
11

A Hierarchy of Mildly

Context-Sensitive Dependency

Grammars
Anssi Yli-Jyrä and Matti Nykänen

Dept. of General Linguistics and Dept. of Computer Science,
University of Helsinki, Finland
Email: Anssi.Yli-Jyra@ling.helsinki.fi, Matti.Nykanen@cs.helsinki.fi

ABSTRACT. The paper presents Colored Multiplanar Link Grammars (CMLG).
These grammars are reducible to extended right-linear S-grammars (Wartena
2001) where the storage type S is a concatenation of c pushdowns. The number of
colors available in these grammars induces a hierarchy of Classes of CMLGs. By
fixing also another parameter in CMLGs, namely the bound t for non-projectivity
depth, we get c-Colored t-Non-projective Dependency Grammars (CNDG) that
generate acyclic dependency graphs. Thus, CNDGs form a two-dimensional hier-
archy of dependency grammars. A part of this hierarchy is mildly context-sensitive
and non-projective.

11.1 Introduction
This paper proposes non-projective, polynomially parseable lexicalized
grammars capable of describing scrambling and long-distance depen-
dencies up to a bounded nested crossing depth and a bounded non-
projectivity depth.

In terms of dependency grammar (DG) (Tesnière 1959), word-order
is distinct from the dependency tree that analyzes the structure of the
sentence. However, Hays (1964) and Gaifman (1965) have formalized
Tesnière’s ideas so that their DGs describe only projective linearisa-
tions.

What we would like to have is a mildly context-sensitive (MCS)
(Joshi 1985) superclass of the Hays-Gaifman DGs that captures also

151

[Pre-]Proceedings of Formal Grammar 2004. [PDF-LaTeX rerun by A. Yli-Jyrä, 2005]
Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly Wintner (eds.).
Copyright c© 2004, the individual authors.

152 / Anssi Yli-Jyrä and Matti Nykänen

non-projective dependencies, e.g. scrambling, the possibility of the ele-
ments of a sentence to lie in arbitrary permutations. However, it seems
that grammars that capture unrestricted scrambling fail to be mildly
context-sensitive, cf. Global Index Grammar (GIG) (Castaño 2003).
Limited scrambling is, however, captured by linear context-free rewrit-
ing systems (LCFRSs) (Vijay-Shanker et al. 1987) that are currently
the best characterisation for MCS grammars.

Linear Indexed Grammar (LIG) (Gazdar 1988) is a LCFRS that
represents nested non-local dependencies through an index pushdown
that is associated with nodes in derivation trees. The additional power
of some other LCFRSs is based on replacing the index pushdowns with
index storages of a more general type S. We will base our investigations
on extended right-linear Sc

pd-grammars (ERL-S-Gs) Wartena (2001)
whose storage type consists of c pushdowns.

In this paper, some new restrictions on ERL-Sk
pd-Gs are developed.

Through these restrictions we obtain various classes of DGs. The ob-
tained DGs can be used to describe restricted non-projective depen-
dencies and restricted scrambling, and they contain the Hays-Gaifman
DGs as a subclass.

The important contribution of this paper is to show that when we
set bounds for nested crossing depth and non-projectivity depth, we
obtain classes of DGs that are mildly context-sensitive. The length of a
longest chain (___ · · ·__) of crossing dependencies constitute a lower
bound for the nested crossing depth that is defined, in this paper, as
the number of concatenated pushdowns c needed in derivation. By the
non-projectivity depth, we mean the number of times dependency links
climb from a projective position to a non-projective one along a path
of directed dependencies.

The paper is structured as follows. Section 11.2 defines Context-
Free Linear Sc,Γ

pd -Grammars with Extended Domain of Locality. Sec-
tion 11.3 eliminates ambiguity that is related to the storage alloca-
tion. In Section 11.4, we introduce Colored Multiplanar Link Gram-
mars (CMLG), and discuss their properties in Section 11.5. In Section
11.6 we enforce a sufficient condition for acyclicity in c-Colored t-Non-
projective Dependency Grammars (CNDG) that form a sub-hierarchy
among CMLGs. The conclusion is in Section 11.8.

11.2 The Basic Machinery
11.2.1 Storage Type

Definition 1 A storage type is a tuple S = (C, Ci, Cf , Φ, Π, m), where
. C is the set of configurations, and Ci, Cf ⊆ C are respectively the

Mildly Context-Sensitive Dependency Grammars / 153

sets of initial and final configurations,. Φ and Π are respectively the sets of instructions and predicates,. m is the meaning function. It associates to each π ∈ Π the corre-
sponding function m(π) : C → {true, false}, and to each φ ∈ Φ
the corresponding partial function m(φ) : C → C.

