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A hierarchy of biomolecular proportional-integral-
derivative feedback controllers for robust perfect
adaptation and dynamic performance
Maurice Filo 1, Sant Kumar 1 & Mustafa Khammash 1✉

Proportional-Integral-Derivative (PID) feedback controllers are the most widely used con-

trollers in industry. Recently, the design of molecular PID-controllers has been identified as an

important goal for synthetic biology and the field of cybergenetics. In this paper, we consider

the realization of PID-controllers via biomolecular reactions. We propose an array of topol-

ogies offering a compromise between simplicity and high performance. We first demonstrate

that different biomolecular PI-controllers exhibit different performance-enhancing cap-

abilities. Next, we introduce several derivative controllers based on incoherent feedforward

loops acting in a feedback configuration. Alternatively, we show that differentiators can be

realized by placing molecular integrators in a negative feedback loop, which can be aug-

mented by PI-components to yield PID-controllers. We demonstrate that PID-controllers can

enhance stability and dynamic performance, and can also reduce stochastic noise. Finally, we

provide an experimental demonstration using a hybrid setup where in silico PID-controllers

regulate a genetic circuit in single yeast cells.
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One of the most salient features of biological systems is
their ability to adapt to their noisy environments. For
example, cells often regulate gene expression to coun-

teract intrinsic and extrinsic noise in order to maintain a desirable
behavior in a precise and timely fashion. This resilience toward
undesired disturbances is often achieved via feedback control that
has proved to be ubiquitous in both natural (e.g.1–3) and engi-
neered systems (e.g.4,5). In fact, synthetic engineering of biomo-
lecular feedback controllers is gaining wide attention from
biologists and engineers (e.g.6–14).

A standard general setup for feedback controllers is depicted as
a block diagram in Fig. 1a. Refer to Supplementary Box 1 (A
Primer on Block Diagrams). The “Plant" block represents the
process to be controlled. It can be actuated through its input,
denoted here by u, to dynamically manipulate its output of
interest, denoted here by y. The objective of such control systems
is to design a feedback controller that automatically actuates the
plant in a smart autonomous fashion which guarantees that the
output y meets certain performance goals despite the presence of
disturbances in the plant. These performance goals, described in
Fig. 1b, include (but are not limited to) robust steady-state
tracking—also known as robust perfect adaptation (RPA) in
biology, stability enhancement, desirable transient response and
variance reduction. Control theory developed a wide set of tools
to design feedback controllers that meet certain performance
objectives. For instance, it is well known in control theory
(Internal Model Principle15) that a controller should include
integral (I) action to be able to achieve RPA. Furthermore,
proportional-integral-derivative (PID) feedback controllers—first
rigorously introduced by Nicolas Minorsky16 around a hundred
years ago—adds proportional (P) and derivative (D) action to the
integrator (I) to be able to tune the transient dynamics and
enhance stability while preserving RPA. Interestingly, after almost
a century, PID controllers are still the most widely used con-
trollers in industrial applications17–19.

Originally, PID feedback controllers were designed to control
mechanical (later, electrical and chemical) systems such as
automatic ship steering20. Such control systems involve control-
ling quantities that can take both negative and positive values
such as angles, velocities, electric currents, voltages, etc. Fur-
thermore, traditional PID controllers possess linear dynamics
since all three operations of a PID are linear. Two classes of linear
PID controllers, adopted from Chapter 10 of ref. 21, are shown in
Fig. 1c, d. In Fig. 1c, the error signal e(t)≔ r− y(t) is fed into the
three (P, I, and D) components. The outputs of the three com-
ponents are summed up to yield the control action u that serves
as the actuation input to the plant. However, in Fig. 1d, the
controller has two degrees of freedom since both the error e and
the output y are used separately and simultaneously. Particularly,
the error is fed into the integrator, while the output is fed into the
proportional and derivative components. Observe that both
architectures require that the integrator operates on the error
(and not the output). This is necessary to achieve RPA and can be
easily seen using a very simple argument explained next. Let uI(t)
denote the output of the integrator, that is,

uIðtÞ :¼ KI

Z t

0

eðτÞdτ ) _uIðtÞ ¼ KIeðtÞ: ð1Þ

Assuming that the dynamics are stable, then at steady state we
have lim

t!1
_uIðtÞ ¼ 0. This implies that, at steady state, the error

e≔ r− y has to be zero, and thus lim
t!1

yðtÞ ¼ r, hence achieving

the steady-state tracking property. Observe that although this
argument requires closed-loop stability, it does not depend on the

particular structure and/or parameters of the plant, hence
achieving the robustness property.

For mechanical and electrical systems, the linearity of the PID
controllers is convenient because of the availability of basic physical
parts (e.g., dampers, springs, RLC circuits, op-amps, etc.) that are
capable of realizing these linear dynamics. However, this realization
quickly becomes challenging when designing biomolecular con-
trollers. This difficulty arises because (a) biomolecular controllers
have to respect the structure of BioChemical Reaction Networks
(BCRN) that are inherently nonlinear, and (b) the quantities to be
controlled (protein copy numbers or concentrations) cannot be
negative (see22 for positive integral control). To achieve RPA, BCRN
realizations of standalone integral (I) controllers received consider-
able attention23–28. In previous work25, the antithetic integral (aI)
feedback controller was introduced to realize integral action that
ensures RPA. More recently, it was shown in9 that the antithetic
motif is necessary to achieve RPA in arbitrary intracellular networks
with noisy dynamics. A detailed mathematical analysis of the per-
formance tradeoffs that may arise in the aI controller is presented
in29,30, and optimal tuning is treated in31. Furthermore, practical
design aspects, particularly the dilution effect of controller species,
are addressed in9,27. Biological implementations of various biomo-
lecular integral and quasi-integral controllers appeared in bacteria
in vivo6,8,9 and in vitro13, and more recently in mammalian cells
in vivo14 and in yeast using the cyberloop in silico32.

In the pursuit of designing high-performance controllers while
maintaining the RPA property, BCRN realizations of PI and PID
controllers are starting to receive more focused attention33–38. Par-
ticularly in33, a proportional component is separately appended to
the antithetic integral motif via a repressing Hill-type function to tune
the transient dynamics and reduce the variance. The resulting PI
controller follows the concept of Fig. 1d where error and output
feedback are used to build separate (but nonlinear) P and I com-
ponents. Several successful attempts were carried out to devise BCRN
realizations that approximate derivatives39–43. A BCRN realization of
a full PID controller was reported in35, where the authors introduced
additional controller species to obtain a derivative component. The
resulting PID controller uses error feedback (similar to the concept of
Fig. 1c) to build separate nonlinear P, I, and D components and
successfully improves the dynamic performance in the deterministic
setting. Using a different approach, 37 and 38 exploit the dual-rail
representation from23, where additional species are introduced to
overcome the non-negativity challenge of the realized PID controller.
The authors demonstrate the resulting improvement of the perfor-
mance in the deterministic setting. On a different note, 36 analyzed
the effects of separate proportional and derivative controllers on
(bursty) gene expression models in the stochastic setting.

Interestingly, previous research in this direction shares two
intimately related aspects. Firstly, the P, I, and D components are
realized separately such that they enter the dynamics additively.
This aspect is motivated by traditional PID controllers where the
controller dynamics are constrained to be linear, and thus the
three components have to be added up (rather than multiplied for
example). However, since feedback mechanisms in BCRNs are
inherently nonlinear, there is no reason to restrict the controller
to have linear dynamics and/or additive components. Secondly,
the proposed designs introduce additional species to mathema-
tically realize the controller, and thus making the biological
implementation more difficult. To this end, we consider in this
paper (more general) nonlinear PID controllers that do not have
to be explicitly separable into their three (P, I, and D) compo-
nents. This allows controllers to involve P, I, and D architectures
in one (inseparable) block as depicted in Fig. 1e where both, error
and output, feedback are allowed. The nonlinearity and inse-
parability features of the proposed PI and PID controllers provide
more flexibility in the BCRN design and allow simpler
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architectures that do not require introducing additional species to
the standalone integral controller. Next, we slightly increase the
complexity (or order) of the controller designs by introducing up
to two additional controller species. This provides more degrees
of freedom for the controller and, as a result, offers a higher
achievable performance. Furthermore, the higher the order of the
controller, the more separable it is which facilitates the tuning of
the PID gains by the biomolecular parameters. This hierarchical
approach offers the designer a natural compromise between
simplicity and performance enhancement. A rich library of bio-
molecular PID controllers of variable complexity is presented in
this paper to offer the biologists a flexible and wide range of
designs that can be selected depending on the desired perfor-
mance and application at hand.

