
JOURNAL OF ELECTRONIC TESTING: Theory and Applications, 1, 103-123 (1990)
�9 1990 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Hierarchical Test Generation Methodology for Digital Circuits

DEBASHIS BHATTACHARYA

Department of Electrical Engineering, Yale University, New Haven, CT 06520

JOHN P. HAYES

Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 48109

Received March 13, 1989. Revised December 18, 1989 and January 5, 1990.

Abstract. A new hierarchical modeling and test generation technique for digital circuits is presented. First, a high-

level circuit model and a bus fault model are introduced--these generalize the classical gate-level circuit model

and the single-stuck-line (SSL) fault model. Faults are represented by vectors allowing many faults to be implicitly

tested in parallel. This is illustrated in detail for the special case of array circuits using a new high-level representa-

tion, called the modified pseudo-sequential model, which allows simultaneous test generation for faults on individual

lines of a multiline bus. A test generation algorithm called VPODEM is then developed to generate tests for bus

faults in high-level models of arbitrary combinational circuits. VPODEM reduces to standard PODEM if gate-level

circuit and fault models are used. This method can be used to generate tests for general circuits in a hierarchical

fashion, with both high- and low-level fault types, yielding 100 percent SSL fault coverage with significantly fewer

test patterns and less test generation effort than conventional one-level approaches. Experimental results are presented

for representative circuits to compare VPODEM to standard PODEM and to random test generation techniques,

demonstrating the advantages of the proposed hierarchical approach.

Key words: digital circuits, fault modeling, hierarchical testing, high-level circuit models, test generation.

1. Introduction

The great complexity of modern digital circuits has

made classical test generation methods too time con-

suming for many applications. While large circuits are

often designed and analyzed at a register or functional

level of abstraction, classical algorithmic test generation

techniques usually require a more complex gate-level

model of the circuit in which logic gates (AND, OR,

NOT, NAND, etc.) are the primitive components. The

resulting increase in the number of components in the

circuit model--a gate-level model contains perhaps ten

times as many components as the equivalent register-

level model--tends to significantly increase the test gen-

eration time. Moreover, important simplifying features

of the circuit under test, such as the presence of a hier-

archical structure or repeated subcircuits, must be
ignored for test generation purposes.

Existing test generation algorithms usually assume

a single line in a gate-level model of the circuit under

test to be permanently stuck at logic level 0 or 1. This

is known as the single-stuck-line or SSL fault model.
Two well-known test generation algorithms that employ

the SSL model are the D-algorithm [14] and PODEM

[9]. The major problem of generating tests using a gate-

level model is the exponential growth of computation

time as the number of circuit components increases.

Several proposals have been made to reduce the

complexity of the test generation problem by using high-

level circuit models and extensions of classical test gen-

eration algorithms [15, 12, 11]. A major drawback of

these approaches is their mixing of concepts from dif-

ferent modeling levels. Although the basic modules in

the circuit description are largely at a level higher than

the gate level, their inputs and outputs are defined, im-

plicitly or explicitly, in terms of single-bit lines. More

recently, various other high-level test generation tech-

niques have been proposed that differ significantly from

the classical approaches [5, 16, 18]. An important class

of such techniques [7, 8, 16] construct pseudo-exhaustive
test sets for iterative array circuits using only a high-

level description of the input/output behavior of the

modules in the array. Another method, proposed in [18],

requires an instruction-level description of the circuit
under test. Two major limitations of these techniques are

their lack of generality, and the difficulty of comparing

104 Bhattacharya and Hayes

their fault coverage, i.e., the percentage of faults de-
tected, to fault coverage obtained using more traditional
test generation techniques.

In this article, we develop a new test generation algo-
rithm called VPODEM based on the high-level circuit
and fault modeling methodology introduced by us in
[2]. VPODEM can generate tests for general combina-

tional circuits using a bus-fault model, and takes explicit

advantage of any hierarchical structure present in the
circuit. In the special case of k-regular circuits [19, 20],
which includes iterative array circuits as a proper sub-
class, our approach yields an efficient new high-level
circuit representation called the modified pseudo-

sequential or MPS model. Moreover, VPODEM reduces
to standard PODEM if the gate-level circuit model is
used. Hence, a hierarchical testing strategy which gen-
erates tests using two or more levels of abstraction can
be adopted for general circuits. First, tests are generated

for a high-level model of the circuit, and the SSL fault
coverage provided by these tests is estimated. Next,
using the same algorithm, tests are generated for the
remaining undetected SSL faults in the gate-level model,
so 100 percent coverage of detectable SSL faults can
always be obtained. Thus, our approach minimizes the
mixing of concepts from different levels, and reduces

to a traditional test generation algorithm when low-level
circuit and fault models are used. Furthermore, the
number of test patterns generated by this hierarchical
approach is significantly smaller than the number of

patterns generated by conventional algorithmic or ran-
dom test generation techniques.

Section 2 first summarizes a vector notation used
to represent faults and tests in the high-level models.
It then presents the proposed high-level circuit and fault

modeling techniques. The modeling techniques are il-
lustrated in section 3 by a detailed study of high-level

model construction for k-regular circuits. Section 4

describes the VPODEM test generation algorithm. Key
implementation details of VPODEM and the results of
experiments using VPODEM are provided in section 5.

2. Circuit and Fault Models

We begin with a brief summary of the vector sequence
(VS) notation, which provides a useful and compact
way of describing circuit behavior hierarchically. The
VS notation, first proposed in [10] and subsequently
expanded by us in [2], employs n • arrays called vec-

tor sequences (VSs), where n and m are dynamic
parameters, as the fundamental information units. This
notation is primarily intended to represent input/output
behavior of circuits at different levels of complexity.
For example, the behavior of the gate-level circuit of
figure l(a) can be written in the VS form as

I i 0 0 0 1 1 1 i] / [i 0 0 0 1 0 0 ~]
0 1 1 0 0 1 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 0 0 1 '

0 0 0 0 0 0

where the left 3 x8 array is a VS denoting the input
(test) vectors, and the right 4x8 array is a VS denoting
the corresponding output (response) vectors. The same
circuit can be represented at a higher level as shown
in figure l(b), with the following VS pair representing

its input/output behavior:

[Vv12 V321 /[V4 V5],
where

E = [0 0 0 0],

E

x 0

x 1

000011111 ...

i , ~ [~) 00001000
00110011 !IN..,. _

~ [" ~ ~ ~ [~]) 00000100

01010101 t] " ~ . II] 'M-"~ L ooooo01o

z 0

Zl E

z 2 X

z 3

VlVs

v2v2 b
~' V4V5 Z

(a) (b)

Fig. 1. Two-to-four decoder: (a) gate-level model; (b) high-level model.

A Hierarchical Test Generation Methodology for Digital Circuits 105

o1111
1 0 '

I'73 = [1 1 1 1],

l; oo V4 = 0 0 0
0 0 '

0 0

V s = 0 1 0
0 1 '

0 0

Six operators, called external time expansion ", exter-

nal space expansion @, internal time expansion •

internal space expansion | select S~, and project P~

have been defined on VSs [10, 2] which provide the abil-

ity to expand or contract VSs in various complex ways.

The effect of applying these operators to VSs is illus-

trated below using the two VSs S and T where

~
1 0 , S @ T = ,

S x T = 0 1 , S | ,

S(1)(S) =[1 0], P(2)(S) = I~ 1

Note that an index set a is provided for the operator

select (project), which identifies the rows (columns)

of the original VS that constitute the resultant VS. Fur-

ther details about the VS operators can be found in [3].

Certain "standard" vector sequences have been

defined using the expansion operators alone. For exam-

ple, 0n represents the vector of n 0s; 1 n is the vector

of n ls; A n is the vector of size n with alternating ls

and 0s; Cn is the nx2 n counting sequence (which is

the output of an n-bit counter), and D n is the n•

diagonal sequence.