The meaning function m is extended to Boolean combinations of the
predicates Π in the natural way and to nonempty strings φ = (Φ ∪
(BΠ × Φ+))+ and pairs (π, φ) ∈ (BΠ × Φ+) by defining m(φ1φ2)(κ) =
m(φ2)(m(φ1)(κ)), where κ ∈ C and by defining

m((π, φ))(κ) =

{
m(φ)(κ), if m(π)(κ) = true,

κ, otherwise.

Wartena (2001) defines a trivial (memoryless) storage Striv, an ordinary
pushdown Spd and concatenations on storage types. The concatenation
w.r.t. writing is denoted as ◦w.

a b ab b b a

 t t
r

w w t
r

 t
r

w t

SS S

bounded concatenation

S

writing sees these as one pushdown

Spd, pd,pd,2 3 4 cpd,pd,1

unused

FIGURE 1 Example of a possible configuration of a storage (...(((Striv

◦wSpd,1) ◦wSpd,2) ◦wSpd,3) . . .) ◦wSpd,c with marking of possibilities of
applying operations top (t), pop (r) and push (w).

11.2.2 Concatenating Storage Type
We restrict our attention to storages of type (...(((Striv ◦w Spd,1) ◦w
Spd,2)◦wSpd,3) . . .)◦wSpd,c that is intuitively a tuple 〈Spd,1,Spd,2,Spd,3,
. . . ,Spd,c〉 of c pushdowns Spd,p (Figure 1) with the restriction that
writing new elements into pushdown Spd,p is permitted only if all the
succeeding pushdowns Spd,p+1, Spd,p+2, Spd,p+3, . . . , Spd,c are empty.
Otherwise each pushdown Spd,p can be used independently of the oth-
ers. More formally, this storage type is defined as follows:

Definition 2 A writing-concatenating tuple of c pushdowns over a
stack alphabet Γ is the following storage type Sc,Γ

pd = (C, Ci, Cf , Φ,
Π, m):

154 / Anssi Yli-Jyrä and Matti Nykänen

. The configurations are C = ((Γ∪{], [, \})∗⊥)c, where ⊥ /∈ Γ is a spe-
cial symbol denoting the bottom of the pushdown, and], [, \ /∈ Γ are
special semaphore symbols reserved for the restriction of normalized
Sc,Γ

pd that is introduced in Section 11.3,
. the unique initial and final configuration is Ci = Cf = {⊥}c,
. the predicates are Π = {topp(a) | 1 ≤ p ≤ c, a ∈ Γ ∪ {⊥,], [, \}},
. the instructions are Φ = {id,undef} ∪ {pushp(β) | 1 ≤ p ≤ c,

β ∈ (Γ∪ {], [, \})+} ∪ {popp(β) | 1 ≤ p ≤ c, β ∈ (Γ ∪ {], [, \})+}.
The predicates Π and instructions Φ have the following basic meanings:

m(id)(〈α1,· · ·, αc〉) = 〈α1,· · ·, αc〉
m(topp(a))(〈α1,· · ·,αp−1, βb, αp+1,· · ·, αc〉) = (a = b)

m(pushp(β))(〈α1,· · ·,αp,⊥,· · ·,⊥〉) = 〈α1,· · ·,αp−1, αpβ,⊥,· · ·,⊥〉 ,
m(popp(β))(〈α1,· · ·,αp−1, αpβ

r, αp+1,· · ·,αc〉) = 〈α1,· · ·,αc〉
where βr is the reverse of any string β ∈ (Γ ∪ {], [, \})+ and the
functions m(φ) : C → C, φ ∈ Φ, remain undefined for all other cases.

11.2.3 Context-free Linear-S-Grammars
Definition 3 Let S = (C, Ci, Cf , Φ, Π, m) be a storage type.
A context-free linear S-grammar with extended domain of locality
(CFL-EDL-S-G) is a tuple G = (VN , VT , P, S, κ0), where
. the pairwise disjoint finite sets VN and VT are the nonterminal and

terminal alphabets, respectively,
. S ∈ VN is the start symbol, and κ0 ∈ Ci is the start configuration, and. P is a finite set of productions of the form

Xφ1 → if π then ζ1 Y φ2 ζ2 (11.1)
X → if π then w (11.2)

where X, Y ∈ VN , φ1 ∈ (BΠ×Φ+)+, φ2 ∈ Φ+, π ∈ BΠ, ζ1, ζ2 ∈
(VN ∪ VT)∗, and w ∈ V ∗T .

The set S = ((VN ×C)∪ VT)∗ is called the set of sentential forms, and
σ ∈ S is said to derive τ ∈ S if and only if σ = α (X, κ) β and τ = αγβ
for some α, β, γ ∈ S and P contains either
. a production of the type (11.1) for which m(φ1(¬π,undef)φ2)(κ)

is defined and γ = ζ ′1 (Y, m(φ1φ2) (κ)) ζ ′2, where ζ ′1 and ζ ′2 are ob-
tained from ζ1 and ζ2 respectively by replacing every nonterminal
D by (D,κ0), or,. a production of the type (11.2) for which m(π)(κ) = true and
γ = w.