Results
General framework for biomolecular feedback controllers. The
framework for feedback control systems is traditionally described
through block diagrams (e.g., Fig. 1a). In this section, we lay
down a general framework for feedback control systems where
both the plant and the controller are represented by BCRNs. With
this framework, the controller can either represent an actual
biomolecular circuit or it can be implemented as a mathematical
algorithm in silico44–46 to regulate a biological circuit (through
light for example32,47).

Consider a general plant, depicted in Fig. 2, comprised of L species
X≔ {X1,⋯ ,XL} that react with each other through K reaction
channels labeled as R :¼ fR1;R2; � � � ;RKg. Each reaction Rk has
a stoichiometry vector denoted by ζk 2 ZL and a propensity function

Fig. 1 Feedback controller design and performance. a The output to be controlled is fed back into the controller via a sensing mechanism. The controller
exploits the setpoint, which is typically “dialed in" by the user and computes the suitable control action to be applied to the plant (or process) via an actuation
mechanism. The goal of the control action is to steer the output to the desired setpoint despite external or even internal disturbances. b A demonstration of four
performance goals that are typically targeted when designing the controller. Robust perfect adaptation (RPA): this is the biological analog of the notion of robust
steady-state tracking (RSST) that is well known in control theory61. A controller achieves RPA if it drives the steady state of the plant output y to the setpoint (or
reference, denoted by r) despite varying initial conditions, plant uncertainties and/or constant disturbances. Stability enhancement: a typical goal of a controller is
to stabilize the dynamics. That is, it forces the output y to converge to a fixed steady-state value thus avoiding divergent responses and sustained oscillations.
Desirable transient response: another typical control objective is to yield a smooth transient response that is fast enough but does not overshoot or oscillate too
much. Variance reduction: for stochastic dynamics, it is common to study the time evolution of the output probability distribution and its moments such as the
mean and variance. A natural performance objective is to design a controller that tightens the probability distribution around the mean, e.g., reduce the variance
(cell-to-cell variability). Note that the shaded regions denote the mean ± three standard deviations. c–e Various PID control architectures. The classical designs in
(c) and (d) involve separate linear P, I and D operations that are added together to yield the control action u. The difference between (c) and (d) is in the
controller input: in (c) the error signal is the only input, while in (d) the error signal is fed into the I component whereas the output signal is fed into the P and D
components. In this paper, we propose PID control architectures that fit in the more general class depicted in (e) where the PID components may be nonlinear
and inseparable. This gives more design flexibility for biomolecular controllers.
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λk : R
L
þ ! Rþ. Let S :¼ ζ1 ζ2 � � � ζK

� �2ZL ´K denote the

stoichiometry matrix and let λ :¼ λ1 λ2 � � � λK
� �T

denote the
(vector-valued) propensity function. Then, the plant constitutes a
BCRN that is fully characterized by the tripletN :¼ ðX ; S; λÞ, which
we shall call the “open-loop” system.

The goal of this work is to design a controller network, denoted
byN c, that is connected in feedback with the plant networkN , as
illustrated in Fig. 2a, to meet certain performance objectives such
as those mentioned in Fig. 1b. We assume that all the plant
species are inaccessible by the controller except for species X1 and
XL. Particularly, the controller “senses” the plant output species
XL, then “processes" the sensed signal via the controller species
Z≔ {Z1,⋯ , ZM}, and “actuates" the plant input species X1. The
controller species are allowed to react with each other and with
the plant input/output species through Kc reaction channels
labeled as Rc :¼ fR1

c ;R2
c ; � � � ;RKc

c g. Let �Sc 2 ZðMþ2Þ ´Kc and λc :

RMþ2
þ ! RKcþ denote the stoichiometry matrix and propensity

function of the controller, respectively. Since the controller
reactions Rc involve the controller species Z and the plant input/
output species X1/XL, the stoichiometry matrix �Sc can be
partitioned as

�Sc :¼ S1SLSc
� �

;

where S1 and SL 2 Z1 ´Kc encrypt the stoichiometry coefficients of

the plant input and output species X1 and XL, respectively, among
the controller reaction channels Rc. Furthermore, Sc 2 ZM ´Kc

encrypts the stoichiometry coefficients of the controller species
Z1,⋯ , ZM. Hence, the controller design problem boils down to
designing S1, SL, Sc and λc. Note that, for simplicity, we consider
plants with single-input-single-output species. However, this can
be straightforwardly generalized to multiple-input-multiple-
output species by adding more rows to S1 and SL. Finally, the
closed-loop system constitutes the open-loop network augmented
with the controller network so that it includes all the plant and
controller species Xcl≔X ∪ Z and reactions Rcl :¼ R∪Rc.
Thus, the closed-loop network, N cl :¼ N ∪N c, can be fully
represented by the closed-loop stoichiometry matrix Scl and
propensity function λcl described in Fig. 2a. We close this section,
by noting that our proposed controllers range from simple
designs involving M= 2 controller species, up to more complex
designs involving M= 4 controller species.

Antithetic proportional-integral (aPI) feedback controllers.
Equipped with the BCRN framework for feedback control sys-
tems, we are now ready to propose several PI feedback controllers
that are capable of achieving various performance objectives. All
of the proposed controllers involve the antithetic integral motif
introduced in25 to ensure RPA. However, other additional motifs

Fig. 2 A framework for feedback control of chemical reaction networks. a An arbitrary plant is comprised of L species {X1,⋯ , XL} reacting with each
other. Species XL, by definition, is the output of interest to be controlled, while X1 is assumed to be the only accessible input species that can be “actuated"
(positively and/or negatively) by the controller network which is comprised of M species {Z1,⋯ , ZM}. The closed-loop system, with stoichiometry matrix
Scl and propensity function λcl, denotes the overall feedback interconnection between the plant and controller networks. The partitioning of Scl and λcl
describes the various components of the closed-loop network. b A description of the compact graphical notation that is adopted throughout the paper.
Arrows directed toward species indicate catalytic productions, whereas T-shaped lines indicate catalytic inhibitions that encompass either repressive
production or degradation. Note that the propensities of degradation reactions are considered to be either kAB/(B+ κ) if two parameters (k, κ) are
indicated on the arrow, or ηAB if only one parameter η is indicated on the arrow. Finally, diamonds indicate either production or inhibition.
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are appended to mathematically realize a proportional (P) control
action.

Consider the closed-loop network, depicted in Fig. 3, where an
arbitrary plant is connected in feedback with a class of controllers
that we shall call aPI controllers. Observe that there are three
different inhibition actions that are color coded. Each inhibition
action gives rise to a single class of the proposed aPI controllers.
Particularly, when no inhibition is present, we obtain the
standalone antithetic integral (aI) controller of25 whose reactions
are summarized in the left table of Fig. 3, whereas aPI of Class 1
(resp. Class 2) involves the inhibition of the input X1 by the
output XL (resp. controller species Z2), and aPI of Class 3
involves the inhibition of the controller species Z1 by the output
XL. Furthermore, each aPI class encompasses various types of
controllers depending on the inhibition mechanisms that enter
the controller network as actuation reactions. We consider three
types of biologically relevant inhibition mechanisms detailed in
Fig. 3: additive, multiplicative (competitive) and degradation.
Considering all three aPI classes with the various inhibition
mechanisms, Fig. 3 proposes eight different aPI control
architectures. Note that, it can be shown that a degradation
inhibition in the case of aPI Class 3 would destroy the RPA
property and is thus omitted. All of these controllers are
compactly represented by a single general closed-loop stoichio-
metry matrix Scl and propensity function λcl depicted in Fig. 3.
The various architectures can be easily obtained by suitably
selecting the functions h≔ h+− h− and g from the tables of
Fig. 3. A theoretical linear perturbation analysis is carried out in
Supplementary Information Section 1.1 to verify the
proportional-integral control structure of the proposed control-
lers. In fact, the analysis applies to any smooth function h which
is monotonically increasing (resp. decreasing) in z1 (resp. z2, x1
and xL), and any smooth function g that is monotonically
increasing (resp. decreasing) in μ (resp. xL). For example, linear
terms in h such as kz1 can be replaced with increasing Hill-type
functions to model saturation whenever needed. The genetic
implementation of the various control mechanisms presented
here (and throughout the paper) can be carried out using basic
activators, repressors and proteases which do not require any
complicated biophysical mechanisms to implement the control
designs. For instance, in the case of Class 1 aPI with degradation
(see Fig. 3), the output of interest XL can be fused to a protease
capable of degrading the input X1 (see below for more details on
the genetic implementations).