VSs provide a compact way of representing the input/

output behavior of components in a circuit. A VS ex-

pression of the form V = f (S , 73 can be interpreted

as describing the behavior of a functional block whose

inputs are the VSs S and T, and whose output is the

VS I~ see figure 2(a). For example, if we select f to

be the operator @, then the corresponding functienal

block performs a simple merger of two buses into one,

as shown in figure 2(b). The output bus in this case

is a juxtaposition of the two input buses. The element

of figure 2(b), which is primarily an abstract notational

device, is called a merge element, and provides a basic

way of representing the construction of buses at higher

levels of abstraction. The converse operation, viz, the

splitting of a bus into two or more buses, can be per-

formed by another class of abstract logic elements called

fanout elements (figure 2(c)) which are examined fur-

ther below. Merge and fanout elements allow represen-

tation of arbitrary changes in bus sizes in a simple

manner, and play an important role in the construction

of high-level models of general circuits.

We now present our bus-oriented circuit and fault

modeling techniques. We consider two main levels of

T

I
(a)

= V=f(S,T)

S

T

(b)

V
i "~V1 w- FO

= V 2

(c)

Fig. 2. Interpretation of VS operators as functional blocks: (a) general operator element f; (b) merge element; (c) fanout element.

106 Bhattacharya and Hayes

complexity, dubbed high and low. The high-level circuit

model, denoted M H, is composed of components such

as word-gates, multiplexers, adders, registers, etc., con-

nected to one another using buses of appropriate sizes.

This level corresponds approximately to the register or

functional level of circuit design. When the bus size

is reduced to one, a word gate becomes a single gate,

and a bus is the same as a line; this results in the low-

level circuit model M a which corresponds to the clas-

sical gate level. This multilevel approach makes truly

hierarchical modeling of circuits possible while mini-

mizing the mixing of levels in the circuit models, and

helps in significantly reducing the overall test genera-

tion effort.

The transition from the low to the high level allows

buses to fan out and merge in new, and possibly com-

plex, ways that are unique to the high-level models. A

general fanout element is a component with one input

bus X and n output buses Z~ , Z n such that an in-

put vector V applied to bus X produces output vectors

S~i(F) on Z i for 1 < i < n, where S~i is the select

operator. Hence, the behavior of complex fanout ele-

ments can be described simply by specifying the index

sets c~ i, 1 < i < n, corresponding to the various out-

put buses of the elements. Examples of fanout elements

and other interconnection structures commonly used

by our model are presented in figure 3. A fanout ele-

ment is said to be regular if S~(V) = V for i = 1,

. . . . n. This is a generalization of the simple types of

fanout that occur in gate-level circuit models; note that

all fanout elements in a gate-level model are regular

with input and output buses of size one. The merge ele-

ment introduced earlier can be similarly used to solve

the problem of handling mergers of small buses to form

bigger ones.

Our modeling process for a general combinational

circuit consists of two major steps, viz, high-level model

construction for the main types of subcircuits present

in the circuit, and interconnecting these high-level

models using appropriate buses and fanout elements.

In the first step, we recognize the fact that different parts

of a circuit have various degrees of regularity in their

structures, and may need to be treated differently. The

information about such regularity is typically available

in a hierarchical CAD-based design environment, and

is lost when the circuit is "flattened" to the gate-level.

Thus, our modeling approach needs, and explicitly

uses, hierarchical design information to create the high-

level models, unlike other modeling approaches that

construct the netlists needed for testing from flattened

circuits.

We can identify three major classes of subcircuits

based on their structures. For subcircuits that are regu-

lar or iterative in nature, we construct a new high-level

representation called the MPS model, which is discussed

in detail in the next section. Subcircuits that are not

regular but have their input/output lines organized into

suitable buses, are retained as primitive functional

blocks. In contrast, for a subcircuit that is neither regu-

lar nor bus-structured (as is often true for control logic),

we treat individual lines as buses of size one, which

in effect makes the high-level and gate-level models

identical. Once the high-level modules have been de-

fined, they are interconnected by buses of appropriate

size, and--where necessary--by fanout elements. In

general, it is desirable to use buses that are as large

as possible, consistent with the bus sizes of the high-

level modules.

To illustrate the modeling process, let us apply it

to some standard MSI circuits [17]. The gate-level

model M 6 of the 74157 4-bit 2-to-1 multiplexer is

shown in figure 4(a). The corresponding high-level

model M H appears in figure 4(b). The subcircuits

marked M2,1 through M2,4 of M c form a simple itera-

tive array, and are represented in M H as a word-

oriented subcircuit M 4. As shown in figure 4(b), a

detailed model of the control logic consisting of three

inverters is retained in M H. Moreover, several fanout

elements that change the size of the control buses from

one to four, need to be introduced in M n. These ele-

ments marked FO1, are needed to interface the control

logic with buses of size one to the word-oriented high-

level module M 4 with buses of size four. Obviously,

these fanout elements are not regular in the sense de-

fined above. On the other hand, the fanout elements

marked RFO, in figure 4(b), are regular. As a second

example, consider the standard 74181 ALU/function

generator [17], whose M v and M H models appear in

figure 5. The subcircuits M1 through M4 of M ~ are

again grouped into word-oriented high-level subcircuit

(M 4) in M H. Note that the fanout elements in M 4

marked RFO are regular. The subcircuit M5 of M 6

does not possess much regularity, but has bus-

structured input/output connections, and is easily seen

to be a modified carry-lookahead adder. Hence, this

portion of the circuit is modeled as a primitive com-

ponent MCLA with four input buses, two of size four

and two of size one, and four output buses, as shown
in figure 5(b). M H for the 74181 ALU/function gener-

ator is completed by connecting M 4 and MCLA via two

four-bit buses B1 and B2; we do not need fanout

elements in this final step.

A Hierarchical Test Generation Methodology for Digital Circuits t07

Gate level High- leve l

Xl

X n

Set of n lines

(a)

X

n-bit bus

x 1

xn

�9

l].
Regular fanout

z 11 =Xl

Z l n = x n

Z m l = x 1

Zmn = x n

Co)

n j
X / ~ z 1 = X

Zm=X

Regular n-bit m-way fanout e lement

x 1
x 2

x3
x4
x5

Zll=Xl

z 12=x3

Zl3=X 2

5 / z21=x2 X /

z22=x5

z23=x 4

[" " '] ~ - ~ - Z 1 = S(1,3,2)(X)

~-1 FOi ~ - ~ Z 2 = S(2,5,4)(X)

I ~ Z 3 = S(4,1)(X)

Irregular fanout

z31=X4

z32=Xl

Irregular fanout element of arbitrary type i

(c)

Fig. 3. Interconnection structures in gate-level and high-level circuit models: (a) simple connection (bus); (b) regular fanout; (c) irregular fanout.

In order to make the test generation procedure hier-

archical in the same sense as the circuit model, the fault
model used also needs to be hierarchical. We now intro-

duce such a fault model, which is a generalization of

the SSL model from single lines to buses. This bus f a u l t

model assumes that buses instead of individual lines

in the high-level models can be stuck at constant vector
values. The most general kind of bus fault thus allows

arbitrary subsets of lines in a bus to be stuck at 0, stuck

at 1, or fault free. In the VS notation, fault F on bus
B may be represented by a vector of the form

F = bl @ b 2 (~) . . . (~) bn

where b i = 0 (1) indicates that line i is s-a-0 (s-a-l),

and b i = d represents a fault-free line. It is obvious
that up to 3 n - - 1 such bus faults can be associated

108 Bhattacharya and Hayes

al

bl

a2

b2

a3

b3

a4

b4

cm[

(a)

A 9

89

S 1 1

(b)

4/:. F
4 4 i

Fig. 4. Four-bit 2-to-1 multiplexer: (a) gate-level model MG; (10) high-level model M H.

with a bus of size n. However, as we demonstrate below,

we need only a small subset of the possible bus faults

for test generation purposes.

