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Abstract—This work is concerned with the issue of finite-
time filter design for a type of Takagi–Sugeno (T–S) fuzzy
Markov switching system (MSSs) with deception attacks (DAs).
In view of communication network security, the randomly occur-
ring DAs are considered in the measurement output (MO), in
which the malicious unknown but bounded signals are launched
by the adversary. Notably, to characterize the fallibility of
the communication links between the MO and the filter, the
packet dropouts, DAs, and quantization effects are taken into
account simultaneously, which signifies that the resulting system
is much more applicable than the existing results. Meanwhile,
to deal with the phenomenon of asynchronous switching, a
hierarchical structure approach is adopted, which involves the
existing nonsynchronous/synchronous strategy as special cases.
By means of a fuzzy-basis-dependent Lyapunov strategy, suf-
ficient criteria are formulated such that the resulting system
is stochastic finite-time boundedness under randomly occurring
DAs. Finally, a double-inverted pendulum model and a numerical
example are provided to validate the feasibility of the attained
method.

Index Terms—Deception attacks (DAs), finite-time, fuzzy
Markov switching systems (MSSs), hierarchical structure (HS)
approach.

I. INTRODUCTION

O
VER THE past decades, due to the extensive utiliza-

tion in physical applications subject to abrupt struc-

ture changes, including sudden environmental alters and
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component fiascos, Markov switching systems (MSSs) have

attained increasing attention [1]–[3]. Note that MSSs consist

of a set of subsystems, where the information exchange among

subsystems is ruled by the Markov chain. Following this trend,

a large quantity of theoretical results is reported, including

stability analysis, control, filter, etc., [4]–[10]. However, it is

identified that many presented results are mainly concerned

with linear MSSs instead of nonlinear MSSs. In reality, it has

been well recognized that nonlinear MSSs are more general.

In reality, many efficient tools have been addressed to tackle

the nonlinear systems. By incorporating nonlinear dynamics

into optimization, the nonlinear systems have been studied

in [11] and [12]. Another efficient way to tackle the non-

linear systems is the Takagi–Sugeno (T–S) fuzzy model. The

T–S fuzzy model was proposed by Takagi and Sugeno [13],

in which the complex nonlinear systems can be divided into

various linear submodels subject to IF-THEN rules. Since

then, the model has proven to be an efficient tool to approx-

imate nonlinear systems. Aided by the T–S fuzzy model

technique, nonlinear MSSs are recognized as fuzzy MSSs

(FMSSs), which have been widely investigated in many prac-

tical systems [14]–[20]. Especially, all the aforementioned

FMSSs are concerned with an infinite time interval (ITI).

It is well identified that the ITI cannot be applied in many

practical scenarios subject to the fixed time interval. To fill

this gap, the concept of finite-time stability (FTS) is prof-

fered and has been treated as a hot research issue [21]–[25].

Nevertheless, not enough attention has been devoted to the

issue of FTS for FMSSs, and their dynamic behavior still

remains an open challenge, which is the first motivation of this

article.

In all the aforementioned FMSSs, the designed filters are

classified into two categories: 1) mode-independent filters

(MIFs) and 2) mode-dependent filters (MDFs). By neglecting

the useful mode information of the operational plant, MIFs

are easy to design, which may lead to the conservativeness

of attained results. As for MDFs, the plant-mode information

is always presupposed to be accessible to filters; whereas the

aforementioned hypothesis is hard to be contented and dif-

ficult to apply. In practice, because of the network-induced

communication delays, signal losses, and other factors, it is a

tough task to attain the plant-mode information when design-

ing MDFs. Therefore, the investigation of asynchronous filters

(AFs) for FMSSs becomes natural. In [26] and [27], by apply-

ing a hidden Markov model (HMM) technique, the quantized
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controls for nonlinear MSSs have been addressed. By utilizing

the improved HMM strategy, the robust control and state

estimation for MSSs have been inspected in [28] and [29],

respectively. In [30], by employing a nonhomogenous asyn-

chronous approach, the asynchronous l2 − l∞ filter design for

MSSs has been analyzed. In [31], by resorting to the hier-

archical structure (HS) method, the quantized nonstationary

filtering for MSSs has been explored. As stated in [31], the

HS strategy is most remarkable, which characterizes the plant,

quantizer, and filter in a more reasonable way. Up to now, few

efforts have been dedicated to the AF design for FMSSs sub-

ject to the HS strategy, which is the second motivation behind

this article.

Furthermore, in the networked control systems (NCSs),

the signals among sensors, filters/controller, and actua-

tor are imperfect since they are transmitted via commu-

nication networks. The unreliability of the network may

cause unexpected phenomena, for instance, packet dropouts

(PDs) [32], [33]; quantization effect [34], [35]; network-

induced delay [36]; and so on. These unpredictable factors

may decay the target system’s performance. In addition, with

regard to the security of NCSs, such as autonomous vehicles,

unmanned aerial systems, and so on, the deception attacks

(DAs) are not preventable. In reality, the DAs are launched

by the adversaries in the cyber layer to measurement outputs

(MOs). Note that DAs are major sources of dangerous attacks,

which have been cogitated in [37]–[39]. Due to the signifi-

cance of the network-induced phenomenon and the security

of the network, how to tackle with the coexistence of PDs,

quantization effects, and DAs in FMSSs is another motivation

of this article.

Summarizing the aforementioned deliberation, we focus on

the issue of finite-time filter design for FMSSs with DAs in

this article. The three major contributions to this study are

summarized as follows.

1) With the perspective of network security, the randomly

occurring DAs are extended in MO, where the mali-

cious unknown but bounded signals are launched by

the adversary. With the consideration of the network-

induced phenomenon, a novel MO model is provided

for the coexistence of DAs, quantization, and PDs,

simultaneously.

2) In light of the HS approach, the phenomenon of the

asynchronous switching among plant, quantizer, and

filter is described in a more reasonable way.

3) By resorting to a fuzzy-basis-dependent Lyapunov strat-

egy, the association of the finite-time boundedness and

the unknown but bounded DAs are formulated to quan-

tify the level of damage.

Notations: The notations utilized in this work are listed in

Table I.

II. PRELIMINARIES AND SYSTEM DESCRIPTION

A. Fuzzy Markov Switching Systems

Fixing a probability space (�,F ,P) and considering the

nonlinear MSSs described by a fuzzy model as follows.

Plant Rule p: IF ϑ1k is Mp1, . . . , ϑfk is Mpf ,

TABLE I
NOTATIONS

THEN
{

x(k + 1) = A(p, ϕk)x(k) + B(p, ϕk)ω(k)

y(k) = C(p, ϕk)x(k) + D(p, ϕk)ω(k)
(1)

where ϑqk ∈ {ϑ1k, ϑ2k, . . . , ϑfk} stands for the premise variable

of the original system and Mpq indicates the fuzzy membership

functions (FMFs). Specifically, p ∈ {1, 2, . . . , r} and r is the

number of the plant IF-THEN rules. x(k) ∈ R
nx symbolizes the

system state vector, y(k) ∈ R
ny expresses the measured output

(MO), and ω(k) ∈ R
nw stands for the exogenous disturbance

that satisfies ω⊤(k)ω(k) ≤ κ (∀k ∈ [0,N]).

The stochastic variable (SV) ϕk is recognized as a discrete-

time Markov chain (DMC), and ϕk ∈ A = {1, 2, . . . , nA}.

The switching transition probability (STP) of the original plant

obeys generator Ŵ1 = [πab] as follows:

Pr{ϕk+1 = b|ϕk = a} = πab

where a, b ∈ A, πab ∈ [0, 1], and ∀a ∈ A,
∑

b∈A πab = 1.

For ϕk = a (a ∈ A), denote A(p, ϕk) = Apa, where

A(p, ϕk) = {A(p, ϕk),B(p, ϕk),C(p, ϕk),D(p, ϕk)} are known

matrices subject to proper dimensions.