Deterministic steady-state analysis: robust perfect adaptation
(RPA) of aPI controllers. The deterministic dynamics of the
closed-loop systems, for all the aPI controllers given in Fig. 3 can
be compactly written as a set of ordinary differential equations
(ODEs) given by

_x ¼ SλðxÞ þ hðz1; z2; x1; xLÞe1
_z1 ¼ gðμ; xLÞ � ηz1z2
_z2 ¼ θxL � ηz1z2;

8><
>: ð2Þ

where e1 :¼ ½1 0 � � � 0�T 2 ZL. Note that the total actuation
and reference propensities h and g take different forms for dif-
ferent aPI control architectures as depicted in Fig. 3. The fixed
point of the closed-loop dynamics cannot be calculated explicitly
for a general plant; however, the output component (xL) of the
fixed point solves the following algebraic equation

gðμ; xLÞ ¼ θxL; ð3Þ
where over-bars denote steady-state values (if they exist), that is
xL :¼ lim

t!1
xLðtÞ. Two observations can be made based on (3). The

first observation is that (3) has a unique nonnegative solution
since g is a monotonically decreasing function in xL. The second
observation is that (3) does not depend on the plant. As a result, if
the closed-loop system is stable (i.e., the dynamics converge to a
fixed point), then the output concentration converges to a unique
setpoint that is independent of the plant. This property is valid for
any initial condition, and is referred to as RPA. Particularly, for
the aI and aPI controllers of Class 1 and 2, the reference pro-
pensity is g(μ, xL)= μ, and thus xL ¼ μ

θ. Furthermore, for the aPI
of Class 3, xL solves a polynomial equation of degree n+ 1, where
n denotes the Hill coefficient depicted in Fig. 3 (see Supple-
mentary Information Section 3). In conclusion, all the proposed
aPI controllers maintain the RPA property that is obtained by the
antithetic integral motif, while introducing additional control
knobs as extra degrees of freedom to enhance other performance
objectives.

Deterministic stability analysis and performance assessment of
aPI controllers. Next, we show that Class 1 aPI controllers with
degradation and multiplicative inhibitions yield superior stability
and performance properties. To compare the stability properties
of the various proposed aPI controllers, we consider a particular
plant, depicted in Fig. 4a, that is comprised of two species X1 and
X2 (L= 2). This plant may represent a gene expression network
where X1 is the mRNA that is translated to a protein X2 at a rate
k1. The degradation rates of X1 and X2 are denoted by γ1 and γ2,
respectively. The closed-loop stoichiometry matrix and pro-
pensity function are also shown in Fig. 4a. Using the Routh-
Hurwitz stability criterion48, one can establish the exact condi-
tions of local stability of the fixed point (Supplementary Equation
(17)) for the various proposed aPI controllers. These conditions,
once satisfied, guarantee that the dynamics locally converge to the
fixed point.

For the remainder of this section, we consider fast sequestra-
tion reactions, that is, η is large. Under this assumption, one can
obtain simpler stability conditions that are calculated in
Supplementary Information Section 3, and tabulated in Fig. 4b.
The stability conditions are given as inequalities that have to be
satisfied by the various parameters of the closed-loop systems. A
particularly significant lumped parameter group is ρ :¼ kk1θ

γ1γ2ðγ1þγ2Þ
that depends only on the plant and standalone aI controller
parameters. To study the stabilizing effect of the appended
proportional (P) component, we fix all the parameters related to
the plant and standalone aI controller (hence ρ is fixed), and
investigate the effect of the other controller parameters related to
the appended proportional component. By examining the table in
Fig. 4b, one can see that, compared to the standalone aI, the aPI
controller of Class 1 with multiplicative (resp. degradation)
inhibition enhances stability regardless of the exact values of κ
(resp. δ) and n. This gives rise to a structural stability property:
adding these types of proportional components guarantees better
stability without having to fine-tune parameters.

In contrast, although the aPI controller of Class 1 with additive
inhibition may enhance stability, special care has to be taken
when tuning α. In fact, if α is tuned to be larger than a threshold
given by αTH :¼ γ1γ2

k1
r 1þ ðr=κÞn� �

, then stability is lost. Figure 4c
elaborates more on this type of aPI controller. Three cases arise
here. Firstly, if ρ < 1, that is, the standalone aI already stabilizes
the closed-loop dynamics, then the (α, κ)- parameter space is split
into a stable and unstable region. In the latter (α > αTH), z2 grows
to infinity, and the output x2 never reaches the desired setpoint
r= μ/θ. Secondly, if 1 < ρ < 2, that is the standalone aI is unstable,
then the (α, κ)-parameter space is split into three regions: (1) a
stable region, (2) an unstable region with a divergent response
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similar to the previous scenario where ρ < 1, and (3) another
unstable region where sustained oscillations emerge as depicted in
the bottom plot of Fig. 4c. Note that the closer ρ is to 2, the
narrower the stable region is. Thirdly, for ρ > 2, the stable region
disappears and thus this aPI controller has no hope of stabilizing
the dynamics without re-tuning the parameters related to the
standalone aI controller (e.g., k and/or θ). Clearly, multiplicative

and degradation inhibitions outperform additive inhibition if
stability is a critical objective. To this end, Fig. 4d shows how the
settling time and overshoot can be tuned by the controller
parameters α, κ, and δ for additive, multiplicative, and
degradation inhibitions, respectively. It is shown that with
multiplicative and degradation inhibitions, one can simulta-
neously suppress oscillations (settling time) and remove
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overshoots. In contrast, a proportional component with additive
inhibition can suppress oscillations but is not capable of removing
overshoots as illustrated in the simulations of Fig. 4d right panel.
Furthermore, one can lose stability if α is increased above a
threshold, as mentioned earlier. Nevertheless, for multiplicative
and degradation inhibitions, increasing the controller parameters
(κ−1, δ) too much can make the response slower but can never
destroy stability.

It can be shown that the other two classes (2 and 3) are
undesirable in enhancing stability. For instance, observe that for
Class 2, the stability conditions are the same as the standalone aI
controller (in the limit as η→∞) with the exception of the case of
additive inhibition when α> γ1γ2

k1
r. In this case, the inequality is

structurally very different from all other stability conditions. In
fact, the actuation via Z2 dominates Z1, and hence Z2 becomes
responsible for the integral (I) action instead of Z1. The detailed
analysis of this network is not within the scope of this paper, and
is left for future work. Finally, aPI controllers of Class 3
deteriorate the stability margin, since the right-hand side of the
inequalities is strictly less than one. However, this class of
controllers can be useful for slow plants if the objective is to speed
up the dynamics.

Stochastic analysis of the aPI controllers: RPA and stationary
variance. We now investigate the effect of the aPI controllers on
the stationary (steady-state) behavior of the output species XL in
the stochastic setting. First, we examine the stationary expectation
Eπ XL

� �
. It is shown in Supplementary Information Section 8.1

that for RPA to be achieved in the stochastic setting, the function
g has to be affine in xL. Hence only aPI controllers of Class 1 and
2 achieve RPA in the stochastic setting with Eπ XL

� � ¼ μ=θ ¼: r.
Next, we examine the stationary variance Varπ XL

� �
to demon-

strate that aPI controllers with degradation inhibition excel in
reducing cell-to-cell variability. In Supplementary Information
Section 8.2, we develop a tailored moment-closure technique
based on33 to derive an analytic closed formula for the stationary
variance Varπ XL

� �
. Unfortunately, a general analysis for an

arbitrary plant cannot be done. As a case study, we consider again
the particular plant given in Fig. 4a in feedback with the aPI
controller of Class 1 with the various inhibition mechanisms.
Note, however, that the analysis can be generalized to any (affine-
linear) plant with mono-molecular reactions (see Supplementary
Information Section 8.2). The resulting formula is given in Sup-
plementary Table 2 that shows that the proportional controller
decreases Varπ X2

� �
. Figure 4e demonstrates this stationary var-

iance reduction via simulations and the approximate formula.

