierarchy is controlled on
a diffcrent level contrel group. Module {1,1) is the
system controller and actually contains the program to be
cxecuted. Each of the modules (3,1) through (M+2,2)
contains the appropriate data elements as in any parallel
array processor. Module (1,1) would control each of the
functional groups A, B, ... by placing a command with the

a ropriate destination name on the Master Contrcl Grou
P

CMD BUS for the specific contrelling module desired. On
ihe other hamd, {1,1) could contrel all the functional

groups simultaneously with one command addressed to

{(2,XX). Thus, as in the case of a parallel array pro-
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STRUCTURE REPRESENTING A DU BLE PRECISION PARALLEL ARRAY

FI.C.2

Fig.



cessor, a single ADD, MULTIPLY, etc., command would
cause all m functional groups to perform the required
operation on the appropriate operands in each of their

independent memories.

In the case that restructuring is required (due to
problem changes or hardware failures), the master need
only cause the system to pause while it proceeds through
the structuring phase again etc. (The master can interxr-
rupt any processor by commands on C.G. [0]. Since C.G.
[0] has no BUS SHORT modules, it can never be partitioned
and is, therefore, always available for communication with

any module. Since it acts at the highest priority level,

it can never be masked.

Although the preceding discussion and examples
have only two C.G.'s and result in three levels of
hierarchy, there could be several more C.G.'s. This
would allow several more levels of hierarchy and, at each
level, each processor would appear exactly like a master

to all those processors subordinate to it.

In each of these examples several considerations
should be pointed out:

1. All data transfers take place on the DATA BUS.

This bus will, therefore, be a bottleneck and its
performance will seriously affect the total system
throughout. The DATA BUS must, therefore, be a high
speed bus.

2. In order that a group of m processors be connected
to form an m.n bit arithmetic section, they must be
adjacent or broken only by modules operating inde-
pendently of the FUNCTION/CARRY LOOP.

3. Altnougn iLie masier <

cr

-
~

1
-
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~ "c
- -
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iv wown 1d commu-~-

-~
~

(¢}
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nicate only with the mcdules one ievel below it im
the hierarchy, it can send commands to any module

through master control group which is never parti-



tioned and cannot be masked. It, therefore, can
begin corrective action by reassigning names, etc.,
should a fault occur.

The master of any set of processors is required to
keep track off the status and utilization of those

processors assigned it.

Although this system is dynamically reconfigurable,
this feature has limitations. Due to the fragmenta-
tion of the busses by the BUS SHORT modules, it is
possible for a processor to be cut off and rendered
unavailable for application in a group. As a result,
restructuring for the purpose of garbage collection
may be periodically required. Groups of modules are
best formed from modules adjacent to one another.

To facilitate restructuring and reduce the require-
ment for garbage collection, independent groups of

modules should be spread as widely as possible.
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IITI. ANALYSIS

A, Introduction and Model

This section will attempt to analyze some of the
performance characteristics of a collection of processors
organized as described previously. In particular, the
interface Between a processor and each of the various

circulating busses will be studied in detail.

Throughout this discussion all items will be de-
scribed from the point of view of the bus-processor in-
terface. For example, a processor will be described as
having an idle and an active period. For the purposes
of this analysis, the active period 1s that time during
which the processor is continually attempting to place
messages on the circulating bus, The idle period is

that time during which the processor is doing anything

1

w
48]

eise, calculating or awaiitiag tas , etc,

The following analyses will be based on models of
the processor action and interface having no buffer re-
gistar or hawving a cingle stage of buffering. The case
of a multistage queue in the interface 1s gemerally felt
tc be unnecessary but can be found in reference [25].

As shown in Fig. III.A.1l, we will be concerned only with
one processor and one bus. In each analysis, the bus
will be assumed to have traffic distributed on it in a

manner such that the arrival of empty slots at the pro-

cessor of interest obeys a Poisson probability law. The
rate at which siots {(full or cmpty); pass 2 processcr is
v slots/sec, Tor a loop containing N processors, a slot
will completely circumnavigate the loop in N/v sec,

The first scheme to be studied is illustrated in
Fig.'s III.A.2, 1III,A.3, IIT1.A.4 and III.A.5. As indi-
cated, there is no intermediate buffering, queue, etc.
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Calculate message
I -1 ;
while (message word # end of message)
OUTBUFFER ~ MESSAGE WORD(I);

while (BUS_IS_FULL) d

PRty

WAIT ;

RELEASE OUTBUFFER;

I « 1+ 1

continue

ILLUSTRATION OF PROCEDURE FOR PLACING A MULTIWORD

MESSAGE ON A BUS

d
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between the processor and the bus. Every output from the
processor to the bus necessitates the processor's active
monitoring of the bus for an empty slot. Upon detecting
an empty slot, the processor must then actively place its

message word on the bus.

It should be noted immediately that this scheme will
work oniy in the case that the bus is moving slowly enough
that the processor has sufficient time to place the mess=-
age word into the bus's output register. The time for the
processor to recognize that a slot is empty is not of
consequence, Should this be a relatively long period, an
appropriate amount of '"look-ahead'" along the bus may be

employed. (See Fig. IILI.A.6).

The basic notation to be used in the following dis-
cussions is indicated below with a brief definition of

each symbol.

Definitiouns:

Ui : utilization of the bus at processor 1

v : rate at which slots pass a processor

My rate at which occupied slots pass processor 1

iy : rate at which empty slots pass processor i

r, : rate at which processor i produces message words
and places them on a bus having no traffic,

Qi : average number of words/message from ith processor

Ii : average idle period of ith processor

6, ° utilization of processor i

§i . actual rate of production of message words (includ-
ing waiting time) during the active period

N : number of processors in the system on the bus

v; ¢ a ratio of processors rate of production of words

to bus rate.

Ui
Yi T v
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P

time required to output one word

time required to obtain one word (ie. retrieve

it from memory)

average time per word the processor waits

average wait time
average wait time
average wait time

at the processor,
0th slot,

normalized to the processor rate

normalized to the bus rate

corrected to include the slot

ie, to begin counting with the

average time per word the output buffer register

waits

ratio of retrieval time to the total time required

to retrieve and output one message word,

46
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B. Calculation of Waiting Times (no buffering)

The utilization of the bus, Ui’ is the fraction
of the bus that processor i observes to be occupied.

Therefore,

u _ # of full slots through i
i - Total # of slots through i

Since slots pass processor i, at a rate of v
slots/sec., the rate at which full slots leave it must
be

= U v (1)

(an * on a bus parameter for a processor i indicates that
traffic for i has been removed before the parameter is
measured). On the other hand, empty slots leave at a

rate of

- %,
0= (1 -u) v (2)

1

A processor requires a minimum of T

seconds to generate

e

. L - - . + - ... a1, P ] - e O T |
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1z
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it produces words at a rate of r, words /sec, Thus,

if the average message length is Qi words, then the aver-

active time of a processor {as viewed by the bus) would be

SL seconds. This rate, r
T,

i
could be produced and placed on the bus, assuming that

30 is the rate at which words

the bus were completely clear. This, however, will not
be the case. The assumed protocol for a processor requires
that it produce a word, then place it successfully on the

bus, inito a bDuffer register uvi a

(<2

.e = - .o e m ~ A |
s quc:u::, Cl—\-., WVC AL G
1
producing another word. Hence, if ?—, is the time re=
i
quired to produce a word and-.wi i

s the average wgiting
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time required before an item can be placed on the bus, the

actual rate of production is

1 Ty
Ty 77 =1 ¥ r.w. (3)
- i i
r. + w,
i i
Qi
and the length of the active period is now =— .
r .
i

It is assumed that the processors operate in a
"burst" mode with relation to the communication
structure, The processor will appear idle (actually
idle or calculating data for a subsequent message but
not attempting to use the bus, etc.) followed by a
period inm which it is continually trying to access the
bus to pass one or more messages. This is a good
assumption inasmuch as there is no concrete definition

of a message or specification of Qi and the idle period

length is probabilistic in nature.) It is also assumed
that the duration of the idle period for the ith proces=
sor is statistically independent of the processor's busy
period and is an exponentially distributed random var-
izables having =z moan, Ii, Since the produciion 0l mess-
age words is not constant, the overall average rate must
be reduced accordingly. The utilization of 'a processor
£

can be defined as the fraction of time that it is active

or
3. = active period _ Qi (4)
i~ total time T a .
T
i
Q.
X 41,
2 i
i
n
!
o ———
Qy + I;7y

The result is that the overall average rate is
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(5)

M
!
>
D

[}

i ii
Let us now concern ourselves with the bus itself.

It is obvious that the volume of traffic on the bus is a

factor in all our calculations.

Following the work of Hayes and Sherman [25, p.

2955] 1let Pij be that portion of traffic on the bus

destined from processor i to processor j. Also, et

R;@ be the average rate at which traffic from processor i

passes through precessor k,

Then,
i-1 N
R 2 P 2 P ¥i: 1<i<k k#N
ik = riz ij+‘riz 1j 1: #
j=1 jak+1
i-1
2N l<i<k
T, )- Pij ¥i: l<i<k =N
j=1
N
a ]
T, }, L vi: i=1, k#N
i-1
2 <
r, 2_’ Pij Vi: k+l<i<N
J=k+ 1
)] otherwise

The total average traffic rate through k is

<

R* bl *
Kk - %, Rix (7
v



The total average traffic rate out of k is

* A
Rk = Rk + T (8)
Therefore,
R*
* k
Uk = = (9)
and
*
- Rk
G = (L= =) v (10)