Adopting the T–S fuzzy inference technique, the FMSS (1)

subject to the T–S fuzzy model can be reestablished as follows:
{

x(k + 1) = Ahax(k) + Bhaω(k)

y(k) = Chax(k) + Dhaω(k)
(2)

where

Aha =

r∑

p=1

hp(ϑk)Apa, Bha =

r∑

p=1

hp(ϑk)Bpa

Cha =

r∑

p=1

hp(ϑk)Cpa, Dha =

r∑

p=1

hp(ϑk)Dpa

and Mpq(ϑqk) symbolizes the grade of membership of ϑqk in

Mpq, and gp(ϑk) = 	r
q=1Mpq(ϑqk), normalized fuzzy basis

functions hp(ϑk) = gp(ϑk)/
∑r

p=1 gp(ϑk), hp(ϑk) ≥ 0, and∑r
p=1 hp(ϑk) = 1.

B. Deception Attacks

In the NCSs, the DAs scenario may be experienced during

the signal transmission via a communication network. As a

source of deteriorating plant performance, DAs are injected

by adversaries in a random way. In FMSS (2), a bounded

attacker is injected to randomly eliminate the MO y(k)

y(k) = y(k) + βϕk
(k)�(k) (3)
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where �(k) = −y(k) + ξ(k) stands for the deception sig-

nal. βϕk
(k) = 1 and βϕk

(k) = 0 refer to whether attack

launched is successful or not. ‖ξ(k)‖ ≤ ζ represents the

embedded information launched by an adversary and confined

to a bound signal ζ . The SV βϕk
(k) is determined by the

Bernoulli distribution as follows:

Pr
{
βϕk

(k) = 1
}

= βϕk
, Pr

{
βϕk

(k) = 0
}

= 1 − βϕk

where βϕk
∈ [0, 1].

Remark 1: In (3), �(k) contains both the accurate

information of MO y(k) and the embedded DAs ξ(k). Here,

ξ(k) is unknown and hard to distinguish, is which recognized

as a bounded signal. Meanwhile, the mode-dependent βϕk
(k) is

adopted to illustrate the probability occurring DAs, and abided

by a Bernoulli distribution. If βϕk
(k) = 1, this implies the

attacks occurred and MO is replaced by DAs; if βϕk
(k) = 0,

it indicates no attacks occur.

C. Packet Dropout

In reality, it is unacceptable that signal communication

between MO is perfect, which means y(k) = yf (k). In net-

worked FMSSs, the PDs cannot be neglected since MO drops

intermittently, that is, y(k) 	= yf (k). In this case, a Bernoulli

method is borrowed to depict the PD phenomenon, and the

relationship of y(k) and yf (k) is revealed as follows:

yf (k) = αϕk
(k)y(k) (4)

where αϕk
(k) is a mode-dependent SV. Similar to βϕk

(k),

αϕk
(k) abides by the Bernoulli distribution law

Pr
{
αϕk

(k) = 1
}

= αϕk
, Pr

{
αϕk

(k) = 0
}

= 1 − αϕk

where αϕk
∈ [0, 1]. Obviously, the PD occurs when αϕk

= 0

and no PD occurs when αϕk
= 1.

For the SVs αϕk
(k) and βϕk

(k), it is easy to infer that

E {(ℑ(k) − ℑ)} = 0, E
{
(ℑ(k) − ℑ)2

}
= ℑ(1 − ℑ) (5)

where ℑ(k) = {αϕk
(k), βϕk

(k)} and ℑ = {αϕk
, βϕk

}.

Remark 2: Note that the PD rate (PDR) has been studied

in [43], where the PDR is assumed to be uncertain. Different

from [43], the mode-dependent SVs αϕk
(k) and βϕk

(k) are

adopted to depict the random occurrence of DAs and PDs,

respectively. Meanwhile, the above two SVs are presupposed

to be mutually independent. If αϕk
(k) = 1 and βϕk

(k) = 0,

only communication link of MO occurs; if αϕk
(k) = 1 and

βϕk
(k) = 1, only the communication link of DAs occurs;

otherwise, the MO losses occur.

D. Quantized Measured Output

Aiming to tackle the limited communication bandwidth

between the MO and filter, the signals are required to be quan-

tized before being transmitted. Benefitting from its advantage,

an improved mode-dependent logarithmic quantizer (MDLQ)

is adopted

Qφk

(
yf (k)

)
=
[
Qφk1

(
y1f (k)

)
,Qφk2

(
y2f (k)

)

. . . ,Qφkt

(
ytf (k)

)]⊤
(6)

where Qjφk
(yja(k)), j ∈ {1, 2, . . . , t} symbolizes the jth

component of Q(θk, ya(k)). Furthermore, −Qj(θk, yja(k)) =

−Qj(θk,−yja(k)).

The MDLQ can be sketched by a battery of quantization

levels as follows:

Rj,φk
=
{
±v

(i)
j (φk) : v

(i)
j (φk) = ρi

j(φk)vj0

i = ±1,±2, . . .
}

∪ {0}

where vj0 > 0 and ρj(φk) ∈ (0, 1). The quantizer

Qj(φk, yjf (k)) is portrayed by

Qjφk

(
yjf (k)

)
=

⎧
⎪⎨
⎪⎩

v
(i)
j ,

v
(i)
j (φk)

1+σj(φk)
< yjf (k) ≤

v
(i)
j (φk)

1−σj(φk)

0, yjf (k) = 0

−Qjφk

(
−yjf (k)

)
, yjf (k) < 0

where σj(φk) = (1 − ρj(φk))(1 + ρj(φk)) ∀j ∈ {1, 2, . . . , t}. It

is clear that

Qjφk

(
yjf (k)

)
=
(
I + �jφk

(k)
)
yjf (k)

where |�jφk
(k)| ≤ χjφk

.

Defining �φk
(k) = diag{�jφk

(k), . . . ,�tφk
(k)}, aided by the

aforementioned equation, Qφk
(yf (k)) can be reformulated as

Qφk

(
yf (k)

)
=
(
I + �φk

(k)
)
yf (k). (7)

In (7), the SV φk is identified as another DMC and taking

the value in a set C = {1, 2, . . . , nc}. The STP of MDLQ

following generator Ŵ
ϕk+1

2 = [η
ϕk+1

cd ] is

Pr{φk+1 = d|φk = c} = η
ϕk+1

cd

where c, d ∈ C, η
ϕk+1

cd ∈ [0, 1], and
∑

d∈C η
ϕk+1

cd = 1.

For all a, b ∈ A, c, d ∈ C and ϕk = a, φk = c, collaborat-

ing with (3), (4), and (7), Qc(yf (k)) can be reformulated as

follows:

Qc

(
yf (k)

)
= αa(k)(1 − βa(k))(I + �c(k))y(k)

+αa(k)βa(k)(I + �c(k))ξ(k). (8)

Remark 3: For σ -algebra produced by Tk−1 =

σ {ϕ1, ϕ2, . . . , ϕk−1}, the DMC φk is presupposed to be

Tk−1-independent. As stated in [31], even though the MDLQ

mode φk is different from the plant-mode ϕk, the values of

STP of φk are affected by ϕk and φk−1, simultaneously.

E. Asynchronous Fuzzy-Based Filter

In this section, the asynchronous fuzzy-based full-order

filter for FMSS (2) is inferred as

x̂(k + 1) = Afhψk
x̂(k) + Bfhψk

Qφk

(
yf (k)

)
(9)

where x̂(k) represents the filter state and

Afhψk
=

r∑

p=1

hp(ϑk)Afqψk
, Bfhψk

=

r∑

p=1

hp(ϑk)Bfqψk

in which Afqψk
and Bfqψk

are matrices to resolve.

Recalling (9), the SV ψk is regarded as another DMC and

taking value over a set M = {1, 2, . . . , nM}. The STP of the

filter-keeping generator Ŵ
ϕkφk

3 = [τ
ϕkφk
μν ] is
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Pr{ψk+1 = ν|ψk = μ} = τϕkφk
μν

∀μ, ν ∈ M, τ
ϕkφk
μν ∈ [0, 1], and

∑
ν∈M τ

ϕkφk
μν = 1.