Unlike additive inhibition, multiplicative and degradation inhi-
bitions provide a structural property of decreasing the Varπ X2

� �
without risking the loss of ergodicity (similar to the deterministic
setting).

Antithetic proportional-integral-derivative feedback (aPID)
control topologies. In this section, we append a derivative (D)
control action to the aPI (Class 1) controller of Fig. 3 to obtain an
array of aPID controllers depicted in Fig. 5. The proposed aPID
controllers range from simple second order (involving only two
controller species Z1 and Z2) up to fourth order (involving four
controller species Z1 to Z4). Furthermore, the various controllers
are categorized as two types: N-type and P-type. N-type (negative
feedback) controllers are usually suitable for plants with positive
gain (increasing the input yields an increase in the output), while
P-type (positive feedback) controllers are usually suitable for
plants with negative gains. This ensures that the overall control
loops realize negative feedback. Note that one can easily construct
hybrid PN-type controllers, where the individual P, I, and D
components have different P/N-types. This hybrid design is
shown to be very useful for certain plants (see Fig. 7d for
example).

We begin with the N-type second-order design (first row of
Fig. 5) whose main advantage is its simplicity. Note that the
rationale behind the various P-type designs is similar. Intuitively,
the antithetic integral motif is cascaded with an incoherent
feedforward loop (IFFL) to yield a PID architecture whose P, I and
D components are inseparable as described in Fig. 1e. More
precisely, the output XL directly inhibits the input X1 and
simultaneously produces it via the intermediate species Z1. As a
result, Z1 simultaneously plays the role of both an intermediate
species for the IFFL and the integral control action. It is shown in
Supplementary Information Section 1.2.1 that this simple design
embeds a low-pass-filtered PID controller. The N-type third-order
design (second row of Fig. 5) involves one additional controller
species Z3 to realize an IFFL that is disjoint from the antithetic
motif. This yields an inseparable PD component appended to the
separate I controller. It is shown in Supplementary Information
Section 1.2.2 that this design embeds a low-pass-filtered PD + I
controller when η is large enough. In contrast, the N-type fourth-
order design (third row of Fig. 5) involves two additional controller
species Z3 and Z4 to realize a completely separable PID control
architecture. It is shown in Supplementary Information Sec-
tions 1.2.3 and 1.2.4 that this design embeds a PI + low-pass-
filtered D controller when η and η0 are large enough. The key idea
behind mathematically realizing the derivative component here is
fundamentally different from the previous two designs. This

Fig. 3 Antithetic proportional-integral (aPI) feedback controllers. Three different classes of aPI controllers are designed by appending the standalone aI
controller with three inhibitions. Three biologically relevant inhibition mechanisms are considered. Additive Inhibition: The inhibitor species produces the
inhibited species separately at a decreasing rate. For instance, in the case of aPI Class 1 with additive inhibition, both controller species Z1 and output XL

produce the input X1 separately, but Z1 acts as an activator while XL acts as a repressor. This separate inhibition can be modeled as the production of the
input X1 as a positive actuation reaction Rþ

a with an additive Hill-type propensity given by hþðz1; xLÞ ¼ kz1 þ α
1þðxL=κÞn, where n, α and κ denote the Hill

coefficient, maximal production rate and repression coefficient, respectively. This aPI is the closest control architecture to33 and35, since the P and I
components are additive and separable (see Fig. 1c, d). Multiplicative inhibition: the inhibitor competes with an activator over a production reaction. In the
case of aPI Class 1 with multiplicative inhibition, the output XL inhibits the production of the input X1 by the controller species Z1. This can be modeled as
the production of X1 with a multiplicative Hill-type propensity given by hþðz1; xLÞ ¼ kz1 ´

1
1þðxL=κÞn. Observe that in this scenario, the proportional (P) and

integral (I) control actions are inseparable, and the actuation reaction Rþ
a encodes both PI actions simultaneously. Degradation inhibition: the inhibitor

invokes a negative actuation reaction that degrades the inhibited species. For instance, in the case of aPI Class 1 with degradation inhibition, the controller
species Z1 produces the input X1 (positive actuation reaction Rþ

a ), while the output XL degrades it (negative actuation reaction R�
a ). The dynamics can be

captured by using a positive actuation with propensity h+(z1)= kz1 and a negative actuation with propensity h�ðx1; xLÞ ¼ δxL
x1

x1þκ1
. The total actuation

propensity is defined as h(z1, x1, xL)≔ h+(z1)− h−(x1, xL). The three classes with different inhibition mechanisms give rise to eight controllers that are
compactly represented by the closed-loop stoichiometry matrix Scl and propensity function λcl by choosing the suitable h and g functions from the tables.
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controller realizes an “antithetic differentiator”, whereby the
antithetic motif feeds back into itself: Z3 feeds back into Z4 via
the rate function g(z3, xL). In fact, this idea is inspired by a
mathematical trick in control theory (see Supplementary Informa-
tion Section 7) that basically exploits an integral controller, in

feedback with itself to implement a low-pass-filtered derivative
controller. For this fourth-order design, the derivative action can be
achieved in two ways. One way is by mutually producing Z4 and
X1 at a rate proportional to g(z3, xL) such that g is monotonically
increasing (resp. decreasing) in z3 (resp. xL). This implementation
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is treated separately in Supplementary Information Section 1.2.3.
The other way is by producing Z4 while degrading X1 at a mutual
rate of g(z3, xL) such that g is monotonically increasing in both z3
and xL. This implementation is treated separately in Supplementary
Information Section 1.2.4. Both designs have the same underlying
PID control structure, but one might be easier to experimentally
implement than the other.

Deterministic analysis and properties of the various aPID
controllers. It is straightforward to show that the setpoint for the
second-order design is given by �xL ¼ μ

θ�β with the requirement
that β < θ; whereas the set-points for both higher-order designs
are given by �xL ¼ μ

θ. Furthermore, the effective PID gains, denoted
by (KP, KI, KD), and cutoff frequency ω of the embedded low-pass
filter for each of the proposed aPID controllers can be designed
by tuning the various biomolecular parameters: β, η, η0, γ0, μ0 and
the parameters of the propensity functions h and g. These func-
tions depend on the specific implementation adopted. In parti-
cular, they can be picked in a similar fashion to the functions used
to realize the three inhibition mechanisms (additive, multi-
plicative, or degradation) of the aPI controllers shown in Fig. 3. In
the subsequent examples, we use degradation inhibitions, but the
other mechanisms can also be used.

Next, we demonstrate various properties of the proposed
controller designs in the deterministic setting and highlight the
benefits of the added complexity. The mappings between the
effective PID parameters (KP, KI, KD, ω) and the biomolecular
parameters (μ, θ, η, β, γ0, η0, . . . ) are given in Supplementary
Information Section 4 for each controller. It is fairly straightfor-
ward to go back and forth between the two parameter spaces. For
control analysis, these mappings can compute the various PID
parameters from the biomolecular parameters, whereas for
control design, these mappings can compute the various
biomolecular parameters that achieve some desired PID gains
and cutoff frequency. As a result, one can use existing methods in
the literature (e.g.49) to carry out the controller tuning in the PID
parameter space, and then map them to the actual biomolecular
parameter space. Nevertheless, it is of critical importance to note
that different controllers yield different coverage over the PID
parameter space. For instance, for the fourth-order design, there
are enough biomolecular degrees of freedom to design any
desired positive ðKP;KI ;KD;ωÞ 2 R4

þ. The lower the order of the
controller, the fewer the biomolecular degrees of freedom, and
hence the more constrained the coverage in the PID parameter
space. For instance, for the third-order design, the achievable PID
parameters are constrained to satisfy KP ≤ KDω. For the
second-order design, the constraint becomes even stricter. The

details are all rigorously reported in Supplementary Information
Section 4.