Mildly Context-Sensitive Dependency Grammars / 155

The initial sentential form is 〈(S, κ0)〉. The derivations and the gener-
ated language of grammar G are defined in a usual way.

Definition 4 A CFL-EDL-S-G is a right-linear S-grammar with ex-
tended domain of locality (RL-EDL-S-G), if its productions of the
form (11.1) are such that ζ1 ∈ V ∗T and ζ2 ∈ ε.

A context-free linear S-grammar (CFL-S-G) (Weir 1994) is a CFL-
EDL-S-grammar, whose productions of the form (11.1) are such that
φ1 = ε and φ2 ∈ Φ.

A right linear S-grammar (RL-S-G) is an RL-EDL-S-G, whose pro-
ductions of the form (11.1) are such that φ1 = ε and φ2 ∈ Φ.

An extended right-linear S-grammar (ERL-S-G) (Wartena 2001) is
a CFL-S-G, whose productions of the form (11.1) are such that ζ1 ∈ VN

and ζ2 ∈ VT ∪ {ε}.
Theorem 1 CFL-EDL-S-Gs and CFL-S-Gs generate the same lan-
guages, and RL-EDL-S-Gs and RL-S-Gs generate the same languages.

Proof. The inclusions L(CFL-S-G) ⊆ L(CFL-EDL-S-G) and L(RL −
EDL− S −G) ⊆ L(RL-S-G) follows from the definition of the gram-
mars. To show that the reverse inclusions hold, we replace productions
of the form (11.1) by expanding them syntactically into

X → if true then ζ1 QY
φ1πφ2

ζ2

and define the productions for new nonterminals QY
ω inductively as

QY
ε → if true then Y id

QY
〈π′,φ′〉ω → if π′ then QY

φ′ω id

QY
〈π′,φ′〉ω → if ¬π′ then QY

ω id

QY
π′ω → if π′ thenQY

ω id

QY
φ′ω → if true then QY

ω φ′

where π′ ∈ BΠ, φ′ ∈ Φ+, and where ω denotes suffixes of the three-part
string φ1πφ2. All the productions of the form (11.1) in the expanded
grammar contain only productions where φ1 = ε and φ2 ∈ Φ. The
expanded grammar recognizes the language of the original grammar. tu

Note that a derivation step of the original CFL-EDL-S-G may cor-
responds to multiple steps in the resulting CFL-S-G.

Theorem 2 Every RL-S-G can be reduced to an ERL-S-G.

Proof. A new nonterminal and a new production are created for each
non-empty prefix of ζ1 ∈ V +

T . This allows replacing ζ1 ∈ V +
T in the

156 / Anssi Yli-Jyrä and Matti Nykänen

original productions with ζ ′1 ∈ V ′N in the productions of the ERL-S-G.
tu

The following two properties of ERL-S-Gs are needed in Section
11.5:

Proposition 3 ERL-S-G is a linear context-free rewriting system.
Thus, it is polynomially parseable and has linear growth property.

11.3 Normalized Storage
If the number of pushdowns is larger than the number of nested cross-
ing dependencies in derivations, CFL-EDL-Sc,Γ

pd -Gs have some freedom
in allocation of different pushdowns for different stack symbols. An ex-
ample of this is shown in Figure 2. Some ways to allocate pushdowns

a b
a

a

Spd,1 Spd,1 Spd,1

a
a
a

b
a
a b
a

pd,2S pd,2Spd,2S

strategy 2 strategy 3

tim
e

strategy 1

FIGURE 2 An example of ambiguity in storage allocation.

have already been banned by the the following restrictions that are
imposed by the concatenating storage type Sc,Γ

pd :

1. the LIFO discipline applies separately to each pushdown, and
2. the pushdowns are concatenated with respect to writing.

In addition to the effect of these two restrictions, we want to eliminate
strategies 2 and 3 shown in Figure 2. For this purpose, we propose the
following restrictions that eliminate this kind of ambiguity in allocation
of pushdowns:

3. An operation that writes to an empty pushdown Spd,p, p ≥ 2, is
allowed only if Spd,p−1 is nonempty.

4. An operation that writes to an empty pushdown Spd,p, p ≥ 2, is
allowed only if the current configuration contains a stack symbol
in Spd,p−1 that will be read before Spd,p becomes empty again.

Let Φ′ be an extended set of instructions on the normalized storage type
NormSc,Γ

pd . It is the union of Φ and {rpushp(β) | 1 ≤ p ≤ c, β ∈ Γ+} ∪
{rpopp(a) | 1 ≤ p ≤ c, a ∈ Γ}, where the new rpush and rpop
instructions obey the constraints 3 and 4, while the old push and pop
instructions do not.