Remark 4: It is remarkable that many asynchronous issues

for FMSSs have been reported. For example, the nonsynchro-

nized state estimation for FMSSs has been explored in [44],

where the estimator mode is different from the operating

region mode. Differently, to model the mismatch of modes

between filter and plant, this article focuses on the AF. In (9),

the σ -algebra formed by Wk−1 = σ {φ1, φ2, . . . , φk−1}, and

the DMC ψk is surmised to be (Tk−1,Wk−1)-independent.

Similarly, the values of STP of ψk are influenced by ϕk, φk,

and ϕk−1, concurrently.

Remark 5: In light of (9), when ϕk = φk = ψk, the

designed AF is reduced to a mode-dependent one; when

ϕk = φk or ϕk = ψk, the AF degrades to a partly mode-

dependent one; when C = M = 1, the AF decreases to a

mode-independent one; and when A = C = M = 1, the AF

demotes to a conventional one. Therefore, the designed AF

covers aforementioned four special cases.

Defining δ(k) = [x⊤(k) x̂⊤(k)]⊤, I1 = [0 I]⊤, I2 = [I 0],

and ∀a, b ∈ A, c, d ∈ C, μ, ν ∈ M, merging with (2) and (9),

the following filtering FMSS is elicited:

δ(k + 1) = A hacμδ(k) + C haμξ(k) + B hacμω(k)

+{αa(k)(1 − βa(k)) − αa(1 − βa)}

×
[
I1Bfha(I + �c(k))ChaI2δ(k)

+ I1Bfha(I + �c(k))Dhaω(k)
]

+ (αa(k)βa(k) − αaβa)I1Bfha

× (I + �c(k))ξ(k) (10)

where

A hacμ =

r∑

p=1

r∑

q=1

hp(ϑk)hq(ϑk)A pqacμ

B hacμ =

r∑

p=1

r∑

q=1

hp(ϑk)hq(ϑk)B pqacμ

C hacμ =

r∑

q=1

hq(ϑk)C qacμ

D haμ =

r∑

p=1

r∑

q=1

hp(ϑk)hq(ϑk)C pqaμ

A pqacμ =

[
Apa 0

αa(1 − βa)Bfqμ(I + �c(k))Cpa Afqμ

]

B pqacμ =

[
Bpa

αa(1 − βa)Bfqμ(I + �c(k))Dpa

]

C qaμ =

[
0

αaβaBfqμ(I + �c(k))

]
.

To proceed further, a definition is embraced as below.

Definition 1 [24]: Given a time interval T > 0, scalars

c2 > c1 > 0, and a matrix R > 0, the resulting MSSs (10)

with ω⊤(k)ω(k) ≤ κ are said to be stochastically finite-time

boundedness (SFTB) with respect to (c1, c2,N,R, κ, ζ ) ∀k ∈

{1, 2, . . . ,T} such that

δ⊤(0)Rδ(0) ≤ c1 ⇒ E
{
δ⊤(k)Rδ(k)

}
< c2.

III. MAIN RESULTS

In this section, sufficient conditions of asynchronous filter-

ing for FMSS (10) will be exhibited.

Theorem 1: Given scalars ǫ > 0, υ > 0, the FMSS (10) is

SFTB with respect to (c1, c2,N,R, κ, ζ ), if there exist matrices

Phacμ > 0, Sc > 0 ∀a, b ∈ A, c, d ∈ C, μ, ν ∈ M, such that

ϒgppacμ < 0 (11)

ϒgpqacμ + ϒgqpacμ < 0, p < q (12)

υNc1σmax(PR) +
υN − 1

υ − 1

(
υd + ǫζ 2

)
< σmin(PR)c2

(13)

where

ϒgpqacμ =

[
�gpqacμ �pqacμ

∗ �c

]

�gpqacμ =

[
�
(1)
pqacμ �

(2)
pqacμ

∗ �
(3)
gacμ

]

�pqacμ =
[
G (1)

pa�cSc G (2)
pa�cSc G (3)

pa�cSc

H (1)⊤
qμ H (2)⊤

qμ H (3)⊤
qμ

]

�c = {−Sc,−Sc,−Sc,−Sc,−Sc,−Sc}

�(1)
pqacμ = diag{−υPpacμ,−ǫI,−υI}

�(2)
pqacμ =

[
�

(2)⊤
1pqacμ �

(2)⊤
2pqacμ �

(2)⊤
3pqacμ

]

�(3)
gacμ = diag

{
−P −1

gacμ,−P −1
gacμ − P −1

gacμ

}

�
(2)
1pqacμ =

[
A ℓ

pacμ C ℓ
pacμ B ℓ

pacμ

]

�
(2)
2pqacμ =

[
θ1I1BfqμChaI2 0 θ1I1BfqμDha

]

�
(2)
3pqacμ =

[
0 0 θ2I1Bfhμ

]

P gacμ =
∑

a∈A

∑

c∈C

∑

ν∈M

πabτ
b
cdη

bd
μνPgbdν

A ℓ
pqacμ =

[
Apa 0

αa(1 − βa)BfqμCpa Afqμ

]

B ℓ
pqacμ =

[
Bpa

αa(1 − βa)BfqμDpa

]

C ℓ
qaμ =

[
0

αaβaBfqμ

]

G (1)
pa =

[
αa(1 − βa)CpaI2 αa(1 − βa)Dpa 0 0 0 0

]⊤

G (2)
pa =

[
θ1CpaI2 0 θ1Dpa 0 0 0

]⊤

G (3)
pa = [0 0 I 0 0 0]⊤

H (1)
qμ =

[
0 0 0 B⊤

fqμI
⊤
1 0 0

]

H (2)
qμ =

[
0 0 0 0 B⊤

fqμI
⊤
1 0

]

H (3)
qμ =

[
0 0 0 αaβaB⊤

fqμI
⊤
1 0 θ2B⊤

fqμI
⊤
1

]
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θ1 =
√
αa(1 − βa)(1 − αa(1 − βa))

θ2 =
√
αaβa(1 − αaβa)

�c = diag{χ1c, χ2c, . . . , χtc}

σmin(PR) = min
a∈A,c∈C,μ∈M

{
λmin

(
R−1/2PacμR−1/2

)}

σmax(PR) = max
a∈A,c∈C,μ∈M

{
λmax

(
R−1/2PacμR−1/2

)}
.

Proof: First, let us define the following:

h+ �q (h1(ϑk+1), h2(ϑk+1), . . . , hr(ϑk+1))

Ph+bdν =

r∑

g=1

hg(ϑk+1)Pgbdν .

Combining (11) and (12) gives

ϒhacμ =

r∑

g=1

r∑

p=1

r∑

q=1

hg(ϑk)hp(ϑk)hq(ϑk)ϒgpqacμ

=

r∑

g=1

hg(ϑk)

⎛
⎝

r∑

p=1

h2
p(ϑk)ϒppacμ +

r−1∑

p=1

r∑

q=p+1

× hp(ϑk)hq(ϑk)
(
ϒgpqacμ + ϒgqpacμ

)
⎞
⎠ < 0 (14)

where

ϒhacμ =

[
�hacμ �hacμ

∗ �c

]

�hacμ =

[
�

(1)
hacμ �

(2)
hacμ

∗ �
(3)
hacμ

]

�hacμ =
[
G (1)

ha�cSc G (2)
ha�cSc G (3)

ha�cSc

H (1)⊤
hμ H (2)⊤

hμ H (3)⊤
hμ

]

�
(1)
hacμ = diag{−υPhacμ,−ǫI,−υI}

�
(3)
hacμ = diag

{
−P −1

h+acμ,−P −1
h+acμ − P −1

h+acμ

}

�
(2)
hacμ =

[
�

(2)⊤
1hacμ �

(2)⊤
2hacμ �

(2)⊤
3hacμ

]

�
(2)
1hacμ =

[
A ℓ

hacμ C ℓ
hacμ B ℓ

hacμ

]

�
(2)
2hacμ =

[
θ1I1BfhμChaI2 0 θ1I1BfhμDha

]

�
(2)
3hacμ =

[
0 0 θ2

2I1Bfhμ

]
.