The bus faults that appear to be most useful are

classed as total bus faults, defined as follows. An n-bit

bus B is (totally) stuck-at-O if all n lines in B are stuck

at logic level 0; it is stuck at i if all n lines are stuck at 1.

Obviously, total bus faults reduce to SSL faults if the

bus size n is reduced to one, and thus constitute a

natural generalization of the SSL fault model. As shown

later, for certain regular circuits, tests generated for total

bus faults in their high-level models can be guaranteed

to detect all SSL faults on individual lines of the corre-

sponding buses. Furthermore, experimental results pre-

sented in section 5 show that for general circuits with

some regularity in their structures, test sets generated

for total bus faults provide moderate to good SSL fault

coverage, while reducing the test set size as well as the

test generation time substantially.
The primary advantage of high-level models is the

simplification resulting from the presence of fewer

(primitive) components, connections, and faults. The

A Hierarchical Test Generation Methodology for Digital Circuits 109

8 3

$2
$1
So
a3

b3

a 2

b2

a l

bl

a o

bo

C.
(a)

Fanout element 4-bit bus 3-input 4-bit NOR
......~..... # word gate

i ,,,r ~ 4 1

4. ~ ~ I....~4~.__.__~ { P G ACn+4

~ ~ ~ ~ MCLA [
i J ' " 8 9 ~ , ~ M 4 B 2 ~ I M ~ b F

4+i
$2 '/ [' - ' ~ 4 ~ O ~ l l l ~

i 4

! . _,

(b)

Fig. 5. The 74181 ALU/function generator: (a) gate-level model MG; (b) high-level model M H.

110 Bhattacharya and Hayes

simplifications introduced by our approach can be seen

from comparing the two models of the 74181 ALU/func-

tion generator in figure 5. The gate-level model contains

201 lines, and consequently has 402 distinct SSL faults.

The high-level model, on the other hand, contains only

26 buses and 52 total bus faults.

The simplicity of any high-level model is strongly

related to the presence of repeated subcircuits in the

gate-level model, and the regularity of their intercon-

nections. Indeed, if there is little or no regularity of

this kind, as in "random" combinational logic, then

there may be no useful circuit model at any level higher

than M G. With the increasing integration of digital sys-

tems, there has been a trend toward building circuits

from standard high-level modules interconnected in a

regular manner. The modeling technique proposed here

is particularly useful in generating tests for such circuits.

In the next section, it is applied to a particular class

of highly regular circuits to illustrate its advantages over

traditional gate-level methods for test generation pur-

poses. Note, however, that our general methodology

can take full advantage of the more modest degree of

regularity found in typical designs.

3. Regular Circuits

To illustrate the ability of our approach to exploit a cir-

cuit's regularity to simplify test generation, we first

apply it to the class of k-regular circuits recently intro-

duced by Y. You [19, 20]. The best-known examples

of such circuits are bit-sliced ALUs and controllers,

which are 1-regular, and have long been studied under

the heading of cellular or iterative logic arrays (ILAs).

The concept of k-regularity extends the notion of regu-

larity from such completely regular circuits as ILAs
to more general circuits which are not so obviously reg-

ular. Intuitively, a k-regular circuit is a one-dimensional

array of repeated groups of modules, each group con-

sisting of k distinct module types. Formally defined,

a one-dimensional array (cascade) circuit Cl:n of n

modules C1, . . . , Cn is said to be k-regular if C(i_l)k:ik
is isomorphic to Cik:(i+l)k, for all 0 < i < LnlkJ ,

where Ci:r denotes the subcircuit comprising Ci, Ci+1,
. . . . Cr and all their interconnections. Specific exam-

pies of such circuits are provided in figure 6. Figure 6(a)

shows a shifter circuit based on the 74350 IC [17] which

is easily seen to be 1-regular. Figure 6(b) shows a parity
checker circuit that checks for even parity, and is based

on the 74280 IC [17]. Note that the model in figure 6(b)
is actually an intermediate-level circuit in which two
module types A and B have been recognized, and is

an example of a 2-regular circuit. In order to construct
M n for k-regular circuits, we may sometimes start

with such an intermediate-level model instead of a gate-

level model because useful structural information is pre-

served in the former.

The high degree of repetitiveness in the k-regular

circuits suggests that the proposed hierarchical model-

ing technique may be very useful in reducing their test

generation complexity. In fact, for the special case of

1-regular circuits in which the horizontal output lines

from a module are directly connected to the correspond-

ing horizontal input lines to the module, a high-level

model M n of the circuit can be easily constructed such

that a test for a total bus fault on bus B in M H detects

all SSL faults that can be associated with the bus B.

The subcircuit consisting of modules M2,1:M2,4 in the

4-bit 2-to-1 multiplexer of figure 4(a) is an example of

such a 1-regular array. A procedure to construct high-

level circuit models for general k-regular circuits is

briefly described next, and is then illustrated with the

2-regular parity checker.
Let the general k-regular circuit under consideration

consist of n modules, such that n = qk - r, 0 < r

_<- k - 1. Following the notation of section 2, M G and

M ~/denote the low-level and high-level models of the

circuit, respectively. The superscripts G and H are also

used to differentiate between components or buses of

the low-level and the high-level models. Thus, M G for

a k-regular circuit consists of modules C~ through C~

connected to one another. M n is obtained by grouping

together the identical modules Ci 6, Ci6+k, Ci6+2k, . . .

which are spaced periodically along the array, to form

a word-oriented high-level module C/n. The different

high-level modules are then connected together using

buses of size q or q - 1 following a procedure called

pseudo-sequential contraction (PSC) [3]. Briefly stated,

this procedure forms buses from lines connected to the

gate-level modules at intervals of k modules. These

buses are then used to connect the high-level modules

together, with a loop being introduced to represent the

fact that identical modules occurring at intervals of k

modules in the gate-level model are mapped onto the

same high-level module. Four special fanout (FO) and
merge (ME) components need to be introduced to per-

form this grouping of lines into buses in M n. These

are the fanout elements FO[MS, n] and FOILS, n], and
the merge elements ME[MS, n] and ME[LS, n] shown
in figure 7. The parameter n indicates the size of the
input bus in the case of the fanout elements, and the

size of the output bus in the case of the merge elements.
Note that one output bus of each fanout element is of

A Hierarchical Test Generation Methodology for Digital Circuits 111

1-bit shifter cell

N X ' t X Pl P2 P3 P4

[* | "/" I - - 'T I I [* 1 X l - T I I . Y J * ~ 1 | I * / V l * T I !
! - - I T I - - I I T I I ! - - I T I - - I I T / I i - - I l I - - / / T / l : - - 1 T I . 1 1 T I I I

- T - - T - T - T - T - T - T - T

i T I I T I I I I I I l l i I l l T I I I I I I I I i I l l T I I I I I I I I i I l l T I I |11 I l l i

1 1 1 I
I I I I
I I I I
I I I I
I I I I
I I I I
I I I I
I I 1

.

q] q2 q3 q4

(a)

PlP2P 3 P4P5P6 P7P8P9 PloPllP12 P13P14PI5 P16P17PI8 P19P20P21 P22P23P24 P25P26P27

q l , 1 - -

q2 ,1 - -

A

C 1

B

C2

A B A B A B A
- - ~ , 9

C 3 C 4 C 5 C 6 C 7 C 8 C9 - - q l , 9

%,1 qo,2 q0,3 q0,4

(b)

Fig. 6 Examples of k-regular circuits: (a) shifter (1-regular); (b) even parity checker (2-regular).

n /
x / I i i inlJ / Y Zl=S(n)(X) n / FO / Y Zl=S(2..n) (X)

FO X / -~
"~ [MS,n] n-1 / [LS,n] 1/ _

I / ~-- Z2=S(1..n_I)(X) I / Y Z2=S(1) (x)

(a) (b)

1/ ~ n -1/
X1 / ~ Xl / -~

n-11 l[MX'n]l / ~ Z=Xl(~)X2 1 /] [LS,n] I i Z=Xl(~)X2
X2 / ~ X2 / -~

(c) (d)

Fig. 7. The fanout and merge elements used in pseudo-sequential contraction: (a) FO[MS, n]; (b) FO[LS, n]; (c) ME[MS, n]; (d) ME[LS, n].

