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Abstract. A new hierarchical modeling and test generation technique for digital circuits is presented. First, a high- 

level circuit model and a bus fault model are introduced--these generalize the classical gate-level circuit model 

and the single-stuck-line (SSL) fault model. Faults are represented by vectors allowing many faults to be implicitly 

tested in parallel. This is illustrated in detail for the special case of array circuits using a new high-level representa- 

tion, called the modified pseudo-sequential model, which allows simultaneous test generation for faults on individual 

lines of a multiline bus. A test generation algorithm called VPODEM is then developed to generate tests for bus 

faults in high-level models of arbitrary combinational circuits. VPODEM reduces to standard PODEM if gate-level 

circuit and fault models are used. This method can be used to generate tests for general circuits in a hierarchical 

fashion, with both high- and low-level fault types, yielding 100 percent SSL fault coverage with significantly fewer 

test patterns and less test generation effort than conventional one-level approaches. Experimental results are presented 

for representative circuits to compare VPODEM to standard PODEM and to random test generation techniques, 

demonstrating the advantages of the proposed hierarchical approach. 
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1. Introduction 

The great complexity of modern digital circuits has 

made classical test generation methods too time con- 

suming for many applications. While large circuits are 

often designed and analyzed at a register or functional 

level of abstraction, classical algorithmic test generation 

techniques usually require a more complex gate-level 

model of the circuit in which logic gates (AND, OR, 

NOT, NAND, etc.) are the primitive components. The 

resulting increase in the number of components in the 

circuit model--a gate-level model contains perhaps ten 

times as many components as the equivalent register- 

level model--tends to significantly increase the test gen- 

eration time. Moreover, important simplifying features 

of the circuit under test, such as the presence of a hier- 

archical structure or repeated subcircuits, must be 
ignored for test generation purposes. 

Existing test generation algorithms usually assume 

a single line in a gate-level model of the circuit under 

test to be permanently stuck at logic level 0 or 1. This 

is known as the single-stuck-line or SSL fault model. 
Two well-known test generation algorithms that employ 

the SSL model are the D-algorithm [14] and PODEM 

[9]. The major problem of generating tests using a gate- 

level model is the exponential growth of computation 

time as the number of circuit components increases. 

Several proposals have been made to reduce the 

complexity of the test generation problem by using high- 

level circuit models and extensions of classical test gen- 

eration algorithms [15, 12, 11]. A major drawback of 

these approaches is their mixing of concepts from dif- 

ferent modeling levels. Although the basic modules in 

the circuit description are largely at a level higher than 

the gate level, their inputs and outputs are defined, im- 

plicitly or explicitly, in terms of single-bit lines. More 

recently, various other high-level test generation tech- 

niques have been proposed that differ significantly from 

the classical approaches [5, 16, 18]. An important class 

of such techniques [7, 8, 16] construct pseudo-exhaustive 
test sets for iterative array circuits using only a high- 

level description of the input/output behavior of the 

modules in the array. Another method, proposed in [18], 

requires an instruction-level description of the circuit 
under test. Two major limitations of these techniques are 

their lack of generality, and the difficulty of comparing 
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their fault coverage, i.e., the percentage of faults de- 
tected, to fault coverage obtained using more traditional 
test generation techniques. 

In this article, we develop a new test generation algo- 
rithm called VPODEM based on the high-level circuit 
and fault modeling methodology introduced by us in 
[2]. VPODEM can generate tests for general combina- 

tional circuits using a bus-fault model, and takes explicit 

advantage of any hierarchical structure present in the 
circuit. In the special case of k-regular circuits [19, 20], 
which includes iterative array circuits as a proper sub- 
class, our approach yields an efficient new high-level 
circuit representation called the modified pseudo- 

sequential or MPS model. Moreover, VPODEM reduces 
to standard PODEM if the gate-level circuit model is 
used. Hence, a hierarchical testing strategy which gen- 
erates tests using two or more levels of abstraction can 
be adopted for general circuits. First, tests are generated 

for a high-level model of the circuit, and the SSL fault 
coverage provided by these tests is estimated. Next, 
using the same algorithm, tests are generated for the 
remaining undetected SSL faults in the gate-level model, 
so 100 percent coverage of detectable SSL faults can 
always be obtained. Thus, our approach minimizes the 
mixing of concepts from different levels, and reduces 

to a traditional test generation algorithm when low-level 
circuit and fault models are used. Furthermore, the 
number of test patterns generated by this hierarchical 
approach is significantly smaller than the number of 

patterns generated by conventional algorithmic or ran- 
dom test generation techniques. 

Section 2 first summarizes a vector notation used 
to represent faults and tests in the high-level models. 
It then presents the proposed high-level circuit and fault 

modeling techniques. The modeling techniques are il- 
lustrated in section 3 by a detailed study of high-level 

model construction for k-regular circuits. Section 4 

describes the VPODEM test generation algorithm. Key 
implementation details of VPODEM and the results of 
experiments using VPODEM are provided in section 5. 

2. Circuit and Fault Models 

We begin with a brief summary of the vector sequence 
(VS) notation, which provides a useful and compact 
way of describing circuit behavior hierarchically. The 
VS notation, first proposed in [10] and subsequently 
expanded by us in [2], employs n •  arrays called vec- 

tor sequences (VSs), where n and m are dynamic 
parameters, as the fundamental information units. This 
notation is primarily intended to represent input/output 
behavior of circuits at different levels of complexity. 
For example, the behavior of the gate-level circuit of 
figure l(a) can be written in the VS form as 

I i 0 0 0 1 1 1  i ] / [ i 0 0 0 1 0 0 ~ ]  
0 1 1 0 0 1  0 0 0 0 1 0  
1 0 1 0 1 0  0 0 0 0 0 1  ' 

0 0 0 0 0 0  

where the left 3 x8 array is a VS denoting the input 
(test) vectors, and the right 4x8 array is a VS denoting 
the corresponding output (response) vectors. The same 
circuit can be represented at a higher level as shown 
in figure l(b), with the following VS pair representing 

its input/output behavior: 

[Vv12 V321 /[V4 V5], 
where 

E = [0 0 0 0], 

E 
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x 1 

000011111 ........................................... 

i , ~ [ ~ )  00001000 
00110011 !IN..,. _ 

~ [ " ~  ~ ~ [ ~ ] )  00000100 

01010101 t ] " ~  . II ] 'M-"~  L ooooo01o 

z 0 

Zl E 

z 2 X 

z 3 

VlVs 

v2v2 b 
~' V4V5 Z 

(a) (b) 

Fig. 1. Two-to-four decoder: (a) gate-level model; (b) high-level model. 
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Six operators, called external time expansion ", exter- 

nal space expansion @, internal time expansion • 

internal space expansion |  select S~, and project P~ 

have been defined on VSs [10, 2] which provide the abil- 

ity to expand or contract VSs in various complex ways. 

