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Abstract

System-on-chip (SOC) design methodology is becoming
the trend in the IC industry. Integrating reusable cores
from multiple sources is essential in SOC design, and dif-
ferent design-for-testability methodologies are usually re-
quired for testing different cores. Another issue is test inte-
gration. The purpose of this paper is to present a hierarchi-
cal test scheme for SOC with heterogeneous core test and
test access methods. A hierarchical test manager (HTM)
is proposed to generate the control signals for these cores,
taking into account the IEEE P1500 Standard proposal. A
standard memory BIST interface is also presented, linking
the HTM and the memory BIST circuit. It can control the
BIST circuit with the serial or parallel test access mecha-
nism. The hierarchical test control scheme has low area and
pin overhead, and high flexibility. An industrial case using
this scheme has been designed, showing an area overhead
of only about 0.63%.

1. Introduction

With the advent of the core-based system-on-chip (SOC)
and reuse methodologies, cores from different sources can
be integrated into a single chip. Compared with the tra-
ditional multi-chip system-on-board, benefits of the SOC
include higher performance, lower power consumption,
smaller size, etc. Different types of core (such as CPU,
DSP, SRAM, flash memory, ADC, DAC, and PLL) are
usually incorporated into a single SOC design [4]. More-
over, cores sometimes come in hierarchical compositions,
i.e., one complex core is composed of multiple simple ones
[13]. Although the SOC design process is analogous to the
board design process, their manufacturing test methods are
quite different [12]. For a board, the ICs from the providers
are already tested. Normally only the interconnects on the
board need to be tested for manufacturing defects. In an
SOC design, however, the cores are not yet manufactured
and tested. The core integrator is responsible for manufac-
turing and testing the chip, including the cores on it. SOC
testing includes core internal test, core external test, core

test knowledge transfer, test access, test integration and op-
timization, etc. [13]. Apparently, testing SOC designs is
more challenging than testing board designs.

Recently, research results have been reported for test-
ing SOC using IEEE 1149.1-compliant test architectures
[11, 3, 7]. In [11], a systematic solution for accessing em-
bedded JTAG (IEEE 1149.1) cores hierarchically has been
proposed, where a TAP linking module was designed to
handle the interaction between the upstream TAP controller
and downstream TAP controllers. In another work, a Hi-
erarchical Test Access Port (HTAP) architecture has been
reported [3]. This architecture supports test access to em-
bedded JTAG cores with a snoopy TAP. The pin require-
ment and behavior of the TAP controller of this design is
fully compatible with IEEE 1149.1. However, these meth-
ods do not handle the test control of the IEEE P1500 cores.
In [2], a central TAP controller consisting of an 1149.1-like
TAP finite state machine and a counter is used to control
P1500 and TAPed cores. Also, a hierarchical test control
mechanism reported in [7] provides hierarchical test capa-
bility for 1149.1 and P1500 cores, but ten additional pins
are required to operate the major component, Central Test
Controller, and only one core can carry out the testing task
at a time. In all these works, controlling memory cores with
built-in self-test (BIST) was not considered.

The purpose of this paper is to present a hierarchical test
architecture for managing the test operations of diversified
cores, including the 1149.1 wrapped, P1500 wrapped, and
BISTed memory cores. An 1149.1-based hierarchical test
manager is proposed, which also provides the P1500 test
control signals. A memory BIST interface is also devel-
oped, providing both serial and parallel access ports for the
BIST circuits. This approach has the advantages of low area
and pin overhead, and high flexibility. The proposed SOC
test scheme has been implemented on an industrial case.
The area overhead is only about 0.63%, which is very small
as compared with that of the IEEE P1500 test wrappers for
the cores (5.1%).

2. IEEE P1500 Scalable Architecture

To solve the problems mentioned above and for easy
test automation, a standard test interface for the cores is



required. A scalable architecture [9] was proposed by the
IEEE P1500 Standard Working Group. The IEEE P1500
Standard proposal tries to standardize the Core Test Wrap-
per and the Core Test Language (CTL). The architecture
consists of the user-defined parallel test access mechanism
(TAM) for delivering the test patterns and responses in par-
allel, standard core test wrappers that can isolate the cores
and provide different test modes, and a user-defined test
controller for controlling the wrapper and TAM [9]. Serial
test access can always be done by using the Serial Inter-
face Layer (SIL) provided by the P1500 Wrapper, which is
mandatory.