Mildly Context-Sensitive Dependency Grammars / 157

The meanings of the new instructions are defined by means of sema-
phore symbols: when an rpushp instruction to an empty pushdown p,
p > 1, takes place, a semaphore symbol [is written on the bottom of
Spd,p and two semaphore symbols] and \ are written respectively on the
top of pushdowns Spd,p−1 and Spd,p. The symbol \ is kept always on the
top of Spd,p. Later, when a normal symbol is being read from the push-
down Spd,p−1 with rpop, these semaphores] and \ are first removed
respectively from Spd,p−1 and Spd,p if they have not yet been removed.
When the semaphore symbol [is read from Spd,p, this must happen im-
mediately after reading a non-semaphore symbol (rather than \) Spd,p.
If the semaphores cannot be read in this way, there are no other ways
to read them. Thus, the derivation will be stuck in the cases where the
restrictions 3 and 4 cannot be satisfied. More formally, the meaning
functions are:

m(rpushp(β))(κ) =
m(pushp 1(])pushp([β\))(κ)}, if p ≥ 2 ∨ topp(⊥)(κ);
m(popp(\)pushp(β\))(κ), if p ≥ 2 ∨ topp(\)(κ);
m(pushp(β))(κ), otherwise,

and m(rpopp(a))(κ) =
m(popp(a))(κ), if p = 1;
m((topp(])∧topp+1(\),popp(]) popp+1(\))

(topp(\), popp(\a) pushp(\)) (¬topp(\), popp(a))
(topp([), popp ([))) (κ), otherwise.

Theorem 4 CFL-EDL-Sc,Γ
pd -Gs using rpush and rpop instructions

can be reduced to CFL-EDL-Sc,Γ
pd -Gs that don’t use these instructions.

Proof. These new instructions can be regarded as shorthand notations
which extend the transformation in Theorem 1 as follows:

Nonterminals QY
rpush1(β)ω, QY

rpop1(β)ω and QY
rpopp(β)ω where p ≥ 2

are replaced respectively with nonterminals QY
push1(β)ω, QY

pop1(β)ω and
Q(topp(])∧topp+1(\),popp(]) popp+1(\)) (topp(\), popp(\a) pushp(\)) (¬ topp(\), popp(a))

(topp([), popp([)). Nonterminals QY
rpushp(β)ω, where p ≥ 2, create the gram-

mar rules

QY
rpushp(β)ω → if topp(⊥) then QY

ω pushp−1(])pushp([β\)

QY
rpushp(β)ω → if topp(\) then QY

ω popp(\)pushp(β\)

QY
rpushp(β)ω → if ¬topp(⊥) ∧ ¬topp(\) then QY

ω pushp(β). tu

158 / Anssi Yli-Jyrä and Matti Nykänen

Definition 5 A Context-free linear normalized Sc,Γ
pd grammar with

extended domain of locality (CFL-EDL-NormSc,Γ
pd -G) is a CFL-EDL-

Sc,Γ
pd - grammar whose rules do not directly use push and pop instruc-

tions, but use rpush and rpop instead.

Theorem 5 CFL-EDL-NormSc,Γ
pd -Gs allocate pushdowns for differ-

ent stack symbols so that they conform the restrictions 1 - 4.

Proof. The proof is omitted for brevity. tu
Dependencies are binary relations between string positions of the gen-
erated string. They are described by symbols that are written to a
pushdown at one string position and read from that pushdown at an-
other position. The reason for having multiple pushdowns in the stor-
age NormSc,Γ

pd is to enable capturing nested crossing dependencies. For
any set of dependency links whose starting and finishing times are
disjoint, there is only one way to allocate NormSc,Γ

pd for these links.
Yli-Jyrä (2003) has experimented with a data structure equivalent to
NormSc,Γ

pd and shown that dependency trees of a small dependency tree-
bank can be represented as a sequence of configurations of such a data
structure. This motivates introduction of the grammar formalisms of
Sections 11.4 and 11.6.

11.4 Colored Multiplanar Link Grammar (CMLG)

Definition 6 A nonterminal-free NormSc,Γ
pd -grammar is a RL−EDL−

NormSc,Γ
pd − G G = (VN , VT , P, S, κ0) for which VN = {S, X} and

whose productions are of the following forms:

S → if true then Xφ2,1 (11.3)
Xφ1,r → if ∧1≤p≤c topp(⊥) then ε (11.4)
Xφ1,r → if π then aXφ2,1 (11.5)
Xφ1,r → if π then Xφ2,r+1 (11.6)

where a ∈ VT , π ∈ BΠ, 1 ≤ r ≤ c, φ1,r ∈ {rpopp(a) | 1 ≤ p ≤ r, a ∈
Γ}∗, and φ2,s ∈ {rpushq(α) | s ≤ q ≤ c, α ∈ Γ∗}.