The effect of applying these operators to VSs is illus- 

trated below using the two VSs S and T where 

~ 
1 0 , S @ T =  , 

S x T =  0 1 , S |  , 

S(1)(S) =[1 0], P(2)(S) = I~ 1 

Note that an index set a is provided for the operator 

select (project), which identifies the rows (columns) 

of the original VS that constitute the resultant VS. Fur- 

ther details about the VS operators can be found in [3]. 

Certain "standard" vector sequences have been 

defined using the expansion operators alone. For exam- 

ple, 0n represents the vector of n 0s; 1 n is the vector 

of n ls; A n is the vector of size n with alternating ls 

and 0s; Cn is the nx2  n counting sequence (which is 

the output of an n-bit counter), and D n is the n• 

diagonal sequence. 

VSs provide a compact way of representing the input/ 

output behavior of components in a circuit. A VS ex- 

pression of the form V = f (S ,  73 can be interpreted 

as describing the behavior of a functional block whose 

inputs are the VSs S and T, and whose output is the 

VS I~ see figure 2(a). For example, if we select f to 

be the operator @, then the corresponding functienal 

block performs a simple merger of two buses into one, 

as shown in figure 2(b). The output bus in this case 

is a juxtaposition of the two input buses. The element 

of figure 2(b), which is primarily an abstract notational 

device, is called a merge element, and provides a basic 

way of representing the construction of buses at higher 

levels of abstraction. The converse operation, viz, the 

splitting of a bus into two or more buses, can be per- 

formed by another class of abstract logic elements called 

fanout elements (figure 2(c)) which are examined fur- 

ther below. Merge and fanout elements allow represen- 

tation of arbitrary changes in bus sizes in a simple 

manner, and play an important role in the construction 

of high-level models of general circuits. 

We now present our bus-oriented circuit and fault 

modeling techniques. We consider two main levels of 

T 

I 
(a) 

= V=f(S,T) 

S 

T 

(b) 

V 
i "~V1 w- FO 

= V 2 

(c) 

Fig. 2. Interpretation of VS operators as functional blocks: (a) general operator element f; (b) merge element; (c) fanout element. 
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complexity, dubbed high and low. The high-level circuit 

model, denoted M H, is composed of components such 

as word-gates, multiplexers, adders, registers, etc., con- 

nected to one another using buses of appropriate sizes. 

This level corresponds approximately to the register or 

functional level of circuit design. When the bus size 

is reduced to one, a word gate becomes a single gate, 

and a bus is the same as a line; this results in the low- 

level circuit model M a which corresponds to the clas- 

sical gate level. This multilevel approach makes truly 

hierarchical modeling of circuits possible while mini- 

mizing the mixing of levels in the circuit models, and 

helps in significantly reducing the overall test genera- 

tion effort. 

The transition from the low to the high level allows 

buses to fan out and merge in new, and possibly com- 

plex, ways that are unique to the high-level models. A 

general fanout element is a component with one input 

bus X and n output buses Z~ . . . .  , Z n such that an in- 

put vector V applied to bus X produces output vectors 

S~i(F) on Z i for 1 < i < n, where S~i is the select 

operator. Hence, the behavior of complex fanout ele- 

ments can be described simply by specifying the index 

sets c~ i, 1 < i < n, corresponding to the various out- 

put buses of the elements. Examples of fanout elements 

and other interconnection structures commonly used 

by our model are presented in figure 3. A fanout ele- 

ment is said to be regular if S~(V) = V for i = 1, 

. . . .  n. This is a generalization of the simple types of 

fanout that occur in gate-level circuit models; note that 

all fanout elements in a gate-level model are regular 

with input and output buses of size one. The merge ele- 

ment introduced earlier can be similarly used to solve 

the problem of handling mergers of small buses to form 

bigger ones. 

Our modeling process for a general combinational 

circuit consists of two major steps, viz, high-level model 

construction for the main types of subcircuits present 

in the circuit, and interconnecting these high-level 

models using appropriate buses and fanout elements. 

In the first step, we recognize the fact that different parts 

of a circuit have various degrees of regularity in their 

structures, and may need to be treated differently. The 

information about such regularity is typically available 

in a hierarchical CAD-based design environment, and 

is lost when the circuit is "flattened" to the gate-level. 

Thus, our modeling approach needs, and explicitly 

uses, hierarchical design information to create the high- 

level models, unlike other modeling approaches that 

construct the netlists needed for testing from flattened 

circuits. 

We can identify three major classes of subcircuits 

based on their structures. For subcircuits that are regu- 

lar or iterative in nature, we construct a new high-level 

representation called the MPS model, which is discussed 

in detail in the next section. Subcircuits that are not 

regular but have their input/output lines organized into 

suitable buses, are retained as primitive functional 

blocks. In contrast, for a subcircuit that is neither regu- 

lar nor bus-structured (as is often true for control logic), 

we treat individual lines as buses of size one, which 

in effect makes the high-level and gate-level models 

identical. Once the high-level modules have been de- 

fined, they are interconnected by buses of appropriate 

size, and--where necessary--by fanout elements. In 

general, it is desirable to use buses that are as large 

as possible, consistent with the bus sizes of the high- 

level modules. 

To illustrate the modeling process, let us apply it 

to some standard MSI circuits [17]. The gate-level 

model M 6 of the 74157 4-bit 2-to-1 multiplexer is 

shown in figure 4(a). The corresponding high-level 

model M H appears in figure 4(b). The subcircuits 

marked M2,1 through M2,4 of M c form a simple itera- 

tive array, and are represented in M H as a word- 

oriented subcircuit M 4. As shown in figure 4(b), a 

detailed model of the control logic consisting of three 

inverters is retained in M H. Moreover, several fanout 

elements that change the size of the control buses from 

one to four, need to be introduced in M n. These ele- 

ments marked FO1, are needed to interface the control 

logic with buses of size one to the word-oriented high- 

level module M 4 with buses of size four. Obviously, 

these fanout elements are not regular in the sense de- 

fined above. On the other hand, the fanout elements 

marked RFO, in figure 4(b), are regular. As a second 

example, consider the standard 74181 ALU/function 

generator [17], whose M v and M H models appear in 

figure 5. The subcircuits M1 through M4 of M ~ are 

again grouped into word-oriented high-level subcircuit 

(M 4) in M H. Note that the fanout elements in M 4 

marked RFO are regular. The subcircuit M5 of M 6 

does not possess much regularity, but has bus- 

structured input/output connections, and is easily seen 

to be a modified carry-lookahead adder. Hence, this 

portion of the circuit is modeled as a primitive com- 

ponent MCLA with four input buses, two of size four 

and two of size one, and four output buses, as shown 
in figure 5(b). M H for the 74181 ALU/function gener- 

ator is completed by connecting M 4 and MCLA via two 

four-bit buses B1 and B2; we do not need fanout 

elements in this final step. 