Flexibility of aPID controllers. We first show the limitation of aPI
controllers, and then demonstrate the flexibility that comes with an
added derivative component. More precisely, we show that the aPI
controller alone is incapable of speeding up the response beyond a
certain threshold without incurring oscillations—a limitation that a
full aPID controller overcomes. We also show that the higher-order
aPID controllers exhibit more flexibility in shaping the transient
response. Consider the controlled gene expression network depicted
in Fig. 6a where the ODEs of the various controllers are shown to
explicitly specify the adopted propensity functions h and g. In this
example, we consider both the P and D components acting on the
input species X1 as negative actuation via degradation reactions. In
fact, inhibition with degradation is used whenever possible because it
outperforms the other inhibition mechanisms by achieving better
stability properties and dramatically reducing the stationary variance
(see Fig. 4). We start by highlighting the fundamental limitation of
aPI controllers alone (without a D) in Fig. 6b. Using simple root-
locus arguments (see Supplementary Information Section 5.1), it is
shown that as the proportional gain KP is increased, two complex
eigenvalues of the linearized dynamics around the fixed point
approach a vertical asymptote intersecting the real axis at � γ1þγ2

2 ,
while one real eigenvalue approaches the origin (due to integral
control). This is numerically demonstrated in the two root-locus
plots of Fig. 6b, where KP ≈ δ (for a sufficiently small κ1). Clearly, the
asymptotic limit is independent of all other parameters, including
the integral gain KI. This analysis highlights a fundamental limita-
tion of the aPI controller, because no matter how we tune KP and KI,
two of the eigenvalues are constrained to remain close to the ima-
ginary axis when γ1 and γ2 are small. In the time domain, these
constraints impose either a slowly rising response or a faster-rising
response but with lightly damped oscillations, as illustrated in the
simulation examples of Fig. 6b. These limitations can be mitigated
by appending a derivative control action via the various aPID
controllers. To demonstrate this, we consider a design problem
where the end goal is to achieve a fast response without oscillations
and with minimal overshoot. This can be achieved by placing the
eigenvalues far to the left on the real axis. Hence the design problem
can essentially be translated to the following objective: place the four
most dominant eigenvalues (or poles) at s=−a where a > 0 and
make a sufficiently large. The design steps start by first (1) deciding
where to place the poles s=−a for some desired a, then (2) com-
puting the PID parameters so as to place the poles as desired; this
can be achieved using Supplementary Equation (46), and finally (3)
mapping the PID parameters to the actual biomolecular parameters
using the formulas in Supplementary Information Section 4. This is

Fig. 4 Performance of aPI feedback controllers. a Gene expression network controlled by aPI controllers. b Inequalities that need to be respected by the
various controllers (with η being large enough) to guarantee closed-loop stability in the deterministic setting. Multiplicative and degradation inhibition
mechanisms exhibit superior structural stability properties. c aPI controllers of Class 1 with an additive inhibition mechanism, exhibit different stability
properties for different ranges of the parameter group ρ (that depends solely on the plant and the standalone aI controller). In particular, for ρ < 2, the
additive proportional control action can stabilize the dynamics, while for ρ > 2, it cannot stabilize without re-tuning the integral component. d Settling time
and overshoot of the output (X2) response as a function of controller parameters that are related to the appended proportional components. Multiplicative
and degradation inhibition mechanisms are capable of ameliorating the performance without risking instability as opposed to the additive inhibition
mechanism. e Reduction of the output stationary variance (cell-to-cell variability) with aPI controllers. The aPI controllers of Class 1 with all three inhibition
mechanisms are capable of reducing the stationary variance of the output. This is demonstrated here via the simulations and the approximate formula
shown in Supplementary Table 2 as well. For additive inhibition, α has a threshold value αTH above which ergodicity is lost similar to the deterministic
setting. Furthermore, observe that for values of α that are close to αTH, the analytic approximation is less accurate. In contrast, the multiplicative and
degradation mechanisms are capable of reducing the variance without the risk of losing ergodicity, and the analytic approximation remains accurate. The
degradation inhibition, demonstrating superiority, is capable of reducing the stationary variance to levels even lower than the mean Eπ X2

� � ¼ 5—a level
that is not achievable by the other inhibition mechanisms. The numerical values of all the parameters can be found in Supplementary Information Section 11.
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pictorially demonstrated in Fig. 6c for each aPID controller. How-
ever, it is shown in Supplementary Information Section 5.2 that the
second-order aPID imposes a lower bound on the achievable poles
given by �ð2þ ffiffiffi

2
p Þ γ1þγ2

2 as demonstrated in Fig. 6c. As a result,
with a second-order aPID, the performance can be made better than

the aPI controller; however, the performance is also limited and
cannot be made faster than a threshold, dictated by γ1 and γ2,
without causing overshoots and/or oscillations. In contrast, it is also
shown in Supplementary Information Section 5.2 that the third- and
fourth-order aPID controllers can make a as large as desired without

Fig. 5 Antithetic proportional-integral-derivative (aPID) feedback controllers. N-type (negative feedback) controllers are usually suitable for plants with
positive gain (increasing the input yields an increase in the output), while P-type (positive feedback) controllers are usually suitable for plants with negative gains.
The order of the controllers indicates the number of controller species Zi. The second-order aPID controller has the simplest design where no additional species
are added to the aPI design, and only one reaction is added to produce Z1 catalytically from the output XL at a rate β < θ. The third-order aPID controller adds a
single species to the aPI design. This intermediate species Z3 is produced by the output XL and actuates the input species X1. These actions (indicated by the
diamonds) are allowed to be either activations or inhibitions. Finally, the fourth-order aPID controller adds two species to the aPI design. These two species form
an “antithetic differentiator” where Z3 is constitutively produced at a rate μ0 and participates with Z4 in a sequestration reaction with a rate η0. For the N-type
design, the derivative action enters the plant either by mutually producing Z4 and X1 at a rate proportional to g(z3, xL) (see Supplementary Fig. 4) such that g is
monotonically increasing (resp. decreasing) in z3 (resp. xL), or by producing Z4 while degrading X1 at a rate proportional to g(z3, xL) (see Supplementary Fig. 5)
such that g is monotonically increasing in both z3 and xL. Intuitively, the second and third-order aPID controllers mathematically realize a derivative action using an
incoherent feedforward loop from the output XL to the input X1 via Z1 and Z3, respectively, whereas the fourth-order aPID controller realizes a derivative action by
placing an additional antithetic integral motif in feedback with the plant and itself (Z3 feeds back into Z4).
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any theoretical upper bound. This means that the added complexity
of the higher-order controllers is capable of shaping the response of
the gene expression network freely and as fast as desired with no
overshoots nor oscillations. This is also demonstrated in the simu-
lations depicted in Fig. 6c.

Deterministic performance of aPID control of complex net-
works. We consider a more complex plant to be controlled. The
plant, comprised of L= 6 species, is depicted in Fig. 7a where Xi

degrades at a rate γi and catalytically produces Xi+1 at a rate ki.
Furthermore, the output species X6 feeds back into X2 by
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catalytically degrading it at a rate γF. This plant is adopted from35;
however, to challenge our controllers in a way that demonstrates
their features, the feedback degradation rate γF is chosen to be
larger than that reported in35, which yields a plant that is unstable
when operating in an open loop, as shown in Fig. 7a. In fact, the
root locus in the integral gain KI ≈ k (for large η) demonstrates
that this plant cannot be stabilized with a standalone aI con-
troller, that is no matter how we tune k, the response will remain
unstable. It was shown in35 that, for this plant, the P control is not
useful. This is the case because the proportional gain KP was
restricted to have a positive value. One of the nice features of our
proposed second- and third-order aPID controllers is their ability
to achieve negative proportional gains KP (see Supplementary
Equations (27) and (32)) without having to rewire, that is without
switching topologically from N-type to P-type. This is a con-
sequence of the inseparability of the P component from other
components (I and D for the second order, and D for the third
order). In Fig. 7b, c we show that, for this plant, tuning the
proportional gain KP to be negative is critical to achieving high
performance, whereby oscillations and overshoots are almost
completely removed while maintaining a fast response. This is
demonstrated using the intensity plots of a performance index
that quantifies the overshoot, settling time, and rise time of the
output response over a range of the relevant biomolecular con-
troller parameters. With the completely separable fourth-order
aPID, the gains cannot be tuned to be negative; however, one can
always switch between N-type and P-type topologies or even
resort to hybrid designs where different PID components are of
different P/N-types. Indeed, Fig. 7d shows that by using a fourth-
order hybrid aPID controller, high performance can be attained.

To demonstrate the effectiveness of aPID control of high
dimensional plants, we carry out a simulation study of cholesterol
control in the plasma using the second-order aPID controller.
The mathematical whole-body model of cholesterol metabolism is
adopted from50 that involves 34 state variables (species). The
simulation description and results can be found in Supplementary
Information Section 6 that demonstrates that aPID controllers
are also capable of achieving high performance for high
dimensional systems.