The IEEE P1500 Core Test Wrapper contains the fol-
lowing elements: 1) thewrapper instruction register(WIR)
that can handle various test modes defined by mandatory
and user instructions; 2) thewrapper interface port(WIP)
containing the wrapper control signals; 3) thewrapper by-
pass register(WBY, normally 1-bit) connecting directly the
wrapper serial input(WSI) to thewrapper serial output
(WSO), used for bypassing the current core when we are
testing others; 4) thewrapper boundary register(WBR)
consisting of thewrapper cellsthat wrap the normal IO pins
of the core, providing control, observation, and isolation for
the core, in addition to its normal function; and 5) optional
TAM input/output ports.

3. Hierarchical Test Scheme for SOC

3.1. Hierarchical Testing

Figure 1 shows the top-level architecture of the proposed
hierarchical test scheme by a system chip example, which
consists of a 1149.1 core, a P1500 core, a BISTed memory
core, and a hierarchical core with two P1500 cores in itself.
Four components are needed to perform the test task.

1. A hierarchical test manager(HTM) is used to han-
dle the test operations at each level. Its upstream
IOs are compatible with the IEEE 1149.1 TAP [6].
They are the TAP control signals (collectively de-
noted as TCSUP), including TCKUP (test clock),
TMS UP (test mode selection), TRSTUP (test reset),
and the serial test access IOs (TDIUP and TDOUP).
Its downstream IOs consist of the P1500 control sig-
nals (PCS), TCSDN (including TCK DN, TMS DN,
and TRSTDN), the serial test access IOs (TDIH and
TDO H) for the HTMs at the next level, and the serial
test access IOs (TDIC and TDOC) for the cores at the
same level. The details will be described in Sec. 3.2.

2. A TAM provides a higher test data transport capacity
for the P1500 and BISTed memory cores.

3. A wrapper control interface(WCI) is used to decode
the PCS signals into the WIP signals for operating the
test wrapper. It is composed of a decoder and a regis-
ter. The registers of all the WCIs at the same level are
serially connected into aSelection Register, which is
one of the data registers of the HTM. The details will
be described in Sec. 3.3.

4. A memory BIST interface(MBI) handles the BIST op-
erations through the serial test access port or TAM. It

can perform the BIST operations for multiple mem-
ory cores concurrently, reducing the effort in chip-level
test plan, test pin requirement, test data volume, etc.
The details will be discussed in Sec. 4.

TRST_UP TDO_UPTDI_UP TMS_UP TCK_UP

TDI_C

Core 1
(P1500)

TAM 1

MBI

WCI
Core 5
(JTAG)(BISTed RAM)

Core 2

WCIWCI

PCS

TDO_H TDO_CTDI_H

Core 4

TCS_UP

WCI
Core 3
(P1500)

HTM 1

(P1500)

TAM 2

HTM 2
TDO_UPTDI_UP

PCSTDI_C TDI_H TCS_DN TDO_H TDO_C

TAM input TAM output

TAP

Figure 1. The proposed hierarchical test
scheme.

A simple test procedure is shown below, assuming con-
formance and integrity tests have been done. Note that
the corresponding HTM instructions (to be described later)
must be updated into the HTM instruction registers before
performing each step of the test procedure.

1. Test Configuration: the instructions of the wrappers
and MBIs are loaded, configuring each core into a spe-
cific test mode or the bypass mode.

2. TAM Specification: the user needs to specify the cores
to be tested by the TAM. This is done by shifting a
binary sequence into the Selection Register of each
HTM. The most significant bit (MSB) of the Selection
Register in a lower-level HTM is to specify whether
or not the lower-level TAM is connected to the TAM
at the current level. Other bits are used for specifying
the connection between the cores and the TAM at the
same level. For example, there is a three-bit Selection
Register (bit2, bit1, bit0) in the HTM2 of Fig. 1: bit2
specifies whether TAM2 is connected to TAM1 or not,
and bit1 and bit0 specify whether Core3 and Core 4 are
connected to TAM2 or not, respectively. Note that the
TAM selection also can be specified by the instructions
of the HTMs, wrappers, or MBIs. In that case, the Se-
lection Register can be removed and this test step can
be omitted.