Applying the Schur complement (SC) to (14), one can get

that

�hacμ +

3∑

s=1

G (s)
ha�cSc�cG

(s)⊤
ha

+

3∑

s=1

H (s)⊤
hμ S−1

c H (s)
hμ < 0 (15)

which is equivalent to

�hacμ +

3∑

s=1

G (s)
ha�c(k)Sc�c(k)G

(s)⊤
ha

+

3∑

s=1

H (s)⊤
hμ S−1

c H (s)
hμ < 0. (16)

By Theorem 2.1, (16) can be reformulated as

�hacμ + sym

{
3∑

s=1

G (s)
ha�

⊤
c (k)H

(s)
hμ

}
< 0 (17)

where

G (1)
ha = [αa(1 − βa)ChaI2 αa(1 − βa)Dha0 0 0 0]⊤

G (2)
ha = [θ1ChaI2 0 θ1Dha 0 0 0]⊤

G (3)
ha = [0 0 I 0 0 0]⊤

H (1)
hμ =

[
0 0 0 B⊤

fhμI
⊤
1 0 0

]

H (2)
hμ =

[
0 0 0 0 B⊤

fhμI
⊤
1 0

]

H (3)
hμ =

[
0 0 0 αaβaB⊤

fhμI
⊤
1 0 θ2B⊤

fhμI
⊤
1

]
.

Carrying out SC to (17), one can get that

�hacμ =

[
�

(1)
hacμ �

(2)

hacμ

∗ �
(3)
hacμ

]
< 0 (18)

where

�
(2)

hacμ =
[
�

(2)

1hacμ �
(2)

2hacμ �
(2)

3hacμ

]

�
(2)

1hacμ =
[
A hacμ C hacμ B hacμ

]

�
(2)

2hacμ =
[
θ1I1Bfhμ(I + �c(k))ChaI2 0

θ1I1Bfhμ(I + �c(k))Dha

]

�
(2)

3hacμ =
[
0 0 θ2

2I1Bfhμ(I + �c(k))
]
.

Next, we establish a Lyapunov function as follows:

V(k, δk, h, ϕk, φk, ψk) = δ⊤(k)Phacμδ(k) (19)

where Phacμ =
∑r

p=1 hp(ϑk)Ppacμ.

For ϕk = a, φk = c, and ψk = μ, similar to [31], it leads to

Pr {ϕk+1 = b, φk+1 = d, ψk+1 = ν|ϕk = a

φk = c, ψk = μ} = πabτ
b
cdη

bd
μν . (20)

Recollecting (10), we derive that

E {V(k + 1, δk+1, h+, ϕk+1 = b, φk+1 = d, ψk+1 = ν

|k, δk, h, ϕk = a, φk = c, ψk = μ)}

= E

{
δ⊤(k + 1)

∑

a∈A

∑

c∈C

∑

ν∈M

πabτ
b
cdη

bd
μν

× Ph+bdνδ(k + 1)

}
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= E
{[

A hacμδ(k) + C hacμξ(k) + B hacμω(k)
]⊤

×P h+acμ

[
A hacμδ(k) + C hacμξ(k)

+B hacμω(k)
]

+ θ2
1

[
I1Bfhμ(I + �c(k))ChaI2δ(k)

+ I1Bfhμ(I + �c(k))Dhaω(k)
]⊤

×P h+acμ

[
I1Bfhμ(I + �c(k))ChaI2δ(k)

+ I1Bfhμ(I + �c(k))Dhaω(k)
]

+ ξ⊤(k)θ2
2

(
I1Bfhμ(I + �c(k))

)⊤

×P h+acμ

(
I1Bfhμ(I + �c(k))

)
ξ(k)

}
(21)

where

P h+acμ =
∑

a∈A

∑

c∈C

∑

ν∈M

πabτ
b
cdη

bd
μνPh+bdν .

In light of the condition ‖ξ(k)‖ ≤ ζ , it is concluded that

E {V(k + 1, δk+1, h+, ϕk+1, φk+1, ψk+1}

≤ ̟⊤(k)

4∑

s=2

�
(s)⊤

hacμP h+acμ�
(s)

hacμ̟(k)

+ǫ
(
ζ 2 − ξ⊤(k)ξ(k)

)
(22)

where ̟(k) = [δ⊤(k) ξ⊤(k) ω⊤(k)]⊤.

For υ > 1, by letting

J (k) = E {V(k + 1, δk+1, h+, ϕk+1, φk+1, ψk+1}

−υV(k, δk, h, ϕk, φk, ψk) − υω⊤(k)ω(k) (23)

and substituting (22) into (23), we have

J (k) ≤ ̟⊤(k)�̂hacμ̟(k) + ǫζ 2 (24)

where

�̂hacμ = �
(1)
hacμ +

4∑

s=2

�
(s)⊤

hacμP h+acμ�
(s)

hacμ.

Using SC to (18), it is clear that �̂hacμ < 0. Therefore,

J (k) in (24) is bounded as

J (k) ≤ ǫζ 2. (25)

Recalling (23) and (25) implies

E {V(k + 1, δk+1, h+, ϕk+1, φk+1, ψk+1)}

< υV(k, δk, h, ϕk, φk, ψk) + υω⊤(k)ω(k) + ǫζ 2.

(26)

Summing up (26) on both sides from 0 to k + 1 for k ≤ N,

it leads to

E {V(k, δk, h, ϕk, φk, ψk)}

≤ υkE {V(0, δ0, h, ϕ0, φ0, ψ0)}

+

k−1∑

m=0

υk−mω⊤(m)ω(m) +

k−1∑

m=0

υk−1−mǫζ 2

≤ υNE {V(0, δ0, h, ϕ0, φ0, ψ0)} +
υN − 1

υ − 1

(
υκ + ǫζ 2

)
.

(27)

Identifying (19), it is easy to derive that

V(0, δ0, h, ϕ0, φ0, ψ0) ≤ σmax(PR)δ
⊤(0)Rδ(0) (28)

and

V(k, δk, h, ϕk, φk, ψk) ≥ σmin(PR)δ
⊤(k)Rδ(k). (29)

Together, with (27)–(29), we get

E
{
δ⊤(k)Rδ(k)

}
≤ υNc1σ

−1
min(PR)σmax(PR)

+ σ−1
min(PR)

υN − 1

υ − 1

(
υκ + ǫζ 2

)
. (30)

By (13), it is concluded that E {δ⊤(k)Rδ(k)} ≤ c2 ∀k ∈

{1, 2, . . . ,N}. From Definition 1, the FMSS (10) is SFTB.

The proof is completed.

In what follows, the fuzzy-based filter gains will be awarded

in Theorem 2.

Theorem 2: Given scalars ǫ > 0 and υ > 0, the FMSS

(10) is SFTB with respect to (c1, c2,N,R, κ, ζ ), if there exist

matrices Sc > 0, Zμ, Z
(1)
acμ, Z

(2)
acμ, Aqμ, Bqμ, and Ppacμ =[

P
(1)
pacμ P

(2)
pacμ

∗ P
(3)
pacμ

]
∀a, b ∈ A, c, d ∈ C, μ, ν ∈ M, such that

ϒ̃gppacμ < 0 (31)

ϒ̃gpqacμ + ϒ̃gqpacμ < 0, p < q (32)

λ1R ≤ Ppacμ ≤ λ2R (33)

υNc1λ2 +
υN − 1

υ − 1

(
υκ + ǫζ 2

)
< λ1c2 (34)

where

ϒ̃gpqacμ =

[
�̃gpqacμ �̃pqacμ

∗ �c

]

�̃gpqacμ =

[
�̃

(1)
pqacμ �̃

(2)
pqacμ

∗ �̃
(3)
gacμ

]
,

�̃pqacμ =
[
G (1)

pa�cSc G (2)
pa�cSc G (3)

pa�cSc

H̃
(1)⊤

qμ H̃
(2)⊤

qμ H̃
(3)⊤

qμ

]

�̃(1)
pqacμ =

⎡
⎢⎢⎣

−υP
(1)
pacμ −υP

(2)
pacμ 0 0

∗ −υP
(3)
pacμ 0 0

∗ ∗ −ǫI 0

∗ ∗ ∗ −υI

⎤
⎥⎥⎦

�̃(2)
pqacμ =

[
�̃

(2)⊤
1pqacμ �̃

(2)⊤
2pqacμ �̃

(2)⊤
3pqacμ

]