112 Bhattacharya and Hayes

size one, while the other is of size n - 1. Parameters

LS and MS indicate whether the output bus of size one

is connected to the most significant or the least signifi-

cant line of the input bus. Parameters MS and LS have

a similar interpretation in the case of the merge ele-

ments, indicating whether the most or the least signifi-

cant line of the output bus is connected to the input bus

of size one.

The result of applying pseudo-sequential contraction

to the parity-checker circuit of figure 6(b), is shown

in figure 8(a). Since the circuit is 2-regular, only two

high-level modules A H and B H corresponding to mod-

ule types A and B, respectively, exist in M H. The num-

ber of periods q is obviously five in this case. Merge

(ME) elements are not needed, while special fanout ele-

ments of both types, viz, FO[LS, 5] and FO[MS, 5],

are needed, as seen in figure 8. The interconnections

between the high-level modules and the fanout elements,

as generated by pseudo-sequential contraction, are
shown in figure 8(a).

An important feature of M H for k-regular circuits

is the introduction of a loop, although no such loop ex-

ists in M 6. M H is called pseudo-sequential (PS) due

to the possible presence of loops; note, however, that

it does not exhibit sequential behavior in the usual

sense. It is easy to see that the pseudo-sequential high-

level model contains a constant number of components

whereas the number of components in the gate-level

circuit model increases linearly with q. The bus size

in M H, on the other hand, increases with q. This

trade-off of bus size for component count implies a sig-

nificant reduction in the number of components in M H

compared to M c, even for moderately large values of

q. The only problem of using the pseudo-sequential

1._+
5 /

N O �9 �9 �9

A H

Fo #"
5~ - - ~ [MS,5] 4+,1

4

Fo S - Fo
..,_.)_ ~Ls,5] w , LMS,5], 4/

B H

~ f

5"

(a)

~176 I AH

- " I F o l _ _ ! k /
- -

I

~
" ~ Pseudo-state

4 ~ _ ~ input buses

(b)

Fig. cR (a) High-level (pseudo-sequential) model of parity checker of Fig. 6(b); (b) corresponding MPS model.

A Hierarchical Test Generation Methodology for Digital Circuits 113

model directly for test generation purposes is the pres-

ence of loops in it, because conventional combinational

test generation algorithms require acyclic circuit models.

However, we can solve this problem in the standard way

[4] by breaking the feedback loop in the PS model,

thereby converting it to an acyclic modified pseudo-
sequential (MPS) model. A pair of input/output buses

is created for each loop that is broken, and these buses

are referred to as the pseudo-state input/output
(PSI/PSO) buses.

The advantages of our high-level modeling technique
are illustrated by comparing M 6 and M e for the 27-bit

parity checker circuit introduced in figure 6(b). The

MPS model of the circuit is shown in figure 8(b); it

has two pairs of pseudo-state input/output buses, denoted

PSI1/PSO1 and PSI2/PSOz. To compare the number of

components and buses in the MPS model to those in

the gate-level model M c, we need to expose internal

details of the high-level modules A n and B n. Figure 9

shows these modules' internal structure. In this case,

M a contains 228 components which are connected

using 359 single-bit lines. M ~/for the same circuit has

only 51 components interconnected via 91 buses. Thus,

M n has only one-fourth the number of components

and buses of M ~. Moreover, the number of compo-

nents and buses in the MPS model remain constant at

51 and 91, respectively, independent of the size of the

array, while the number of components and lines in a

gate-level model of the array are 47q and 81q, respec-

tively, if the array consists of q periods. The bus sizes,

05 ls 15 Word gates 14

,

4 \

0 ~ 4 5 [RegUe]~s~

04 04
4 4~

6

3~ 37 '1__

Psol o3[
62 4 5

14
63~z- ~ [F 0 5 1 4 6~__~

57 I I" 68 QP01

PSO 2
0 ~/-[' - -~ 5)(66 ~ 1 QP04

4 IFO I 5, ~ 5 . IFO [-~'-~9
_ 1,~. 5 1 1 ~ l ~ i - l t b s ~ 5 1 1 4 , v.

65 " L-..-] - - ~ " 70
QP02 ~ Y

SpeCial fanout 61ements

85

14

Fig. 9. Detailed MPS model of parity checker circuit of Fig. 6(b).

PSI~ 4
-/-'--o4
4

114 Bhattacharya and Hayes

on the other hand, increase from 1 in the gate-level

model to q in the MPS model. The usefulness of the

MPS model will be demonstrated further in the next

section.

The MPS models for k-regular circuits are truly hier-

archical in that we can construct a sequence of high-

level models M 1 = M/4, M 2 . . . , M q = M G for a

given k-regular circuit, such that M G and M H repre-

sent the two extreme cases in this sequence of models.

It follows from the definition of k-regularity that if a

circuit with n modules, n = qko - r, is ko-regular, then

it is also kos-regular for any integer 1 < s < q. The

sequence of high-level models of the given circuit can

now be obtained using pseudo-sequential contraction

by considering the given circuit to be kos-regular, and

varying the parameter s within the permissible limits.

Sizes of all buses other than pseudo-state buses decrease

from q in M 1 to 1 in M q. The pseudo-state input/output

bus sizes go from q - 1 in M 1 to 0 in M q, i.e., they

vanish in the limiting case.

4. Test Generation Algorithm

We now present a test generation procedure which uti-

lizes the hierarchical circuit and fault models developed

in the previous sections. This algorithm allows the high-

level circuit model to consist of arbitrary high-level

components such as MCLA used in M/4 of the 74181,

as well as simple general-purpose components like word

gates. In the case of k-regular circuits, as stated in sec-

tion 2, we use an MPS model for M H. Note also that

in most cases, the natural high-level model M H to use

is the register-level model developed in the early stages

of a typical CAD-based design process.

The input/output behavior of high-level components

is described using the VS notation of section 2, com-

bined with a straightforward generalization of the cubi-

cal representation found in [14]. The elements of the

cubes thus obtained are vectors instead of scalars, and

hence the cubes are referred to as vector cubes. Some

examples of vector cubes for an n-input NOR gate are

shown below:

1. | x. | x . / 0 .
Xn | In | Xn / On

O.|174
S(l...n)(1 I-n/Zq (~) X Vn/2 q)

| S(1)(XVn/27 ~) 1Vn/2 q)
| X. / O n (1)

where Xn represents the don't care vector of size n.

The concept of cube intersection has also been di-

rectly extended from the scalar to the vector case. Two

vector cubes Vx and I:2 have a nonempty vector intersec-

tion V if every element in cube V1 can be intersected

with its counterpart in I:2 using the rules

s n s = s , s n X = s

where s ~ {0, 1}. For example, referring to the vector

cubes of (1), we see that

ln (~ Xn (~) Xn [lnnXn (~) ln (~) X n / I n = ln Q ln (~) Xn /1 n

ln (~) Xn (~ Xn / OnnOn (~ On (~) On / In =6

where n now denotes vector intersection, and ~b is the

empty set.