3. Test Transportation: the test patterns are imported to
the cores under test and their test results are exported
by the TAM and serial IOs according to the test con-
figuration.

3.2. Hierarchical Test Manager

The HTM architecture is depicted in Fig. 2, which con-
sists of aTest Managerand aHierarchical Test Interface.
The Test Manager is extended from the TAP Controller [6].



It is composed of the Finite State Machine (FSM), Instruc-
tion Register, Bypass Register, Activation Register, Bound-
ary Register, and Wrapper Control Encoder (WCE). The
main difference between the TAP Controller and the Test
Manager is the WCE. It generates the P1500 control sig-
nals (i.e., PCS, including PCS0, PCS1, and PCS2) accord-
ing to the instruction and the FSM state. It greatly reduces
the number of control signals for an SOC with many P1500
cores. The Hierarchical Test Interface consists of a Switch
Box, which specifies the connection of the serial test access
IOs according to the control signals from the Test Manager.
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Figure 2. The Hierarchical Test Manager.

The state diagram of the FSM is depicted in Fig. 3 [6].
By controlling the TMSUP input sequence, different states
of the FSM can be reached. In the figure, the states in Group
2 control the operations of the HTM Instruction Register,
while the states in Group 1 can be defined in a different
way under different instructions. The key instructions are
described next.
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Figure 3. The FSM state diagram.

The BYPASS, EXTEST, and SAMPLE/PRELOAD in-
structions are the same with the 1149.1 mandatory instruc-
tions [6]. When these instructions are used, the states in
Group 1 of the FSM are interpreted as (State 0, State 1,: : :,
State 6) = (Select-DR, Capture-DR, Shift-DR, Exit1-DR,
Pause-DR, Exit2-DR, Update-DR), i.e., the function of the
HTM is the same as the TAP Controller.

The LSELECTWIR, LTAMSELECT, and LSE-
LECTWR instructions are the local P1500 instructions.
Under these instructions, the Wrapper Boundary Register
is formed only by the cores at the same level with the
HTM, done by configuring the Switch Box (to be discussed
later). The LSELECTWIR instruction forces the HTM
into the Test Configuration phase, where (State 0, State
1,: : :, State 6) = (Shift-WIR, Capture-WIR, Shift-WIR,
Shift-WIR, Update-WIR, Capture-WIR, Update-WIR), and
the Bypass Register is selected. The WCE encodes the PCS
signals according to these HTM state. The wrappers and
MBIs shift and update the instructions into the Instruction
Registers by controlling the TMSUP. The LTAMSELECT
instruction enables the Selection Register, such that a
binary sequence can be shifted into the register to specify
the cores connected to the TAM. The LSELECTWR
instruction is for test transportation, under which (State 0,
State 1,: : :, State 6) = (Shift-WR, Capture-WR, Shift-WR,
Shift-WR, Update-WR, Capture-WR, Update-WR), and
the Bypass Register is selected. The WCE encodes the
PCS signals according to these states, and the WCI (to be
discussed in Sec. 3.3) decodes the PCS signals into the
WIP signals. The test patterns can then be transferred to
the cores under test by controlling TMSUP.

Table 1 shows the WCE outputs (PCS0, PCS1, PCS2) for
the respective instructions and FSM states. Note that PCS0
is dependent on the instructions, while PCS1 and PCS2 are
determined by the FSM states, such that we can specify the
operations by TMSUP. If it is an 1149.1 mandatory instruc-
tion, then (PCS0, PCS1, PCS3) = (0, 0, 0).

Table 1. PCS encoding.
Instruction FSM State PCS0 PCS1 PCS2
LSELECTWIR Shift-WIR 1 0 0
GSELECTWIR Update-WIR 1 1 0

Capture-WIR 1 0 1
LSELECTWR Shift-WR 0 0 0
GSELECTWR Update-WR 0 1 0

Capture-WR 0 0 1
LTAMSELECT 0 1 1
GTAMSELECT 0 1 1
1149.1 0 0 0

Note that for P1500 instructions, only three different
states are defined in Group 1, i.e., Shift-WR, Update-WR,
and Capture-WR. They are enough for the test wrappers.
For example, to test a core with internal scan, we can use
the loop (State 2!State 3!State 4!State 5!State 2) to
apply the tests.