Definition 7 A colored multiplanar link grammar (CMLG) is a
structure G = 〈VT , ΛD, ΛH , c, Ψ〉 where VT is the set of terminal
symbols, ΛD and ΛH = {a | a ∈ ΛD} are respectively the sets of depen-
dent and governor labels, c is the number of colors, and Ψ is the set of

Mildly Context-Sensitive Dependency Grammars / 159

colored rules of the forms

∗(Y1 . . . Ym) (11.7)
(p1/V1 . . . pn/Vn)∗ (11.8)
a(p1/V1 . . . pn/Vn ∗ q/Y1 Y2 . . . Ym) (11.9)
0(p1/V1 . . . pn/Vn ∗ q/Y1 Y2 . . . Ym) (11.10)

where a ∈ VT , 0 /∈ VT , and V1, V2, . . . , Vn, Y1, Y2, . . . Ym ∈ ΛD ∪ ΛH ,
p1, p2, . . . , pn, q ∈ [1, 2, .., c] and pi ≤ pi+1 for 1 ≤ i ≤ n. Moreover, in
rules of type (11.10)1 it holds that max{p1, p2, . . . , pn}+ 1 ≤ q ≤ c.

The semantics of the grammar G is defined by reducing it to a
nonterminal-free NormSc,Γ

pd -grammar G = (VN , VT , P, S, κ0), with
stack alphabet Γ = {(←−x ,) , (−→x ,) | x ∈ ΛD} and set P containing
the following productions:

S → if true thenX push1(ymym−1 . . . y1)

for each rule of type (11.7);

X poppn
(vn) · · ·popp1(v1)→ if ∧1≤p≤c topp(⊥) then ε

for each rule of type (11.8); and respectively

X poppn
(vn) · · ·popp1(v1)→ if true then aX pushq(ymym−1 . . . y1),

X poppn
(vn) · · ·popp1(v1)→ if true thenX pushq(ymym−1 . . . y1)

for each rule of type (11.9) and (11.10), where vi ∈ λ(Vi) and yi ∈ ρ(Yi)
and functions λ, ρ : (ΛD ∪ ΛH)→ 2Γ are defined as follows:

λ(x) = {(−→x ,)} ρ(x) = {(←−x ,)}
λ(x) = {(←−x ,)} ρ(x) = {(−→x ,)},

11.5 Mild Context-Sensitivity of CMLGs
The notion of mild context-sensitivity is an attempt by Joshi (1985) to
express the formal power needed to define natural languages.

Definition 8 A class of grammars is mildly context-sensitive if the
grammars of this class are (i) polynomial time parseable and (ii) they
capture multiple dependencies, limited crossing dependencies and the
copy language and its grammars generate (iii) a proper superclass of
context-free languages where (iv) all the languages have linear growth
property.

Theorem 6 Gc, where c ≥ 2, is mildly context-sensitive.

Proof. We will now prove that Gc has the properties (i) - (iv).
1If we drop the rules of the form (11.10), we will not be able to express the copy

language as required for MCS grammars.

160 / Anssi Yli-Jyrä and Matti Nykänen

(i)As shown previously, each CMLG G ∈ Gc can be reduced to a poly-
nomial size ERL-Sc,Γ

pd -G, and the latter is known to be polynomially
parseable. The class Gc are, thus, polynomially parseable.

(ii)The capability to describe multiple dependencies is usually repre-
sented as an ability to describe languages L1 = {anbncn | n ≥ k},
L2 = {anbmcnmn | m,n ≥ k}, and L3 = {ww | w ∈ {a, b}i, i ≥ k},
where k is a positive integer.

For the language L1 = {anbncn | n ≥ 2}, we construct a CMLG
G = 〈VT , ΛD,ΛH , 2, Ψ〉 where VT = {a, b, c}, ΛD = {A,B, C, b, c}
and with the rules

∗ (A) (1/C)∗ a(1/A ∗ 1/A b)

a(1/A ∗ 1/B b) b(1/b 1/B ∗ 2/B c) b(1/b 2/B ∗ 2/C c)

c(2/c 2/C ∗ 2/C) c(2/c 2/C ∗ 1/C)

For the language L2 = {anbmcndm | m,n ≥ 1}, we construct
a CMLG G = 〈VT , ΛD, ΛH , 2, Ψ〉 where VT = {a, b, c, d}, ΛD =
{A,B, C, D, c, d} and with the rules