The number of possible vector cubes of a component

grows rapidly with increasing bus size. However, by

adopting a hierarchical approach to test generation, and

by restricting ourselves to total bus faults only at each

level, we do not have to consider all possible vector

cubes; it suffices to consider only those cubes relevant

to test generation for total bus faults.

Before presenting the test generation algorithm, we

briefly consider the SSL fault coverage obtained by gen-

erating tests for total bus faults in high-level models

of circuits with varying degrees of regularity. This

allows us to demonstrate the potential of the proposed

approach, as well as to illustrate the major problems

of achieving good fault coverage. Consider a class of

extremely regular circuits whose M H is composed of

word gates and regular fanout elements only, intercon-

nected by buses of fixed size. For such circuits, the

following easily proven result holds:

Theorem 1: A complete test set for all total bus faults

in a high-level model M H composed of word gates and

regular fanout elements interconnected by buses of fixed

size, is also a complete test set for all SSL faults in the

corresponding gate-level model M G.

Although practical circuits that conform exactly to

the specifications of theorem 1 are rare, many common

circuits containing large repeated subcircuits also have

similar characteristics. For instance, it is shown in [3]

that a complete test set for total bus faults in M rt of

the 4-bit 2-to-1 multiplexer of figure 4 is also a complete

test set for all SSL faults in the corresponding gate-

level model.
Some important issues in test generation for high-

level circuits are illustrated by the MPS model M H

of the parity checker circuit shown in figure 9. As

stated earlier, the buses marked PSI (PSO) in figure 9

A Hierarchical Test Generation Methodology for Digital Circuits 115

represent the pseudo-state input (output) buses in the

MPS model. Two problems in generating tests for an

MPS model are that the PSI buses are not directly con-

trollable and the PSO buses are not directly observable.
The lack of observability implies that simply generating

a test for a total bus fault in an MPS model does not

guarantee detection of all SSL faults associated with

the faulty bus, because the test generation process can

lead to the error being propagated to an unobservable

PSO bus. Drawing on the analogy between the sequen-

tial and pseudo-sequential circuit models, we see that

more than one iteration (pass) through the MPS model

may now be necessary to generate a test for a k-regular

circuit. These iterations, however, differ significantly

from those required for sequential circuits [4] in that

all primary input bus assignments found in the first

iteration are retained in all subsequent iteration steps.

Thesepseudo-iterations, therefore, can only lead to suc-

cessive refinements of the input assignment already

found in the first iteration, unlike the corresponding

iterations in the case of sequential circuits, which lead

to a sequence of distinct input patterns.

The second problem of test generation for k-regular

circuits, is the presence of uncontrollable PSI buses.

We must now ensure that any vector assigned to a PSI

can indeed be applied to the corresponding lines in the

actual circuit. An example to the contrary is shown in

figure 9 where the current input pattern applies a vector

04 to PSI1, and generates an output of 14 at the corre-

sponding PSO~. However, since a corresponding pair

of lines in PSI and PSO buses are derived from a single

line in the gate-level model, as explained in section 3,

they must be assigned the same signal value in the fault-

free case; we designate this the compatibility require-
ment. Two vectors V~ and 1:2, defined on the signal set

{0, 1, D, I), X}, are said to be compatible with each

other, if replacing the D and I) elements in the two vec-

tors by 1 and 0, respectively, results in vectors V~' and

V; such that V~ f3 V~ ~ q~. Obviously, 04 is incompatible

with 14, and hence the input assignment shown in figure

9 must be rejected as invalid.

We now turn to the generation of tests for arbitrary

combinational circuits for which hierarchical descrip-

tions on two or more levels exist. We have developed
a hierarchical test generation algorithm VPODEM

which works with both high-level and gate-level cir-

cuit and fault models. It is a substantially extended ver-
sion of PODEM and recognizes two classes of circuits:

combinational and modified pseudo-sequential; it also

treats signals and faults as vectors. While we do not

consider sequential circuits explicitly, they could be

handled by VPODEM in the conventional manner by

constructing iterative combinational models of the orig-

inal circuits [4].

The choice of a conventional algorithm as the basis

for our hierarchical test generator was motivated by the

requirement that the algorithm should reduce to a stan-

dard test generation algorithm when a gate-level circuit

and the SSL fault model are used; this allows us to guar-

antee 100 percent SSL fault coverage for general circuits.

As discussed earlier, bus sizes may become nonuniform

at the higher level of representation, and a combinational

circuit may be transformed into a pseudo-sequential

one. As a result, our test generation algorithm needs

the capability of handling general high-level compo-

nents, checking for compatibility between pseudo-state

input/output bus assignments, and performing pseudo-

iterations when needed. The basic test generation algo-

rithm implemented by VPODEM, is summarized in

figures 10 and 11. It consists of two main procedures:

TESTGEN (figure 10) which is a redesigned version

of the test pattern generator of conventional (or scalar)

PODEM, and ITERATE (figure 11) which is an exten-

sion to conventional PODEM to handle MPS models.

VPODEM's name is derived from the fact that it can

assign vectors to buses in a high-level circuit model,

in contrast with the conventional PODEM algorithm

which can only assign scalar values to lines in a gate-

level model.

The various steps performed by VPODEM are now

illustrated by applying it to the MPS model of the parity

checker circuit presented in figure 9, assuming the 5-bit

bus labeled 55 to be totally stuck at 1. For this fault,

VPODEM performs two pseudo-iteration steps; the re-

suiting input assignments are shown in figures t2 and

13. At the beginning, all bus signals are assumed to be

uninitialized, and so have value Xn assigned to them,

where n is the bus size. In the first pseudo-iteration

step, VPODEM goes through several cycles of initial

objective selection and back-tracing [9] to fred an input

assignment of vectors 05, 15, and 15 to buses 1, 2, and

3 respectively, which propagates error vectors D4 and

D 4 to PSO buses 62 and 64; see figure 12. Compatibil-

ity between various PSI and PSO buses is maintained

because PSI buses 71 and 72 are still assigned X4, which
is, by definition, compatible with both D 4 and f)4.

In the second pseudo-iteration step, the input assign-

ment from the first step is saved, the vectors D4 and
I)4 from buses 62 and 64 are assigned to buses 71 and

72 respectively, and the total bus fault is neglected. Our

goal here is to generate a test for a bus fault that will

detect any SSL fault on corresponding lines of the bus.

116 Bhattacharya and Hayes

procedure TESTGEN (ENTRY, PSEUDO__ITERATION~FLAG)

do until ((error is propagated to an output bus)

OR (no alternative input assignment possible))
call INITOBJ(ENTRY, PS EUDO____ITERATION__FLAG)

/*initobj sets the initial objective if parameter ENTRY is set to 1. If

PSEUDO____ITERATION__FLAG is set to FALSE, then it checks for

uninitialized condition on the faulty bus. Otherwise, it assumes error
signal to be present on some input, and tries to set an initial objective to

propagate this error signal to some output bus*/
if ((failure in initobj) OR (ENTRY = 2)) then

/*ENTRY = 2 implies that execution should start with a backtracking

step (alternative assignment to primary input in decision-tree handler)*/

call DECISION-TREE HANDLER (failure)
if (no more alterantives exist) then

EXIT in failure
end/*if*/

if (ENTRY = 2) then
ENTRY := 1

end/*if*/
end/*if*/

if (initial objective is selected successfully by initobj) then

call BACKTRACE
call ASSIGN PRIMARY INPUT

call DECISION-TREE HANDLER (success)

end/*if*/

call IMPLICATION
if (ENTRY = 3) then

ENTRY := 1

end/*if*/
/*If ENTRY = 3 to begin with, then initobj does nothing which means

all steps before implication are skipped. Setting ENTRY to 1 signals

initobj to set objective levels in successive cycles*/
i f pseudo-state input and output assignments are not compatible then

ENTRY := 2

end/*if*/

end/*do until*/

if (error is propagated to an output bus) then
EXIT in success

else
EXIT in failure

end/*if*/
end/*TESTGEN*/

Fig. 10. Pseudo-code of procedure TESTGEN in VPODEM.