Finally, the GSELECTWIR, GTAMSELECT, and GSE-
LECTWR instructions are global P1500 instructions. Their
functions are similar to those of the local P1500 instructions
discussed above, except that they are for all HTMs.

Table 2 lists all possible configurations of the Switch
Box. For example, if the BYPASS, EXTEST, SAM-
PLE/PRELOAD, or LTAMSELECT instruction is loaded,
then the TDO is connected to TDOUP, both TDIC and
TDI H are 0, and both TDOC and TDOH are discon-
nected (don’t-care). The configurations for LTAMSELECT
and GTAMSELECT are different from those of other P1500
instructions. The reason is that only the Selection Regis-
ters of the HTMs are needed to be configured. Note that
when the FSM is in a Group 2 state, the Switch Box is



forced to the same configuration as GTAMSELECT. All
HTMs are serially connected into a chain so that we can
load the desired instructions into the HTMs by controlling
the TMSUP pin.

Table 2. Switch box configurations.
Instruction Configuration
BYPASS, EXTEST, TDO!TDO UP, 0!TDI C,
SAMPLE/PRELOAD, 0!TDI H, TDO C!x,
LTAMSELECT TDO H!x
GTAMSELECT TDO!TDI H, 0! TDI C,

TDO H!TDO UP,
TDO C!x

LSELECTWIR, TDO!TDI C, TDO C!TDO UP,
LSELECTWR 0!TDI H, TDO H!x
GSELECTWIR, TDO!TDI C, TDO C!TDI H,
GSELECTWR TDO H!TDO UP

3.3. Wrapper Control Interface

The Wrapper Control Interface (WCI) decodes the PCS
signals into the Wrapper signals—SelectWIR, ShiftWR,
UpdateWR, and CaptureWR. The WCI is composed of a
1-bit register and a decoder. All the registers of the WCIs
at the same level are connected serially into the Selection
Register. Each bit of the register specifies whether the cor-
responding core is connected to a TAM or not. The PCS0
signal is directly connected to SelectWIR. The ShiftWR,
UpdateWR, CaptureWR signals are 1 when (PCS1, PCS2)
= (0,0), (1,0) or (0,1). This reduces the routing overhead
since the PCS signals are broadcast to the cores from the
HTM.

4. Memory BIST Interface (MBI)

Figure 4(a) shows the proposed MBI, which consists of
the Instruction Register, Bypass Register, Monitor Register,
Status Register, and Programmable Switch. The MBI Se-
rial Input (MSI) and MBI Serial Output (MSO) are used to
transfer the test data to and from the registers. The MBI In-
terface Port (MIP) contains similar control signals and has
a similar function as the P1500 WIP. Although the P1500
Wrapper can wrap embedded memories, the MBI does not
wrap the functional I/Os since they are already isolated
by the BIST circuit, removing the cost of WBR. The Pro-
grammable Switch determines whether the BIST IOs are
handled by the TAM or the MBI. In the latter case, the
Monitor Register and Status Register are used to observe
the BIST outputs. The Monitor Register is for monitoring
the error flag (indicating whether a memory fault is detected
or not) or exporting the diagnostic data (consisting of the
faulty cell/word address, March syndrome, and Hamming
syndrome [10, 8]) on-the-fly. The Status Register records
key status values, such as the FAIL (go/no-go) output from
the BIST circuit.

The BYPASS instruction is also the default instruction
of the MBI, as in P1500. The RUNBIST instruction runs
the BIST circuit in the test mode. The Monitor Register is
connected between the MSI and MSO. The RUNDIAGN
instruction forces the BIST circuit to be operated in the di-
agnosis mode. The diagnosis data is exported through the
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Figure 4. The MBI architecture.

Monitor Register. Note that only one memory core can be
in the diagnosis mode at any time. However, if the TAM
is used to handle the BIST operations, then the width of
the TAM determines the number of memory cores that can
be diagnosed concurrently. The EXPORTSTATUS instruc-
tion is used to export the content of the Status Register,
and the TAMCONTROL instruction configures the Pro-
grammable Switch to connect the BIST IOs to the TAM.