Assuming that empty siots are randomly distributed
along the bus such that the arrival times are statisti-

cally independent and exponentially distributed, the ar-

50

rival of an empty slot at processor i will obey a Poisson

probability law. Since Qi words are contained in a mess-

age, it is clear that Q, empty slots must appear at pro-

~~~~~ 4 1 AwmA 3
cessor i inm order to place the entire message on the bus

It can be shown that the waiting time for Qi Poisson ar-

rivals obeys a gamma probability law with the probability

density function (for integral Qi) (Parzen, 33; Sevaglian,

45] 2

6y - 3 (ﬁit) Qi-l e-pit t =20 (11)
WT, T o(Q = N

£

The expected value of the waiting time for a message of

words is well known [33] and is
i 1331

E[wr, | - (12)

The variance of the wait time is determined to be
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Q,
Var[WT ] x (13)
, i -2
(u)
The average wait time for an individual word of a mess-~

age is then given by

EIWTi l - L (14)
Q; M

Note that this is the same expressiom that would have re-

sulted for Qi = 1. The gamma distribution reduces to an

exponential distribution with parameter fi, in this case.

This expression also represents the average length of a
busy period+ on the bus as seen by processor i. The aver-

age wait time of one word at processor i is then

) 1
Vi T L x,
(i-v,) v

'—l
1
<=

(15)
(1 - U:) v

; 1 N . e . X . . .
(The term, = v’ is included so that the wait time may bpe

determined by starting with the slot present at the pro-
cedsor rather than after the bus has moved one position.)
Normalizing this expression with respect to the time be-

tween successive bus slots, % s, yields

ta busy period is defined as the time between the occur-
rence of two empty slots as seen by a particular processor.
This can be shown to agree with the calculation of Hayes

and Sherman [25] and their verification by computer simula-
tion,



wi =W, V= —=—Fpx— - 1 (16)
1 - Ui

This also represents the wait period in terms of bus

slots. Figure ILII.B.l1 is a plot of wz as a function

of the bus utilization. It is important to note that

the absolute wait time is independent of all system
*
parameters except U and v, Thus, for a fixed imple-

*
mentation (ie. having v fixed), U completely character~-
izes the bus interface without any dependence on the
distribution of work, relative activity, etc,

Normalizing (15) to the average interword produc=-
1

tion time for a clear bus, Y
i
r r
w! = w,r, = L - X . Y - (17)
4 T W3y =TT SRy v = 71 - 0™ Y3
S - Py NN~ vil - - N - -i, -

This is plotted as a function of Ui in Fig.
iIIT.B.2. Note that the shape of these curves follow

H
(W4

a.

.

ok
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ya ‘_l\{‘,l(lb.l.\}l\_!.l’ A 1O

i
(\B

i 2

fu
o

. _ e ¢ .1 a1 C el e e e Al e
Wil u UL HiL LR —AYP=LLC
forms a basis for comparing the processor speed and
communication latency. It indicates the wait period

essentially in terms cf the memory speed,

It is insufficient to specify any random variable

in terms of its mean alonme. It is always important to
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know how the values of the variable are distributed about

the mean, etc. The first moment or variance of the
distribution can provide much of this information.

The variance per word can be found from (13).
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52 Var[WTi] 1
i° Q, - =2
i Moy
Using (2)
82 _ 1 (18)
2

(1 - U:) v

Again normalizing with respect to %

’
s¥ - L — (19)
(1 - Ui) v
This has been plotted as a function of U: in

Figure IITI.B.3 for a bus rate of v = 5106 si1ots/sec.
As might be expected, Si becomes very large for large
%

Ui.

To further characterize the distribution of the wait

me per word, we can determine regions having a probab-

[V 4

i
bility, p, of containing any particular sample of the

- A - -
< 9 [1 R o

£

.

4%
4]

Do M |
L oA A g

ok
=)

— . n
L

O i5 w9
ability law with finite

21 £ -
23y LuL Aauwu

[§)

r
LI S

[

N

ot
L]

- -
LA N <

rf
4]

=n

o

g~
N B

mean,m,and - ian

<
[y
H
0
(4]

-

g, a quantity Q(h) can be defined for h > 0 as

Q(h) = P[x: m=hg < x < m + th

Q(h) = F(m + hg) = F(m = ho) = m + ng f(x) dx
m - heg
For the case of an exponential distribution witn mean

2

i
n

r
o/
™~
U
i
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[
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<
~
rh



i.0

2.57
2.0 ]
1
— i.5 ]
=
)
| O
O
>
1.0,
B
O L] B
o) 5
U‘

VARIANCE OF THE WAILT TIME/MESSAGE WORD VS.
UTILIZATION, V = 5x10% stoTr/sEc
Fig. III.B.3

BUS

56



57

By Chebyshev's inequality, for any distribution func-

tion and h = 0

Q(h) = F(m + hg) - F(m - h0) = 1 - iz (21)
h
This therefore implies that
Q(h) = B[ |x-n | = ho J >1 - -1-?7 (22)
- h

Chebyshev's inequality then states that the probability
that an observed value, X, will lie within hg of the mean

is Q(h). For the exponential case,
m|
o] x - L 1 <17: o.8646648 (23)
i u "
and
1 1 7
p[] X == | =232 |=0.950213 (24)
M M
*
Figure II1.B.4 plots w, versus Ui for a value of
v = 5X106 slot/sec. 1In addition, the regions within O
and within 27 have bheen indicated bv shading. Thus ,

the probability that a waiting time falls within any of
the shaded area is 0.95.

The design of this system architecture provides
for the dynamic addition and deletion of processors to a
closcd section of a bus through the action of the BUS
SHORT modules. As a consequence, it is extremely import-
ant to know how the response o0f a bus wilill vary with the
number of processors on it, In order to obtain an ex-~
pression for the wait time in terms of N, the number of
processors, some assumption musat be made about the pro-
cessor's activiiy and/or the distribuiion of bus itraffic,

In general, the activity and distribution of traffic on a
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bus are expected to be a complex, time varying set of

quantities and impossible to use in an analysis. However,
there are three special cases of traffic distribution that
tend to delineate the range of distributions expected and

are interesting to study.

The first is the case having one transmitting
processor that transmits equally to all other processors
(except itself). Obviously, all the traffic will be
removed from the bus before it returns to the transmitter;
as a consequence, the transmitter will have U* = 0 and
will never have to wait., The second case is the opposite
of the first. All processors transmit equally to one
raceiver. In this case, the utilization and wait time
of a processor is based solely on its position. The
first processor downstream from the receiver sees a clear
bus, all the traffic having been removed by the receiver,
Therefore, this processor has U* = 0 and no wait time.
The first processor therefore transmits its @ word mess-
age at the processor rate, r. The second processor

downstream from the receiver now sees the traffic from
*

thn E£dwor hac 1 — vllq‘v’ and hae an

o

- =

;.‘;?fc[‘ri—".*.“? wait time .

*
The third processor sees U = 2r/v and must wait appro-

priately, etc,;for all processors.

The third casc symmetric bus traffic is much
3 Yy

more significant than the first two cases, Consider the
special case that the bus traffic is symmetric, ie.,
w

ith every other processo

H

each processor communicates
kY

e
e

td
~4
rt

o~
oo

1o aw
- -

oo
O

PP - -
ua wa R =RONTY

O
»2
-

2 »oaoao b ol
£ R =Y aad

4]
[¢]

(6) and (7), simplify greatly
P,, =0 i = 3 {(from [Hayes, 2573 ) (25)
-J
= 1/{(¥=-1) . i #3



and from (16) and (9)

1

R*
(1- by ) v

Substituting (26) and (5) into (27)

1l 4+ rw

w =

vV 4+ vrw - re(% -1

Normalizing with respect to %, the time to produce
word and place in on the bus is

r (1 + rw)

wY = N
v + vrw - re(f - 1)

Simplifying with vy = %,

wr)? - wr) (y(eh - 1) + 1) -1 - y=0

Using the quadratic equation and solving for wr

N 2
wr o= oo y(s(E - DD - 1z [veTG - D

it would imply that w r s 0 which is impossible.

A
wr:wr-y

(26)

(27)

(28)

one

(29)

(30)

(32)

60



61

Fig, III.B.5 is a familyy of curves of w’'s wr
versus N, the number of moduless , in a system having
symmetric bus traffic, It is. important to note that
these curves are approximatelyy linear for large N (ie,
greater than 25) and for w' = ir = .5, As a conse-
quence, with the dynamic addittion or deletion of pro=
cessor to a section of a bus, the performance of the
system is not expected to flumxxtwate wildly, etc, In-

deed, it appears to be fairly well behaved.
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cC. Calculation of Waiting Time (Buffering)

As mentioned previously, the protocol for output to
the bus discussed so far suffers the deficiency that the
bus must be moving slowly enough that the processor can
place the output word in the empty slot it has detected
before the slot moves on., This then is effectively a
constraint on the range of value y may take on. As seen

in Fig. III.A.5, the time required to output a word can be
broken into the time to get the word from memory, tg’ and
the time to release the word to the bus, t . Assuming

that the ratio of tg to t is fixed, they

may be written

- Sy S~ 44

-
o
m 1-m
as t = -—— and t
r o

for O<m<l. As Fig, IITI.A.5
. . r
i i i i

indicates, %-must be longer than to , ¥ i

i
. 1 t = 1l~m
e,y > 94 T, (33)
1
or
.,
Yy, = g— >=r;t, = 1-m (34)
i

Since the average time a processor must wait per
message word is strongly dependent on y, this could be a

severe restriction.

In an attempt to remove this restriction, an output
buffer register is inserted between the processor and the

bus as shown in Fig. II1.C.1. This will allow the proces-

sor to place an output word in the buffer and initiate
ancther acticn {eg, get the nevt megssage word from mem=—
orv). The buffer, operating at essentially the bus speed,

can then place the word on the bus automatically upon de -

tection of an empty slot. The processor would still be
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forced to wait should the buffer fail to find an empty
slot before the processor is ready to output the next
word, However, y 1is now free of the previous con-

straint. Figure III.C.2 illustrates the temporal re-

lationships involved in this processor=-bus interface,

The analysis of this second bus interface is very
similar to the first. 1Indeed, from Fig,III.C.2 one can
see that with a suitable definition of terms, the form
of the result will be exactly the same. 1In any case,

if t = 0, w, = w, where w is the time the message

gi i i
word waits in the buffer and w is the time the processor
must wait to load the buffer, The result, in this

limiting case, is exactly that of the previous section.

As in the first analysis, observe that the time for

a processor to place a word on an active bus is

l‘ - 'l' 4 W, .
T, T, i
i i
However,
1 £ e {35)
Ts &y °4
If t and to are assumed to be fixed in proporticn to

81 i

one another, we can then writec

t = m = (36)
g Li
i
> - -~ 1 o~ - Pk B B0 Y
t, = (i-m) =, O smsi {37}
1 i
As seen in Fig.III.C.2,
w, =W, -~ &t (38)
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Thus,
2. 1 1
i~ 1 0+ vy =1 0+ Gi -t
X, r. &3
i i
Ti
=T+ r,w, - m (39)
ii
Defining the processor utilization as before,
$.Q
i1
8; = = (40)
i Qi + Iiri

It is expected that the application of a buffer

register in this fashion would improve the efficiency of

the processor. This improvement would be indicated by a
decrease in g, the utilization of the processor (for

communication).

Heo%

[y

= = (41
=

-]