∗ (A) (1/D)∗ a(1/A ∗ 1/A c) b(1/A ∗ 2/B d)

b(2/B ∗ 2/B d) b(2/B ∗ 2/C d) c(1/c 2/C ∗ 2/C)

c(1/c 2/C ∗ 2/D) d(2/d 2/D ∗ 2/D) d(2/d 2/D ∗ 1/D)

For the language L3 = {ww | w ∈ {a, b}i, i ≥ 2}, we con-
struct a CMLG G = 〈VT , ΛD, ΛH , 2, Ψ〉 where VT = {a, b},
ΛD = {U, V, Y, a, b} and with the rules

∗ (U) (1/Y)∗ a(1/U ∗ 1/a U)

b(1/U ∗ 1/b U) 0(1/a 1/U ∗ 2/V a) 0(1/b 1/U ∗ 2/V b)

0(1/a 2/V ∗ 2/V a) 0(1/b 2/V ∗ 2/V b) a(2/a 2/V ∗ 2/V a)

b(2/b 2/V ∗ 2/V b) a(2/a 2/V ∗ 1/Y a) b(2/b 2/V ∗ 1/Y b)

(iii)We have already shown that grammars in G ∈ Gc, c ≥ 2, can
express non-context-free languages. Inclusion of all context-free lan-
guages is shown by reduction from the Hays-Gaifman dependency
grammars. The rule set Π of these grammars contain rules of the
following three types:

1. ∗(X) — gives word categories the elements of which may
govern the sentence,

2. X(V1 V2 . . . Vn ∗ Y1 Y2 . . . Ym) — gives those categories
which may derive directly from the category X and specified
their relative positions, and

3. X : w — gives for word category X a word w belonging to it.

Mildly Context-Sensitive Dependency Grammars / 161

We construct a CMLG G = 〈VT , ΛD, ΛH , c, Ψ〉 where VT =
{w | (X : w) ∈ Π}, ΛD = {X | X : w ∈ Π} and with the set
Ψ consisting of rules (∗(X)) for each (∗(X)) ∈ Ψ, and of rules

correct:
w(1/X...w(X 1/V1 1/V2 . . . 1/Vn ∗ 1/Y1 Y2 . . . Ym), and

w(1/V1 1/V2 . . . 1/Vn ∗ 1/Y1 Y2 . . . Ym X)

for each (X(V1 V2 . . . Vn ∗ Y1 Y2 . . . Ym)) ∈ Π and (X : w) ∈ Π.

(iv)Languages of CMLGs have linear growth property because CMLGs
can be reduced to ERL-Sc,Γ

pd -Gs that have this property. tu
We denote the class of CMLG with c colors by Gc.

CMLGs can associate to the input general dependency graphs. In
fact, for any finite dependency graph attached to a string of word to-
kens, there is a CMLG that generates the string and associates this
structure to the string:

Theorem 7 If D = (V,E) is a directed graphs without cycles of
length 1 and ≺ is an order among the vertices V , then there is a
CMLG that generates a string v1v2 . . . v|V | ∈ V ∗, where vi ≺ vi+1 for
all 1 ≤ 1 ≤ |V | − 1, with a derivation tree whose storage operations
encode the edges E.

Proof. A edges (links) of the directed graph D can be colored in a
correct manner using a method that has been informally presented in
Yli-Jyrä (to appear). After the links have been colored, we know the
number of colors required, and it is easy to extract from the colored D a
CMLG that generates the string v1v2 . . . v|V | and associates the desired
derivation tree for the string. The details are omitted for brevity. tu
However, the current definition of CMLGs has the restriction that the
number of links leaving each word token is bounded by the grammar.
Linguistically, having no free dependents is a severe restriction, but we
believe that it is relatively easy to simulate such features in the CMLG.

Theorem 8 Link grammars (Sleator and Temperley 1991) without
connectors that can link one or more tokens are reducible to G ∈ G1.

Proof. Omitted for brevity. tu
It should be noted, that underspecific link colors could be used in the
rules of CMLGs in order to gain more flexibility when the possible
linearisations are unknown. An underspecific rule can be seen as a rule-
schema that is expanded to a finite set of normal rules.

162 / Anssi Yli-Jyrä and Matti Nykänen

11.6 c-Colored t-Non-projective Dependency
Grammar

Linguistically oriented dependency grammars describe usually acyclic
graphs. We are therefore interested to find a fragment of CMLG that
would generate only acyclic graphs.

It is a well known that acyclicity of finite graphs is not first-order
definable property. We get acyclicity neither as a by-product of deriva-
tion, because the derivation trees of the underlying non-terminal-free
NormSc,Γ

pd -grammars can be completely different from the link structure
represented by the storage operations. There is no limit for the length
of “almost cyclic” paths that can be contained in the link structure.
Thus, we have to enforce acyclicity of the link structure by some other
means, by making a restriction to a subclass of acyclic structures.