�̃(3)
gacμ = diag

{
Pgacμ,Pgacμ,Pgacμ

}

�̃
(2)
1pqacμ =

[
A⊤

pqacμ C⊤
pqacμ B⊤

pqacμ

]

�̃
(2)
2pqacμ =

[
M⊤

pqacμ 0 N⊤
pqacμ

]

�̃
(2)
3pqacμ =

[
0 0 L⊤

pqacμ

]

Apqacμ =

[
A⊤

paZ
(1)⊤
acμ + αa(1 − βa)C

⊤
paB

⊤
qμ

A
⊤

qμ

A⊤
paZ

(2)⊤
acμ + αa(1 − βa)C

⊤
paB

⊤
qμ

A
⊤

qμ

]
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Bpqacμ =
[
B⊤

paZ(1)⊤
acμ + αa(1 − βa)D

⊤
paB

⊤
qμ

B⊤
paZ(2)⊤

acμ + αa(1 − βa)D
⊤
paB

⊤
qμ

]

Cpqacμ =
[
αaβaB

⊤
qμ αaβaB

⊤
qμ

]

Mpqacμ =

[
θ1C⊤

paB
⊤
qμ θ1C⊤

paB
⊤
qμ

0 0

]

Npqacμ =
[
θ1D⊤

paB
⊤
qμ θ1D⊤

paB
⊤
qμ

]

Lpqacμ =
[
θ2B

⊤
qμ θ2B

⊤
qμ

]

Pgacμ =

[
P (1)

gacμ − sym
(

Z
(1)
acμ

)
P (2)

gacμ − Z
(2)
acμ − Zμ

∗ P (3)
gacμ − sym

(
Zμ
)
]

P (l)
gacμ =

∑

a∈A

∑

c∈C

∑

ν∈M

πabτ
b
cdη

bd
μνP

(l)
gbdν (l = 1, 2, 3)

H̃
(1)

qμ =
[
0 0 0 0 B

⊤
qμ B

⊤
qμ 0 0 0 0

]

H̃
(2)

qμ =
[
0 0 0 0 0 0 B

⊤
qμ B

⊤
qμ 0 0

]

H̃
(3)

qμ =
[
0 0 0 0 αaβaB

⊤
qμ αaβaB

⊤
qμ 0 0 θ2B

⊤
qμ θ2B

⊤
qμ

]
.

In addition, if the inequalities (31)–(34) are solvable, the

filter gains can be expressed by

Afqμ = Z−1
μ Aqμ,Bfqμ = Z−1

μ Bqμ. (35)

Proof: Aiming to tackle the nonlinearity P −1
acμ, an invertible

matrix Z acμ is developed as

Z acμ =

[
Z

(1)
acμ Zμ

Z
(2)
acμ Zμ

]
. (36)

In light of (11), premultiplying and postmultiplying (11) by

diag{I, I, I,Z gacμ,Z gacμ,Z gacμ, I, . . . , I︸ ︷︷ ︸
6×6

} and its transpose,

where the matrix I shares the compatible dimensions with the

corresponding block in (11). Thus, (11) is reformulated as

ϒ ′
gppacμ =

[
�′

gppacμ �′
ppacμ

∗ �c

]
< 0 (37)

where

�′
gppacμ =

[
�

(1)
ppacμ �

(2)′
ppacμ

∗ �
(3)′
gacμ

]

�′
ppacμ =

[
G (1)

pa�cSc G (2)
pa�cSc G (3)

pa�cSc

Z ⊤
gacμH (1)⊤

pμ Z ⊤
gacμH (2)⊤

pμ Z ⊤
gacμH (3)⊤

pμ

]

�(2)′
ppacμ =

[
�

(2)⊤
1ppacμZ ⊤

gacμ �
(2)⊤
2ppacμZ ⊤

gacμ �
(2)⊤
3ppacμZ ⊤

gacμ

]

�(3)′
gacμ = diag

{
−Z gacμP −1

gacμZ ⊤
gacμ

−Z gacμP −1
gacμZ ⊤

gacμ,−Z gacμP −1
gacμZ ⊤

gacμ

}
.

In addition, for P −1
gacμ > 0, it is well recognized that

(
P gacμ − Z gacμ

)
P −1

gacμ

(
P gacμ − Z gacμ

)⊤
≥ 0 (38)

which can be rewritten as

− Z gacμP −1
gacμZ ⊤

gacμ ≤ P gacμ − sym
{
Z gacμ

}
. (39)

Aided by (39), ϒ ′
gppacμ is inferred as

ϒ ′′
gppacμ =

[
�′′

gppacμ �′
ppacμ

∗ �c

]
< 0 (40)

where

�′′
gppacμ =

[
�

(1)
ppacμ �

(2)′
ppacμ

∗ �
(3)′′
gacμ

]

�(3)′′
gacμ = diag

{
−Z gacμP −1

gacμZ ⊤
gacμ

−Z gacμP −1
gacμZ ⊤

gacμ,−Z gacμP −1
gacμZ ⊤

gacμ

}
.

From (35), it is clear that

Apμ = ZμAfpμ,Bpμ = ZμBfpμ. (41)

By the specific form of A ℓ
ppacμ, B ℓ

ppacμ, and C ℓ
pacμ, it

is easy to conclude that (31) is derived by (40). Similarly,

the inequalities in (32) can be guaranteed. This completes the

proof.

IV. NUMERICAL EXAMPLE

To verify that the achieved method is valid, two simulation

examples are delivered in the following section.

A. Example 1

Considering the MSS (1) with two plant modes and

two fuzzy rules, the system parameters are expressed as

follows [40]:

[
A11 B11

C11 D11

]
=

⎡
⎣

0.58 0.39 0.11

−0.12 0.45 0.19

1 0 1.1

⎤
⎦

[
A12 B12

C12 D12

]
=

⎡
⎣

0.65 0.48 0.30

−0.16 0.52 0.20

1 0 1.05

⎤
⎦

[
A21 B21

C21 D21

]
=

⎡
⎣

0.82 0.12 0.21

−0.20 0.60 0.29

1 0 0.9

⎤
⎦

[
A22 B22

C22 D22

]
=

⎡
⎣

0.88 0.13 0.10

−0.13 0.70 0.20

1 0 0.95

⎤
⎦.

The STP matrix of the target MSS (1) is chosen by

Ŵ1 =

[
0.2 0.8

0.55 0.45

]
.

Besides, the asynchronous quantizer and AF are obeying

the following STP matrices:

Ŵ1
2 =

[
0.5 0.5

0.8 0.2

]
, Ŵ2

2 =

[
0.9 0.1

0.25 0.75

]

Ŵ11
3 =

[
0.85 0.15

0.25 0.75

]
, Ŵ12

3 =

[
0.55 0.45

0.35 0.65

]

Ŵ21
3 =

[
0.05 0.95

0.15 0.85

]
, Ŵ22

3 =

[
0.7 0.3

0.85 0.15

]
.
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TABLE II
UPPER BOUNDS OF ǫ FOR DIFFERENT α, β , AND ζ

(a) (c)

(d)(b)

Fig. 1. (a) SR x1(k) − x̂1(k) (100 repetitions). (b) SR x2(k) − x̂2(k) (100
repetitions). (c) MV of x1(k) − x̂1(k). (d) MV of x2(k) − x̂2(k).

The FMFs are given by

h1(1) = 0.5
(

sin2(x1(k)) + sin2(x2(k))
)
, h1(2) = 1 − h1(1)

h2(1) = 0.6
(

sin2(x1(k)) + sin2(x2(k))
)
, h2(2) = 1 − h2(1).