In the case of symmetric traffic we again have

v, = [y, G - 0+ 1 -1+ [y - 1
2 (42)

2

N
+ 2y 82

N \
(7= 1) - 2yg,(3

1) 4 2v o+ 24 1JI/ZJ

However., o has been improved.

67



and is given by the previous equation for wr,

W =W

and

In addition to the improvement in sand w,

no constraint on v,

minimize y (or increase v.)

- % and for 0 < w <

68

(43)

(42)

=}

T

w om0 (44)

2

there is now

and it is now to our advantage to

In order to quantify the improvement in g, a factor,

F, may be defined to represent the proportional decrease.

Pl
T, .
82 i Q1
F i 2
871, Q + LTy
i 2
T
194
Q, + L,T.
Y 1%4
1
r.w I,r,
Q 4 Ti¥iQy o IyTy
=
Qi + r.wiQi + Iiri + miQi
1
S F = < 1
1
1 +m
i Ii
I+ zx,w,+ T,
i1 Q. i
1.
where g, 1s for the case with no buffer and g, 1s
“i -i
for the interface model with a buffer,
Sinrce the form of the two interface mpodels isc the
same, the resuit is expected to be the same and indeed it
is, (using the new values of T, 04> etc.)
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D. Overhead and Improvement Factor

A system architecture has now been presented and
some of its characteristics determined, However, it
still remains to be shown that the use of this system
will yield any enhanced performance over a single pro-
cessor, etc, Also, assuming that execution times are
decreased, it 1s desirable to know what strategies
should be emploved in applying the architecture to a
problem in order to obtain the largest improvement pos-
sible over the single processor. As a result, it is
important to know something about the overhead of the
system inherent in the interprocessor communication

structure,

To obtain an estimate of the overhead, consider

the case of symmetric bus traffic in which each proces-
sor communicates equally with all other processors in a
single control group system. Assume also that each com~
munication between processors requires Q words on each

of the three busses, DATA, CMD, and DONE. Then the over=
tead requiszed Ly ifl1is sysiem vver a siugle provessor is
the sum of the time required to fetch each item and store
it on the bus, the wait time of each item (for a bus slot)

plus the transit time,

oV = (3-% +3°w) Q £+ ¢t (46)
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t = N=—= (47)
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S0V = 3Q (3 + w) + NT (48)

Assuming also that each processor performs a total of

%Fh of the task in parallel with all other processors,
the total task will be finished in

1
ETP =5 (ET) + OV (49)

where ETp represents the execution time in the
parallel system and ETS the execution time in a single
processor case. Normalizing with respect to ETS and

taking the inverse results in an improvement factor, f.

P S 1
T ET_ 1 + OV
P N ET
S
ET
S
1
f = (50)
T, 1 gl .uls)
N ET R T T i v

s

Fig. III.D.1 is a sample plot of f versus N. Note that
f climbs very rapidly with increasing N while the value

70

of N is small. The improvement factor then reaches a peak

and gradually diminishes thereafter. This indicates that

for optimum system performance, the roots of df/dN

should be found and fm determined from them, How-

ax
ever, it will seidom, if ever, be pos

-
-~

Hh

O
"

2 e A
ibie ¢ c m

[}
[4]
T

this calculation. Apricri kmowledge of the wvariocus

parameters in general is impossible to obtain., The

indicate general strategies which, if employed, will

yield increased performance., For example,
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1. £ - 0 as ETS )
f . N as ETs - », hence do not use multiple

processors on normally short jobs, just
stick with one processor from the system,
For long jobs, use as many processors as
practical. Although this may not be
optimum, it should be relatively close due
to the slow decrease in f with increasing

N beyond f
max,

2. £ - 0 as Q as =

N.ET .v
f - ET:_:T:;Z as Q - o,therefore be brief in

all communications.

3, £f .0 as N o », therefore don't get carried

away in applying 1 above.

4, £ increases as % decreases, therefore allo~-
cate processors to a task that are as close
as possible to each other and short the bus
connecting them to minimize the time en-

Y o
route for an item on a2 bus

etc.,
In all cases the programmer's judgment is requi

r
but these guides should improve his ability to make sou

decisions,
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E. Miscellaneous Remaxiks

Throughout this analysis, an exponential distribu-
tion of the idle and busy periods of a bus was assumed,
In addition, another assumption is that these periods
are independent of each other and stationary. These
assumptions then indicate the region of application of
this model. 1In particular, as Hayes and Sherman [25]
point out, the model best describes the real system when
the processors emit short messages and/or the bus utili-
zation is low (ie., messages of several words remain to=-
gether during passage from the sender to receiver and

are not broken up as they are multiplexéd onto the bus).

Another characteristic of circulating bus systems
not previously discussed is a phenomenon pointed out by
Avi-Itzhak [3) and Anderson, Hayes, and Sherman {1] . 1In
certain cases (generally with U* > 0.9 but occasionally
with more moderate loads) competing groups of users can
combine to effectually capture the bus and lock out use by
other (less active) users, Control of the bus see=saws
back z2nd fsoreh botween the campating groups. The average
waiting time of each group oscillates while the
waiting time for the locked out users can grow very large.
This is a potentially devastating situation that must be
avoided., Therefore, it is important to keep the utiiiza-
tion of the bus as low as possible. Anderson, Hayes and
Sherman note that with 1light to moderate loading, if
capture and lock out occur, their effects are trans-=

jent and eventuailiy die outj;ihey die

)
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Iv, DETAILED DESCRIPTION OF THE SYSTEM

A, Introduction

This section discusses the design and operation of
a system module in more detail than was previously pro-
vided. The discussion also includeleossible implementa-
tion of several major submodules., Section ILI of this
thesis, concerning the analysis of a processor-bus inter-
face, emphasizes the need for high speed busses. With the
emphasis in mind, the design for the various busses
attempted to ensure that a conservative, worst-case bus
speed of 5%10% siots/sec could be obtained; this figure
was easily met for those busses that are elements of
c.G. [1] and higher. Because the DATA BUS and C.G. [0]
do not have BUS SHORT modules, they are simpler and ex-

ceed this speed requirement by a factor of about 1.5.

vie section assumes that the system operates as
described previously using an eight bit wide micropro-
grammed microprocessor chip set having TTL standard logic
levels. For this discussion, this system will be configu-
red to allow a maximum of 127 system modules, resuiting

in the following typical bus field widths:

CMD BUS
P ORIG P DEST OPER CMD
il NAME v NAME # CODE
Pt 7 11 0 7 i 8 |1, 5%
o | | O
DATA BUS
H ORIG j3 DEST OPER 1/0 DATA
v NAME v NAME #
11 1 7 111 7 i 3 114 8 |
A B I il 1 1 i
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ACK/DONE BUS

0 = ACK
P ORIG P DEST OPER 0| £0 = REASON FOR NAK
v NAME v NAME # 1! 0 = DONE
£0 = ERROR CODE
0, 7 .1 1 7 J. 8 L 5% A
P L 1} L DL 1

For the purposes of this and subsequent discussions,
consider that all status and processor control informa-
tion is grouped into a processor status word and that all
elements of the 1/0 and control structure have been mapped
into the regularly addressable memory space. All times
discussed are worst-case figures and are given in nano-

seconds unless otherwise noted,.

Fig. IV.A.l defines the non-IEEE and non-MIL

standard symbols used throughout this section.

*These fielids can be adjusted as rceguired Im & fimial im-
plementation. The number chosen here are for example
only, and should be reasonable for most applications of

this architecture
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Fig. IV. A.,1 BLOCK DIAGRAM SYMBOLS
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Data path, 32 bits wide
Arrowhead represents direction of

data flow

Control path, 1 bit or line wide

Data path indicating divergence of

2 adjacent end bits.

Convergence of 3 data paths into 1
path with relative position of the

converging paths indicated.

7458157 (or equivalent) data selector,

4 bits wide

74298 (or equivalent) data selector,

with storage register, 4 biis wide
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Fig. IV.A.1 BLOCK DIAGRAM SYMBOLS (CONT.)

——
T
|
! l
} |
[ |

e d Iy
OFr—— ==
— el

Multiple circuits of type indicated
operating in parallel (ie,to form
wider data path, etc.) (no. of cir-

cuits is not indicated)

Indicates the portion of the dia-
gram contained on a single system

module.

74585 (or equivalent) comparator.



78

B. Busses

Each of the busses incorporated into this archi-
tecture is a circulating bus or Pierce Loop. The basic
configuration of an element of a C.G. bus (other than
C.G. [0)]) is illustrated in Fig. IV.B.l; as seen in this
figure, the mechanism is relatively straightforward and
simple. The bus register for each system module is in-
corporated with a data selector to implement the SHORT
operation. As each register consists of edge triggered
D-type flip flops, only a single phase clock is required
to shift the contents of the bus.

Fig. IV.B.2 illustrates the implementation of the
address detection and slot emptying circuits. The des-
tination address of each item stored in the bus register
is compared with the module's P-name or the contents of
its V-name register as indicated by the P/V bit in the
destination address field of the item. In addition,
this field is also compared with the universal name code.
(See discussion of bus formats in Section A). Assuming
that the INPUT BUFFER REGLSTER 1s empty (as indicaced by
the BUFFER FULL FLIP FLOP, the item whose address matches
the module's is automatically loaded into the buffer
register and the BUFFER FULL FLIP FLOP set. Im addition,
the EMPTY flip flop is set, forcing the slot's empty bit
to 0. The next clock pulse shifts the bus one position
and resets the EMPTY f£1ip flop. 1If the BUFFER FULL FLIP
FLOP had been set or the processor's priority masked
operation on this particular bus, no action would have
place. The processor automatically clears the

1.IP FLOP by reading the INPUT BUFFER REGISTER.

'y
(-l
[l
[ Gad
Ixj

Fig. Vi.B.3 lllustrates the output interface,

When the OUTPUT BUFFER REGISTER is written by the pro-
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cessor, the FULL FLIP FLOP is set. The processor is
required to wait until the the FULL FLIP FLOP is cleared
before attempting to write to the OUTPUT BUFFER REGISTER
again., When an empty slot is detected, the OUTPUT BUFFER
is selected by data selector F. The next clock pulse
shifts its contents onto the bus and resets both the

register and the FULL FLIP FLOP.

Fig. VI.B.4 is a combination of the previous
figures showing the bus plus the interface between the
bus and the processor. 1In addition, it contains an
additional line, the BUS STATUS LINE. This line follows
the path taken by the information traveling on the bus
and is shorted just as the basic bus is. However, it has
no register or information storage facility. It is
driven by the EMPTY BIT of each bus stage through an open
collector or tri-state bus driver. The purpose of this