In the following, we will propose a parametrized solution that is
based on a new complexity measure called the non-projectivity depth
of dependency paths.

Definition 9 A sequence of directed dependency links connecting
string position i to string position j so that j is transitively governed
by i is called a dependency path. The non-projectivity depth of an acyclic
dependency path is the sum of the number of visited string positions
for which the incoming (governor) link is shorter than the outgoing
(dependent) link and the number of positions where the incoming link
is stored to a pushdown whose index is greater than the index of the
pushdown containing the outgoing link.

S

S

pd,i

pd,j where j>i

non−projectiveprojective

FIGURE 3 Cycles contain at least one special kind of linkage (in rounded
boxes) that are not found in acyclic projective graphs.

Using the non-projectivity depth is motivated by the facts that (i) it
is always greater than zero for cyclic dependency paths, and (ii) it is
constantly zero for projective dependency trees. Moreover, if we let
grammars assign each token a the maximum non-projectivity depth of
a path from an independent token to token a, the grammars will fail
to build cyclic dependency paths, because such the maximum is not
well-defined if a path is acyclic. Based on these observations, we define
a subset of CMLGs that can generate only acyclic dependency graphs
(but not all them).

Mildly Context-Sensitive Dependency Grammars / 163

Definition 10 A colored t-non-projective dependency grammar
(CNDG) is a structure G = 〈VT , ΛH , ΛD, c, Ψ, t〉 where VT , ΛD,
ΛH , c, and Ψ are defined in the same way as done for CMLGs, and t
is the bound for non-projectivity depth in dependency paths.

The semantics of grammar G is much like in the case of CMLGs
(Definition 7). However, there are the following differences:
. The stack alphabet will be Γ = {(←−x , i) , (−→x , i) | x ∈ ΛD, 0 ≤ i ≤ t}.. The functions λ, ρ : (ΛD ∪ΛH)→ 2Γ are defined in such a way that

λ(x) = {(−→x , i) | i ∈ [0..t]} ρ(x) = {(←−x , i) | i ∈ [0..t]}
λ(x) = {(←−x , i) | i ∈ [0..t]} ρ(x) = {(−→x , i) | i ∈ [0..t]}.

. From the obtained productions of the forms (11.5) and (11.6) we
keep only those productions where the counters i in the pairs (X, i)
(i) increase monotonically from incoming (governor) links to outgo-
ing (dependent) links, (ii) increase strictly when an outgoing link is
longer than an incoming link of the same side, (iii) increase strictly
in left outgoing links with color p when there is a right incoming link
with a color q ≥ p+1, and (iv) do not increase more than necessary.
This is expressed formally as follows:

Let (ai, li) = vi and (bj , rj) = yj , where 1 ≤ i ≤ n and 1 ≤ j ≤ m,
be the stack symbols and α ∈ VT ∪ {ε} be the lexical anchor in a
constructed production

X poppn(vn) · · ·popp1(v1)→ if true thenαX pushq(ymym−1 . . . y1).

This production is kept if, for all i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, it holds
that erratum:

swap
←−
Γ and−→
Γ

ai ∈
←−
Γ implies ti = max{l∗, r∗, ln,i+1, spi

}, and
bj ∈

−→
Γ implies uj = max{l∗, r∗, rj−1,1},

where
l∗ = max{0} ∪ {li | 1 ≤ i ≤ n, ai ∈

−→
Γ }

r∗ = max{0} ∪ {rj | 1 ≤ j ≤ m, aj ∈
←−
Γ }

ln,k = max{0} ∪ {li + 1 | k ≤ i ≤ n, ai ∈
−→
Γ }

rk,1 = max{0} ∪ {rj + 1 | 1 ≤ j ≤ k, aj ∈
←−
Γ }

sp = max{0} ∪ {ri + 1 | 1 ≤ i ≤ m, ai ∈
←−
Γ , p < q}.

Theorem 9 Classes of CNDG with at least two colors are mildly
context-sensitive.

Proof. The proof can be given in a similar way as in Theorem 6. Note
in particular, that the example grammars for languages L1, L2 and L3

and the representation for the Hays-Gaifman dependency grammars
given there have bounded non-projectivity depth. tu

164 / Anssi Yli-Jyrä and Matti Nykänen

The following theorem relates CNDGs to CMLGs:

Theorem 10 Every CNDG can be reduced to a CMLG.

Proof. Instead of constructing a nonterminal-free NormSc,Γ
pd -grammar

directly from each CNDG as we did above, we will now have to con-
struct in a similar way a CMLG where counters for non-projectivity
depth are visible already in the link labels and in colored rules. tu

The number of productions in CNDGs can much larger than in cor-
responding CMLGs. However, it is possible to parse the sentence first
with a CMLG and then re-parse the parse forest using CNDGs that will
filter out dependency graphs whose non-projectivity depth is greater
than t. When used in this way, CNDGs may in fact provide more ef-
ficient filtering than what is generally possible by complete methods
(e.g. backtracking search) for acyclicity testing.