A Hierarchical Test Generation Methodology for Digital Circuits t07 

Gate level  High- leve l  

Xl 

X n 

Set of  n lines 

(a) 

X 

n-bit bus 

x 1 

xn 

�9 

l]. 
Regular fanout 

z 11 =Xl 

Z l n  = x  n 

Z m l  = x  1 

Zmn = x n 

Co) 

n j  
X / ~ z 1 = X  

Zm=X 

Regular  n-bit m-way fanout  e lement  

x 1 
x 2 

x3 
x4 
x5 

Zll=Xl 

z 12=x3 

Zl3=X 2 

5 /  z21=x2 X / 

z22=x5 

z23=x 4 

[ " " ' ] ~ - ~ - Z  1 = S(1,3,2)(X) 

~-1 FOi ~ - ~  Z 2 = S(2,5,4)(X) 

I ~ Z 3 = S(4,1)(X ) 

Irregular fanout 

z31=X4 

z32=Xl 

Irregular fanout element of  arbitrary type i 

(c) 

Fig. 3. Interconnection structures in gate-level and high-level circuit models: (a) simple connection (bus); (b) regular fanout; (c) irregular fanout. 

In order to make the test generation procedure hier- 

archical in the same sense as the circuit model, the fault 
model used also needs to be hierarchical. We now intro- 

duce such a fault model, which is a generalization of 

the SSL model from single lines to buses. This bus  f a u l t  

model assumes that buses instead of individual lines 

in the high-level models can be stuck at constant vector 
values. The most general kind of bus fault thus allows 

arbitrary subsets of lines in a bus to be stuck at 0, stuck 

at 1, or fault free. In the VS notation, fault F on bus 
B may be represented by a vector of the form 

F = bl @ b 2  (~) . . .  (~) bn 

where b i = 0 (1) indicates that line i is s-a-0 (s-a-l), 

and b i = d represents a fault-free line. It is obvious 
that up to 3 n - -  1 such bus faults can be associated 
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Fig. 4. Four-bit 2-to-1 multiplexer: (a) gate-level model MG; (10) high-level model M H. 

with a bus of size n. However, as we demonstrate below, 

we need only a small subset of the possible bus faults 

for test generation purposes. 

The bus faults that appear to be most useful are 

classed as total bus faults, defined as follows. An n-bit 

bus B is (totally) stuck-at-O if all n lines in B are stuck 

at logic level 0; it is stuck at i if all n lines are stuck at 1. 

Obviously, total bus faults reduce to SSL faults if the 

bus size n is reduced to one, and thus constitute a 

natural generalization of the SSL fault model. As shown 

later, for certain regular circuits, tests generated for total 

bus faults in their high-level models can be guaranteed 

to detect all SSL faults on individual lines of the corre- 

sponding buses. Furthermore, experimental results pre- 

sented in section 5 show that for general circuits with 

some regularity in their structures, test sets generated 

for total bus faults provide moderate to good SSL fault 

coverage, while reducing the test set size as well as the 

test generation time substantially. 
The primary advantage of high-level models is the 

simplification resulting from the presence of fewer 

(primitive) components, connections, and faults. The 
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Fig. 5. The 74181 ALU/function generator: (a) gate-level model MG; (b) high-level model M H. 
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simplifications introduced by our approach can be seen 

from comparing the two models of the 74181 ALU/func- 

tion generator in figure 5. The gate-level model contains 

201 lines, and consequently has 402 distinct SSL faults. 

The high-level model, on the other hand, contains only 

26 buses and 52 total bus faults. 

The simplicity of any high-level model is strongly 

related to the presence of repeated subcircuits in the 

gate-level model, and the regularity of their intercon- 

nections. Indeed, if there is little or no regularity of 

this kind, as in "random" combinational logic, then 

there may be no useful circuit model at any level higher 

than M G. With the increasing integration of digital sys- 

tems, there has been a trend toward building circuits 

from standard high-level modules interconnected in a 

regular manner. The modeling technique proposed here 

is particularly useful in generating tests for such circuits. 

In the next section, it is applied to a particular class 

of highly regular circuits to illustrate its advantages over 

traditional gate-level methods for test generation pur- 

poses. Note, however, that our general methodology 

can take full advantage of the more modest degree of 

regularity found in typical designs. 

3. Regular Circuits 

To illustrate the ability of our approach to exploit a cir- 

cuit's regularity to simplify test generation, we first 

apply it to the class of k-regular circuits recently intro- 

duced by Y. You [19, 20]. The best-known examples 

of such circuits are bit-sliced ALUs and controllers, 

which are 1-regular, and have long been studied under 

the heading of cellular or iterative logic arrays (ILAs). 

The concept of k-regularity extends the notion of regu- 

larity from such completely regular circuits as ILAs 
to more general circuits which are not so obviously reg- 

ular. Intuitively, a k-regular circuit is a one-dimensional 

array of repeated groups of modules, each group con- 

sisting of k distinct module types. Formally defined, 

a one-dimensional array (cascade) circuit Cl:n of n 

modules C1, . . . ,  Cn is said to be k-regular if C(i_l)k:ik 
is isomorphic to Cik:(i+l)k, for all 0 < i < LnlkJ , 

where Ci:r denotes the subcircuit comprising Ci, Ci+1, 
. . . .  Cr and all their interconnections. Specific exam- 

pies of such circuits are provided in figure 6. Figure 6(a) 

shows a shifter circuit based on the 74350 IC [17] which 

is easily seen to be 1-regular. Figure 6(b) shows a parity 
checker circuit that checks for even parity, and is based 

on the 74280 IC [17]. Note that the model in figure 6(b) 
is actually an intermediate-level circuit in which two 
module types A and B have been recognized, and is 

an example of a 2-regular circuit. In order to construct 
M n for k-regular circuits, we may sometimes start 

with such an intermediate-level model instead of a gate- 

level model because useful structural information is pre- 

served in the former. 

The high degree of repetitiveness in the k-regular 

circuits suggests that the proposed hierarchical model- 

ing technique may be very useful in reducing their test 

generation complexity. In fact, for the special case of 

1-regular circuits in which the horizontal output lines 

from a module are directly connected to the correspond- 

ing horizontal input lines to the module, a high-level 

model M n of the circuit can be easily constructed such 

that a test for a total bus fault on bus B in M H detects 

all SSL faults that can be associated with the bus B. 