Besides, letting α1 = 0.95, α2 = 0.9, β1 = 0.55, β2 = 0.60,

ρ1 = 0.85, ρ2 = 0.8, υ = 0.1, ǫ = 20, c1 = 1.2, c2 = 5,

N = 10, and ζ = 5, by Theorem 2, the filter gains are achieved

as follows:

[
Af 11 Bf 11

]
=

[
0.0396 0.0416 −0.0237

0.0268 0.0339 −0.0225

]

[
Af 12 Bf 12

]
=

[
0.0371 0.0394 −0.0236

0.0258 0.0309 −0.0224

]

[
Af 21 Bf 21

]
=

[
0.0342 0.0299 −0.0242

0.0235 0.0290 −0.0262

]

[
Af 22 Bf 22

]
=

[
0.0366 0.0310 −0.0241

0.0244 0.0313 −0.0260

]
.

Letting α = αl and β = βl (l = 1, 2), according to the

derived method in Theorem 2, the upper bound of ǫ with

various of α, β, and ζ is exhibited in Table II. It can be

detected from the table that the values of ǫ are increasing

when ζ increases.

For given initial condition x(0) = [1 − 1]⊤ and x̂(0) =

[0 0]⊤, and external disturbance ω(k) = 1/(1 + k2), by

the achieved filter gains, Fig. 1(a) and (c) depicts the state

responses (SRs) of x1(k) − x̂1(k) and x2(k) − x̂2(k) without

DAs, while Fig. 1(b) and (d) shows the mean values (MVs)

of x1(k)− x̂1(k) and x2(k)− x̂2(k) without DAs. Similarly, the

SRs of x1(k)− x̂1(k) and x2(k)− x̂2(k) with DAs are displayed

(a) (c)

(d)(b)

Fig. 2. (a) SR x1(k)− x̂1(k) with DAs (100 repetitions). (b) SR x2(k)− x̂2(k)

with DAs (100 repetitions). (c) MV of x1(k) − x̂1(k) with DAs. (d) MV of
x2(k) − x̂2(k) with DAs.

in Fig. 2(a) and (c), respectively. The MVs of x1(k) − x̂1(k)

and x2(k) − x̂2(k) with DAs are shown in Fig. 2(b) and (d),

respectively. It can be observed from Figs. 1 and 2 that the

MSS (10) is SFTB whether the attacker exists or not.

B. Example 2

A double-inverted pendulum (DIP) is borrowed to verify the

applicability of developed results [41], [42]. As stated in [41]

and [42], the equation of DIP is described by

ẋi1 = xi2

ẋi2 =
1

100Ji

ui −
kr2

4Ji

xi1 +

[
migr

Ji

−
kr2

4Ji

xi2

]
sin(xi1)

+
1

Ji

xi2 +

2∑

k=1,k 	=i

3kr2

4Jk

xi1

where

xi1 angle of the pendulum;

xi2 angular velocity;

Ji moment of inertia;

mi mass of the pendulum;

k constant of connecting torsional spring;

r length of the pendulum;

g gravity constant.

The values of the parameters Ji, mi, k, r, and g are, respec-

tively, set as J1 = 2 kg, J2 = 2.5 kg, m1 = 2 kg, m2 = 2.5 kg,

k = 8 N · n/rad, r = 1, and g = 9.8 m/s2.

Similar to [41], by discretizing the DIP with sampling

period T = 0.01 s, the corresponding DIP is reestablished

as the FMSSs: Plant Rule 1: If x1(k) is Mi, then

x(k + 1) = Apax(k) + Bpaωk

y(k) = Cpax(k) + Dpaω(k)
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(a) (c)

(d)(b)

Fig. 3. (a) SR x1(k) − x̂1(k) (100 repetitions). (b) SR x2(k) − x̂2(k) (100
repetitions). (c) MV of x1(k) − x̂1(k). (d) MV of x2(k) − x̂2(k).

where

[
A11 B11

C11 D11

]
=

⎡
⎣

1 0.0120 0

−1.3200 −0.1540 0.5

1 0 1

⎤
⎦

[
A12 B12

C12 D12

]
=

⎡
⎣

1 0.0120 0

−1.3760 −0.0352 0.5

1 0 1

⎤
⎦

[
A21 B21

C21 D21

]
=

⎡
⎣

1 0.0120 0

−1.1818 −0.1658 0.5

1 0 1

⎤
⎦

[
A22 B22

C22 D22

]
=

⎡
⎣

1 0.0120 0

−1.2378 −0.0447 0.4

1 0 1

⎤
⎦

[
A31 B31

C31 D31

]
=

⎡
⎣

1 0.0120 0

−1.3760 −0.0352 0.5

1 0 1

⎤
⎦

[
A32 B32

C32 D32

]
=

⎡
⎣

1 0.0120 0

−1.2485 −0.0448 0.4

1 0 1

⎤
⎦.

In addition, the FMFs are the same as [42], αl = 0.9, βl =

0.8 (l = 1, 2), ζ = 2, κ = 0.6, c1 = 0.2, c2 = 10, ǫ = 8, and

other parameters are expressed as the same as Example 1. By

solving inequalities in Theorem 2, the filter gains are acquired

as follows:

[
Af 11 Bf 11

]
=

[
0.0496 −0.0144 −0.0009

−0.0698 0.0084 −0.0348

]

[
Af 12 Bf 12

]
=

[
0.0568 −0.0153 −0.0011

−0.0880 0.0122 −0.0346

]

[
Af 21 Bf 21

]
=

[
0.0469 −0.0154 −0.0016

−0.0576 0.0048 −0.0340

]

[
Af 22 Bf 22

]
=

[
0.0496 −0.0159 −0.0017

−0.0671 0.0084 −0.0339

]

(a) (c)

(d)(b)

Fig. 4. (a) SR x1(k)− x̂1(k) with DAs (100 repetitions). (b) SR x2(k)− x̂2(k)

with DAs (100 repetitions). (c) MV of x1(k) − x̂1(k) with DAs. (d) MV of
x2(k) − x̂2(k) with DAs.

[
Af 31 Bf 31

]
=

[
0.0495 −0.0146 −0.0010

−0.0683 0.0146 −0.0346

]

[
Af 32 Bf 32

]
=

[
0.0572 −0.0159 −0.0012

−0.0843 0.0169 −0.0344

]
.

For the initial condition x(0) = [0 0]⊤ and x̂(0) = [0 0]⊤,

and external disturbance ω(k) = 1/(1 + k2), by the attained

filter gains, the SRs of x1(k)− x̂1(k) and x2(k)− x̂2(k) without

DAs are revealed in Fig. 3(a) and (c); the MVs of x1(k) −

x̂1(k) and x2(k)− x̂2(k) without DAs are exhibited in Fig. 3(b)

and (d); the SRs of x1(k)− x̂1(k) and x2(k)− x̂2(k) with DAs

are presented in Fig. 4(a) and (c); and the MVs of x1(k)−x̂1(k)

and x2(k)− x̂2(k) with DAs are unveiled in Fig. 4(b) and (d),

respectively. It can be witnessed from Figs. 3 and 4 that the

MSS (10) is SFTB whether the attacker exists or not.

V. CONCLUSION

In this work, the issue of finite-time filter design for FMSSs

with DAs has been discussed by resorting to an HS approach,

where the randomly occurring DAs, mode-dependent quanti-

zation, and PDs are involved. Especially, the quantizer and the

filter ruin mutual asynchronous with the plant. By means of

a fuzzy-basis-dependent Lyapunov method, the SFTB of the

resulting plant subject to randomly occurred DAs has been

achieved. Finally, two examples have been included to evaluate

the validity of promoted strategies.

REFERENCES

[1] J. H. Park, H. Shen, X. Chang, and T. Lee, Recent Advances in Control

and Filtering of Dynamic Systems With Constrained Signals. Cham,
Switzerland: Springer, 2018.

[2] J. Cheng, D. Zhang, W. Qi, J. Cao, and K. Shi, “Finite-time sta-
bilization of T–S fuzzy semi-Markov switching systems: A coupling
memory sampled-data control approach,” J. Franklin Inst., vol. 357,
no. 16, pp. 11265–11280, 2020.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

[3] L. Zhang, Y. Leng, and P. Colaneri, “Stability and stabilization of
discrete-time semi-Markov jump linear systems via semi-Markov kernel
approach,” IEEE Trans. Autom. Control, vol. 61, no. 2, pp. 503–508,
Feb. 2016.