line is to indicate to all modules along a section of the
bus whether there is any non-empty position on this bus
section. To avoid trapping an information packet on a
section of the bus to be shorted, it is necessary that a

__________ w
w

W1 AAnbnan+ +thn AmvAaacn wern A€ R
prvoOCCSaOY Soa

- .
- LR ORI O G e B oA ae = = - - PO —_— e - -

Before activating its BPUS SHORT module, the processor
must wait until all traffic is removed from the bus or
possibly face error correcting requirements. The BUS
STATUS line provides this capability. Effectively it
provides the (wired) NOR of the EMPTY BIT position of

the bus for each module. Thus, if any position is non-

82

empty, the 1line is pulled low and may be read by each pro-

cessor on the particular bus section

s already described,

)]
(1]

To those portions of the bus
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it is necessary Lo ad
any device having a finite size or capacity, it is poss~=
b

ible to fill up the bus. 1In general, this would not be
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serious (apart from the delays it would cause). Since a
particular item passes by each module in each cycle around
the bus, it would normally be removed by its destination
at some time during the first pass. A gap in traffic for
addition data would therefore be provided and deadlock
prevented. However, it is possible that this might not
be the case., For example, if two consecutive items on a
single bus are destined for the same processor module,
the first will fill the processor's INPUT BUFFER REGIS-
TER and lock out subsequent data items. If the inter-
rupt facility of the processor hés a latency in excess

of one bus slot time, the processor will be unable to
empty the inmput register in time to receive the second
item, The second item must therefore bypass the proces-
sor and make a complete cycle of the bus. Thus, each
item must be capable of remaining on the bus for several
cycles. On the other hand, it is possible that a data
item can be placed on the bus with an incorreci or cor-
rupted address (due to programming error or noise). As

a result, it has no legitimate destination. 1In addition,

if the destination processor fails, its traffic will

naver b
neyeyry D

(1]

removed from the bus and a deadlock with a full
bus could easily result. Thus, it is imperative that
traffic be allowed to remain on a bus for only a finite
length of time before an crror is declared and correc-
tive action taken. Fig. VI.B.6 shows how this facility
can be lmplemented very simply., This scheme requires the

addition of several control bits to each bus. A$ each
Ta |

34
v
[{
T
(a

short module at

the right end of the bus section (see Fig.IV.B.5) and
begins its return to the left end of the bus, a set of
control bhits is set to indicate the number of times the

word has passed by. When this indication exceeds the

maximum, the destination and source address fields are
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interchanged and the data, command, or done £ield 1is
replaced by an error code. At this point an additional
control bit is also set to indicate that this word is now
an error word and not valid data, etc. Should the word
fail to be taken off the bus by its original source, the
error bit will cause the error detecting circuit to re-
move it from the bus by setting the empty bit appro-
priately. This prevents an item from "bouncing’ between
two unacceptable addresses, Fig, IV.B.6 implements this
scheme using simpiy a 74S1i57 type data selector. Note
that the control information is detected before the data
selector multiplexing data f£rom the processor onto the
bus. This reduces the error detection logic's operating
deiay by the propagation delay of the 745157 muliltipiexer
from the processor. This does not cause ambiguous or
erroneous operation because the processor cannot place an

item on a bus unless the present bus slot is empty. The
ha

I
D
(3]
"t
(4
(& 4

the slot is empty will disable the error detec-

ogic.
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e
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C. Function/Carry Loop

The particular architecture under discussion here
is intvended to have an extensible arithmetic capability.
This capability is to be provided through the designation
of several modules as subelements of a larger processing
unit; the larger unit will be termed as an extended
arithmetic logic unit or EALU. Each module in the EALU
will perform exactly the same function as the other
modules in this unit with the carries,etc. "rippled” from
module to module., The FUNCTION LOOP provides the micro-
instruction sequence for the instruction to be performed
to cach module connected to it, Essentially,  the set of
modules becomes a SIMD system., Fig. IV.C.1l shows the
FUNCTION LOOP and two system modules. As noted in
Chapter II, the loops described in this research have no
storage of information, However, like the C-bus, the
FUNCTILON LOOP may be shorced at the left edge oi any pro-
cessor so that groups of processors can function indepen-
dently of other groups of processors. Each group will be
driven by the program and microprogram contained in one
module, Fig. IV.C.2 shows two modules configured into a
2.n bit arithmetic processor (n is the word size of an
individual system module). Each of the data selectors
has been appropriately set to allow the function bus to
pass from the microprogram controller around the loop and
into each ALU; note that the path from the loop to the
ALU is identical for eac

h module, Processor No. 1 has
n agtabhliaghad 2s the dr

. [ T A A R

e

At

[

g module, TIn order for
this processor to drive the loop, its data selector B

must be set appropriately as indicated,

The microprogram controller is a synchronous cir-
cuit requiring a clock signal. Normally, in a singie

processor systeﬁ, the clock would be fixed at a single
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optimum rate, and the function code provided by the
microprogram controller to the ALU would typically
change at each clock cycle. Because of the additional
propagation delay provided by the logic of the loop when
several system modules are active or the modules are
widely separted, it is easy to see that the clock rate
must either be slow enough to handle the worst case or
variable. To slow the clock for the worst-case is not
acceptable. Therefore, the clock must be provided with
provisions to vary its speed, In this implementation, a
clock pulse is never released from the clock until a
reply is received as a resulit of the previous clock
transition. By routing the single clock pulse around
the loop and back to the originating clock unit in the
driving system module to reenable it, the total system
is assured of a sufficient clock period for all system

modules to function correctly,

Due to the asynchronous aspect of the total system,
the time of arrival of operands at each of the modules 1is

indeterminate with the possibility of a module receiving
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example, the master module might require that a module
within an EALU halt, reset or perform some other function
as a result of system errors, interrupts, etc. As a re-
sult, each module of an EALU must still be responsive to
interrupts from the busses, (especially C.G. [0}]). Simul-
taneously, the other modules in a wider functional unit

on the FUNCTION LOOP cannot be allowed to continue opera-

)
4

tion, leaving the interrupted module beh

ind, The HOLD
FLIP FLOP along with the HOLD LINE provide the necessary

control for this situation. Any module connected to the
FUNCTION T0OOP has its microprogram controller free; this
controller will continually monitor the interrupt system,

Should an interrupt occur, the microprogram controller
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sets the module's HOLD FLIP FLOP, By means of an open
collector or tri-state bus driver, the HOLD FLIP FLOP
pulls the HOLD LINE 1low and requests a pause or hold from
the driving module. The HOLD LINE is the wired NOR of

all the HOLD FLIP PLOPS connected to the section FUNCTION
LOOP under discussion delineated by activated LOOP SHORT
modules. When the driving module receives a low HOLD
LINE, it finishes the current instruction, sets its HOLD
ACKNOWLEDGE bit and waits for the HOLD LINE to be released,
When the interrugpied module receives a response from the
driving module on the HOLD ACKNOWLEDGE line, it continues
the processing of its interrupt by switching data
selectors A and C to enable its own FUNCTION LOOP - ALU
iink, Following the processors conventional interrupt
servicing, the execution of the return from interrupt will
clear the HOLD FLIP FLOP releasing the HOLD LINE. The
release of the HOLD LINE by all interrupted modules auto-
matically resets the driving module's HOLD ACKNOWTIEDGE
bit.

In order to complete the extended width arithmetic
fea ture, there must be provisions for carries and left
shifts from lower to higher order modules and right shifts
in the reverse direction; end around carries are also
necessary. Fig'®s IV.C. 3 and 4 illustrate the Carry Loop.
Functioning just as the basic FUNCTION LOOP, the Carry

Loop either passes the carry or right shift through a

1]
n %

']

m module's ALU, or bypasses it according to the

te
setting of data selectors D and E, M system modules can
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Limitations of EALU Ability

As described, the EALU is 1limited as follows:

1., No module within the extent of an EALU (i.,e.,
between shorted loop short modules) can func-
tion as a member of a second EALU,

2. There can only be one driving module in an
EALU. It will be located logically at the
high order position to facilitate testing of
sign and carry information.

3., Although the intention is to provide extended
arithmetic, most instructions cam be executed
by the EALU group., However, the ability to
provide constants, etc., from the microprogram
memory will be limited to the driving module.
This limitation should not prove to be a severe

restriction, however. S e
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E. Summary

As it has been described in this section, a system
module can easily be implemented using standard, readily
available IC's such as the Intel 3000 series microproces-
sors chip set and Schottky TTL. When implemented with
these products, conservative calculations of propagation
delay through the various circuits using manufacturer's
guaranteed worst-case figures indicate that a clock period
of 200 ns is acceptable. This yields a bus velocity of
5%¥106 slots/sec and estimates of y that are less than one-
half, Generélly, we may expect to see y on the order of
.25 or less even with the fastest microprocessors chip
set available today. The implication of this fact 1is
that the wait time per word of message placed on a bus
will be very low. (see Section III). 1In addition,
since the DATA bus and C.G. [1] do not include BUS SHORT
modules, the speed of these busses can be much higher
yielding values of vy and wait time that are even smaller,

It seems clear therefore that close processor interaction
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Each bus implemented as described for an eight bit
processor requires 32 information bits as described pre-
vicusly. 1iIn addition, an empty bit and two or more control
bits are also required for a total approximately 35 bits