Effect of derivative control on the stationary variance. In
Supplementary Information Section 9, we examine the effect of
the derivative component in the various aPID controllers on the
cell-to-cell variability (e.g., stationary variance). We consider two
plants: the gene expression network of Fig. 6a and the six-species
network of Fig. 7a. The results in Supplementary Information
Section 9 demonstrate that, for both plants, the third- and fourth-
order aPID controllers are capable of reducing the stationary
variance, whereas the second-order aPID increases it.

Unfortunately, moment-closure techniques similar to the one
used for the aPI controllers failed to approximate the stationary
variance here. Hence, the conclusion here is based on simulations
only, but seems to be consistent. Further stochastic analysis
similar to51 that exploits linear noise approximations is left for
future work.

Genetic circuit designs. Here we propose and describe a parti-
cular genetic design in Escherichia coli that realizes the third-
order aPID controller topology presented in Fig. 5 (See Supple-
mentary Information Section 10 for another genetic design of the
second-order aPID controller). We also perform numerical
simulations using biologically realistic parameters to demonstrate
the effectiveness of the controllers in ameliorating the dynamic
performance. The genetic circuit is depicted in Fig. 8a where the
controller circuit augments the I-control module (in blue), which
is based on9, with additional circuitry to implement additional P
and D controls (in red and green). The only difference between
our I-control module and that of9 is the choice of the promoter
PRM driving the expression of the anti-σ factor (rsiW) that is
activated by the transcription factor cI acting as a dual activator
for PRM and repressor for PR (see52,53). The P and D control
modules are implemented via the Mflon protease which is capable
of degrading the input species X1. The additional disturbance
circuit (in yellow) serves as a source of external perturbation to
the closed-loop circuit by degrading the regulated output X2. The
set of ODEs describing the deterministic dynamics is also shown
Fig. 8a and the various parameters are chosen to reflect biologi-
cally realistic regimes and account for controller species dilution
δc (see Supplementary Information Section 11). Figure 8b shows
the simulation results for I, PI, and PID control. The responses
are shown for a step change of setpoint μ/θ, which is tunable with
HSL9, at t= 8 h, and for a step change of disturbance Δ, which is
tunable with aTc, at t= 16 h. The simulations demonstrate that
the full PID controller is capable of dramatically enhancing the
stability and performance by not only shaping the transient
dynamics but also reducing the steady-state error that can be
incurred by the dilution effect (see9,25,27).

Experimental demonstration—Cyberloop implementation. To
validate the performance benefits of the proposed aPID con-
trollers, we implemented and tested our fourth-order PID con-
troller (presented in Fig. 5) in a hybrid in vivo–in silico
optogenetic platform54 using the rapid prototyping “Cyberloop”
framework developed in32. This platform provides an interface (at
single-cell resolution) between real biological circuits (in vivo) in
cells placed under the microscope and stochastic computer
simulation (in silico) of controllers via light stimulation and

Fig. 6 aPID control of a gene expression network. a Closed-loop dynamics. A gene expression network is controlled by the various N-type aPID
controllers of Fig. 5. The deterministic dynamics and the overall control action u are shown here for each controller to explicitly specify the adopted
propensity functions h and g in this example. b Fundamental limitation of aPI controllers. Without the derivative component, the response cannot be sped
up beyond a certain threshold without inflicting oscillations. The left and middle plots demonstrate the same root locus of the linearized dynamics as the
proportional gain KP is increased. The left plot depicts the complex plane, while the middle plot explicitly shows the complex plane together with the values
of the proportional gain KP which is shown to be approximately equal to δ. These plots verify that two eigenvalues are confined within a small region close
to the imaginary axis when γ1 and γ2 are small, and thus imposing a limitation on the achievable performance as demonstrated in the simulations shown in
the right plot. c Design flexibility offered by derivative control actions. Exploiting all the components of the full aPID controllers offers more flexibility in
achieving superior performance compared to the aPI controllers. This panel shows the steps of a pole placement, control design problem where the four
dominant poles are placed on the real axis of the left-half plane to ensure a stable and non-oscillating response with minimal overshoot. The second-order
aPID exhibits a restriction on how far to the left the poles can be placed; whereas the higher-order controllers can place the poles arbitrarily as far to the left
as desired and thus achieving a response that is as fast as desired without overshoots nor oscillations. The design problem starts by picking the poles, then
computing the PID gains (shown here) and cutoff frequency (not shown here), and finally computing the actual biomolecular parameters that allow us to
obtain the nonlinear simulations to the right.
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Fig. 7 aPID control of an unstable and more complex plant. a Plant description. The plant considered here involves L= 6 species and embeds a negative
feedback from the output Z6 to X2 via an active degradation reaction. The underlying deterministic dynamics of the plant and the second-order aPID
controller are shown in this panel. It is demonstrated that the open loop is unstable (orange response), and integral control alone cannot stabilize the
dynamics since two eigenvalues carry on a positive real part for any k≥ 0. b–d Performance of the various aPID controllers. The intensity plots show the
performance index over a range of biomolecular parameter values. These plots are overlaid with contours where the PID gains KP, KI or KD are constant. For
the third and fourth-order aPID in (c) and (d), KI≈ k and thus can be tuned separately with k that is held constant throughout this figure. For the fourth-
order aPID in (d), the KP- and KD-contours are orthogonal to the k0- and α2-axes, respectively, and hence can also be tuned separately. For the third-order
aPID in (c), the KD-contours are orthogonal to the δ-axis and hence KP can be tuned separately with δ0, whereas the inseparability of the PD components
forces the KP-contours to be oblique, and thus δ tunes both KP and KD simultaneously. Finally, for the second-order aPID in (b), all three contours are not
orthogonal to the axes and, as a result, all three PID gains have to be mutually tuned by the biomolecular parameters. This is due to the inseparability of all
PID components. Note that each set of contours is displayed on a separate intensity plot here for clarity. Observe that the optimal performance for each
controller is located in the dark blue regions where the proportional gains KP are negative. Three different examples, red, green, and purple (along with the
unstable standalone aI control in gray), are picked to demonstrate the achievable high performances depicted in the response plots to the right. For the
second and third-order aPID, negative KP can be achieved by properly tuning the biomolecular parameters without having to switch the topology from
N-type to P-type. However, for the (separable) fourth-order aPID controller, a hybrid design with N-type ID and P-type P can also achieve a negative KP that
is critical for controlling this plant.
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fluorescence measurement. Multiple cells can be targeted and
observed individually in parallel on this platform. Under the
cyberloop framework, at first, individual cellular outputs are
observed and quantified via fluorescence imaging and subsequent
image processing. The quantified value for each cell is then fed to
a stochastic simulation55 of controller reactions (one controller
simulation per cell) that computes the light intensity (based on
the controller species abundance) which the corresponding cell

should be stimulated with. The light intensity data, once com-
puted for every target cell in the microscope field of view, are sent
to a specialized custom-built projection hardware54 that then
stimulates target cells with their corresponding light intensities in
a parallel fashion, thus closing the control loop. This fluorescence
measurement and subsequent light stimulation steps are repeated
every fixed interval providing us with single-cell time-course data
for the controller performance and output behavior.

Fig. 8 A genetic implementation of the third-order aPID controller. a Circuit design. The genetic closed-loop circuit is comprised of the plant (in orange)
involving two species X1 and X2, the aPID controller involving Z1, Z2 and Z3 and the disturbance network (in yellow). The objective is to force the regulated
output X2 to track a tunable setpoint, despite the injected disturbance, and enhance the transient dynamic response. The antithetic integral control is
implemented via the sequestration between the σ factor (SigW denoted by Z1) and anti-σ factor (RsiW denoted by Z2)9 that are driven by the promoters
PLUX and PRM52, respectively. The setpoint is encrypted in the expression rate μ of Z1 that is tunable with homoserine lactone (HSL). The plant is comprised
of two genes. The first gene encodes exsA62 fused to the degradation pdt tag (recognized by Mflon), and is driven by a SigW-responsive promoter PsigW.
The second gene is driven by the ExsA-responsive promoter PexsD62 and encodes the protease MfLon and the transcription factor cI fused to the ssrA(DAS)
degradation tag. The disturbance circuit (in yellow) increases the degradation rate of X2 by expressing sspB at a tunable rate, with anhydrotetracycline
(aTc), which in turn recognizes the DAS tag in X2 and sends it to the endogenous degradation machinery63. The MfLon in the output X2 is capable of
degrading the input X1, while the dual activator/repressor cI is capable of activating PRM and repressing PR52. The promoter PRM drives the integral control
module, while PR drives another gene that expresses MfLon denoted by the control species Z3 that is also capable of degrading the input X1. Note that the
protease MfLon encoded in X2 and Z3 implements an incoherent feedforward loop connected in feedback with the plant and thus realizing a PD-controller.
b Deterministic simulations. Simulation of the closed-loop dynamics with I, PI, and PID control. The plot shows the dynamic response of the regulated
output X2 to a step change in the setpoint at t= 8 h and to a disturbance injection at t= 16 h. The simulations are carried out using biologically realistic
numerical values for the various parameters (see Supplementary Information Section 11).
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In our cyberloop experiments, we used a target biological
circuit genetically engineered in Saccharomyces cerevisiae (pre-
viously presented and used in32,54). As shown in Fig. 9a, this
circuit includes an optogenetic tool for gene expression regulation
designed in such a way that the transcription rate in a target cell
can be changed by varying blue light intensity which the cell is
stimulated with. This provides a light control over nascent RNA
abundance in the cell. The nascent RNAs are engineered with
multiple stem loops that can bind with available fluorescent
proteins in the cell and hence, they can be observed and
quantified via fluorescence imaging under the microscope. The
reader is referred to54 and32 for further technical details about
this target circuit and the cyberloop framework, respectively.