[4] J. Xia, G. Chen, J. H. Park, H. Shen, and G. Zhuang, “Dissipativity-
based sampled-data control for fuzzy switched Markovian jump
systems,” IEEE Trans. Fuzzy Syst., early access, Jan. 31, 2020,
doi: 10.1109/TFUZZ.2020.2970856.

[5] L. Zhang, B. Cai, and Y. Shi, “Stabilization of hidden semi-Markov
jump systems: Emission probability approach,” Automatica, vol. 101,
pp. 87–95, Mar. 2019.

[6] O. M. Kwon, M. J. Park, J. H. Park, S. M. Lee, and E. J. Cha, “Stability
and H∞ performance analysis for Markovian jump systems with time-
varying delays,” J. Franklin Inst., vol. 351, no. 10, pp. 4724–4748, 2014.

[7] H. Shen, F. Li, S. Xu, and V. Sreeram, “Slow state variables feedback
stabilization for semi-Markov jump systems with singular perturbations,”
IEEE Trans. Autom. Control, vol. 63, no. 8, pp. 2709–2714, Aug. 2018.

[8] K. Shi, J. Wang, S. Zhong, Y. Tang, and J. Cheng, “Non-fragile memory
filtering of T–S fuzzy delayed neural networks based on switched fuzzy
sampled-data control,” Fuzzy Sets Syst., vol. 394, pp. 40–64, Sep. 2020.

[9] S. Pan, Z. Ye, and J. Zhou, “Fault detection filtering for a class of non-
homogeneous Markov jump systems with random sensor saturations,”
Int. J. Control Autom. Syst., vol. 18, pp. 439–449, Feb. 2020.

[10] H. Shang, W. Qi, and G. Zong, “Asynchronous H∞ control for positive
discrete-time Markovian jump systems,” Int. J. Control Autom. Syst.,
vol. 18, pp. 431–438, Feb. 2020.

[11] C. V. Rao, J. B. Rawlings, and D. Q. Mayne, “Constrained state estima-
tion for nonlinear discrete-time systems,” IEEE Trans. Autom. Control,
vol. 48, no. 2, pp. 246–258, Feb. 2003.

[12] X. Yin and J. Liu, “Distributed moving horizon state estimation of
two-time-scale nonlinear systems,” Automatica, vol. 79, pp. 152–161,
May 2017.

[13] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cations to modeling and control,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[14] H. K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2
fuzzy-model-based control systems,” IEEE Trans. Syst. Man, Cybern. B,

Cybern., vol. 38, no. 3, pp. 617–628, Jun. 2008.

[15] W. Zhou, Y. Wang, C. K. Ahn, J. Cheng, and C. Chen, “Adaptive
adaptive fuzzy backstepping-based formation control of unmanned
surface vehicles with unknown model nonlinearity and actuator sat-
uration,” IEEE Trans. Veh. Technol., early access, Nov. 19, 2020,
doi: 10.1109/TVT.2020.3039220.

[16] J. Cheng, W. Huang, H. K. Lam, J. Cao, and Y. Zhang,
“Fuzzy-model-based control for singularly perturbed systems with
nonhomogeneous Markov switching: A dropout compensation strat-
egy,” IEEE Trans. Fuzzy Syst., early access, Dec. 1, 2020,
doi: 10.1109/TFUZZ.2020.3041588.

[17] J. Song, Y. Niu, J. Lam, and H. K. Lam, “Fuzzy remote tracking control
for randomly varying local nonlinear models under fading and missing
measurements,” IEEE Trans. Fuzzy Syst., vol. 26, no. 3, pp. 1125–1137,
Jun. 2018.

[18] N. A. Sofianos and Y. S. Boutalis, “Stable indirect adaptive switching
control for fuzzy dynamical systems based on T–S multiple models,”
Int. J. Syst. Sci., vol. 44, no. 8, pp. 1546–1565, 2013.

[19] H. Ni, Z. Xu, J. Cheng, and D. Zhang, “Robust stochastic sampled-data-
based output consensus of heterogeneous multiagent systems subject to
random DoS attack: A Markovian jumping system approach,” Int. J.

Control Autom. Syst., vol. 17, pp. 1687–1698, Jun. 2019.

[20] W. Assawinchaichote and S. K. Nguang, “Fuzzy H∞ output feedback
control design for singularly perturbed systems with pole placement
constraints: An LMI approach,” IEEE Trans. Fuzzy Syst., vol. 14, no. 3,
pp. 361–371, Jun. 2006.

[21] J. Song, Y. Niu, and Y. Zou, “Finite-time stabilization via sliding mode
control,” IEEE Trans. Autom. Control, vol. 62, no. 3, pp. 1478–1483,
Mar. 2017.

[22] S. He, Q. Ai, C. Ren, J. Dong, and F. Liu, “Finite-time resilient con-
troller design of a class of uncertain nonlinear systems with time-delays
under asynchronous switching,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 49, no. 2, pp. 281–286, Feb. 2019.

[23] Y. Zhu, X. Song, M. Wang, and J. Lu, “Finite-time asynchronous H∞

filtering design of Markovian jump systems with randomly occurred
quantization,” Int. J. Control Autom. Syst., vol. 18, no. 9, pp. 450–461,
2020.

[24] W. Xie, H. Zhu, J. Cheng, S. Zhong, and K. Shi, “Finite-time asyn-
chronous H∞ resilient filtering for switched delayed neural networks
with memory unideal measurements,” Inf. Sci., vol. 487, pp. 156–175,
Jun. 2019.

[25] S. Xiao, Q.-L. Han, X. Ge, and Y. Zhang, “Secure distributed finite-
time filtering for positive systems over sensor networks under decep-
tion attacks,” IEEE Trans. Cybern., vol. 50, no. 3, pp. 1220–1229,
Mar. 2020.

[26] S. Dong, Z. G. Wu, P. Shi, H. Su, and T. Huang, “Quantized control of
Markov jump nonlinear systems based on fuzzy hidden Markov model,”
IEEE Trans. Cybern., vol. 49, no. 7, pp. 2420–2430, Jul. 2019.

[27] M. Zhang, P. Shi, L. Ma, J. Cai, and H. Su, “Quantized feedback control
of fuzzy Markov jump systems,” IEEE Trans. Cybern., vol. 49, no. 9,
pp. 3375–3384, Sep. 2019.

[28] Y. Shen, Z. G. Wu, P. Shi, Z. Shu, and H. R. Karimi, “H∞ control
of Markov jump time-delay systems under asynchronous controller and
quantizer,” Automatica, vol. 99, pp. 352–360, Jan. 2019.

[29] J. Cheng, Y. Shan, J. Cao, and J. H. Park, “Nonstationary control
for T–S fuzzy Markovian switching systems with variable quantiza-
tion density,” IEEE Trans. Fuzzy Syst., early access, Feb. 17, 2020,
doi: 10.1109/TFUZZ.2020.2974440.

[30] Z. G. Wu, P. Shi, H. Su, and J. Chu, “Asynchronous L2−L∞ filtering for
discrete-time stochastic Markov jump systems with randomly occurred
sensor nonlinearities,” Automatica, vol. 50, no. 1, pp. 180–186, 2014.

[31] J. Cheng, J. H. Park, X. Zhao, H. R. Karimi, and J. Cao, “Quantized
nonstationary filtering of network-based Markov switching RSNSs: A
multiple hierarchical structure strategy,” IEEE Trans. Autom. Control,
vol. 65, no. 11, pp. 4816–4823, Nov. 2020.

[32] D. Zhang, Z. H. Xu, G. Feng, and H. Y. Li, “Asynchronous resilient
output consensus of switched heterogeneous linear multivehicle systems
with communication delay,” IEEE/ASME Trans. Mechatronics, vol. 24,
no. 6, pp. 2627–2640, Dec. 2019.

[33] L. Zhang, Y. Zhu, and W. X. Zheng, “State estimation of discrete-time
switched neural networks with multiple communication channels,” IEEE

Trans. Cybern., vol. 47, no. 4, pp. 1028–1040, Apr. 2017.

[34] R. Lu, J. Tao, P. Shi, H. Su, Z.-G. Wu, and Y. Xu, “Dissipativity-based
resilient filtering of periodic Markovian jump neural networks with quan-
tized measurements,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 5, pp. 1888–1899, May 2018.