per bus. Although this is fairly large consdering the
small processor word size, it is not unreasonable. As the
processor word size increases the rclative amount of real
information (ie. data, commands, etc,) carried in each bus
word increases rapidly. Should it be determined that
al parallcsl busses of approximately 35 bits each are

cal, a reasonable alternative is a blend of paral-
lel and serial busses (eg. DATA and CMD busses parallel;

ACK/DONE busses serial). A well chosen blend of this nature
should still result in an effective system.
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V. SIMULATOR

A. Description of Simulator

Generally, simulations can be broken into two
categories by their objectives, One category contains
those simulations designed to provide data for the eva-
luation of the expected performance of a system., This
type of simulator is often relatively abstract and relies
heavily on the use of random inputs, requests, etc,, to
provide a l1oad on the system. Statistical information
is then obtained abcut the system's performance under
this load. For this type of simulation to be effective,
it is important that the statistics of the vandom 1load
adequately resemble those of the real system, ie., that

the abstract model be adequate,

The second type of simulator is designed to provide
the opportunity to observe and use the systems in a form
that resembles the real system as closely as possible,
Thus, this type of simulator will provide statistical

information about the system's performance that is as close

as possible to that expected of the real system in a
particular application. 1In addition, the ability to use
a facsimile of the system can be valuable in discovering

rh
£

9]

in the design and implementation and allcws the

-
-

P

u

practical usefulness of the system to be evaluated.

The simulator constructed for this research is de-
signed to perform in both of the above categories. As
such, it mimics the action of the general system compon-

ents in discrete time. Each pass through the program
t 1

updates the elapsed time by one increment, moves each bus
cne unit and checks the address of each item in each bus
slot for a match with the processor monitoring that

slot. If a match occurs for a particular slot, a proces-
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sor interrupt flag for the bus containing the item is

set, With each pass through the program each processor
checks its interrupt flags. 1If a processor flag having a
value less than the processor's priority is set, an in-
terrupt is assumed to have occurred., The item that caused
the interrupt is removed from the bus and placed in tem-

porary storage for the processor.

Each action by a processor is assumed to require
time for its execution. Each processor, therefore, has
a variable, TIMUP, into which is placed the time of execu-
tion for a task., The values for TIMUP are fixed or random
as appropriate for the operation being mimicked., With
cach pass through the simulator, TIMUP for each processor
is decremented. No new action will be initiated by any
simulated processor until its value of TIMUP is less

than or equal to zero.
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n a bus. The simulator records the pro-
cessor number, bus, bus utilization as seen by the particu-
lar processor and the time the processor waited for an
empty slot. The simulator also keeps a running account of
the number of items output, mean and standard deviation of
waiting time, the system parameter, g, and the utilization
of the bus for each processor=-bus interface. This is dis-
played on operator command along with a “snap=shot" of the
busses. The "snap=-shot' shows the complete status of each
bus and all data on it. One snap=-shot can be obtained
during each npass through the program, Rv observing succes-
sive snap shots of system activity, the total action of the
system with respect to the interprocessor communication can

u-

‘-u
[}
[¢]
b

be seen. An additional item enticlied wait time is
ded in each snap-shot for each processor-bus intexrface.
This figure, 1if negative, indicates that the processor is

currently waiting to output an item. The absolute value
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of this number is the elapsed simulated time at which

the processor began waiting. If this item is positive,
the processor will have successfully output an item after
having waited the amount of time indicated. 1If zero, the
processor either was not required to wait or is not attemp-
ting to output through the particular processor~-bus inter-
face in question. Also, on operator command, the total
statistics collected to the current point in the simula-=
tion for the waiting time versus bus utilization may be
displayed. The utilization is broken into fifty uniform
intervals of 0,02 units. All data items falling within

an interval are considered as estimates of the expected
wait time at the level of utilization within the interval.
It is well known that as the number of samples from a
population of independent, identically distributed random
variables grow large, the distribution of the sample mean
approaches the normal distribution. In many cases, it has
been found that for n>30 the sampling distribution of the
mean is fairly normal [24} . As a consequence, any inter-
val containing less than thirty items is considered to
have too few samples to be wvalid. For those intervals
having more than thirty samples, the distribution 15§
assumed to be normal-and the mean, standard deviation and

95% confidence levels are determined for each interval..



B. Simulator Results

The simulator results are displayed in Fig. V.B.1l.
Each vertical bar represents the 95% confidence interval
for a set of sample points centered about the sample
mean. As can be seen, the simulator results appear to
fall along the theoretical curve reasonably well and
are therefore considered to be a verification of analy-~-

tical expression for wait time derived in Section III.

100
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VI. SOFTWARE

A, Introduction

Programming of any computer is a major part of the
task of applying the system to the solution of problems.
The software costs in terms of man-hours required, docu-
mentation effort and dollars are often equal to or greater
than that of the original hardware. As a result, a sig-
nificant amount of thought must be applied to the program-
ability of a new system architecture to ensure that it
may be used practically. This section will therefore
discuss software (and firmware) as it applies generally
to this multiprocessor scheme and provide indications
as to the direction and philosophy required for the soft-
ware, Several examples will be discussed and general
comments made concerning the relative execution times
for these examples using this system versus a single
processor similar in capability to that incorporated
here. As this system is adaptable to variety of micro-

rocessors a hypothetical rocessor imilar to several
p 3 y
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these examples,.

In attempts to develop guidelines for the construc-
tion of software, the trend has been to restrict the
programmer to an orderly and structured procedure in which
a hierarchical development is emphasized. This is also
described as a top down approach and is often referred

to as structured programming.

This hierarchical approach applies both to the
linguistic and to the actual structure of the program.
For example, Brinch Hansen [9] , Dennis (6], and
Dijkstra 720] nave discussed linguistic hierarchies in

which a program is developed at the topmost level as a



single procedure call that is meaningful to the program-
mer as representing the function to be performed. At
the next level, this procedure is developed as another
series of statements or procedure calls that are, again,
¢cspecially meaningful to the programmer as directly re-
presenting the tasks to be performed. This process is
carried down to the poilnt where each statement consists
of a primitive of the programming language. 1In turn,
cach primitive is developed in a hierarchical fashion
through the language's implementation within the com=-
puter's operating system down to the basic operations

of the machine itself. 1In conventional machines, this
process can be viewed as establishing a hierarchy of
virtual machines, each of which directly interprets the
instructions of the layer above it in the form of

instructions for the virtual machine in the layer below.

The overall design of a program, from the point of
view of the set of tasks to be performed, can be repre-
sented as a network of components, Although this net-
work could be a directed graph of aribitrary complexity,
there axist some verv camnelling reasnans tn avaid this.
Among them are:

1. Evidence of design correctness needs to be

clearly presented.

2. Programs or program segments often require
modification or maintenance. Therefore, pro-
gram components should be as independent as
possible from each other so that the conse=-

guences oi any
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possible,

3. Design, production, and maintenance of softwar

to be manageable, often requires a iteam of peep

103

2
L
FR Y



104

Thus, to facilitate this approach, interde-

pendencies must be minimized.

The result of reducing component interrelations
is to structure the system into a partially ordered set

of layers called "hierarchical ordering" [Bauer, 6].

The concurrent processability of a program may
also be represented as a partially ordered graph dis-
playing the precedence relations between components.
Considerable theoretical work has been done to determine
the precedence graph given a sequentially coded program
and to determine the minimum number of processors required
to complete the execution of the task in minimum time

[Ramamoorthy, 37} .

Each of these techniques involves a hierarchical
description that is, on a single processor, simulated or
stepped through sequentially. However, on a multiproces-
sor as described, this sequential simulation is no longer
required. 1In the cases in which a virtual machine concept
can be applied, a real machine can easily be used., 1In
addition, although concurrency was not originally intended.

this may often resu

Pt
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B. Simple Example

These concepts, as applied to this architecture,
are probably best illustrated by means of a simple ex-
ample. The following program (which may be incorporated
in a larger program) is to find the standard deviation

of twelve numbers according to the formula.

2.1/2
Xi) J

1

Wl z

N
g - L o -
:N[NZX (
iz1 i

for N = 12

This example was chosen because it is likely to be fami-
liar to most readers and is simple cnough to be carried
down to the level of individual machine instructions

without becoming bogged down in useless detail,

Using PL/1 1like notation, and employing a top
down approach, the first version of the program is tri-
vial, It would be adequate if the system used recog-

2> 2u inherent rvuiine causing the standard

%)

-1 ~ o~
oo oS Ay &

M

deviation to be performed,

MATIN {PROCEDURE;
DCL X (12) ;
CALL STD(12,X,SD)
END MAIN
It is seldom the case that STD would be recognized

by the language used; therefore, we need to proceed to

the next level aand define 1t,
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STD: PROCEDURE (N,XSD);
DCL X(N);

BEGIN;
CALL SUM_X_SQRD(N,X ,SXX);