Following the approach in32, we implemented our fourth-order
PID controller network. As shown in Fig. 9b, the PID controller
was capable of reducing the oscillations on both the population
and single-cell levels. This is demonstrated by plotting the time
response of the population average, and the power spectral
density (PSD) where sharp peaks indicate single-cell
oscillations56. Particularly, the added derivative control action
was capable of considerably enhancing the response by getting rid
of the overshoot of the mean response across the cells, while

simultaneously smoothing out the peak of the PSD and as a result
suppressing the stochastic single-single oscillations.

Alternative differentiators. In Fig. 5, the antithetic integral motif
is exploited to yield an antithetic differentiator; however, other
integral motifs such as zero-order57,58 and auto-catalytic24 inte-
grators can also be similarly exploited as depicted in Supplementary
Fig. 9. These differentiators can be carefully appended to the aPI
controllers of Class 1 (see Fig. 3) to obtain an alternative set of aPID
controllers depicted in Fig. 10. These differentiators act on the
concentration xL of the output species to approximate its derivative
as a rate uD≔ g(z3, xL). This is one of the differences between our
differentiators and those proposed in43 where the computed deri-
vative is encoded as a concentration of another species. Having the
computed derivative encoded directly as a rate rather than a con-
centration is particularly convenient for controllers with a fewer
number of species. Another technical difference is that our differ-
entiators realize a derivative with a first-order low-pass filter,
whereas the differentiators in43 realize derivatives with a second-
order low-pass filter due to the additional species introduced. We
close this section by noting that it is also possible to replace the

Fig. 9 Experimental demonstration of the performance of aPID controllers in the cyberloop platform32 with a transcription circuit in Saccharomyces
cerevisiae. a A Cyberloop implementation of the fourth-order aPID controller. Using an optogenetic framework proposed in32, 54, an in silico stochastic simulation
of the proposed fourth-order aPID controller (one controller per cell) is interfaced with a real biological circuit/plant (in vivo) genetically engineered in
Saccharomyces cerevisiae cells placed under a microscope. The circuit includes a blue light optogenetic tool allowing light-stimulated regulation of transcription,
making nascent RNAs (XL) as the output of interest to be controlled. These nascent RNAs (fused with fluorescent proteins) can be quantified via fluorescence
imaging under the microscope and subsequent image processing in the control computer. The single-cell nascent RNA measurements are used to simulate
stochastic dynamics of the controller network for each cell. Besides controller species (Z1, Z2, Z3 and Z4), an additional in silico plant species X0 was added to the
network to facilitate implementation of proportional and derivative control reactions. X0 acts as an actuation species whose abundance defines the blue light
intensity that the corresponding cell is then stimulated with using a custom-built projector setup54 attached to the microscope. This setup allows one to stimulate
and observe multiple cells in parallel. The single-cell measurements, controller simulations, and blue light intensity updates are done every 2-min interval. b The top
plot shows the mean temporal response with the I controller, the PI controller and the fourth-order PID controller. The shaded region represents mean ± standard
error. This plot demonstrates the effectiveness of the PI controller in reducing the oscillations of the mean response across the cells. It also demonstrates the added
benefit of the PID controller in reducing the overshoot as well. The bottom plot shows the mean power spectral density (PSD) of various responses. The shaded
region represents mean ± standard error. The PSD is useful in uncovering the stochastic oscillations on the single-cell level: a sharp peak in the PSD reveals the
persistence of stochastic single-cell oscillations. The plot demonstrates the effectiveness of the PID controller in smoothing out the peak and thus considerably
reducing the single-cell oscillations. Two separate experiments were performed per controller to track in total 168 cells for the I controller, 128 cells for the PI
controller and 178 cells for the PID controller. The experimental parameters are provided in Supplementary Table 3. Source data are available in the Source Data file.
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Fig. 10 PID controllers using integral-based differentiators. Three differentiators are constructed based on three different integrators. The
differentiators appended to the aPI controllers of Class 1 (see Fig. 3) give rise to another collection of aPID controllers of both N- and P-types. The
inflow and outflow aPID controllers are based on integrators realized via zeroth-order degradation reactions58,57. It is shown in Supplementary
Information Section 7 that if these degradation reactions are tuned to operate in a saturating regime (κ0 < < z3), then a low-pass filtered derivative
action is mathematically realized. The difference between the outflow and inflow aPID controllers is that the feedback action uD ≔ g(z3, xL) which
approximates the derivative of xL enters through a degradation and production reaction of the additional controller species Z3, respectively. In
contrast, the auto-catalytic aPID controller is based on an auto-catalytic integrator24 where the additional control species Z3 produces itself. It is
shown that for this component to properly function as a differentiator, the initial concentration of Z3 has to be non-zero and g has to be designed
such that g(0, xL)= 0 (see Supplementary Information Section 7).
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antithetic integral motif with other integrators to design yet another
collection of PID controllers (see Supplementary Fig. 10).

Discussion
This paper proposes a library of PID controllers that can be
realized via BCRNs. The proposed PID designs are introduced as
a hierarchy of controllers ranging from simple to more complex
designs. This hierarchical approach that we adopt offers the
designer a rich library of controllers that gives rise to a natural
compromise between simplicity and achievable performance. At
the lower end of the hierarchy, we introduce simple PID con-
trollers that are mathematically realized with a small number of
biomolecular species and reactions making them easier to
implement biologically. As we move up in the hierarchy, more
biomolecular species and/or reactions are introduced to push the
limit on the achievable performance. More precisely, higher-order
PID controllers cover a wider range of PID gains that can be
tuned to further enhance performance. Of course, this comes at
the price of more complex designs making the controllers more
difficult to implement biologically.

In this work, we start by introducing a library of PI controllers
based on the antithetic integral motif25 and an appended feed-
back control action where the input species is directly actuated by
the output species. This is similar in spirit to previous works in33

and35 where the proportional control action enters the dynamics
additively via a separate repressive production reaction. While
this mechanism succeeds in enhancing the overall performance,
we introduce other biologically relevant mechanisms, for the P
component, that are capable of achieving even higher perfor-
mance without risking instability and further reducing the sta-
tionary variance (see Fig. 4). However, it is shown rigorously and
through simulations (see Fig. 6) that a PI controller alone is
limited, while adding a D component adds more flexibility.
Interestingly, it is shown that the performance of a gene
expression network can be arbitrarily enhanced with full PID
controllers: the PID can be tuned to achieve an arbitrarily fast
response without triggering any oscillations or overshoots. This
example highlights the power of full PID control. Another nice
feature of PID control is the availability of various systematic
tuning methods in the literature (see49 for example). Well-known
design tools in control theory (such as the pole placement per-
formed in Fig. 6) can be exploited to perform the tuning in the
PID parameter space instead of the biomolecular parameter
space. Then the obtained PID parameters (PID gains and cutoff
frequency) can be mapped by the formulas we derived (see
Supplementary Information Section 4) to the actual biomolecular
parameters. This approach considerably facilitates the biomole-
cular tuning process. It is worth mentioning that the biomolecular
tuning is the easiest for the fourth-order aPID due to the
separability of its components which allows tuning each PID gain
separately with a different biomolecular parameter. In contrast,
the lower order aPID controllers mix the various P, I, and D
components and render them inseparable (see Fig. 1e) that results
in each biomolecular parameter tuning multiple gains simulta-
neously. This is the price one has to pay for obtaining simpler
designs. However, this can also be leveraged in some cases. For
example, a single biomolecular parameter can tune both the
integral and proportional gains simultaneously to enhance the
dynamics and variance without risking instability (see the mul-
tiplicative aPI in Fig. 4). This inseparability also offers a nice
advantage where the proportional gains can be tuned to be
negative without having to switch topologies from N-type to
P-type. For certain plants, achieving negative gains is critical to
achieve a high performance (see Fig. 7).