The subcircuit consisting of modules M2,1:M2,4 in the 

4-bit 2-to-1 multiplexer of figure 4(a) is an example of 

such a 1-regular array. A procedure to construct high- 

level circuit models for general k-regular circuits is 

briefly described next, and is then illustrated with the 

2-regular parity checker. 
Let the general k-regular circuit under consideration 

consist of n modules, such that n = qk - r, 0 < r 

_<- k - 1. Following the notation of section 2, M G and 

M ~/denote the low-level and high-level models of the 

circuit, respectively. The superscripts G and H are also 

used to differentiate between components or buses of 

the low-level and the high-level models. Thus, M G for 

a k-regular circuit consists of modules C~ through C~ 

connected to one another. M n is obtained by grouping 

together the identical modules Ci 6, Ci6+k, Ci6+2k, . . .  

which are spaced periodically along the array, to form 

a word-oriented high-level module C/n. The different 

high-level modules are then connected together using 

buses of size q or q - 1 following a procedure called 

pseudo-sequential contraction (PSC) [3]. Briefly stated, 

this procedure forms buses from lines connected to the 

gate-level modules at intervals of k modules. These 

buses are then used to connect the high-level modules 

together, with a loop being introduced to represent the 

fact that identical modules occurring at intervals of k 

modules in the gate-level model are mapped onto the 

same high-level module. Four special fanout (FO) and 
merge (ME) components need to be introduced to per- 

form this grouping of lines into buses in M n. These 

are the fanout elements FO[MS, n] and FOILS, n], and 
the merge elements ME[MS, n] and ME[LS, n] shown 
in figure 7. The parameter n indicates the size of the 
input bus in the case of the fanout elements, and the 

size of the output bus in the case of the merge elements. 
Note that one output bus of each fanout element is of 
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Fig. 6 Examples of k-regular circuits: (a) shifter (1-regular); (b) even parity checker (2-regular). 
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Fig. 7. The fanout and merge elements used in pseudo-sequential contraction: (a) FO[MS, n]; (b) FO[LS, n]; (c) ME[MS, n]; (d) ME[LS, n]. 



112 Bhattacharya and Hayes 

size one, while the other is of size n - 1. Parameters 

LS and MS indicate whether the output bus of size one 

is connected to the most significant or the least signifi- 

cant line of the input bus. Parameters MS and LS have 

a similar interpretation in the case of the merge ele- 

ments, indicating whether the most or the least signifi- 

cant line of the output bus is connected to the input bus 

of size one. 

The result of applying pseudo-sequential contraction 

to the parity-checker circuit of figure 6(b), is shown 

in figure 8(a). Since the circuit is 2-regular, only two 

high-level modules A H and B H corresponding to mod- 

ule types A and B, respectively, exist in M H. The num- 

ber of periods q is obviously five in this case. Merge 

(ME) elements are not needed, while special fanout ele- 

ments of both types, viz, FO[LS, 5] and FO[MS, 5], 

are needed, as seen in figure 8. The interconnections 

between the high-level modules and the fanout elements, 

as generated by pseudo-sequential contraction, are 
shown in figure 8(a). 

An important feature of M H for k-regular circuits 

is the introduction of a loop, although no such loop ex- 

ists in M 6. M H is called pseudo-sequential (PS) due 

to the possible presence of loops; note, however, that 

it does not exhibit sequential behavior in the usual 

sense. It is easy to see that the pseudo-sequential high- 

level model contains a constant number of components 

whereas the number of components in the gate-level 

circuit model increases linearly with q. The bus size 

in M H, on the other hand, increases with q. This 

trade-off of bus size for component count implies a sig- 

nificant reduction in the number of components in M H 

compared to M c, even for moderately large values of 

q. The only problem of using the pseudo-sequential 
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Fig. cR (a) High-level (pseudo-sequential) model of parity checker of Fig. 6(b); (b) corresponding MPS model. 
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model directly for test generation purposes is the pres- 

ence of loops in it, because conventional combinational 

test generation algorithms require acyclic circuit models. 

However, we can solve this problem in the standard way 

[4] by breaking the feedback loop in the PS model, 

thereby converting it to an acyclic modified pseudo- 
sequential (MPS) model. A pair of input/output buses 

is created for each loop that is broken, and these buses 

are referred to as the pseudo-state input/output 
(PSI/PSO) buses. 

The advantages of our high-level modeling technique 
are illustrated by comparing M 6 and M e for the 27-bit 

parity checker circuit introduced in figure 6(b). The 

MPS model of the circuit is shown in figure 8(b); it 

has two pairs of pseudo-state input/output buses, denoted 

PSI1/PSO1 and PSI2/PSOz. To compare the number of 

components and buses in the MPS model to those in 

the gate-level model M c, we need to expose internal 

details of the high-level modules A n and B n. Figure 9 

shows these modules' internal structure. In this case, 

M a contains 228 components which are connected 

using 359 single-bit lines. M ~/for the same circuit has 

only 51 components interconnected via 91 buses. Thus, 

M n has only one-fourth the number of components 

and buses of M ~. Moreover, the number of compo- 

nents and buses in the MPS model remain constant at 

51 and 91, respectively, independent of the size of the 

array, while the number of components and lines in a 

gate-level model of the array are 47q and 81q, respec- 

tively, if the array consists of q periods. The bus sizes, 
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on the other hand, increase from 1 in the gate-level 

model to q in the MPS model. The usefulness of the 

MPS model will be demonstrated further in the next 

section. 

The MPS models for k-regular circuits are truly hier- 

archical in that we can construct a sequence of high- 

level models M 1 = M/4, M 2 . . . ,  M q = M G for a 

given k-regular circuit, such that M G and M H repre- 

sent the two extreme cases in this sequence of models. 

It follows from the definition of k-regularity that if a 

circuit with n modules, n = qko - r, is ko-regular, then 

it is also kos-regular for any integer 1 < s < q. The 

sequence of high-level models of the given circuit can 

now be obtained using pseudo-sequential contraction 

by considering the given circuit to be kos-regular, and 

varying the parameter s within the permissible limits. 

Sizes of all buses other than pseudo-state buses decrease 

from q in M 1 to 1 in M q. The pseudo-state input/output 

bus sizes go from q - 1 in M 1 to 0 in M q, i.e., they 

vanish in the limiting case. 

4. Test Generation Algorithm 

We now present a test generation procedure which uti- 

lizes the hierarchical circuit and fault models developed 

in the previous sections. This algorithm allows the high- 

level circuit model to consist of arbitrary high-level 

components such as MCLA used in M/4 of the 74181, 

as well as simple general-purpose components like word 

gates. In the case of k-regular circuits, as stated in sec- 

tion 2, we use an MPS model for M H. Note also that 

in most cases, the natural high-level model M H to use 

is the register-level model developed in the early stages 

of a typical CAD-based design process. 