CALL SQRD_SUM_OF_X(N,SSX);
NSXX = N#SXX;
CALL SQRTDIFF (NSXX,SSX,ANS);
SD = ANS/N;

END STD;

Here STD is shown to be made up of a series of steps.,
First we find the sum of X squared, then the squared sum

i
f the X's etc, This again makes use of routines not

(o]

within the language as well as basic elements of the
language (ie,, arithmetic assignment instructions),
Again, another level is required to define SUM_X_SQRD,

etc,

SUM_X_SQRD: PROCEDURE(N,X,SXX);
DCL X{(N);:

LR AN el i % PN
FEJORE R N

SXX = 0
DO I = 1 TO N;
SXX = SXX + X(I) %*%2;
END;
END SUM_X_SQRD;

SQRD_SUM_OF_X: PROCEDURE(N,X,SSX)
DCT. ¥ (N);

S¥ = O
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SSX = SSX + X(I1);
END;
END SQRD_§UM_QF_X;

SQRTDIFF: PROCEDURE (NSXX ,SSX,ANS) ;

BEGIN;
ANS = NSXX = SSX;
ANS = SQRT(ANS);

END SQRTDIFF;

These routines illustrate the linguistic hierarchy
employed within this program, The first level could be
conceptually considered to be a virtual machine having an
STD instruction, In turn, it could call upon a virtual
machine of level 2 on which it performs the STD task
by executing the "instruction'" SUM_X SQRD, etc,, down to

the real machine at the lowest level. 1In addition, each

=t
(4t}

2 a~
FAyY) (=1

f

ce

¢

ievel could be implilemented oin a4 real pr

w
u
<
r

e
system described earlier and as shown in Fig., VI,B.1l.

We have now reached a situation in which we may
exnlnit the nassibhilitiaes nf cancurrency. Thus far. the
program discussed has only been viewed as a simple se-
quential process with each step executed at the termina-
tion of the preceding step. A flow chart for the program
is shown in Fig, VI.B.2 (not showing the hierarchical de=
velopment), There is no interdependence between the first
and second step of this flow chart nor any precedence re-
relation between them. Therefore, this flow chart may be

re=-drawit @as Suowtt L1l FLge VIeDoJd o it
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ve
been programmed using the instruction set outlined in

Table VI.B.1 and their execution times compared. Tabie
Vi.B.1 is for a hypotehetical processor whose architect=-

tural features, instructions, and execution times are



PROC 1

COMMAND 2 TO PERFORM STD

PROC 2

COMMAND 3 TO PERFORM
SUM_X_SQRD
THEN
SQRD_SUM_SF_X
NSXX = N#SXX

COMMAND 3 TO PERFORM
SQRTDIFF
SD = ANS/N
SEND S TO PROC 1

PROC 3

ETC.

FUNCTIOAL HIERARCHY
FIG. VL.B.1
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START

SUM_X_SQRD

SQRD_SUM_OF_X

i

NS XX= N #5XX

L

SQRTDIFF

SD=ANS/N

{ A
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‘ -START ,

b

- PASS X (1 to
N) TO MULTI

S UM_X_SQRD SQRD_SUM_X

~. 7

)

—_ |,
|
J

MODIFICATION OF FIG. VI.B.2 FOR CONCURRENT AGTION

- - -

FiG. Vi.B.3
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similar to those found in many commercially available
microprocessors. This processor is assumed to have two
accumulator registers, a stack pointer register, index
register and a program counter, It is capable of one
level of indirect addressing (generally through the in=-
dex register). Fig. VI.V.4 is the assembly language
routine for the single processor case. Fig. VI.B.5 is
the equivalent routine for the multiprocessor case.

The master processor has been named (1,1) and is

assumed to contain all the values of X initially. The
master proceeds by sending each value of X to a processor
named (5,1) which calculates a running sum of the X's.
Simultaneously, with the transmission of a value of X,
to (5,1), the same value is sent to a processor (4,3)
where j = (i mod 4) + 1. Each processor {4,XX) squares

each value of X it receives and maintains a running sum

of Xz. As a consequence, the block labeled SUM_X_SCRD
-

in Tig, Vi.B.3 has

)

.cn subdivided into four additional

r

concurrent blocks. Processors (5,1) and {(4,XX) each send
their respective sums back to the master, (1,1), to con-~

tinue processing.
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These routines are not intended to be complete,
etc, but are to be indicative of the programming techi-
ques and differences between the conventional monopro-
cessor and the multiprocessor that is the sub ject of
this thesis, 1In addition these routines provide a basis
for developing the timing diagram of Fig., VI.B.6. This
figure is a timing diagram of each system's activity and
allows the execution times for the flow chart sections A
in Fig.'s VI.B,2 and VI.B,3 to be compared, As is
easily seen, the single processor requires

t, = 35us + N(120)us

to execute, Thus, to form the standard deviation of
twelve numbers requires

t, = 35us + 12(120)us = 1475ys

For the multiprocessor case, it is assumed that

each bus has a velocity of % us of 5X106 slots/sec,

Since each processor reguires 10ys ¢

-
s

(23
4]

~ - PR |
o] < iev a worae

e
from memory and place it on a bus, r = 0.1X106 words /sec,
This results in y = ,02 for each processor., From Section
IITI on the analysis of the bus interface, it can be seen
that for y = .02, the expected normalized wait time for
word will be less than one half of the processor's fetch=
store time for bus utilizations of less than 0,96, TFor
utilizations of less than .5, the total expected wait
time is less than 045 which is approximately zero with
respect to the time of one program cycle, Therefore, the
wait time is neglected. On the other hand, no assumption
has been made concerning the placement of the processors
around the bus, Assuming a total of 100 processors, the

worst case would require 20ys of bus transit time for com-

Sehi WO ProCessors, ote that this could

(N
easily be considered to absorb any wait time that couild



122

9'g°IA 314
_6*9'Ia "9I4 404 WVEDVIA ONIWIL

evog = | :31V3$

L
L2z

pmed §

-+
-
-

o
e
e e
e

o = s]

% 3044 INILNOY ATdILINK
#°4% 20U4 INIINCY LJYINI
€'% 20¥d 3INILNOY AdILINW
€4 J0Ud ANILNCY LdYLINI
Z'% J0¥d 3INILNOY ATdILINW
74 208d ANILNCY LdYINI
L'% 20dd INILNOY ANdILINW
(‘% 20Ud INITLNCY LdYINI
1c 20¥d INILNOY Qav

‘G J0¥d INILNOY LdYLINI
AR N1

f1f g 1SN8

. lgtheixoisng

¢ tpfg=fx isng

AR et SR AR SEENI
Lo ] g~ 19ngQ

[ ‘=T ] ‘e 15NE

[ g (]G % I5N8

w¢ _._

39vd LX3IN 33S

i et T g S e —

$31TAD H/N SO
s7hyl = 310A WOYd

SI1IAD N SD3Y
wqum_ = I719AD WOYd

P )

e

e rans o

OUd TLINKW

+ JOMd JFONIS

3
-

¢ 3L

00z oS

o4



123

g d4°IA *31d

(QINNIINOD) ¢*9°IA °*9I3 YOI AVYIVIQ HVIKWIL

o0g =i 531VDS

N - - - (Q3LANYYIINT) (‘1 D0¥d 3INILNOY aaY
. ’ BN — — L1 J0¥d INILNOY Ld¥LINI

/P4

-

01 3|nsa4 ' 19nd
0] 3[NsaJ €% 1 9Nd
01 1|nsa. z'y :sNg
01 1[nsad |y 1Sng
— o H% 40 ALIAILIY
o . — wo €9 40 ALIAILDY
9 ' s 70 40 ALIATLIV

— - 1% 40 ALIATLIY

2 PR 11 ©1 1|nsad ‘¢ :sNng

N - w16 40 ALINILIY

—— p— -

N | “1 40 ALIATLIY
[N 'S
& N

¢ >

x

509d 111N

... J0%d JTONIS

T sLvl Ol

. PYCT L 1P
- 009 0P




not be neglected), On the other hand, processors would
generally be assigned as nearly adjacent to one another
as possible: thereby, reducing the required 20_s to the
order of 1ls etc,, for this example. (Note that the bus
is a pipeline-1like device; once it is filled, items
come out at the rate items are entered; thus, using 1lys
or 20,;s for the bus transit time will make an insigni-

ficant difference for this example. See Fig. VI.B.6).

Using the worst-case bus transit time of 20ys, it
can be seen in the timing diagram of Fig. VI.B.6, the

multirprocessor canfiguration requires

, N
£ {1,1) = 6 + 7(144) + 2(31)ps

for the operation of the master processor, Processors
(5,1), and (4,1), (&4,2), (4,3), {(4,4) require

tn(s,1) * N{31 + 10)us
and
t = Y31 + 103)
AR S A + S

respectively. Using this organizationg the total time
required for forming the standard deviation of twelve
numbers 1s 741ys. This represents an improvement by a

factor of 2 over the single processor case,

Although it is not reascnable to include the pro-
gramming or loading time in a discussion of program
execution times, it might be argued that for a svstem of
this nature, the structuring time is a legitimate part of

the system execution overhead and should therefore be in=
cluded. Fig. VI.B.8 illustrates the tvpe of structuring

process that might precede this sample program,

As can be seen this will add an additional 300US

124
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to processor {1,1)'s task. Assuming that this was incor-
porated in the worst possible way (ie., tacked onto the
first of 1,1's routine) as opposed to interleaving it in
the appropriate places within {(1,1)'s routine to take ad-
vantage of the pipeline effect of the bus, etc., the

total execution time for the multiprocessor would be

tm = 741“5 + 300uS = 1041}.15

and would represent an increase in speed of 1.42 over the

single processor.

From the discussion of the improvement factor in
Section III, it is clear that as the number of data items
in the standard deviation increases (and hence the exeru=
tion time in the single processor case) the improvement
resulting from use of this multiprocessor architecture
also increases. By the time the number of items reaches
one hundred, as used in this example, the multiprocessor
has a speed advantage that has leveled off at approximately

3. The multiprocessor could also have been configured

using additional processor modules Lu vbialan & WOTC
dramatic speed advantage. This would not have served the

purpose of providing a simple, brief example, however,



C. Firmware/Special System Routines

Thus far, any application of specialized instruc=
tions has been avoided to illustrate the utilization of
the system using conventional microprocessors and con=
ventional instruction sets of limited capability., How=-
ever, to most effectively manage the multiple processor
system, it is desirable to incorporate several special
instructions, system macros or system sSubroutines espe-

cially adapted to this purpose, Assuming the basic in-

struction set is of a conventional, general purpose type
as is found in common micro= and minicomputers, the fol=-

lowing type of modifications or additions may be desired,

1, Multiword, Memory To Bus Register Move

For an eight bit machine havihg its I1/0, peri=-
[ TR P ~ a mammnad fomba S maromal AdAdwm~rcns OmaAasn a e
yllCLdLD 3 C LS oy ulqyycu LAs L o S L8 S A LSRR A (SR TR T Erip S e ) &P \~Hoey
1 aving 32 bits busses, this

ike the Motorola 6800) and h
n u

struction might take the form:

=

MV4 EALl, EAZ
Move four contiguous bytes beginning
at the effective address, EAl, to the
four ivcations beginning at effective
address, EA2, This will allow an entire
bus register to be tilled with one instruc=

tions,; etc,

2. Inter. upt Processing

During interrupt processing, the first action by

the processor must be the setting of the HOLD FLIP FLOP,

The processor is then required to wait until it sees the

HOLD ACKNOWLEDGE LINE go low. Conventional ianterrupt

processing can then proceed, Upon execution of a return
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from interrupt (RTI), the last microprogrammed execu-
tion of a return from interrupt (RTI), the last micro-

programmed action is to reset the HOLD FLIP FLOP,

3, Clear Mode Addressing

The application for this addressing mode is in the
maintenance of a Command Table, Each processor assigned
as a master of one or more subordinate processors sends
out commands, It must therefore keep track of -he status
of the operations active in subordinate procestars o
ensure that a DONE is eventually received fur zverey
operation/command it sends out, It must s&ls: avold
sending a command with a particular operatl.on ».amber