11.7 Dependency Grammars for Trees
An acyclic dependency graph is a dependency tree if and only if
. it has a unique root
. all the word tokens except the root are governed by exactly one

other node.

To obtain dependency grammars that assign dependency trees to the
strings, we can specialize colored non-projective dependency grammars
so that these two requirements are satisfied. First, we require that all
the rules of the forms (11.9) and (11.10) contain exactly one governor
link, and that the rules of the form (11.7) or the form (11.8) contain
only one category (n = 1 or m = 1). Furthermore, the derivations
where rules of both forms (11.7) and (11.8) must be discarded.

11.8 Conclusion
We have presented new classes of link and dependency grammars,
namely the Colored Multiplanar Link Grammar (CMLG) and its sub-
types, the c-Colored t-Non-projective Dependency Grammar (CNDG).
The semantics of these grammars was given by reduction to Extended
Right-Linear Sc,Γ

pd -grammar Wartena (2001), which immediately relates
CMLGs and CNDGs with existing families of grammars.

The important contribution of this paper is to show that CMLGs
and CNDGs are mildly context-sensitive and that the number of colors
c available in CMLGs induce an infinite hierarchy of classes of CMLGs.
Furthermore, a sub-hierarchy of CNDGs in each class of CMLGs is
obtained by restricting the non-projectivity depth of the dependency

References / 165

paths. Dependency grammars that generate dependency trees up to a
bounded non-projectivity depth form a subset of CNDGs.

We argue that the presented grammars have linguistic and practical
relevance, because (i) the core ideas of the CMLG derivations have
been tested against a small treebank (Yli-Jyrä 2003), (ii) the CMLG
hierarchy provides a useful complexity measure for natural language
sentences (iii) CMLGs are mildly context-sensitive and (iv) lexicalized,
and (v) they give rise to finite-state approximations that assign non-
projective dependency structures to strings (Yli-Jyrä 2004).

(This paper version appears in FGNancy 2004 pre-proceedings.)

Acknowledgements
The work was partially funded by NorFA under the personal Ph.D.
scholarship (ref.nr. 010529) of the first author.

References
Castaño, J. M. 2003. Global index grammars and descriptive power. In R. T.

Oehrle and J. Rogers, eds., Proceedings of MOL 8, 2003 .

Gaifman, H. 1965. Dependency systems and phrase-structure systems. Inf.
Control 8(3):304–37.

Gazdar, G. 1988. Applicability of indexed grammars to natural languages.
In U. Reyle and C. Rohrer, eds., Natural Language Parsing and Linguistic
Theories. Dordrecht: Reidel.

Hays, D. G. 1964. Dependency theory: A formalism and some observations.
Language 40:511–525.

Joshi, A. K. 1985. Tree Adjoining Grammars: how much context-sensitivity
is required to provide reasonable structural descriptions? In D. Dowty,
L. Karttunen, and A. Zwicky, eds., Natural Language Parsing , pages 206–
250. Cambridge: Cambridge University Press.

Sleator, Daniel and Davy Temperley. 1991. Parsing english with a link gram-
mar. Technical Report CMU-CS-91-196, Carnegie Mellon University, Com-
puter Science.

Tesnière, L. 1959. Éléments de Syntaxe Structurale. Paris: Editions Klinck-
sieck.

Vijay-Shanker, K., David Weir, and Aravind K. Joshi. 1987. Characterizing
structural descriptions produced by various grammatical formalism. In
25th ACL, pages 104–111. Stanford, CA.

Wartena, C. 2001. Grammars with composite storages. In M. Moortgat, ed.,
LACL’98 , vol. 2014 of LNAI , pages 266–285.

Weir, David J. 1994. Linear iterated pushdowns. Computational Intelligence
10(4):422–430.

166 / Anssi Yli-Jyrä and Matti Nykänen

Yli-Jyrä, A. 2003. Multiplanarity - a model for dependency structures in
treebanks. In The Second Workshop on Treebanks and Linguistic Theories.
Växjö, Sweden.

Yli-Jyrä, A. 2004. Axiomatization of non-projective dependency trees
through finite-state constraints that analyse crossing bracketings (prelim-
inary title). In the COLING 2004 workshop ”Recent Advances in Depen-
dency Grammar”. University of Geneva, Switzerland.

Yli-Jyrä, A. to appear. Coping with dependencies and word order or how to
put Arthur’s court into a castle. In H. Holmboe, ed., Nordisk Sprogteknologi
2003. Årbog for Nordisk Sprogteknologisk Forskningsprogram 2000–2004 .