However, an SSL fault can actually occur in only one

repetitive array position or period of the gate-level

model, say period s. Error signals in subsequent periods

s + r, r _> 1, of the array will only be the result of

error signals generated on the horizontal output lines

from period s. Hence, it is necessary to neglect the total

bus fault in the second, and subsequent pseudo-iteration

steps. VPODEM now assigns vectors 14 to the input

bus 4, and 0 4 to buses 5 and 6 respectively, which

causes error ve c to r 1~4 to be propagated to pr imary

output bus 89; see figure 13. It is easily seen that com-

patibility is still maintained between corresponding PSI

and PSO bus assignments. Hence, the test input pattern

consists of values assigned to the pr imary input buses

1, 2, 3, 4, 5, and 6. If the error vector can still not

be propagated to any pr imary output bus, but can be

A Hierarchical Test Generation Methodology for Digital Circuits 117

procedure ITERATE
PSEUDO_ITERATION__COUNT= 0
PSEUDO~ITERATION_FLAG=FALSE
ENTRY=I
do while (PSEUDO~ITERATION_COUNT < MAX__COUNT)

call TESTGEN (ENTRY, PSEUDO ITERATION~FLAG))
if (test is not found) then

i f (PSEUDO___ITERATION__COUNT = 0) then

EXIT in failure
else

PSEUDOITERATION__COUNT := PSEUDO__ITERATION__COUNT-1
pop input bus assignment off pseudo-iteration stack
ENTRY := 2
i f (PSEUDO__ITERATION__COUNT = 0) then

PSEUDO__ITERATION__FLAG=FALSE
end/*if*/

end/*if*/
else

i f (PSI/PSO buses are absent) then
EXIT in success

else
justify pseudo-state input/output bus assignments
i f (justification is not possible) then

pop input bus assignment off pseudo-iteration stack
ENTRY := 2

else

push input bus assignment into pseudo-iteration stack
if (error vector appears on primary output bus) then

EXIT in success
else

PSEUDO__ITERATION__COUNT := PSEUDO__ITERATION__COUNT+I
assign previous pseudo-state output values to pseudo-state inputs
assign primary input values from previous iteration
ENTRY := 3
PSEUDO__ITERATION__FLAG := TRUE

end/*if*/
end/*if*/

end/*if*/
end/*if*/

end/*do while*/
if (PSEUDO__ITERATION__COUNT = MAX__COUNT) then

EXIT in success
end/*if*/

end/*ITERATE*/

Fig. H. Pseudo-code of procedure ITERATE in VPODEM.

propagated to some PSO bus while meeting the

compatibility requirement, then further pseudo-iteration

steps are required.

As noted earlier, a major difference between pseudo-

iterations in VPODEM, and iterations occurring during

test generation for sequential circuits [4], is that the

former merely generates successive refinements of the

input assignment found in the first step. Another major

difference is that the number of pseudo-iteration steps

possible for the MPS model of a given k-regular cir-

cuit is bounded by the number of periods in M ~ This

number is reasonably small for most practical circuits;

118 Bhattacharya and Hayes

Faul t
(Bus

Bus 62 D 4

Bus 64

Buses 1, 2, 3

D1

o4

Buses 4, 5, 6

X4 X4 :4
4 .~v 4 .:f 4.

. i ', ~ ,- :

~-"-'--i
\ /
C"", :"4. X 4 BUS71

l i V :: x 4 .s72

:: i~ ~11_!"
;

I x...; \.;' \ j k..:"

.

X4
Bus 89

Fig. 12. ITERATE and TESTGEN illustrated: after assignment of primary inputs 1, 2, and 3 in first pseudo-iteration step.

similar bounds for sequential circuits are exponential

in the number of states of the circuit, and are of little

practical use. Also note that multiple pseudo-iteration

steps are automatically avoided by VPODEM if the

circuit model has no PSI/PSO buses. In such cases,

VPODEM goes through only a single pseudo-iteration

step similar to a PODEM iteration, the main difference

being that VPODEM assigns vectors to buses of size

greater than one, while PODEM assigns scalar values

to single lines. A more detailed discussion of the

VPODEM algorithm can be found in [31.
Our algorithm, like PODEM, is complete in the

sense that it can generate tests for all detectable SSL

faults in any well-formed combinational circuit. Test

generation using both high-level and gate-level models
may be necessary to obtain such complete SSL fault
coverage. However, for circuits containing regular sub-
circuits like k-regular circuits, a large percentage of SSL

faults are expected to be detected by generating tests

for the high-level model as suggested by the following

result [3]:

Theorem 2: A test for a total bus fault F i = i,, i E

{0, 1} on a bus B in the MPS model o f a k-regular

circuit generated by VPODEM detects all SSL faults

fi = ix on individual lines of B in a gate-level model

o f the circuit.

The advantages of the proposed algorithm over con-

ventional test generation algorithms are twofold. First,

VPODEM is invariant with respect to the representa-

tion level of the circuit and fault models used. We have

achieved this invariance by adopting a hierarchical cir-

cuit modeling technique, and identifying an important
class of faults suitable for the high-level circuit models,

viz, total bus faults. Conventional test generation algo-
rithms are, in most cases, tied to the gate-level cir-

cuit and fault models. The second, and perhaps more

A Hierarchical Test Generation Methodology for Digital Circuits 119

05

Bus 62 14

11 "~

Buses 1, 2, 3

05 15

[] I I

Buses 4, S, 6

15 14 04 04

4 4 Bus 71

O,i [" - - - - " ~ D ~ Bus72

Bus64 04

Ol 04
04 I~ 04

Bus 89

Fig. 13. ITERATE and TESTGEN illustrated: final assignments to primary inputs at termination of ITERATE.

important, advantage stems from the hierarchical nature

of the proposed test generation technique. Tests can first

be generated for total bus faults in M H of the circuit.

Due to the grouping of many lines into a single bus

at this level, the total number of target faults is signifi-

cantly less than in a gate-level model of the circuit,

leading to considerable reduction in the overall test set

size and test generation effort.

5. Experimental Results

This section outlines a computer program implementing
VPODEM, and presents experimental results showing

the advantages of the proposed algorithm over conven-

tional techniques. The program is written in FORTRAN,

the choice of language being made from considerations

of portability, optimization, and possible vectorization.

The input to VPODEM is a text file which provides
the circuit description and various user commands to

control program execution and output. The input data

is assumed to be organized into three blocks: component

interconnection information in the form of a net list;

the sizes and types of buses in the circuit; and user

options controlling the built-in fault simulator. The cir-

cuit model, either low-level or high-level, is conceptually

stored in the form of a set of circularly linked lists.

However, due to the lack of dynamic data structures

in FORTRAN, these lists, and other pertinent informa-

tion like the status of the decision tree [9], vector cubes

for general high-level components other than word

gates, and various stacks are all simulated using arrays

grouped into COMMON blocks.

VPODEM is implemented by a main program, two
test generation procedures, a simple fault simulator, and

various other subroutines that are used by these four

procedures. The main program is responsible for crea-
tion of the various data structures, and controlling inter-

action between the test generation procedure and the
fault simulator. The test generation procedures are

120 Bhattacharya and Hayes

straightforward implementations of ITERATE and

TESTGEN described earlier. The built-in fault simu-

lator can be used after each successful test generation

cycle to eliminate all detected faults from the fault list,

and thus reduce computation. Further implementation

details of our program are available in [3].