The input/output behavior of high-level components 

is described using the VS notation of section 2, com- 

bined with a straightforward generalization of the cubi- 

cal representation found in [14]. The elements of the 

cubes thus obtained are vectors instead of scalars, and 

hence the cubes are referred to as vector cubes. Some 

examples of vector cubes for an n-input NOR gate are 

shown below: 

1. | x. | x . / 0 .  
Xn | In | Xn / On 

O.|174 
S(l...n)( 1 I-n/Zq (~) X Vn/2 q ) 

| S(1 .... )(XVn/27 ~) 1Vn/2 q) 
| X.  / O n (1) 

where Xn represents the don't care vector of size n. 

The concept of cube intersection has also been di- 

rectly extended from the scalar to the vector case. Two 

vector cubes Vx and I:2 have a nonempty vector intersec- 

tion V if every element in cube V1 can be intersected 

with its counterpart in I:2 using the rules 

s n s  = s ,  s n X = s  

where s ~ {0, 1}. For example, referring to the vector 

cubes of (1), we see that 

ln (~ Xn (~) Xn [ lnnXn (~) ln (~) X n / I n = ln Q ln (~) Xn /1 n 

ln (~) Xn (~ Xn / OnnOn (~ On (~) On / In =6 

where n now denotes vector intersection, and ~b is the 

empty set. 

The number of possible vector cubes of a component 

grows rapidly with increasing bus size. However, by 

adopting a hierarchical approach to test generation, and 

by restricting ourselves to total bus faults only at each 

level, we do not have to consider all possible vector 

cubes; it suffices to consider only those cubes relevant 

to test generation for total bus faults. 

Before presenting the test generation algorithm, we 

briefly consider the SSL fault coverage obtained by gen- 

erating tests for total bus faults in high-level models 

of circuits with varying degrees of regularity. This 

allows us to demonstrate the potential of the proposed 

approach, as well as to illustrate the major problems 

of achieving good fault coverage. Consider a class of 

extremely regular circuits whose M H is composed of 

word gates and regular fanout elements only, intercon- 

nected by buses of fixed size. For such circuits, the 

following easily proven result holds: 

Theorem 1: A complete test set for all total bus faults 

in a high-level model M H composed of  word gates and 

regular fanout elements interconnected by buses of fixed 

size, is also a complete test set for all SSL faults in the 

corresponding gate-level model M G. 

Although practical circuits that conform exactly to 

the specifications of theorem 1 are rare, many common 

circuits containing large repeated subcircuits also have 

similar characteristics. For instance, it is shown in [3] 

that a complete test set for total bus faults in M rt of 

the 4-bit 2-to-1 multiplexer of figure 4 is also a complete 

test set for all SSL faults in the corresponding gate- 

level model. 
Some important issues in test generation for high- 

level circuits are illustrated by the MPS model M H 

of the parity checker circuit shown in figure 9. As 

stated earlier, the buses marked PSI (PSO) in figure 9 
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represent the pseudo-state input (output) buses in the 

MPS model. Two problems in generating tests for an 

MPS model are that the PSI buses are not directly con- 

trollable and the PSO buses are not directly observable. 
The lack of observability implies that simply generating 

a test for a total bus fault in an MPS model does not 

guarantee detection of all SSL faults associated with 

the faulty bus, because the test generation process can 

lead to the error being propagated to an unobservable 

PSO bus. Drawing on the analogy between the sequen- 

tial and pseudo-sequential circuit models, we see that 

more than one iteration (pass) through the MPS model 

may now be necessary to generate a test for a k-regular 

circuit. These iterations, however, differ significantly 

from those required for sequential circuits [4] in that 

all primary input bus assignments found in the first 

iteration are retained in all subsequent iteration steps. 

Thesepseudo-iterations, therefore, can only lead to suc- 

cessive refinements of the input assignment already 

found in the first iteration, unlike the corresponding 

iterations in the case of sequential circuits, which lead 

to a sequence of distinct input patterns. 

The second problem of test generation for k-regular 

circuits, is the presence of uncontrollable PSI buses. 

We must now ensure that any vector assigned to a PSI 

can indeed be applied to the corresponding lines in the 

actual circuit. An example to the contrary is shown in 

figure 9 where the current input pattern applies a vector 

04 to PSI1, and generates an output of 14 at the corre- 

sponding PSO~. However, since a corresponding pair 

of lines in PSI and PSO buses are derived from a single 

line in the gate-level model, as explained in section 3, 

they must be assigned the same signal value in the fault- 

free case; we designate this the compatibility require- 
ment. Two vectors V~ and 1:2, defined on the signal set 

{0, 1, D, I), X}, are said to be compatible with each 

other, if replacing the D and I) elements in the two vec- 

tors by 1 and 0, respectively, results in vectors V~' and 

V; such that V~ f3 V~ ~ q~. Obviously, 04 is incompatible 

with 14, and hence the input assignment shown in figure 

9 must be rejected as invalid. 

We now turn to the generation of tests for arbitrary 

combinational circuits for which hierarchical descrip- 

tions on two or more levels exist. We have developed 
a hierarchical test generation algorithm VPODEM 

which works with both high-level and gate-level cir- 

cuit and fault models. It is a substantially extended ver- 
sion of PODEM and recognizes two classes of circuits: 

combinational and modified pseudo-sequential; it also 

treats signals and faults as vectors. While we do not 

consider sequential circuits explicitly, they could be 

handled by VPODEM in the conventional manner by 

constructing iterative combinational models of the orig- 

inal circuits [4]. 

The choice of a conventional algorithm as the basis 

for our hierarchical test generator was motivated by the 

requirement that the algorithm should reduce to a stan- 

dard test generation algorithm when a gate-level circuit 

and the SSL fault model are used; this allows us to guar- 

antee 100 percent SSL fault coverage for general circuits. 

As discussed earlier, bus sizes may become nonuniform 

at the higher level of representation, and a combinational 

circuit may be transformed into a pseudo-sequential 

one. As a result, our test generation algorithm needs 

the capability of handling general high-level compo- 

nents, checking for compatibility between pseudo-state 

input/output bus assignments, and performing pseudo- 

iterations when needed. The basic test generation algo- 

rithm implemented by VPODEM, is summarized in 

figures 10 and 11. It consists of two main procedures: 

TESTGEN (figure 10) which is a redesigned version 

of the test pattern generator of conventional (or scalar) 

PODEM, and ITERATE (figure 11) which is an exten- 

sion to conventional PODEM to handle MPS models. 