5. Experimental Results

We now estimate the gate count overhead of the hierar-
chical test scheme: Total gates = (HTM gates�No. HTMs)
+ (MBI gates� No. MBIs) + (WCI gates� No. WCIs)
+ (TAM gates� No. TAMs) + (Gates in test wrappers).
The gate counts of the HTM and MBI are affected by the
number of registers and their widths. The routing overhead
usually dominates the TAM area. The TAM architecture
[1] also affects the result. We have implemented a Wrap-
per cell library, providing different kinds of wrapper cell
for various applications [5]. We found that the test wrap-
per overhead is mainly determined by the IO pins of the
core. We have implemented the proposed hierarchical test
scheme in an industrial design containing three cores—two
P1500 cores (i.e., Core 1 and Core 2) and a hierarchical core
(i.e., HCore)—using a 0.25�m CMOS technology. Core 1
and Core 2 have one and two BIST circuits for their em-
bedded memories, respectively. HCore itself contains two
P1500 cores. The logic circuits are all tested by internal
scan. Core 1, Core 2, and HCore have 8, 16, and 2 scan
chains, respectively. Also, an 8-bit daisy-chain TAM [1]
is used to transport the test data. Table 3 shows the gate
count of each hierarchical test component. The gate count
of the HTM does not include the Wrapper Boundary Reg-
ister. Here, only the logic circuit of the TAM is estimated.
The 4-bit and 3-bit Instruction Registers are used for the
HTM and MBI, respectively.

Table 3. Gate counts of the hierarchal test
components.

HTM WCI MBI TAM
Gate count 828 33 198 183



We define the hardware overhead HO = (wrapped core
area�core area)/(core area). The clocks, reset signals, etc.,
are normally not wrapped. Only the wrapped IOs are con-
sidered. Table 4 shows the HO values for the core test wrap-
pers. As shown in the table, the total number of IOs (IO) in
the design is 1209, and there are 1135 wrapped IOs (WIO).
The single-flip-flop cells are used to implement the wrap-
pers. The fourth row lists the core area (CA), and the next
row shows the corresponding wrapped core area (WCA).
Core 1 has the smallest HO (about 1.4%). Core 2 has the
largest number of IOs, resulting in the largest HO.

Table 4. Hardware overhead of the wrappers.
Core 1 Core 2 HCore Total

IO 224 885 100 1209
WIO 183 864 88 1135
CA 254087 146169 17266 417822

WCA 257660 161836 19330 438826
HO 1.4% 10.7% 12% 5.1%

Statistics of the internal scan chains are shown in Ta-
ble 5. The scan length denotes the length of the longest
scan chain in each core. Core 1 has the lowest fault cov-
erage and the most test patterns. In contrast, Core 2 has
the highest fault coverage and fewer test patterns. The hier-
archical test scheme uses two HTMs, six WCIs, and three
MBIs. The area overhead (in terms of gate count) of all
the components is about 2631 gates. Therefore, the HO is
about 0.63%. This is very small compared with the HO of
the wrappers (5.1%). Note that the fault coverage numbers
are low because the designs have many latches that are not
scanned. This scheme only requires 5 extra control pins. If
the number of test pins isW , then the number of bits left for
TAM is (W�5). In [7], 10 control pins are required, i.e., the
TAM width is W � 10. In comparison, our scheme reduces
the test time with the same number of test pins. Moreover,
in [7], concurrent testing of multiple cores can not be done.

Table 5. Statistics of scan-based testing.
Core 1 Core 2 HCore

Scan chains 16 8 2
Scan length 319 1000 452
Test patterns 422 334 103
Fault coverage 79.84% 90.51% 84.96%

6. Conclusions

A hierarchical test scheme for SOC designs has been
proposed, which is realized by four major components: the
Hierarchical Test Manager (HTM), Test Access Mechanism
(TAM), Wrapper Control Interface (WCI), and Memory
BIST Interface (MBI). The HTM handles all the test op-
erations of P1500, 1149.1, and BISTed memory cores. The
WCI is responsible for decoding the control signals from the
HTM and feeding them to the P1500 WIP. The MBI pro-
vides a serial/parallel control mechanism for the memory

BIST circuits, and the memory cores can be tested concur-
rently. It has high flexibility, low pin-count overhead, and
low area overhead. An industrial case has been designed us-
ing the proposed scheme. Results show that the area over-
head of this design is only about 0.63%, which is very small
as compared with that of the IEEE P1500 test wrappers for
the cores (5.1%).
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