The program has been used to generate tests for a

set of eight representative circuits, mostly based on MSI

circuits of the 7400 series of ICs, for which high-level

and the gate-level models are readily available [17].

Benchmark circuits like the ISCAS set [6] cannot be

used here since the required structural information

about these circuits are unavailable. Circuit CUT1 is

the 74630 parity generator with its primary fanout re-

moved; CUT2 is the 74157 4-bit 2-to-1 multiplexer of

figure 4; CUT3 is an 8-bit ripple-carry adder using

NAND gates only; CUT4 is an 8-bit shifter based on

the 74350; CUT5 is the 74181 ALU whose gate-level

and high-level models have already been presented in

figure 5; CUT6 is a modified 74381 obtained from [20];

CUT7 is the parity checker circuit of figure 9; and

CUT8 is a 1/256 decoder tree circuit constructed using

modified 1/16 decoders based on the 74154 IC [3]. The

results of applying our test generation program to these

eight circuits are tabulated in tables 1 through 3. Table 1

Table 1. Number of components and buses in gate-level and high-level

models of circuits CUT1-8.

Gate-level model M a High-level model M H

Number of Number Number of Number

components of lines components of buses

CUT1 78 144 13 24

CUT2 20 43 12 18

CUT3 120 201 17 30

CUT4 128 227 26 47

CUT5 101 201 12 26

CUT6 240 441 81 164

CUT7 208 359 51 91

CUT8 808 2220 38 47

compares the complexity of the gate-level and high-level

models using the component count and the number of

buses as measures of complexity.

Table 2 compares the number of tests generated for

total bus faults in the high-level model M H to the num-

ber of tests generated for SSL faults in the gate-level

model M ~, as well as the time spent (in seconds on

a SUN 4/110 workstation) in test generation at the two

levels. It also provides the SSL fault coverage of the tests

generated for total bus faults in M H, and the number

of extra tests, if any, needed to obtain 100 percent SSL

fault coverage. Note that test generation time represents

the total time spent in the test generation routines only,

and does not include the time spent in the fault simu-

lator. (In our implementation, we use a simple but in-

efficient simulator leading to simulation times that are

not easily compared.)

From table 1, it is clear that the high-level modeling

leads to a substantial reduction in the circuit complexity.

For example, CUT5 has 101 components and 201 lines

at the gate level but only 12 components and 26 lines

at the high level. Similarly, as illustrated in table 1,

M H of CUT7 has approximately one-fourth the num-

ber of components of its gate-level model. This com-

plexity reduction is perhaps best illustrated by the modi-

fied decoder circuit CUT8. In this case, M H contains

less than one-twentieth the number of components and

less than one-fortieth the number of buses in M c. Al-

though the size of the buses in M H is usually greater

than one, we show next that bus size plays a smaller

role in the overall test generation effort than does the

number of components and buses used.

Table 2 shows that the SSL fault coverage obtained

using tests generated for total bus faults in M H is quite

high (70 to 100 percent) for all the sample circuits.

However, the number of tests required to obtain this

fault coverage is much smaller than the number of tests

obtained using M ~ alone. For example, in the case of

CUT7, 60 tests were generated using M ~, while only

Table 2. Test set sizes, test generation times, and SSL fault coverage obtained using high- and gate-level models of CUT1-8.

Gate-level model M G High-level model M H
Number of extra Total test generation

Number Test generation Number Test generation SSL fault tests for 100% SSL time using two-level

of tests time (sec.) of tests time (sec.) coverage fault coverage approach (sec.)

CUT1 72 9.51 12 2.04 100% 0 2.04

CUT2 16 1.10 8 0.28 100% 0 0.28

CUT3 26 7.97 5 0.79 100% 0 0.79

CUT4 50 37.14 12 10.20 70% 14 20.47

CUT5 54 29.52 16 2.77 78 % 16 12.11

CUT6 63 51.32 15 16.18 77% 21 33.79

CUT7 60 45.44 15 7.16 94% 16 16.24

CUT8 483 1738.88 12 2.71 98% 16 66.39

A Hierarchical Test Generation Methodology for Digital Circuits 121

15 tests with 94 percent fault coverage were generated

using M s. A set of 16 additional tests were found to

cover all SSL faults not covered by the high-level tests.

Thus, for the circuits considered, the hierarchical ap-

proach to test generation leads to only half as many

tests as generated by the gate-level technique alone. The

program performs very well for highly regular circuits

with small fanout like CUT1, CUT2, and CUT3, or for

circuits like CUT8 which have been designed to facili-

tate high-level test generation. In these cases, test gener-

ation at the high level provides complete, or very nearly

complete, SSL fault coverage with significantly smaller

test sets than were generated using gate-level models

only. On the other hand, the presence of complex fan-

out, as in CUT4 through CUT7, tends to reduce the

SSL fault coverage. However, the combined use of both

the high-level and the gate-level models is seen to

reduce the total number of tests by 50 percent or more,

in most cases. The corresponding speedup of test gener-

ation, though not exactly proportional to the reduction

in test size or circuit complexity, is significant in all

cases. For example, the speedup for CUT7 is approxi-

mately 3, that for CUT4 is approximately 2, while that

for CUT8 is approximately 26.

Finally, we compared our high-level approach to ran-

dom test generation, which is commonly used as an

alternative to algorithmic test generation since randomly

chosen test patterns are very easy to generate. For each

circuit, the number of random patterns generated was

made equal to the number of patterns generated using

our high-level algorithm, and a standard random num-

ber generation routine was used to generate the random

input patterns. Three random sequences with different

initial seeds were used, and the average SSL fault cover-

age of the three resultant random pattern sets was evalu-

ated using the fault simulator in our implementation

of VPODEM.

The results of this comparison are shown in table 3,

which indicates that the SSL fault coverage of the ran-

dom tests is, in almost all cases, significantly smaller

than that obtained by applying VPODEM to the high-

level model alone. In fact, only in the case of CUT4,

does the scheme of the random test pattern generation

provide fault coverage comparable to that obtained by

the high-level scheme, for the same small number of

tests. For circuits like multiplexers (CUT2) or decoders

(CUT8), the performance of the random test generation

scheme was found to be far inferior to the proposed

high-level scheme. Furthermore, random patterns must

usually be supplemented with deterministic tests to

achieve 100 percent SSL fault coverage with realistic

Table 3. Comparison of the SSL fault coverage of random test genera-
tion and VPODEM.

SSL fault coverage

Number Tests generated Tests generated
of tests randomly by VPODEM

CUT1 12 88 % 100 %
CUT2 8 61% 100 %
CUT3 5 71% 100%
CUT4 12 69 % 70 %
CUT5 16 66% 78%
CUT6 15 63 % 77 %
CUT7 15 81% 94 %
CUT8 12 16% 98%

sizes of test sets [1]. In contrast, our hierarchical ap-

proach is guaranteed to provide complete SSL fault cov-

erage for arbitrary circuits. The data in tables 1 and 2

also show that the test sets from VPODEM are, in gen-

eral, significantly smaller than the test sets obtained

using conventional gate-level test generation algorithms.

6. Conclusion

We have presented a novel methodology to model large

digital circuits for test generation purposes. Circuit

behavior is described by vector sequences of spatial

(bus) size n, where n is a measure of complexity level.

While n = 1 corresponds to the classical gate level,

larger values of n correspond to the register level. We

have introduced a new class of (total) bus faults, also

parametrized by n, which generalize the classical SSL

fault model to higher levels. The resulting circuit and

fault models are truly hierarchical, and avoid the confu-

sion arising out of mixing concepts from different levels.