VPODEM's name is derived from the fact that it can 

assign vectors to buses in a high-level circuit model, 

in contrast with the conventional PODEM algorithm 

which can only assign scalar values to lines in a gate- 

level model. 

The various steps performed by VPODEM are now 

illustrated by applying it to the MPS model of the parity 

checker circuit presented in figure 9, assuming the 5-bit 

bus labeled 55 to be totally stuck at 1. For this fault, 

VPODEM performs two pseudo-iteration steps; the re- 

suiting input assignments are shown in figures t2 and 

13. At the beginning, all bus signals are assumed to be 

uninitialized, and so have value Xn assigned to them, 

where n is the bus size. In the first pseudo-iteration 

step, VPODEM goes through several cycles of initial 

objective selection and back-tracing [9] to fred an input 

assignment of vectors 05, 15, and 15 to buses 1, 2, and 

3 respectively, which propagates error vectors D4 and 

D 4 to PSO buses 62 and 64; see figure 12. Compatibil- 

ity between various PSI and PSO buses is maintained 

because PSI buses 71 and 72 are still assigned X4, which 
is, by definition, compatible with both D 4 and f)4. 

In the second pseudo-iteration step, the input assign- 

ment from the first step is saved, the vectors D4 and 
I)4 from buses 62 and 64 are assigned to buses 71 and 

72 respectively, and the total bus fault is neglected. Our 

goal here is to generate a test for a bus fault that will 

detect any SSL fault on corresponding lines of the bus. 
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procedure TESTGEN (ENTRY, PSEUDO__ITERATION~FLAG) 

do until ((error is propagated to an output bus) 

OR (no alternative input assignment possible)) 
call INITOBJ(ENTRY, PS EUDO____ITERATION__FLAG) 

/*initobj sets the initial objective if parameter ENTRY is set to 1. If 

PSEUDO____ITERATION__FLAG is set to FALSE, then it checks for 

uninitialized condition on the faulty bus. Otherwise, it assumes error 
signal to be present on some input, and tries to set an initial objective to 

propagate this error signal to some output bus*/ 
if ((failure in initobj) OR (ENTRY = 2)) then 

/*ENTRY = 2 implies that execution should start with a backtracking 

step (alternative assignment to primary input in decision-tree handler)*/ 

call DECISION-TREE HANDLER (failure) 
if (no more alterantives exist) then 

EXIT in failure 
end/*if*/ 

if (ENTRY = 2) then 
ENTRY := 1 

end/*if*/ 
end/*if*/ 

if (initial objective is selected successfully by initobj) then 

call BACKTRACE 
call ASSIGN PRIMARY INPUT 

call DECISION-TREE HANDLER (success) 

end/*if*/ 

call IMPLICATION 
if (ENTRY = 3) then 

ENTRY := 1 

end/*if*/ 
/*If ENTRY = 3 to begin with, then initobj does nothing which means 

all steps before implication are skipped. Setting ENTRY to 1 signals 

initobj to set objective levels in successive cycles*/ 
i f  pseudo-state input and output assignments are not compatible then 

ENTRY := 2 

end/*if*/ 

end/*do until*/ 

if (error is propagated to an output bus) then 
EXIT in success 

else 
EXIT in failure 

end/*if*/ 
end/*TESTGEN*/ 

Fig. 10. Pseudo-code of procedure TESTGEN in VPODEM. 

However, an SSL fault can actually occur in only one 

repetitive array position or period of the gate-level 

model, say period s. Error signals in subsequent periods 

s + r, r _> 1, of the array will only be the result of 

error signals generated on the horizontal output lines 

from period s. Hence, it is necessary to neglect the total 

bus fault in the second, and subsequent pseudo-iteration 

steps. VPODEM now assigns vectors 14 to the input 

bus 4, and 0 4 to buses 5 and 6 respectively, which 

causes error ve c to r  1~4 to be propagated to pr imary 

output bus 89; see figure 13. It is easily seen that com- 

patibility is still maintained between corresponding PSI 

and PSO bus assignments. Hence, the test input pattern 

consists of values assigned to the pr imary input buses 

1, 2, 3, 4, 5, and 6. If  the error vector can still not 

be propagated to any pr imary output bus, but can be 
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procedure ITERATE 
PSEUDO_ITERATION__COUNT= 0 
PSEUDO~ITERATION_FLAG=FALSE 
ENTRY=I 
do while (PSEUDO~ITERATION_COUNT < MAX__COUNT) 

call TESTGEN (ENTRY, PSEUDO ITERATION~FLAG)) 
if (test is not found) then 

i f  (PSEUDO___ITERATION__COUNT = 0) then 

EXIT in failure 
else 

PSEUDOITERATION__COUNT := PSEUDO__ITERATION__COUNT-1 
pop input bus assignment off pseudo-iteration stack 
ENTRY := 2 
i f  (PSEUDO__ITERATION__COUNT = 0) then 

PSEUDO__ITERATION__FLAG=FALSE 
end/*if*/ 

end/*if*/ 
else 

i f  (PSI/PSO buses are absent) then 
EXIT in success 

else 
justify pseudo-state input/output bus assignments 
i f  (justification is not possible) then 

pop input bus assignment off pseudo-iteration stack 
ENTRY := 2 

else 

push input bus assignment into pseudo-iteration stack 
if (error vector appears on primary output bus) then 

EXIT in success 
else 

PSEUDO__ITERATION__COUNT := PSEUDO__ITERATION__COUNT+I 
assign previous pseudo-state output values to pseudo-state inputs 
assign primary input values from previous iteration 
ENTRY := 3 
PSEUDO__ITERATION__FLAG := TRUE 

end/*if*/ 
end/*if*/ 

end/*if*/ 
end/*if*/ 

end/*do while*/ 
if (PSEUDO__ITERATION__COUNT = MAX__COUNT) then 

EXIT in success 
end/*if*/ 

end/*ITERATE*/ 

Fig. H. Pseudo-code of procedure ITERATE in VPODEM. 

propagated to some PSO bus while meeting the 

compatibility requirement, then further pseudo-iteration 

steps are required. 