We would like to point out that the proposed control structures
are all designed based on linear perturbation analysis (see Sup-
plementary Information Section 1). This is motivated by the rich
set of existing tools to design and analyze linear control systems;
whereas nonlinear control design and analysis is challenging and
is often treated on a case-by-case basis. In the linearization, the
PID structures are verified and hence the dynamics behave
exactly like what is expected from classical PID control. However,
full nonlinear simulations are always carried out to back up the
theoretical analyses and implications. Of course, the dynamical
behavior of the nonlinear PID controllers may deviate from their
linear counterparts when the dynamics are (initially) far from the
fixed point. This is a limitation that we believe can serve as a good
future research direction where small signal analysis should be
extended to large signal analysis as well. Another possible future
direction is to analyze the effects of dilution on the full aPID
controllers in a similar fashion to the analysis carried out for
I-controllers only in9 and27. In fact, the simulations in Fig. 8b
show promising results on the roles of P and D controls in
reducing the steady-state error incurred by dilution. Furthermore,
in our work, we lay down a general mathematical framework for
biomolecular feedback control systems that can be used to pave
the way for other possible controllers in the future. We believe
that research along these directions helps building high-
performance controllers that are capable of reliably manipulat-
ing genetic circuits for various applications in synthetic biology
and bio-medicine in the same way that PID controllers revolu-
tionized other engineering disciplines such as navigation, tele-
phony, aerospace, etc.

Methods
Yeast strain. No new strains were engineered in this study. Strain DBY96 from54

was used for the cyberloop experiments. All plasmids, strains, and related details
are summarized in the Key Resources Table in54.

Culture media and initialization. Yeast cell cultures were started from a –80 °C
glycerol stock at least 24 h prior to the experiment, and were grown in an incubator
(Innova 42R, New Brunswick) at 30 °C in SD dropout medium (2% glucose, low
fluorescence yeast nitrogen base (ForMedium), 5 g/L ammonium sulfate, 8 mg/L
methionine, pH 5.8). The cell density was maintained at OD600 < 0.2 in the incu-
bator (30 °C) for the last 12 h leading to the experiment. Approximately 400 μL of
cell culture was centrifuged at 3000 RCF for 6 min, and then sufficient volume of
supernatant was removed to get a concentrated culture with OD600 ~ 4.

Microfluidic chip loading protocol. The microfluidic chip proposed in54 was used
in the cyberloop experiments in this study. As mentioned in54, this chip is a single
layer poly(dimethylsiloxane) (PDMS, Sylgard 184, Dow Corning, USA) device,
attached to a cover glass (thickness: 150 mm, size: 24 mm × 60mm, Menzel-Glaser,
Germany). Before loading, the PDMS device and cover glass were rinsed with
acetone, isopropanol, deionized water and dried using an air gun. The chip loading
protocol in54 was followed: using a conventional pipette, 0.4 μL of the concentrated
cell solution (as described before) was loaded into each chamber of the clean and
dried microfluidic chip. The cover glass was placed on top of the PDMS device and
pressed down very gently, creating an electrostatic bond between the glass and the
PDMS. The loaded microfluidic chip was placed onto a custom-built microscope
holder. A syringe pump (Model no. 300, New Era Pump Systems, Inc.) was used to
maintain 30 μL/min of media flow through the loaded microfluidic chip. Cells were
allowed to settle in the new conditions for 2 h prior to the start of any experiment.

Imaging and light delivery system. All image acquisitions were performed as
described in54. Briefly, images were taken under an automated Nikon Ti-Eclipse
inverted microscope (Nikon Instruments), equipped with a 40× oil-immersion
objective (MRH01401, Nikon AG, Egg, Switzerland) and CMOS camera ORCA-
Flash4.0 (Hamamatsu Photonic, Solothurn, Switzerland). Brightfield imaging was
done using LED 100 (Märzhäuser Wetzlar GmbH & Co. KG) with diffuser and
green interference filter placed in the light path. Fluorescence (mRuby3) imaging
was done using Spectra X Light Engine fluorescence excitation light source
(Lumencor, Beaverton, USA) with 550/15 nm LED line from the light source, 561/
4 nm excitation filter, HC-BS573 beam splitter, 605/40 nm emission filter (filters
and beam splitter acquired from AHF Analysetechnik AG, Tubingen, Germany).
The microscope sample temperature was maintained at 30 °C by enclosing the
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microscope with an opaque environment box setup (Life Imaging Systems, Swit-
zerland), which also shielded the cell sample from external light.

To achieve optogenetic stimulation with single-cell resolution under the
microscope, a Digital Micromirror Device (DMD)-based projection hardware
developed in54 was used. An additional neutral density filter (ND 1.3, 25 mm
absorptive filter from Thorlabs) was placed in the light stimulation pathway to
reduce blue light intensity reaching the cells. The microscope and DMD projector
was operated using an open source microscope control software YouScope59.

Image analysis. In this study, each of the cyberloop experiments was run for 4 h
duration with imaging/sampling done every 2min. At every imaging step, two
brightfield images above and below the focal plane (±5 a.u. Nikon Perfect Focus System)
were acquired, with an exposure of 100ms each. These images were used for cell
segmentation and tracking over the course of the experiment. For nascent RNA count
quantification, five fluorescence images (Z stacks with step size ~0.5 μm) were also
captured, with an exposure of 300ms each. The software tools developed in54 and32

were employed for cell segmentation, tracking and (nascent RNA) quantification. These
image analysis software routines were run in MATLAB (MathWorks) environment.

Stochastic simulation of proposed controllers. The in silico simulations of the
proposed biomolecular controllers were run in MATLAB (MathWorks) environ-
ment. Routines developed in32 were used in the cyberloop experiments. Briefly, at
every sampling time, the following steps were performed:

1. The quantified cellular readout (nascent RNA count) was used to compute
and update controller reaction network propensities for every tracked cell.

2. Gillespie’s Stochastic Simulation Algorithm55 was then employed to obtain
the controller species abundance.

3. These abundance values for individually tracked cells were used to compute
blue light intensities (proportional to the X0 abundance) which the
corresponding cells were stimulated with.

Stimulation of individually tracked cells was done via a light delivery system
mentioned previously.

Data analysis and formatting. All data obtained from Cyberloop experiments
(Fig. 9b) were analyzed and plotted using MATLAB R2018a (academic use) platform.
For these experiments, data from non-responding cells were manually removed from
the analysis and further consideration. These outliers (non-responding cells) con-
stituted around 5–10% of total cells tracked throughout the experiment. To identify
and remove these cells from our data, we first observed the temporal profile of the
actuation species X0 abundance, which determines the blue light intensity a cell
receives, for each tracked cell. Cells that were receiving constantly increasing blue light
intensity and showed no appreciable increase in the output response were then
removed from our final analysis. All data analyses and simulations in this work were
performed on MATLAB R2018a and R2021a (academic use) platforms. Different plots
and figures were structured and formatted using Inkscape (v0.92, open source),
MATLAB and TexStudio (v3.1.1, open source) software.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data (MATLAB .mat files) for the results of Fig. 9b are available in the Source
Data file. They are also available at https://doi.org/10.5281/zenodo.637317760. Source
Data are provided with this paper.

Code availability
The MATLAB code for generating all the figures is available at a dedicated GitHub
repository: https://github.com/Maurice-Filo/Biomolecular-PID-Control60. In the same
repository, a MATLAB application is also available and is capable of simulating various
biomolecular controllers using a graphical user interface. The custom code for the
cyberloop experiments presented in Fig. 9b is run on an integrated experimental setup
and hardware54, and cannot be executed without the full associated hardware–software
suite. Codes for experiments and hardware configuration files are available upon request.
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