before a previous operation in the same procccsor with
the same operation number is finished, Likzwise, when
a processor executes a FORM operation spawning processes
in subordinate processors, records must be kept allowing
the master to ensure that all spawned processes have

terminated before resuming action beyond the JOIN in=

1]
8

truction, An effective means of maintaining these
A

[b]
(1]
(b}
Q

»r

n
[E8
in

14

n the Ffarm of a rahla (eg hacsh tahla) of

information versus processory numbers and operation
number. Indirect and clear mode addressing can be
useful in the maintenance of this table., For example,
consider a FORK and JOIN sequence, The FORK spawns N
independent concurrent processes in N processors, Each
possible processor name plus operation number is repre-
sented as an empty location in the table, CMDTAB, shown
in Fig, Vi.C.1, Assume the processes spawned are in

{

\

processors (2,1), (3,1}, {4,2), etc,, and are referred

to as operations numbered 2, 5, 3, etc,, in each proces=

sor, respectively. As the FORK begins execution,; the
entries in CMDTAB for these operation numbers, in their

respective processors, are zero, The master processor
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FORKI!(£2,1),0P=2;{3,4),0P=5;{4,2),0P=3)

NXT:JOIN!
(a)
R
PROC |,! MEMORY
i ,_/1
PROC 1,1

CMDTAB —
1

: PROC 2,1:1
\ PROC 2,1: 2= e

op 2 oP S oP 3

PROC 2,1| | PROC 3,1| | PROC 4,2 PROC 4,2:3-> '—\

er\‘ . PROC 3,1: 5~ o=
x ,ﬁ\

| i r /
{b) FORK 3
STATUS —
BLOCK NX
/-_/
(c)

ACTION OF FORK AND JOILN
Fig, VI.C.1
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issues commands sequentially to each subordinate under

the subordinate's respective operation number and enters

a pointer to the FORK STATUS BLOCK in CMDTAB at the
appropriate position. In addition, the master increments
the value contained in the first word of the FORK STATUS
BLOCK, This word, initially zero, will contain the number
of arcs leaving the FORK (or the number of processors
spawned), After the FORK is completed, the master waits
for DONE's to be received from each operation and proces=
sor containing a spawned task., As each DONE is received
from any arbitrary processor, the processor name and
operation number are hashed to find their position in
CMDTAB. The master will then access indirectly through
"this position and decrement the first word of the FORK
STATUS BLOCK. 1If this results in a zero value, execution
will continue from the address contained in the second word
of this status block, Using Clear Mode Addressing when

ining the address cf the FORK STATUS RLOCK after &

Q
Cl"

DONE is received will automatically clear the entry in
CMDTAB signifying that the operation and processor are

free to be asigned again,

4, EALU Requirements

Wwhen a group of modules has been organized as an
EALU, the group will appear as a wider processor in most
respects, However, with regard to the computation of
addresses for storage and retrieval of data and instruc-
tions, this is not acceptable, Each system module in an
A ndent fvom its comea ni
le will be calculated
s, they must be

es
uleg, Therefore

—————————— »

independent w
when an effective address is being ulated, the
t

alc
system modules must be switched out of the CARRY LOOP.



(This does not imply removal from the FUNCTION LOOP).
This then requires that carries, etc,, from an EALU be
given back to the module's own microprogram controller
during address calculation. Each driven module’s con=
troiler will still be in a "wait for interrupt'" mode as
discussed earlier, However, it must also monitor the
ALU's carry line, etc,, to check for overflow or errors
in calculating addresses, If an error is detected, it
will be handied as though it were an interrupt as

discussed in Section 1V,
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D. Example Using EALU's

A second more complex example may be useful in
illustrating the more advanced techniques and applica-

tions of this architecture,.

A set of simultaneous ordinary differential equa-
tions can always be reduced to a set of first order
ordinary differential equations by the introduction of
auxiliary dependent variables. Feor example,

n

y' o+ 2 yy' - 8y = %2

can be reduced to a set of two first order equations by

letting
4
y = u
Then
Vi 1
y = u
and
y’ = u
1‘1’ - Flx v ‘ll) = XZ— 2yu + 8V

Assuming that the general set of equations pro-=

duced in this manner,

y1 = fl (x’yl’ e oo ey yM)

Yé = fz (X,y1: ea sy yM)
!
}7}'i = f}-ﬁ (X,yl, e e 090 9 YM)

has a set of initial conditions

(XSY1’ LA ym)o
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specified at one point, a solution can be obtained by
numerical integration using the Runge-Kutta method, For
additional discussion of this procedure see Southworth
[52] . Using a uniform step size, h, the following steps

yvield the solution points Y1 aY2 a*** Y. n for
b 3 >

n=20,1,...,N, for each of the N intervals of x:

Step 1: K = hfl(xn

1,1 Y10, M,n’

K = hf ). 4 oo e
2( n’yl,n, ,yM,n)

K1 = By 0 seee Vi)

k

. h 1,1
Step 2 Kl’z - hfl(xn + 2’y1,n + 2 9 o0o0eey ym,n +
km,l )
2
. o h 2,1
1(2’2 = nzz\xn -~ 2,_‘71,n + 2 3 ooco0o0y ym’n -+
k
m,1 )
2
K,, = hf (x_ + Ey + i&l y +
M,2 M'n 2?7 1,n 2 2 *°°%*?* Ja,n
k
m,1 )



. h 1,2
Step 3: km,j = hfm(xn + Z’yl,n + 2 > °*e°> ym’n
+ kaZ )
2
for m =1 to M
4 -
Step 4&4: Km’4 = hfm(xn1+h’yl’n+k1,3’°°°O’ ym,n
+ km,3 )
Ym,n+1 ~ Ym,n + g(km,l + 2Km,Z * 2Km,3

This results in the precedence graph shown in Fig.
VIi.D.,l, Note that each of the operations at each level
of the precedence graph are iandependent of all otherx
operations on the same level, Each vertical column re=-
presents those operations pertaining to one of the M
equations., The approach taken for this algorithm will
he tn divide the work between M EALU's. Each EALU will
be responsible for one column and will contain four,
data driven routines (or operations) for the four steps

respectively.
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A program for this architecture written in PL/1
like notation would appear as indicated below. This
program will perform Runge-Kutta integration of M
simultaneous equations using one level of hierarchy and
three word EALU's providing 24 bits of arithmetic
precision, Typical basic system routines required are

included at the end of the example routine,

Processor 0 is assumed to have been designated by
the operator to be the system master and contains the
bootstrap that 1loads and begins execution of the follow-

ing routine,

PROCESSOR O
PROC_O :PROCEDURE MAIN;
This routine structures the system, transfers the program
for each subordinate from memory to each processor and
states each subordinate.,
VNAME = 0,0;

This sets the processor V=-name to 0,0

/ % LEVEL | P=-NAME . OP NO , CMD %/
CALL COUT (O s {N) . 1 , 31);
CALL CcOUT (O R M*3) 1 , 31);

This routine outputs to the specified command bus

buffer register; any necessary waiting is provided by

this routine,

(N) is the largest P-name in the system and is physically
located to the immediate left of Proc O

3 2~ LR a e oa o) P L e oo o P T O R P N~
~ L O Litc wUninalt a “uauc LW “Cauoc (SR YR — o Lilla . iauir pLULC O T
sor to activate its BUS SHORT module on level 1,

M ig the number of equations (defined el sewhere)



POI = 1 TOM * 3;
CALL COUT (O, (1) , 1 , 28) :
CALL DOUT ( 1y 1 , NAME(I);
END;
These statements send command 28 as operation 1 to each
processor., CMD 28 is to be the command to set the pro-
cessor V-name to the value received on the data but
for operation 1
NAME is a vector containing the following V-
aames, (1,1% ¢1,2); (1,3)% (2,1);...,{4,1);
M,2); (M,3)

CALL CcoOUT (O, XX, 2 , 27)
CALL DOUT ( xx), 2 ., 1) ;
Command 27 requires the receiver to set its priority to
the value received on the data bus - in this case 1,

(XX) represents the universal name;hence, all processors

will rec2ive this command.

CALL WAIT
Wait for all processors to reply that they have success-=
tully completed aii outstanding tasks
DO WHILE MORE_PRGM;
CALL COUT (0 , (XX, O, 26);
DO J=1 TC 255 WHILE NOT_LAST_ITEM;
CALL DOUT ( (XX), J, PROG_WORD(I));
END
END;
Command 26 reguires a processor to accept the program
being sent over the data bus, This program is in the

form of a load module broken into blocks of 255 words or
n

rr
[+

lags, The individual words are ordered by using h
T

Data Bus Operation/Sequence number field. Th i

M
L4}
m
Q
rl
(]

2
CMD 26 can only be sent to processrs having no outstand-
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ing tasks; it is sent only as operation O;

would be returned otherwise

CALL COUT (O
CALL couTt (O
CALL couT (O
Command 25 - set status
24 - set status
23 - set status

CALL WAILT

Wait for all processors

CALL COUT
CALL DOUT

(
'
\
CALL DOYUT (
(

CALL DOUT

CALL DOUT (

, (Xx,1) , 0 , 25);
, {Xx,2) , 0 , 24);
, (xx,3) , 0 , 23);
to driving module of

an error

EALU

to driven module of EALU

141

to low order driven module of EALU

to finish

, (XX,1) , 0 , 22);
Xx,1) , 1 , @
(Xx,1) , 2 , ©

(XxX,1) , 3 , O

(XX,) , M#l, 1

“
~

< <
o
N
~

yo,M

Command 22 = accept a block of data omn data bus,

ordered by sequence no {operation no) a i imn the i/

field (3rd field) indicates last item,

CALL couT (1

Command 00 - "Go¥, equi

in each processor
END PROC_C;

WAIT: PROCEDURE;

This routine checks to see of all the commands it has

sent out to subordinate processors have replied DONE,

, {(Xx,1) , 0 , 00);

alent to pressing a start key
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If not, it waits until all the DONE's are received. It
accomplishes this check by observing the entries in
CMDTAB for each subordinate processor.
AGAIN: DO I = 1 TOM * 3;
IF CMDTAB(I) .NOT CLEAR. THEN WAITING = .TRUE;
END;
IF WAITING THEN GO TO AGAIN;
END WAIT;
.NOT CLEAR. should be taken as a special built in logical
operation used to detect any non=-zero entry in the table
CMDTAB,

Each of the M subordinate EALU's (addressed (1,1),
(2,1, ..., {M,1), etc.) execute the following routines:
PROCESSOR m,1 for m= 1,2,..,,M

MAIN: PROCEDURE

PO I = 0 TO 256;
ENABLE (I) = ,FALSE.;
END;
This is a power up initialization type sequence to ensure
that the system starts in a reset state, ENABLE is a
global control vector of length 256 (256 possible opera-=-

tion ne's), Its status changed by the interru

nt rote
o> P~ 10

is u
tine that receives commands.
AGAIN:
DO I =0 TO 256
IF ENABLE(I) THEN CALL OP(I);
END;
GO TO AGAIN;

i
(o}
Q
12
i
x
-
M
{2a

tine is command to all subordinate
1 of the interrupt routines through-
out the system, This routine ailows each of the OP rou-

tines to be data driven.



INTERRUPT_D: PROCEDURE ]
This routine accepts data from the bus and provides it
to the processor's operations according to the operation
number and originator. 1Its call is initiated by an in-

terrupt occurring in the DATA bus interface.

HOLD = 1;
Requests independence from EALU to service interrupt by
setting the HOLD FLIP FLOP to 1.
WAIT: IF HOLD_ACK = .FALSE. THEN GO TO WAIT:
Wait for independence to be granted as indicated by the
status of the HOLD ACKNOWLEDGE LINE.
CALL DIN ( SENDER, OPNO, DATA) ;
GO TO OP(OPNO) ;
OP is a label vector containing starting labels for each
routine, ie. OPl, OP2, OP3, OP4. DIN is a routine for
obtaining the contents of the INPUT DATA BUFFER,

OPl: BEGIN;
DECLARE NO_OF_ITEMS;
NO_OF ITEMS = NO_OF_ITEMS + 1;
Y(SENDER) = DATA;
IF NO OF ITEMS = M THEN DO NO_OF_ITEMS =
WAIT_FOR_1 = .FALSE.;
END;

GO TO EXIT;

OP2: BEGIN;

OF _ITEMS + 1;

K{SENDER, 1) = DATA;