[35] D. Zhang, Z. Xu, H. R. Karimi, and Q.-G. Wang, “Distributed filtering
for switched linear systems with sensor networks in presence of packet
dropouts and quantization,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 64, no. 10, pp. 2783–2796, Oct. 2017.

[36] J. H. Park, T. H. Lee, Y. Liu, and J. Chen, Dynamic Systems With Time

Delays: Stability and Control. Singapore: Springer, 2019.

[37] D. Ding, Z. Wang, D. W. C. Ho, and G. Wei, “Distributed recursive
filtering for stochastic systems under uniform quantizations and decep-
tion attacks through sensor networks,” Automatica, vol. 78, pp. 231–240,
Apr. 2017.

[38] L. Su and D. Ye, “Static output feedback control for discrete-time hid-
den Markov jump systems against deception attacks,” Int. J. Robust

Nonlinear Control, vol. 29, no. 18, pp. 6616–6637, 2019.

[39] X. Li, Q. Zhou, P. Li, H. Li, and R. Lu, “Event-triggered consensus
control for multi-agent systems against false data injection attacks,”
IEEE Trans. Cybern., vol. 50, no. 5, pp. 1856–1866, May 2020,
doi: 10.1109/TCYB.2019.2937951.

[40] Z.-G. Wu, S. Dong, P. Shi, D. Zhang, and T. Huang, “Reliable fil-
ter design of Takagi–Sugeno fuzzy switched systems with imprecise
modes,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1941–1951, May 2020,
doi: 10.1109/TCYB.2018.2885505.

[41] Z. Shao and T. Chen, “Distributed piecewise filtering design for
largescale networked nonlinear systems,” EURASIP J. Adv. Signal

Process., vol. 2016, no. 1, pp. 1–12, 2016.

[42] M. Zhang, C. Shen, Z.-G. Wu, and D. Zhang, “Dissipative fil-
tering for switched fuzzy systems with missing measurements,”
IEEE Trans. Cybern., vol. 50, no. 5, pp. 1931–1940, May 2020,
doi: 10.1109/TCYB.2019.2908430.

[43] L. Zhang, Z. Ning, and Z. Wang, “Distributed filtering for fuzzy time-
delay systems with packet dropouts and redundant channels,” IEEE

Trans. Syst., Man, Cybern., Syst., vol. 64, no. 4, pp. 559–572, Apr. 2016.

[44] Z. Ning, B. Cai, R. Weng, and L. Zhang, “Nonsynchronized state
estimation for fuzzy Markov jump affine systems with switching
region partitions,” IEEE Trans. Cybern., early access, Jul. 13, 2020,
doi: 10.1109/TCYB.2020.3002938.

http://dx.doi.org/10.1109/TFUZZ.2020.2970856
http://dx.doi.org/10.1109/TVT.2020.3039220
http://dx.doi.org/10.1109/TFUZZ.2020.3041588
http://dx.doi.org/10.1109/TFUZZ.2020.2974440
http://dx.doi.org/10.1109/TCYB.2019.2937951
http://dx.doi.org/10.1109/TCYB.2018.2885505
http://dx.doi.org/10.1109/TCYB.2019.2908430
http://dx.doi.org/10.1109/TCYB.2020.3002938


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHENG et al.: HIERARCHICAL STRUCTURE APPROACH TO FINITE-TIME FILTER DESIGN 11

Jun Cheng (Member, IEEE) received the B.S.
degree from the Hubei University for Nationalities,
Enshi City, China, in 2010, and the Ph.D. degree
in instrumentation science and technology from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2015.

From 2015 to 2019, he was a staff with
Hubei Minzu University, Enshi City. He was a
Visiting Scholar with the Department of Electrical
and Computer Engineering, National University of
Singapore, Singapore, from 2013 to 2014, and the

Department of Electrical Engineering, Yeungnam University, Gyeongsan,
South Korea, in 2016 and 2018. Since 2019, he has been with Guangxi Normal
University, Guilin, China, where he is currently a Professor with the College
of Mathematics and Statistics. His current research interests include analysis
and synthesis for stochastic hybrid systems, networked control systems, robust
control, and nonlinear systems.

Prof. Cheng has been a recipient of the Highly Cited Researcher Award
listed by Clarivate Analytics in 2019 and 2020. He is an Associate Editor of
the International Journal of Control, Automation, and Systems.

Wentao Huang received the B.S. degree in math-
ematics from Guangxi University, Nanning, China,
in 1986, and the M.S. degree in applied mathemat-
ics and the Ph.D. degree in probability and statistics
from Central South University, Changsha, China, in
2000 and 2004, respectively.

In 2009, he was a Visiting Scholar with the
University of Maribor, Maribor, Slovenia. He is cur-
rently a Professor with Guangxi Normal University,
Guilin, China. His current research interests include
analysis and synthesis for nonlinear systems and
differential equations.

Ju H. Park (Senior Member, IEEE) received the
Ph.D. degree in electronics and electrical engineer-
ing from the Pohang University of Science and
Technology (POSTECH), Pohang, South Korea, in
1997.

From May 1997 to February 2000, he was a
Research Associate with the Engineering Research
Center-Automation Research Center, POSTECH.
In March 2000, he joined Yeungnam University,
Gyeongsan, South Korea, where he is currently
the Chuma Chair Professor. He has coauthored the

monographs Recent Advances in Control and Filtering of Dynamic Systems

With Constrained Signals (New York, NY, USA: Springer-Nature, 2018) and
Dynamic Systems With Time Delays: Stability and Control (New York, NY,
USA: Springer-Nature, 2019), and is an Editor of an edited volume Recent

Advances in Control Problems of Dynamical Systems and Networks (New
York: Springer-Nature, 2020). His research interests include robust control
and filtering, neural/complex networks, fuzzy systems, multiagent systems,
and chaotic systems. He has published a number of articles in these areas.

Prof. Park has been a recipient of the Highly Cited Researchers Award
by Clarivate Analytics (formerly, Thomson Reuters) since 2015, and listed
in three fields, engineering, computer sciences, and mathematics, in 2019
and 2020. He also serves as an Editor for the International Journal of

Control, Automation and Systems. He is also a Subject Editor/Advisory
Editor/Associate Editor/Editorial Board Member of several international jour-
nals, including IET Control Theory and Applications, Applied Mathematics

and Computation, Journal of the Franklin Institute, Nonlinear Dynamics,
Engineering Reports, Cogent Engineering, the IEEE TRANSACTIONS ON

FUZZY SYSTEMS, the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, and the IEEE TRANSACTIONS ON CYBERNETICS. He
is a Fellow of the Korean Academy of Science and Technology.

Jinde Cao (Fellow, IEEE) received the B.S. degree
in mathematics/applied mathematics from Anhui
Normal University, Wuhu, China, in 1986, the M.S.
degree in mathematics/applied mathematics from
Yunnan University, Kunming, China, in 1989, and
the Ph.D. degree in mathematics/applied mathemat-
ics from Sichuan University, Chengdu, China, in
1998.

In 2000, he joined the School of Mathematics,
Southeast University, Nanjing, China, where he is an
Endowed Chair Professor, the Dean of the School of

Mathematics, and the Director of the Research Center for Complex Systems
and Network Sciences, Southeast University. From 1989 to 2000, he was
with Yunnan University. From 2001 to 2002, he was a Postdoctoral Research
Fellow with the Chinese University of Hong Kong, Hong Kong.

Prof. Cao was a recipient of the National Innovation Award of China
in 2017 and the Highly Cited Researcher Award in Engineering, Computer
Science, and Mathematics by Thomson Reuters/Clarivate Analytics. He
was an Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS and Neurocomputing. He is an Associate Editor of the
IEEE TRANSACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS

ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, the Journal of the

Franklin Institute, Mathematics and Computers in Simulation, Cognitive

Neurodynamics, and Neural Networks. He is a Fellow Member of the
Academy of Europe, a member of the European Academy of Sciences and
Arts, and a Foreign Fellow of the Pakistan Academy of Sciences.