As noted earlier, a major difference between pseudo- 

iterations in VPODEM, and iterations occurring during 

test generation for sequential circuits [4], is that the 

former merely generates successive refinements of the 

input assignment found in the first step. Another major 

difference is that the number of pseudo-iteration steps 

possible for the MPS model of a given k-regular cir- 

cuit is bounded by the number of periods in M ~ This 

number is reasonably small for most practical circuits; 
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Fig. 12. ITERATE and TESTGEN illustrated: after assignment  of  primary inputs 1, 2, and 3 in first pseudo-iteration step. 

similar bounds for sequential circuits are exponential 

in the number of states of the circuit, and are of little 

practical use. Also note that multiple pseudo-iteration 

steps are automatically avoided by VPODEM if the 

circuit model has no PSI/PSO buses. In such cases, 

VPODEM goes through only a single pseudo-iteration 

step similar to a PODEM iteration, the main difference 

being that VPODEM assigns vectors to buses of size 

greater than one, while PODEM assigns scalar values 

to single lines. A more detailed discussion of the 

VPODEM algorithm can be found in [31. 
Our algorithm, like PODEM, is complete in the 

sense that it can generate tests for all detectable SSL 

faults in any well-formed combinational circuit. Test 

generation using both high-level and gate-level models 
may be necessary to obtain such complete SSL fault 
coverage. However, for circuits containing regular sub- 
circuits like k-regular circuits, a large percentage of SSL 

faults are expected to be detected by generating tests 

for the high-level model as suggested by the following 

result [3]: 

Theorem 2: A test for  a total bus fault  F i = i,, i E 

{0, 1} on a bus B in the MPS model o f  a k-regular 

circuit generated by VPODEM detects all SSL faults 

fi = ix on individual lines of  B in a gate-level model 

o f  the circuit. 

The advantages of the proposed algorithm over con- 

ventional test generation algorithms are twofold. First, 

VPODEM is invariant with respect to the representa- 

tion level of the circuit and fault models used. We have 

achieved this invariance by adopting a hierarchical cir- 

cuit modeling technique, and identifying an important 
class of faults suitable for the high-level circuit models, 

viz, total bus faults. Conventional test generation algo- 
rithms are, in most cases, tied to the gate-level cir- 

cuit and fault models. The second, and perhaps more 
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Fig. 13. ITERATE and TESTGEN illustrated: final assignments to primary inputs at termination of ITERATE. 

important, advantage stems from the hierarchical nature 

of the proposed test generation technique. Tests can first 

be generated for total bus faults in M H of the circuit. 

Due to the grouping of many lines into a single bus 

at this level, the total number of target faults is signifi- 

cantly less than in a gate-level model of the circuit, 

leading to considerable reduction in the overall test set 

size and test generation effort. 

5. Experimental Results 

This section outlines a computer program implementing 
VPODEM, and presents experimental results showing 

the advantages of the proposed algorithm over conven- 

tional techniques. The program is written in FORTRAN, 

the choice of language being made from considerations 

of portability, optimization, and possible vectorization. 

The input to VPODEM is a text file which provides 
the circuit description and various user commands to 

control program execution and output. The input data 

is assumed to be organized into three blocks: component 

interconnection information in the form of a net list; 

the sizes and types of buses in the circuit; and user 

options controlling the built-in fault simulator. The cir- 

cuit model, either low-level or high-level, is conceptually 

stored in the form of a set of circularly linked lists. 

However, due to the lack of dynamic data structures 

in FORTRAN, these lists, and other pertinent informa- 

tion like the status of the decision tree [9], vector cubes 

for general high-level components other than word 

gates, and various stacks are all simulated using arrays 

grouped into COMMON blocks. 

VPODEM is implemented by a main program, two 
test generation procedures, a simple fault simulator, and 

various other subroutines that are used by these four 

procedures. The main program is responsible for crea- 
tion of the various data structures, and controlling inter- 

action between the test generation procedure and the 
fault simulator. The test generation procedures are 
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straightforward implementations of ITERATE and 

TESTGEN described earlier. The built-in fault simu- 

lator can be used after each successful test generation 

cycle to eliminate all detected faults from the fault list, 

and thus reduce computation. Further implementation 

details of our program are available in [3]. 

The program has been used to generate tests for a 

set of eight representative circuits, mostly based on MSI 

circuits of the 7400 series of ICs, for which high-level 

and the gate-level models are readily available [17]. 

Benchmark circuits like the ISCAS set [6] cannot be 

used here since the required structural information 

about these circuits are unavailable. Circuit CUT1 is 

the 74630 parity generator with its primary fanout re- 

moved; CUT2 is the 74157 4-bit 2-to-1 multiplexer of 

figure 4; CUT3 is an 8-bit ripple-carry adder using 

NAND gates only; CUT4 is an 8-bit shifter based on 

the 74350; CUT5 is the 74181 ALU whose gate-level 

and high-level models have already been presented in 

figure 5; CUT6 is a modified 74381 obtained from [20]; 

CUT7 is the parity checker circuit of figure 9; and 

CUT8 is a 1/256 decoder tree circuit constructed using 

modified 1/16 decoders based on the 74154 IC [3]. The 

results of applying our test generation program to these 

eight circuits are tabulated in tables 1 through 3. Table 1 

Table 1. Number of components and buses in gate-level and high-level 

models of circuits CUT1-8. 

Gate-level model M a High-level model M H 

Number of Number Number of Number 

components of lines components of buses 

CUT1 78 144 13 24 

CUT2 20 43 12 18 

CUT3 120 201 17 30 

CUT4 128 227 26 47 

CUT5 101 201 12 26 

CUT6 240 441 81 164 

CUT7 208 359 51 91 

CUT8 808 2220 38 47 

compares the complexity of the gate-level and high-level 

models using the component count and the number of 

buses as measures of complexity. 

Table 2 compares the number of tests generated for 

total bus faults in the high-level model M H to the num- 

ber of tests generated for SSL faults in the gate-level 

model M ~, as well as the time spent (in seconds on 

a SUN 4/110 workstation) in test generation at the two 

levels. It also provides the SSL fault coverage of the tests 

generated for total bus faults in M H, and the number 

of extra tests, if any, needed to obtain 100 percent SSL 

fault coverage. Note that test generation time represents 

the total time spent in the test generation routines only, 

and does not include the time spent in the fault simu- 

lator. (In our implementation, we use a simple but in- 

efficient simulator leading to simulation times that are 

not easily compared.) 

From table 1, it is clear that the high-level modeling 

leads to a substantial reduction in the circuit complexity. 

For example, CUT5 has 101 components and 201 lines 

at the gate level but only 12 components and 26 lines 

at the high level. Similarly, as illustrated in table 1, 

M H of CUT7 has approximately one-fourth the num- 

ber of components of its gate-level model. This com- 

plexity reduction is perhaps best illustrated by the modi- 

fied decoder circuit CUT8. In this case, M H contains 

less than one-twentieth the number of components and 

less than one-fortieth the number of buses in M c. Al- 

though the size of the buses in M H is usually greater 

than one, we show next that bus size plays a smaller 

role in the overall test generation effort than does the 

number of components and buses used. 

Table 2 shows that the SSL fault coverage obtained 

using tests generated for total bus faults in M H is quite 

high (70 to 100 percent) for all the sample circuits. 