IF NO_OF_ITEMS - M THEN DD;
NO_OF_ITEMS = O

WAIT_FOR_2 = ,FALSE.;

143
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END;

GO TO EXIT;

OP3: (SIMILAR TO OP2 AND OP1)

EXIT: HOLD = O;
Reset HOLD FLIP FLOP as last function of interrupt

routine

The following routines are executed by the driving
module in each EALU and actually perform the Runge-
Kutta algorithm, Each routine performs one step of the
algorithm for one of the M equations., The routines are
cach data driven, performing no function until their
appropriate data arrives, The arrival of the data is
signaled by the global variables, WALT_FOR_... These

ariables are set by the interrupt routine servicing the

v
data bus,

PROCESSOR m, p m= 1 to M; p =l to 3
QP1l: PROCEDURE;

IF WAIT_FOR_1 THEN GO TO EXIT;

ELSE DO;

D

X = X + H;

K(m,1) = H*F_(X,¥(1), ¥(2),...,
¥ {M);
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EXIT: END OP1l;

The parameters in the output routine deserve scme dis=
cussion at this point, This procedure is to drive an
FEALU. Each module in the EALU will then independently
determine the address specified by the variable ELEMENT
and fetch its contents. In each case, ELEMENT's con-
Feats will be the particular processor's element portion
of its Ve-name, ie. 1, 2, or 3. Thus, when the data is
moved to the output register, each output register will
be loaded with its processor's own element name in the
eclement field. Therefore, each processor will send its
data to all other modules at its same level of significance
in the extended word. As a consequence, the bytes making
up an EALU word will not get scrambled during transfer from
one EALU to another.
OP2: PROCEDURE;

IF WAIT_FOR_2 THEN GO TO EXIT;

ELSE DO;

K(m,2) = H*Fm(X+H/2,Y(1)+K(1,1)/2,...,
Y (M) +K(M,1) /2)

T

CATT DOUTC (XY RIEMENT) 3 . K{(m,2))
CALL DOUT((XX,ELEHENT),4,"(m,2))

WAIT_FOR_2 = .TRUE.
END:
EXIT: END 0P2;

OP3: PROCEDURE;
IF WAIT_FOR_3 THEN GO TO EXIT;

SE

e
=

(Vi

A

<

\(m,B = q*w

»

m(K+H,4,Y(l)+K(1,2)/2,,=.,
T(MY+K(M,2)/2)

CAT.T. DOUT({(XX.ELEMENT),4, K(m,3))
WAIT_FOR_3 = .TRUE

END;



146

EXIT: END OP3;

OP4: PROCEDURE;
IF WALT_FOR_4 THEN GO "0 EXIT;
ELSE DO;
K(m,4) = H*F_(X+H,Y(1)+K(1,3),...,Y (M)

+K(M),3));
Y(m) = Y(m)+K(m,1)+2*K(m,2)+2*K(m,3) +

K(m,4))/6;
CALL DOUT({{XX,ELEMENT),1,¥(m));
WAIT_FOR_&4 = .TRUE.;
END;

EXIT: END OP4;

/%% END OF RUNGE-KUTTA ALGORITHM %%/

Typical basic systems routines are included below,
These routines are not necessarility complete but indicate
the necessary steps required by the system architecture,

The following routine performs the output function
rrom the processor to a command bus sps=ciflizd In &RS
parameter string., It would normally be considered to be
a part of the basic operating system and common to all
processors.

COUT: PROCEDURE (LEVEL
(8] T F

DCcL 1 UTPUT_BU R (number ofC.G."'s)
2 NAME;
3 BLOCK;
3 ITEM;
2 OPNO;
WATT

: 1IF OUTPUT_BUFFER_FULL(LEVEL) = 1 THEN GO TO WAIT;

OUTPUT_BUUFER_FULL represents the status register £1lip
flips for each of the bus output registers. LEVEL speci=-
fies

the particular bus and therefore the particular £flip
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flop.

When the buffer full flip flop is reset by the bus
interface load the buffer with the item to be output.
OUTPUT_BUFFER(LEVEL) ,NAME = NAME;
OUTPUT_BUFFER(LEVEL) .OPNO = OPNO;
OUTPUT_BUFFER(LEVEL) .CMD = CMD;

When the last element is placed in the buffer, the
interface is automatically released to attempt to place

the contents of the buffer onto the bus.

Since a command has been issued, that fact must be
recorded in CMDTAB to wait for ACK and DONE.
CMDTABINDEX = HASH(NAME ,f OPNO);
HASH represents a built in function that hashes each
unique NAME, OPNO combination to a unique address in
CMDTAB.
CMDTAB (CDMTABINDEX) = 1;
EXIT: END COUT;

Every command sent out is acknonwledged an the NDONE
bis by the subordinate processor. Therefore, the superior
processor must have an interrupt routine to service the
ACK.

INTERRUPT_DONE: PROCEDURE;
HOLD = 1;

WAIT: 1IF HOLD_ACK = ,FALSE. THEN GO TO WAIT;
CALL DONE_IN (SENDER, OPNO, CODE)

we

iF UODE = NEG_ACK THEN CALL ERROR;
ELSE IF CODE = DONE THEN GO TO DN;
ELSE IF CODEPOS_ACK THEN CALL ERROR;

POS AK: INDEX =HASH (SENDEK, OPNO):
IF CMDTAB(INDEX) # THEN CALL ERRO;
If the CMDTAB entry is not a 1 signifying that a com-



mand has been issued and an ACK is expected thea an
crror has occurred., Error is to be an error recovery
routine.

CMDTAB (INDEX) = 2;
Undate the entry to indicate a DONE is n ow expected.

GO TO EXIT;

DN: INDEX = HASH(SEND,6OPNO);

IF CODE = DONE_ERROR THEN CALL ERROR;

IF CMDTAB(INDEX)#2 THEN CALL ERROR;
CMDTAB(INDEX) = O;

Clear CMDTAB entry indicating that the operationm is com-

plete, etc.

EXIT; END INTERRUPT-DONE;

Ix!
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o
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INTLRRUPT_CO: PROCEDURE;

3

Interrupt routine for C.G. [ 0] CMD bus

HOLD = 1;

Set the processors HOLD F.F., to 1 to request independence
from EALU

WAIT: IF HOLD_ACK = .FALSE. THEN GO TO WAIT;

Wait for independence to be granted.,

CALL CIN(O, SENDER , OPNO | CMD) ;
Get the contents of the INPUT BUFFER REGISTER for C.G.
[0]. CIN automatically ACK's the command,

GOTO CMD ROUTINE( CMD );

Branches to execute routine specified by CMD, 1Llarge

148



149

values are system routines, small values are user defined

(except 00-"Go"). CMD_ROUTINE is a label array containing

starting labels for each routine,

/*

on

CMD 00 =*/

GO: ENABLE (OPNO) = .TRUE.;
GO TO EXIT;

EXIT: HOLD = O;
END INTERRUPT_CO;
TP~ -
vatl A~

the ACK/DON

~
~

pde
[ad
0
n
0
0
0
]
i3
fo
3
o

cceip the processor must reply

<]
o
/7]

u

o

CIN: PROCEDURE(LEVEL, SENDER ,0PNO,CMD) ;
DCL 1 INPUT BUFFER(number of c.G.'s)

2 NAME;

3 BLOCK;

3 1TEM;

OPNO;

CMD;
SEND = INPUT_BUFFER(LEVEL) .NAME;
OPNO = INPUT_BUFFER(LEVEL) .OPNO;

r
[

£
3}]

SENDER, OPNO, AC_DONE);
ELSE CALL DONO
NAK_CODE) ;

EXIT: ENDCIN;

SENDER, OPNO,



These routines as described here have not been
intended to be complete or in a correct programming
language syntax. No attempt has been made to optimize
this program beyond using reasonable programming tech=
nigques, Instead they are indicative of a programming
philosophy that may be applied to this system, For a
system M equations, the execution time would be ex~-

pected to be approximately

e

ET

1
m 3

%’ETS+0V

where ETS is the execution time using a single system
module, Since maximum use is made of the ability to
broadcast operands, OV will be essentially insensitive

to the number of equations, It can easily be seen
therefore that tuis routinc could be significantly faster
on a multi-system module structure than a single module

for appropriate values of M and ETS.

This example shows the ease with which this archi-
tecture may be applied to the sclution cf problems and
suviiware developed for it, With very iictcvie difficuicy,
a problem of a relatively complex nature can be solved

with a significant:saving in execution time possible,
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VII. CONCLUSIONS

A, General

This thesis has attempted to describe a novel data
processing architecture consisting of a large collection
of identical microcomputer based modulas, A significant
feature of this architecture is provision for a hierarchy
of control that spreads the control functions over several
system modules relieving the requirement for an extremely
powerful central controller, In addition, several system
modules may be grouped together to provide an extended
arithmetic capability. This system architecture 1is
therefore very flexible and has been shown to easily

adapt to the requirements of a particular problem,

A primary motivation for this research has been
the necessity for developing a multiprocessing system
capable of allowing a high degree of local autonomy to
each processor. In addition, cooperation between pro-
cessors is required along with multiprogramming. All

these facilities are available in this architecture,

A detailed block diagram design for a system
module was developed, As a consequence, it can be seen
that a practical implementation is easily within grasp,
In addition, the software aspects discussed illustrate
that the programmability of this architecture is not
significantly different than that of a single micropro-~
cessor of the type incorporated within it, Although the
overhead requirements are increased with the necessity

b wnse b e v A o«
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quired for a program and distribute parameters accord-
ingly, this is a requirement that must be faced anytime
cooperation is required in any system,

The analysis of the communication structure illu-

strates that a bus system as described here can be applied



satisfactorily in a large system of processors, The
expected waiting times required to multiplex an item
onto a bus are very reasonable in terms of the micro-
computer's basic speed and hence an adequate degree of
interaction between processorscan easily be maintained,
The central result of the analysis has been verified by
computer simulation of the system and implies the valid-
ity of the conclusions that may be drawn from the analy-

sis,

The analysis of the system and calculation of, £,
the improvement factor show that this architecture can
provide a significant improvement over single processor
systems, Guidelines to insure generally large f were
given and are seen to be similar to those provided by
common sense, These guidelines are generally easy to

apply as well,

As a consequence, it is felt rthat this architecture
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satisfies the goals of this research and provides a multie~

processor capable of multiprogramming, having a loosely
coupled structure and capable of maintaining a high de-
gree of local autonomy at each processor., It is there=
fore a very flexible system capable of self optimization

and able to structure itself to best solve the problem,

This architecture is inngovative, easy to use and merits

consideration as a model of systems to be constructed in

the future.
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B, Future Work

This research has provided the basic development of
a hierarchical, A restructurable multi-microprocessor
computer architecture, It has, however, provided several
areas for future study, For example, how many Control
Groups would typically be required in a practical system;
assuming that a mix of serial and parallel busses are
employed as mentioned earlier, what effect will this have

on the operation of the system?

In crd

(D

r te answer these questions and study the -
performance of this architecture more fully, the first
extension to this work should be a simulator for the
system that allows actual programs to be written and
executed on the system, The result of this simulation
study should be an instruction set that is well suited

to the system architecture., Additionally, a characteriza=-
tion of the performance of the system under realistic
operating constraints for different numbers of C,G.'s and
mixes of serial and parallel busses should be obtained,
Based upon the conclusions of this simuiation study,
further areas of investigation may be developed, Hope-
fully, a limited prototype of the system architecture

will be constructed to further study flexible, restruc=~

turable computer architecture of this type.
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