We have shown that in the special case of k-regular array

circuits, useful trade-offs can be made between the

number of periods in the array q, and the bus size n,

using a new class of models called modified pseudo-

sequential or MPS circuits. A high-level MPS circuit

with a fixed number of components can model a k-

regular array of arbitrary length. The use of such high

level models with bus size n leads to approximately an

n-fold reduction in the test set size due to the fact that

tests for the faults associated with the individual lines

of a multiline bus are effectively generated in parallel.

To evaluate the feasibility of hierarchical test genera-

tion using these concepts, we have defined and imple-

mented the VPODEM algorithm. Our experiments with

VPODEM show that for circuits of moderate to high

regularity, complete test sets for total bus faults in M H

122 Bhattacharya and Hayes

provide quite good SSL fault coverage in M ~ This

suggests that, even for modera te ly i r regular circuits,

there may be no need to consider the many nontotal

faults possible in an n-bit bus; the two total bus faults

may suffice. Moreover, the high-level test sets produced

by V P O D E M are smaller, and can be more rapidly

generated, than the corresponding test sets derived f rom

M ~ alone. This suggests that, in many pract ical in-

stances, all test generation can be done at the high level,

thus dispensing comple te ly with the less eff icient clas-

sical circuit and fault models. Furthermore, we can use

V P O D E M to generate tests directly for SSL faults (pro-

vided, of course, a suitable gate-level mode l is avail-

able), a l lowing us to adopt a h ierarchical approach for

general circuits. Our exper iments show that this hier-

archical approach results in significantly smal ler test

sets providing 100 percent SSL coverage, compared to

gate-level approaches that use standard determinis t ic

methods ei ther alone, or in combina t ion with r andom

test generat ion.

Acknowledgments

The authors wish to thank the anonymous referees, and

Dr. V.D. Agrawal of AT&T Bell Laborator ies , for

valuable suggestions and comments .

This research was supported by the National Science

Foundat ion under Grant No. MIP-8805517.

References

1. R.G, Bennetts, Design of Testable Logic Circuits, Addison-
Wesley, Reading, MA, 1984.

2. D. Bhattacharya and J.P. Hayes, "High-level test generation using
bus faults" Proc. 15th Fault-Tolerant Comput. Symp., pp. 65-70,
June 1985.

3. D. Bhattacharya and J.P. Hayes, Hierarchical Modeling for VLSI
Circuit Testing, Kluwer Academic Publishers, Boston, MA, 1990.

4. M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design
of Digital Systems, Computer Science Press, Rockville, MD, 1976.

5. M.A. Breuer and A.D. Friedman, "Functional level primitives in
test generation" IEEE Trans. Computers C-29 (3): 223-235, 1980.

6. E Brglez and H. Fujiwara, 'Tk neutral netlist of 10 combinational
benchmark circuits and a target translator in Forlran," Proc. IEEE
Intern. Syrup. on Circuits and Systems, pp. 663-698, Kyoto, June
1985.

7. W.-T. Cbeng and J.H. Patel, "Testing in two-dimensional iterative
logic arrays" Proc. 16th Fault-Tolerant Comput. Syrup., Vienna,
pp. 76-83, July 1986.

8. A.D. Friedman, "Easily testable iterative systems" IEEE Trans.
Computers C-22 (12): 1061-1064, 1973.

9. P. Goel, '~n implicit enumeration algorithm to generate tests
for combinational logic circuits" IEEE Trans. Computers C-30
(3): 215-222, 1981.

10. J.P. Hayes, '~, calculus for testing complex digital systems" Proc.
10th Fault-Tolerant Comput. Syrup., pp. 115-120, October 1980.

11. S.C. Lee, "Vector boolean algebra and calculus" IEEE Trans.
Computers C-25 (9): 865-874, 1976.

12. Y.H. Levendel and P.R. Menon, "Test generation algorithms
for computer hardware description languages," IEEE Trans. Com-
puters C-31 (7): 577-587, 1982.

13. C. Mead and L. Conway, Introduction to VLSI Systems, Addison-
Wesley, Reading, MA, 1980.

14. J.P. Roth, "Diagnosis of automata failures: a calculus and a
method," IBM J. Res. Develop. 10 (10): 278-281, 1966.

15. E Somenzi, S. Gai, M. Mezzalama, and P. Prinetto, "Testing
strategy and technique for macro-based circuits" IEEE Trans.
Computers C-34 (1): 85-89, 1985.

16. T. Sridhar and J.P. Hayes, "Design of easily testable bit-sliced
systems" IEEE Trans. Computers C-30 (11): 842-854, 1981.

17. Texas Instruments Inc., The TTL Data Book, vol. 2, Dallas, TX,
1985.

18. S.M. Thatte and J.A. Abraham, 'A methodology for functional
level testing of microprocessors" Proc. 8th Fault-Tolerant Comput.

Syrup., pp. 90-95, June 1978.
19. Y. You, Self-testing VLSI Circuits, Ph.D. Dissertation, Dept. of

Electrical Engineering and Computer Science, The University
of Michigan, 1986.
Y. You and J.P. Hayes, "Implementation of VLSI self-testing by
regularization" IEEE Trans. Computer-Aided Design 7, pp. 1261-
1271, December 1988.

20.

Debashis Bhattacharya received the B. Tech. (Honors) degree in
1983 from the Indian Institute of Technology, Kharagpur, India. He
received the M.S. and Ph.D. degrees in Computer, Information and
Control Engineering (CICE) program from the University of Michigan
at Ann Arbor in 1985 and 1988, respectively.

From 1983 to 1988 he was a research assistant at the University

of Michigan, working on high-level test generation techniques for
digital circuits. He was awarded the IBM fellowship in 1986 and 1987,
and the Outstanding Student Award in CICE in 1988. In 1988 he joined
the Electrical Engineering Department at Yale University as an assis-
tam professor. His current research interests include digital testing
and simulation, VLSI design, and parallel processing using systolic

arrays. He has coauthored a book titled Hierarchical Modeling for
VLS1 Circuit Testing (Kluwer Academic Publishers, to be published).

Dr. Bhattacharya is a member of the IEEE Computer Society,
and Tau Beta Pi.

John E Hayes received the B.E. degree from the National University
of Ireland, Dublin, in 1965, and the M.S. and Ph.D. degrees from
the University of Illinois, Urbana, in 1967 and 1970, respectively,
all in electrical engineering.

While at the University of Illinois he participated in the design
of the ILLIAC III computer, and carried out research in the area of
fault diagnosis of digital systems. In 1970 he joined the Operations
Research Group at the Shell Benelux Computing Center of the Royal
Dutch Shell Company in The Hague, The Netherlands, where he
was involved in mathematical programming and software develop-
ment. From 1972 to 1982 Dr. Hayes was a faculty member of the

A Hierarchical Test Generation Methodology for Digital Circuits 123

Departments of Electrical Engineering and Computer Science of the

University of Southern California, Los Angeles. He is currently a
Professor in the Electrical Engineering and Computer Science Depart-

ment of the University of Michigan, Ann Arbor. He was Technical

Program Chairman of the 1977 International Conference on Fault-

Tolerant Computing. Dr. Hayes is the author of over a hundred tech-

nical papers and several books, including Digital System Design and
Microprocessors (McGraw-Hill, 1984) and Computer Architecture

and Organization, 2nd ed. (McGraw-Hill, 1988). He served as editor

of the Computer Architecture and Systems Department of Communi-

cations of the ACM from 1978 to 1981, and was Guest Editor of the

June 1984 Special Issue oflEEE Transactions on Computers. He was

the founding Director of the Advanced Computer Architecture Labo-

ratory at the University of Michigan from 1985 to 1988.

Dr. Hayes's current research interests include computer architec-
ture; parallel processing; fault tolerance and reliability; and computer-

aided design and testing of VLSI systems. He is a fellow of IEEE, and

a member of the Association for Computing Machinery and Sigma Xi.