However, the number of tests required to obtain this 

fault coverage is much smaller than the number of tests 

obtained using M ~ alone. For example, in the case of 

CUT7, 60 tests were generated using M ~, while only 

Table 2. Test set sizes, test generation times, and SSL fault coverage obtained using high- and gate-level models of CUT1-8. 

Gate-level model M G High-level model M H 
Number of extra Total test generation 

Number Test generation Number Test generation SSL fault tests for 100% SSL time using two-level 

of tests time (sec.) of tests time (sec.) coverage fault coverage approach (sec.) 

CUT1 72 9.51 12 2.04 100% 0 2.04 

CUT2 16 1.10 8 0.28 100% 0 0.28 

CUT3 26 7.97 5 0.79 100% 0 0.79 

CUT4 50 37.14 12 10.20 70% 14 20.47 

CUT5 54 29.52 16 2.77 78 % 16 12.11 

CUT6 63 51.32 15 16.18 77% 21 33.79 

CUT7 60 45.44 15 7.16 94% 16 16.24 

CUT8 483 1738.88 12 2.71 98% 16 66.39 
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15 tests with 94 percent fault coverage were generated 

using M s. A set of 16 additional tests were found to 

cover all SSL faults not covered by the high-level tests. 

Thus, for the circuits considered, the hierarchical ap- 

proach to test generation leads to only half as many 

tests as generated by the gate-level technique alone. The 

program performs very well for highly regular circuits 

with small fanout like CUT1, CUT2, and CUT3, or for 

circuits like CUT8 which have been designed to facili- 

tate high-level test generation. In these cases, test gener- 

ation at the high level provides complete, or very nearly 

complete, SSL fault coverage with significantly smaller 

test sets than were generated using gate-level models 

only. On the other hand, the presence of complex fan- 

out, as in CUT4 through CUT7, tends to reduce the 

SSL fault coverage. However, the combined use of both 

the high-level and the gate-level models is seen to 

reduce the total number of tests by 50 percent or more, 

in most cases. The corresponding speedup of test gener- 

ation, though not exactly proportional to the reduction 

in test size or circuit complexity, is significant in all 

cases. For example, the speedup for CUT7 is approxi- 

mately 3, that for CUT4 is approximately 2, while that 

for CUT8 is approximately 26. 

Finally, we compared our high-level approach to ran- 

dom test generation, which is commonly used as an 

alternative to algorithmic test generation since randomly 

chosen test patterns are very easy to generate. For each 

circuit, the number of random patterns generated was 

made equal to the number of patterns generated using 

our high-level algorithm, and a standard random num- 

ber generation routine was used to generate the random 

input patterns. Three random sequences with different 

initial seeds were used, and the average SSL fault cover- 

age of the three resultant random pattern sets was evalu- 

ated using the fault simulator in our implementation 

of VPODEM. 

The results of this comparison are shown in table 3, 

which indicates that the SSL fault coverage of the ran- 

dom tests is, in almost all cases, significantly smaller 

than that obtained by applying VPODEM to the high- 

level model alone. In fact, only in the case of CUT4, 

does the scheme of the random test pattern generation 

provide fault coverage comparable to that obtained by 

the high-level scheme, for the same small number of 

tests. For circuits like multiplexers (CUT2) or decoders 

(CUT8), the performance of the random test generation 

scheme was found to be far inferior to the proposed 

high-level scheme. Furthermore, random patterns must 

usually be supplemented with deterministic tests to 

achieve 100 percent SSL fault coverage with realistic 

Table 3. Comparison of the SSL fault coverage of random test genera- 
tion and VPODEM. 

SSL fault coverage 

Number Tests generated Tests generated 
of tests randomly by VPODEM 

CUT1 12 88 % 100 % 
CUT2 8 61% 100 % 
CUT3 5 71% 100% 
CUT4 12 69 % 70 % 
CUT5 16 66% 78% 
CUT6 15 63 % 77 % 
CUT7 15 81% 94 % 
CUT8 12 16% 98% 

sizes of test sets [1]. In contrast, our hierarchical ap- 

proach is guaranteed to provide complete SSL fault cov- 

erage for arbitrary circuits. The data in tables 1 and 2 

also show that the test sets from VPODEM are, in gen- 

eral, significantly smaller than the test sets obtained 

using conventional gate-level test generation algorithms. 

6. Conclusion 

We have presented a novel methodology to model large 

digital circuits for test generation purposes. Circuit 

behavior is described by vector sequences of spatial 

(bus) size n, where n is a measure of complexity level. 

While n = 1 corresponds to the classical gate level, 

larger values of n correspond to the register level. We 

have introduced a new class of (total) bus faults, also 

parametrized by n, which generalize the classical SSL 

fault model to higher levels. The resulting circuit and 

fault models are truly hierarchical, and avoid the confu- 

sion arising out of mixing concepts from different levels. 

We have shown that in the special case of k-regular array 

circuits, useful trade-offs can be made between the 

number of periods in the array q, and the bus size n, 

using a new class of models called modified pseudo- 

sequential or MPS circuits. A high-level MPS circuit 

with a fixed number of components can model a k- 

regular array of arbitrary length. The use of such high 

level models with bus size n leads to approximately an 

n-fold reduction in the test set size due to the fact that 

tests for the faults associated with the individual lines 

of a multiline bus are effectively generated in parallel. 

To evaluate the feasibility of hierarchical test genera- 

tion using these concepts, we have defined and imple- 

mented the VPODEM algorithm. Our experiments with 

VPODEM show that for circuits of moderate to high 

regularity, complete test sets for total bus faults in M H 
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provide  quite good SSL fault coverage in M ~ This  

suggests that, even for modera te ly  i r regular  circuits, 

there may be  no need to consider  the many nontotal  

faults possible  in an n-bit  bus;  the two total bus faults 

may suffice. Moreover,  the high-level test sets produced 

by V P O D E M  are smaller,  and can be more  rapidly 

generated, than the corresponding test sets derived f rom 

M ~ alone. This  suggests that, in many  pract ical  in- 

stances, all test generation can be done at the high level, 

thus dispensing comple te ly  with the less eff icient  clas- 

sical circuit  and fault models.  Furthermore,  we can use 

V P O D E M  to generate tests directly for SSL faults (pro- 

vided,  of  course,  a suitable gate-level  mode l  is avail- 

able),  a l lowing us to adopt  a h ierarchical  approach for 

general  circuits.  Our  exper iments  show that this hier-  

archical  approach results in significantly smal ler  test 

sets providing 100 percent  SSL coverage,  compared  to 

gate-level  approaches  that use standard determinis t ic  

methods  ei ther  alone, or  in combina t ion  with r andom 

test generat ion.  
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